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Abstract Heterodyne cavity experiments for gravitational
wave (GW) detection experience a rising interest since recent
studies showed that they allow to probe the ultra high fre-
quency regime above 10 kHz. In this paper, we present a con-
cise theoretical study of the experiment based on ideas from
the former MAGO collaboration which already started exper-
iments in turn of the millenium. It extends the former results
via deriving an additional term originating from a back-action
of the electromagnetic field on the cavity walls, also known
as Lorentz Force Detuning. We argue that this term leads to a
complex dependence of the signal power P on the coupling
coefficient between the mechanical shell modes and the elec-
tromagnetic eigenmodes of the cavity. It turns out that one
has to adapt the coupling over the whole parameter space
since the optimal value depends on the mechanical mode wy
and the GW frequency w, . This result is particularly relevant
for the design of future experiments.

1 Introduction

Since the first detection of gravitational waves (GWs)in 2016
by the LIGO and Virgo collaboration [1], there is a rising
interest on GW experiments probing the ultra high frequency
regime beyond 10 kHz [2]. Because no source in this regime
is known in the standard model of particle physics and cos-
mology, a detection would point towards new physics. Recent
studies [3] showed that heterodyne experiments using super-
conducting radio frequency (SRF) cavities are able to push
the sensitivity towards a promising window for new sources.
In particular, black hole superradiance would produce a very
suitable signal for this approach [4]. The idea was initially
worked outin the 1970s by several studies [5—10]. First exper-
iments began in 1984 [11] which led to further efforts by
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the MAGO collaboration at INFN in the late 1990s [12-16].
The concept is based on two eigenmodes of an electromag-
netic cavity which are nearly degenerate. One eigenmode is
excited by an external oscillator (pump mode) whereas the
other (signal mode) is coupled to a readout system that mea-
sures the electromagnetic field power. When a GW passes
by, it can induce a transition of photons from the pump mode
into the signal mode, leading to an enhanced power loss at
the readout. The signal reaches a maximum when the GW
is resonant to the frequency difference between both levels.
This allows using superconducting radio frequency (SRF)
cavities to scan over a wide frequency range from 1 kHz to
several GHz. Measurements in the superconducting state of
the cavity allow for very high electromagnetic quality factors
(Q ~ 1010) [17-19] which are mandatory to distinguish the
levels at small frequency differences.

For the coupling of a GW to the EM field of the cav-
ity, there are two possible channels. One is a direct coupling
via the Gertsenshtein effect [20,21], the other is an indirect
mechanical coupling where the GW leads to a deformation
of the cavity boundaries inducing an overlap between the
initial eigenmodes. In previous studies, the direct coupling
was neglected since it is much weaker than the mechanical
coupling at low frequencies. However, it becomes dominant
at high frequencies above 1 GHz, which was already investi-
gated in detail in [19] for static B-field setups used in Axion
experiments [22,23]. Although our main interest focuses on
the lower frequency regime between 1 kHz and 10 MHz, we
add it for a complete picture of the coupling phenomena.
For simplicity, we apply the long wavelength approximation
which allows to describe the coupling by two distinct cou-
pling constants ngl and ’7(];:1 where 0 and 1 refer to the pump
and signal mode respectively. The mechanical coupling via
the 1-th mechanical eigenmode consists of a mechanical-EM
part with constant 7761 and a GW-mechanical part. In the
monochromatic case, the latter decomposes into two con-
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stants n1+ and n’x . They correspond to the two possible polar-
isations of a GW. A sketch explaining the principle of the
heterodyne approach is shown in Fig. 1.

Although the theoretical details were already worked out by
the MAGO collaboration [12,16] as well as in recent studies
[3], one goal of our research is to provide a concise and
full description of the experiment from first principles. This
allows us to point out an important difference between the
old and new publications. In [3], the field back-action of
the EM-modes to the mechanical modes was not taken into
account. This effect is commonly known as Lorentz force
detuning and can be made plausible because the EM field
counteracts the external changes induced by the GW, which
is comparable to Lenz’s law. In particular, it leads to a signal
damping which depends on '7(1)1 and becomes dominant in the
sub-MHZ regime and close to the resonance w; = w,. Thus,
optimising the coupling to |n61| ~ 1 as it was suggested in
[3] does in general not provide the strongest signal in the
cavity.

Itis important to point out that the MAGO approach is very
similar to other optomechanical systems, in particular Weber
Bar antennas. In the past, numerous research has been carried
out focusing on this type of detector, see e.g. [24-28]. This
includes also detailed studies of noise sources such as oscil-
lator phase noise and thermal noise as well as several ways
to reduce them [29-31]. However, there are some important
differences. For instance, the weight of Weber Bar detectors
is in the order of several tons, whereas MAGO has a mass in
the order of (M ~ O(1kg)). Moreover, it was pointed out
in [3] that the EM thermal noise of the RLC circuits used
as electromechanical transducer has a parametrically larger
thermal noise than superconducting cavities. We do not focus
on noise sources in this paper, which can also lead to addi-
tional back-action effects in the system. The back-action we
discuss here is an intrinsic property of the detector concept
and is particularly important for lightweight detectors like
MAGO, as it goes with 1/M.

The paper is organised as follows: in Sect. 2, we intro-
duce our implementation of the Gertsenshtein effect using the
long-wavelength approximation. In Sects. 3 and 4, we intro-
duce concepts from elasticity theory to describe the mechan-
ical coupling via wall deformation, i.e. the cavity boundaries.
The change of the EM-modes due to the change of bound-
aries can be described with cavity perturbation theory, which
isintroduced in Sect. 5. With these ingredients, we can derive
the equations of motion in Sect. 6 which are solved for a
monochromatic GW in z-direction in Sect. 7. Finally, we
provide a detailed analysis of the damping term in Sect. 8.
This study has grown out of a Master’s thesis [32], where
more details can be found.
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2 The Gertsenshtein-effect

Gravitational waves (GW) are usually described in the frame-
work of linearised theory of general relativity [33—35]. In this
regime, the metric decomposes into a minkowskian part and
a small strain tensor /1, 1.€. g,» = Ny + Ay . In particular,
we assume that |%,,| < 1 and |d4%,,] < 1. Throughout
this study, we use the convention (—, 4, +, +) for 1,,.

The coupling between a GW and the electromagnetic field is
governed by the Einstein-Maxwell action given by [19]

1 .
Sem = fd4xv—8( = 588" FuvFap = 8" ju ).

In vacuum, where j,, = 0, this equation leads to a Lagrangian
of the form

1 .
L= —ZFWF’“’ — jiAu, (1)

where the effective current jer is induced by the strain /.
Considering the explicit form [19]

hﬂt
ilie= av(T“FW + R PO — h“aF“”) @)

of this current, we see that it does not transform covariantly
like a four-vector. Hence, it is not invariant under coordinate
transformations and we must therefore carefully think about
the reference frame when evaluating the strain. It turns out
[19,36] that the best choice is given by the proper detector
frame. Itis an example for a local Lorentz frame and therefore
encodes the physical change of the detector due to a passing
GW. Since we focus on GWs in the kHz-MHz regime, we
apply the long-wavelength approximation which allows us
to use the relatively simple metric

ds? = —dt2<1 - %ii,.TjT(g)x"x-/) +dx'dx’ 85, (3)
where hl.TT is the strain in the Transverse Traceless (TT)
and g denotes the reference geodesic, i.e. the worldline of
the detector. More details can be found in [36-39] and in
Appendix A.

For simplicity, we will often refer to a monochromatic GW
with frequency wy travelling in z-direction. In TT gauge and
using complex notation, it can be written as

hy he O\
hET@) = [ —hy O | €, 4)
0 0 0

where the spatial dependence are neglected in the long wave-
length approximation. From Eq. (3) we can obtain the only
non-vanishing component fgo of the strain in the proper
detector frame. It yields
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Fig. 1 This sketch shows the two different channels of the GW inter-
action with the electromagnetic field. On the left, the direct coupling
via the inverse Gertsenshtein effect is illustrated governed by two cou-
plings ’7(1)31 and 77(];:1 in the long wavelength regime. Note that /1, denotes
the strain of the GW, which is supposed to be monochromatic through-
out this study. On the right, the indirect coupling of the GW over a

- “)§ 2 2
hoo(l,x)=—7(h+(x —y7) 4+ 2xyhy)
eVt = —Hy(X)e' ¢!, 5)

where we have defined the function Hy(X) := wé J2(hy (x%—
%)+ 2xyhy).

Finally, we can derive the equations of motion from Egs. (1)
and (2). The resulting modified Maxwell equations have the
form

2 (6)

with the effective charge density pef and current density feff.
In the long wavelength regime, they yield

1
Peff := EV(hoo), @)

- 1 . .
Jeff == _Eat(hOOEO) - EV x (hooBo), (8)

where 1;"0 and Eo are the electromagnetic fields of the pump
mode.

3 Wall deformation

Since GWs change the spacetime metric, the cavity bound-
aries get modified. A GW couples to the mechanical modes
of the resonator which shifts the EM eigenmodes inside the
cavity. In order to describe this effect properly, we need to
apply the framework of classical elasticity theory [40,41].
A concise formalism was already derived in [16,42] and we
only give a short review here.

Mechanical Coupling

mechanical mode u; is shown. It can be understood as a graviton—
phonon—photon interaction in the particle picture. The GW-mechanical
coupling can be described by two coupling coefficients nl+ and %, , while

the mechanical-EM coupling is governed by ’761~ In both pictures, Eo,
Eo and E|, B) are the fields of the pump and signal mode, respectively

The starting point is the equation of motion for an isotropic
elastic solid under the influence of an external force density

f(t, %), ie.

@ 9%u(z, x)
x —_—
P at2

= fa, 5. ©9)

— (A + W V(Vi(t, X)) — uVZi(t, %)

Here, p(X) denotes the material density and A and u are

the materials first and second Lamé parameters [42]. For the
initial conditions #(X,0) = 0 = %(55, 0), we can use the

ansatz
Q(F 1) =Y E@q). (10)
=1

This leads to a set of equations of motion for the g;(¢) of the
form

J0)

i (11)

Gi(t) + wiqi(t) =

where M is the cavity mass and f;(¢) the generalised force
density. It is defined via the integral

fit) = / Ex f(t, HEF) (12)

over the cavity volume Vc,y. Finally, we note that the spatial
modes & (X) are the eigensolutions of the equation

W p(R)EE) + (b + w)V(VEF) + pV2EF) =0

and are therefore independent of f (t,X). They are nor-
malised as

/ Ex&@EFR)p(R) = M8y

@ Springer
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In general, those modes have to be determined numerically.
An analytic solution for a spherical geometry can be found
in [42].

4 Tidal force density for monochromatic gravitational
waves

Here, we want to state a simple example of the tidal force
density f(t, x) induced by a passing GW. It can be derived
from the equation of geodesic deviation [35] and yields [16,
42]

f(t,;‘c’) =

where p(X) is again the material density and Ro;( ; the Rie-
mann curvature tensor. In case of a monochromatic GW in
z-direction (Eq. 4), we can further evaluate this expression
and plug it into the generalised force density in Eq. (12). We
get

—p(X)Roioj (1)x;ée;,

fite) = —-sz VAR (' + hoatl el @t =2 Fy(n)eis!
(13)

The dimensionless coupling coefficients nﬂ_ and nlx encode
the coupling strength between the GW and the mechanical
mode /. They are defined by

—-1/3
= M Bxp(X) (x80(F) — y&1,,(3)),
VC(]V
—1/3
= = | E@ 8@ + yE ).
Vcav

5 Mode decomposition and cavity perturbation theory

The electromagnetic field in an evacuated cavity is, without
any perturbation, given by the wave equations

. 193%E . 10%B
with the boundary conditions [17]
ixEls=0, i Blg=0, (15)

where 7i is the normal vector of the cavity shell S. The eigen-

solutions of this boundary value problem can be separated

into a dimensionless time-dependent part e, (t), b, (¢) and a

spatial part E, (%), B,(X). The general solution can then be

decomposed as

=Y eE,E).  B(.X) =
n

E(.%) > ba(0)By(¥).

(16)

@ Springer

The normalisation of the spatial modes is chosen accordingly
to [43],

- o 1 - -
/ &Bxe0EnEm = 2UnSum :/ &x—B,B,, (17)
Vcav VCﬂV

o

where U, is the average energy in mode n. Correspondingly,
the time-dependent modes are given by

en(t) = BxEt, B E, @)

" B ZU” Veav ’ " ’

by(t) = / dPxB(t, ¥) By (7). (18)
2I’LOU" cav

When a GW is passing through the cavity, the geometry and
therefore the boundary conditions for the electromagnetic
field change. In particular, that means we have to change the
set of eigenfunctions. However, since the GW strain is very
small (< O(10721y), cavity perturbation theory (CPT) can be
applied. That means, the perturbed modes can be expanded
in terms of the unperturbed modes.

It should be noted that there are some pitfalls when applying
CPT to the spatial modes. The main problem is that such
a series expansion would generally not fulfill the boundary
conditions

ixE@|g =0 i-B@Elg =0.

Hence, in order to obtain a consistent theory, a perturbation
theory is used only for time dependent modes. Applying CPT
to the spatial modes in Eq. (16) leads to wrong signs in the
final result [16]. The CPT method we use has been derived
in [44]. Further details can be found in Appendix B. Note
that we consider GWs with frequencies much smaller than
the mode frequencies, so we can treat the shell displacement
in adiabatic approximation. Applying the CPT formalism for
the time-dependent modes e, () and b, (¢) leads to

en(t) = en(t) + Z anmem, (19)
m;ﬁn
b, (1) = bu (1) — c,mb + Z 7 Bumbn. (20)
m;én
, 1

W, = Wy — EwnC,m. 21

The expansion coefficients are given by
Onwm  Un w2 Un

Opm = mU—nCnm, Bnm = HU—nCnm,

where C,, encodes all geometric and electromagnetic prop-
erties of the cavity. In a heterodyne setup, we can decompose
this factor as

nm = Ca\}/:;‘, qu(t)nnmv

(22)
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where the symmetric dimensionless coupling coefficient nflm
can shown to be [16]

, Vel N L
= [ 45 i[—BB—eEE].
Mnm zm Wiy El( ) 140 nPm 0LnLm
(23)

6 The equations of motion

In order to derive the equations of motion (EoM), we use a
similar formalism as in [16], however adding the direct cou-
pling to the EM field via the Gertsenshtein effect. Although
this coupling is subdominant at low frequencies, it becomes
important at frequencies beyond 1 GHz. Since it could be
necessary to extend the experimental search into this regime
in the future, we include it already in this study. Our starting
point is the extended Lagrangian

L:/ dV|:—

+Z < M (1) — szql Q) +6]z(t)fz(t)) (24)

1 1.
ZFMUF/MV _ Ejng;l}

where the prime denotes the perturbed fields and jgf is given
in Egs. (7) and (8).

We can now split the Lagrangian into two parts, L = Ley +
Lech, where Ly describes dynamics of the EM-field and
is given by

| 1
Lem =[ dV[— SF R
VCaV

4 W 2 effA/] (25)

The Lagrangian L yecn governs the physics of the mechanical
displacement field and yields

Linech = Zzun (€7 () — b7 (1))

+ Z ( MR () — —szql 0 + 611(t)f1(t))
(26)

Note that both jl and the corrections to A/, are of order
O(h), so we can drop the prime of the vector field in lead-
ing order and neglect the term here. With the techniques
described in Sects. 2-5, it is straightforward to derive the
equations of motion. For simplicity, we will assume that only
one mechanical mode / contributes to the dynamics through-
out this study. Then, adding dissipative terms to account for
the energy losses through the walls and by the external oscil-
lator driving the pump mode, we find from Eq. (25) that

cav

bo + Q—bo + wiby = w§ Vel Pai

Ui Ud ;
x (nbobo [ Gobibr) + o+ 50 ptba, @)

b+ Q—‘b1 +oib = otVal Py
1

cav

[Uo w; Uy
X(’?lnbl‘i‘ U—1n61b0)+J1+éa U—lbd, (28)

where n = 0 refers to the pump mode and n = 1 to the
signal mode. Here, Q¢ and Q are the quality factors [17] of
the eigenmodes and b, denotes the oscillator which is also
coupled to the signal mode with a constant! €. The Gertsen-
shtein current shows up as a projected current J,, which can
be expressed as

[U
Jn(@) == Ho? U—O(K,,ngn + A8, ) 278 (@ — (w0 + wy))
n
(29)

under the assumption that 7 x }eff(t, X)|s = 0. Here we have
introduced another two coupling coefficients

1 o -
E 3 2 2 2
= — d"xHy(x)eoEo(X)E,, (x 30
e HW/V W ®eEo®E®  (30)
1 / P T
Noy = ——— d’xHy(x)— Bo(x) B, (x). 3
" HT0U, Jv, 1o "

for the E-field and the B-field respectively. The parameters
kn and X, are given by

LW

fen = i3 (0 + @), (32)
_

hn 1= 25 (33)

Note that they are different in the long wavelength regime. If
wo + wg < wy,, the GW couples stronger to the B-field than
to the E-field, and vice versa for wg + w, > w,. Since we
work with wp ~ w1 and w, < wop, w; throughout this study,
we assume |k,| & |Ay,l, i.e. that the couplings are equally
strong. If w, becomes comparable to wy and w1, the long
wavelength approximation may break down and Eq. (29) is
no longer valid. Finally, we have defined the normalised GW
strain as

_ 1
Vcav

For a MAGO-like cavity, we found that a reasonable value
for the normalised strain is given by H ~ ho x 10 m?, where
ho is the characteristic strain strength of the GW.

/ BxH2 ). (34)
VC av

! For the MAGO cavity, this coupling could be reduced to ¢ ~ 1077,

@ Springer
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(a) Signal without damping

Fig. 2 This plot displays how the signal power depends on the
mechanical-em coupling ’761- The curves were calculated for different
values of wg between 100 Hz and 10 MHz assuming a scanning experi-
ment (i.e. | = wg + w,). a Calculations without the damping term. As

Similarly, we can find the EoM for the mechanical modes
from Eq. (26). Adding again a dissipative term, we end up
with
wj
o)

where Q) is the mechanical quality factor. In contrast to [3],
we automatically obtain the field back-action

1
. . 2 - ba
i+ S+ ot =+ (fi+ 1), (35)

1) = VC;J/3(U0nf)0b3(t)
+U B} + 29/ Ve bo b1 (1))

which is responsible for an additional deformation of the cav-
ity walls, commonly known as Lorentz Force Detuning. The
first two terms lead to a constant shift that can be absorbed
into the definition of the eigenmodes. However, the last term
leads to a damping of the signal strength which is particularly
strong close to the resonances. Effectively, we therefore get

£() = 2V PV Uo Uty bo (b1 ().

Note that this term already appeared in the studies of the
MAGO collaboration, see e.g. [12,16]. However, in Sect. 8,
we will investigate its impact on the detector sensitivity in
greater detail.

(36)

7 Solution for monochromatic gravitational waves

In general, the coupled differential equations (27), (28) and
(35) can only be solved by numerical methods. However, if
we assume a monochromatic GW travelling in z-direction,
ie.

qi(t) = Re(Qi(1)e' "),

@ Springer
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expected, the highest possible signal is always achieved for "7{)1 |=1.b
Calculations including the damping term, Eq. (46). A remarkable result
is that, in particular for wg below ~ 1 MHz and close to the resonance
wg = wy (green curve), the best signal power is achieved for |776| | <1

fi(t) = Re(Fi(n)e'“s"),
Ji(t) = Re(Kj(t)e! @0ty

it is possible to find an analytic expression for the sig-
nal power. We further assume that the pump mode can be
stabilised to be monochromatic. Therefore, an appropriate
ansatz for the fields is

bo(t) = ba(t) = Re(e'™"),
bi(t) = Re(A;(t)e' @tesh),

(37)
(38)
The remaining calculation is greatly inspired by [16]. If Q;(¢)
and A1 (¢) are small such that only leading terms in these

functions are relevant, the EoM (Egs. 28, 35) can be written
as

A1) + a1 A1) + B A1 (1)

UO . w1 Ud ot
:w_ 101(1) + K1(t) + eiwg—, | —e 198"
Uly Ql U]

(39)
- . 2 Fi(t) Ui
Q1) + o Qi(t) + By Q1) = A + FOWAI(I)’
(40)

where we also neglected all fast oscillating terms. That
means, we assumed that terms containing !0’ or ¢/!’ van-
ish in the time average compared to terms containing e'®s’.
The constants introduced in Eqs. (39) and (40) are given by

w
0

2 2, . Wi
Bl =0 —w, +iwg—,
8 ]

’

ap = 2iwg +
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I _
Y= Mvca\}ﬂUonf)l’

(] .
ay = — + 2i(wo + wyg),

01

2 2 . W]

ﬁﬂ=wy—@m+%)+r@ﬁm+w@
yi == VPt

We can now perform Fourier transformations to solve Eqs.
(39) and (40) for A;(¢). By again neglecting fast oscillating
terms, the time average of by (¢), Eq. (38), can be expressed
as (b2(1)) = 1(|A1(1)]?). Thus, we can write the signal in
terms of a power spectral density (PSD)

Ssig(w) = 2Ulwl/Qcplsln (w),

where (b%(t)) = (27)7?2 f dwSp, (w). Note that the coupling
quality factor Qcp has to be used here, since it parameterises
the energy transfer into the readout system. It is related to the
full quality factor Q via

1 1 1

— = + )
01 Qcpl Qint
where Qjn is the internal quality factor neglecting the readout

loss. More details on that can be found in [3,18].
The final result for the signal PSD is then given by

W] 4
—uw, Uy
Qcpl §
1oinp, (nly +hxnl)  HGeng +Aingy)
2 Ai@— (@0 +wg) A — (@ + )

Ssig (w) =

Mechanical Coupling
4728 (w — (wo + wy)). 41

Gertsenshtein Coupling

where we have introduced two functions A (w) and Aj(w)
in the denominators which we call resonance functions. They
are given by

A1) = (B1 — @ +iwar) (B — o +iovw) — yiv,
(42)

Ar(@) = A1(@)(B — o +iwa) . (43)

For completeness, we note that an additional term appears
from Eq. (39) describing the coupling to the external oscil-
lator. It yields

3
UyS
Sosel@) = 2 2L 212 @ gy
Ocpl 07 A2 — (wo + wy))]
where we have defined Sy, (w) = 47%8(w — wy). For a

monochromatic oscillator, this PSD can be well separated
from the signal. However, there is some irreducible phase
noise which leads to a power leakage into frequency range
of the signal mode. It turns out that, for € ~ 107, the oscil-
lator phase noise is negligible compared to more dominant
sources such as mechanical or thermal noise. For a detailed
discussion, see e.g. [3,43].

Finally, we can integrate Eq. (41) to obtain the total signal
power. It yields

1 W] 4
Psig = W/dwssig(w) = aplngO

’m%nél(mi +hxnl) B Gy + M) |
2 BB — rivi BB —rivi
(45)

This is the main result of our study. In contrast to the results
of [3], it shows an additional damping factor

yin = %VC;VMUO(wmé])Z (46)
in the denominator. It is parametrically suppressed for large
and massive detectors, but becomes important for lightweight
cavities like MAGO which operate at high frequencies. In
the following, we will investigate its impact on the detector
sensitivity.

8 Impact of the damping term

In this section we want to investigate the effects of the damp-
ing term y; which follows from the back-action fl"‘b (1), Eq.
(36). The main reason is that recent studies, such as [3], do
not consider this term, although it has an important influence
on the results, as explained in the following. The MAGO col-
laboration, however, mentioned it, but without investigating
it in greater detail.

We found that the term has a great influence on the sig-
nal since it depends quadratically on the mechanical cou-
pling. Therefore, we propose that a mechanical coupling of
|77(l)1| = 1, cf. Eq. (23), does not always lead to the strongest
signal. To show this, we calculate Eq. (45) explicitly and take
w;, wg and n), as free parameters. In order to fix the remain-
ing values, we mostly follow [3, 12]. That means, concerning
the cavity parameters, we choose M = 5kg, Veoy = 10L,
wo = 1.8GHz and Qg = Qcpi = Qint = 1010, The elec-
tromagnetic field in the cavity and the temperature of the
boundaries should not exceed the quenching limit of nio-
bium, which was used for MAGO. According to [3], we
therefore assume a typical E-field of 30 MV/m which cor-
responds to a total pump mode energy of Uy ~ 407J. For the
GW, we assume a typical strain of hg = hy = hy = 10720
and a GW-mechanical coupling of nﬂ_ = nlx = 1, which
are both rather optimistic.> The calculations are conducted
for a scanning experiment where | = wo + wg. Broadband
detection is in principle possible as well [3, 18], but typically
leads to a low sensitivity far from the resonance.

2 For MAGO-like cavities, we found values of ’7{#7 nlx ~ 0(1072).
Note, however, that our qualitative results do not depend on these values.
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Fig. 3 This plot shows the coupling strength leading to the highest
signal power in the wg-w;-plane. Some examples for fixed w, and wy
are shown in Fig.2. An important result of this plot is that the highest
signal is not always reached for |r]61| = 1 as proposed by [3]. For
g in the sub-MHz regime, the optimal coupling can be much lower.
In particular close to the resonance wg; = wj, the coupling should be
optimised to values of order Iryf)1 | ~O107%)

In the first analysis, we assume a lowest mechanical quad-

rupole mode at w; = S kHz which is in good agreement with
numerical simulations of MAGO-like cavity spectra. We then
investigated how the signal power depends on |17f)1 | for eight
different frequencies @, between 100 Hz and 10 MHz. For
larger frequencies, the long wavelength approximation may
break down and Eq. (45) has to be adjusted. The results are
shown in Fig.2 both with and without the damping term.
When the term is neglected (Fig. 2, left panel), it is obvious
that the highest signal is achieved for the maximum coupling
constant |n61| = 1. However, in case it is included (Fig.2,
right panel), |n6] | = 1 leads to the strongest signal only for
high frequencies in the MHz-regime. Below, we find that the
best coupling is achieved for |r;(l)1 | < 1. In particular close to
the resonance w, = wy, the damping term leads to an ideal
coupling of |7761| ~ ©(107°). The results therefore clearly
show that SRF cavity experiments should in general not be
optimised to |n61| ~ O(1). This is particularly important for
low frequencies and frequencies close to the resonance.
We also provide a more general analysis of the best choice
for |r;61 | in Fig. 3. It shows the value of |n6] | with the largest
signal powers in the w,-w;-plane. The result could be used
as a template for optimising future gravitational wave exper-
iments. We point out that the parameters wy, wg and 77(l)1 can
be controlled via the cavity geometry.

Finally, we note that the optimal coupling does also
depend on the noise sources which determine the cavity sen-
sitivity. Applying a qualitative analysis of the sources dis-

@ Springer

cussed in [3] using the damping term showed that the cou-
pling still has to be optimised similar to Fig.3. However,
the results largely depend on the noise parameters and we
postpone a more detailed study to future work.

9 Conclusion

Heterodyne cavity experiments provide a promising tool for
detecting or excluding new sources of GWs in the future.
Recent studies showed that the sensitivity of modern cavities
can already approach the regime for new physics. A promis-
ing candidate in the measurable regime is, for instance, black
hole superradiance. In this study, we refined the theoreti-
cal formalism proposed by the former MAGO collaboration
[12,16] and added another signal source from the Gertsen-
shtein effect. The resulting signal power for a monochro-
matic GW in z-direction is shown in Eq. (45). We note that
the Gertsenshtein effect is subdominant in the considered
kHz-MHz-regime. At higher frequencies above MHz, how-
ever, the effect becomes dominant and the coupling has to be
taken into account. In that case, the long wavelength approx-
imation breaks down and the full metric expansion should be
used (see appendix A). First studies can be found in [3,19].
An important difference to the recent results [3] is that we
included the back-action of the EM field, leading to Lorentz
Force Detuning and causing a damping term y;y;, Eq. (46),
which depends on the coupling 7761 of the EM field to the
mechanical cavity modes. This term was already described
in [12,16], but its influence was not investigated further. We
found that an important consequence is that choosing | nfn | ~
O(1) does in general not lead to the strongest signal power.
In particular close to the resonance w, = wj, the maximum
signal is achieved for much lower couplings of order |n6] | ~
O(107°).

Altogether, we recommend that future heterodyne cavity
experiments do not choose a design where always |7761 | ~ 1.
Instead, the coupling constant should be adjusted such that
it matches the optimal coupling for the values w; and wg of
the experiment.
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Appendix A: The proper detector frame

The proper detector frame (PDF) is a coordinate system
that describes the local Lorentz frame of an observer in
curved spacetime [38]. With respect to the cavity, it prop-
erly describes the response of the EM-field to a small metric
perturbation in its local lorentz frame. We therefore need it
to describe the gauge-dependent Gertsenshtein current of a
passing GW.

In general, the PDF is a combination of Fermi Normal Coor-
dinates (FNC) [35,45] and the acceleration and rotation of
the observer [46]. As shown by Marzlin in 1994 [38], the
metric can be then written as

goo = —(1+a- %)%+ (@ x ¥)*— o
—2(& x ¥)'yoi — (@ x ) (@ x )5,
g0i = (& x X); — yoi — (& x X) i,
8ij = 8ij = Vijs (47)

where the coefficients are given by the series expansions

=2
_ kol k K
)/00—2 (n+3)!xxxl-~x (O
n=0
<+ O, Roror) (8) - [(ﬂ +3) 42+ 2)ax + (n + 1)(33)2],
=2
_ kol ki
Yoi ,;:0 (n+3)!x X x

e @, O, Roun) (@) - [ (1 4+ 2) + (n 4+ D3z,

e
2 k.1 ki

Vijzz(n+3)!x X'x

n=0

b @y, Rt () [ 1],

where a and @ are the acceleration and rotation and g the
geodesics of the observer (reference geodesic). Note that the
Riemann tensor is gauge independent. For GWs, it is there-
fore possible to compute it in the more convenient TT-gauge.
With SRF experiments, the goal is to measure GWs with fre-
quencies in the range ~ O(kHz-MHz), which is much above
the typical variations of the gravitational field on earth with

values of f < 0.1Hz [37]. We can therefore well separate
the GWs from the background field and seta = O and @ = 0.
The resulting simplified expansion for the GW strain reads

o0
hooz—ZZ—(n+3)!x x'xt.

n=0

-k (B, - - Bk, Rokor) (8),

(48)

oo
h '=—22uxkxlxkln~xk”(8 - O Rokin) (2)
0i ) ey + Ok, Rokir)(8),

n=0
(49)
o0
n—+1
hij=-2) mxkxlxk‘ coe xR (g - O, Rikj1) (8)-
n=0 ’

(50)

We refer the reader to [36] for a more detailed discussion of
FNC. In our case where the expected GW frequency is below
the GHz-regime, we can apply the long wavelength approx-
imation. That means, the Riemann tensor is independent of
the spatial coordinates and the expansion can be cut off at
second order. This leads to a vastly simplified metric (Eq.
3), which can be used for calculating the Gertsenshtein cur-
rent. Note, however, that the full expansion is needed in the
GHz-regime and above. More details can be found in [3,19].

Appendix B: Cavity perturbation theory

When a GW propagates through a cavity, it changes the
boundary conditions of the electromagnetic field. The eigen-
modes of the deformed cavity are in general different from
the eigenmodes of the unperturbed one. However, the GW
strains are very small (< O(1072y), so cavity perturbation
theory can be applied. That means, we can express the per-
turbed modes as series expansions of the unperturbed modes.
We are then interested in the resulting overlap given by the
coefficients of the expansion. An important result of this pro-
cedure is that the perturbed mode E ' appears to be strongly
coupled to its unperturbed counterpart E,,, but also has con-
tributions from other modes Em with m # n.

There are several approaches to construct such an expan-
sion. We will use the method given in [44] as it is consistent
with the method applied in [16]. The main idea is to find an
expression for the deformed boundary conditions at the posi-
tion of the unperturbed shell. The advantage of this approach
is that we do not have to deal with a perturbed volume V/,,
and can therefore work with V¢, throughout the calculation.
We discuss the formalism in detail here, since [44] contains
some inconsistencies. We further present the arguments in a
new and improved way using a modern notation.

@ Springer
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B.1 The perturbed boundary condition

The unperturbed shell has surface S while S” denotes the
surface of the perturbed shell. We note that the electromag-
netic field in both cavities is described by the boundary value
problem (BVP)

VxEnzcké VxE—ck,/1 B,,
- ky - N -
V x B, =—E,, VxB— E
C C
nx Epls =0, i x Elg =0. (51)

We will use w, = ck, instead of k,, from now on. Our goal is
to find the equivalent of the boundary condition /i’ x E s =
Oon S. Since S is supposed to be a (at least piecewise) smooth
manifold, we can parameterise it with two variables A; and
A2. We then define two differentiable curves

Uy (A1) = S(h1, 2212, fixeds

Uy =3, (A2) := S(A1, A2) |5, fixeds

ﬁl =

such that the tangential vectors

- i il
T ER

—_
~
o

define a right-handed orthonormal system (?1 D, i), where n
is the surface normal. The displacement is described by A(X),
which gives the absolute value of the shell deformation at a
point ¥ on the surface. We set A < Oforinwardand A > 0for
outward deformations. Throughout the following discussion,
we will assume that |A(¥)| < 1.

We start by going the infinitesimal distances

du| = ;ld)\ly duy = ;gdkz

on the unperturbed surface S. We then move along a closed
path using 7A to jump on the perturbed surface S’. In Fig. 4,
itis shown for inward and outward deformation. We consider

the surface elements within the path, which are given by
dgl = :szzd)\.lA, dgz = :F;]d)\.zA.

Note that the upper sign corresponds to the inward direction
and the lower sign to the outward direction. The key idea
now is to apply Stokes theorem. It is useful to look at Fig.4
to track the s1gns correctly Weighting the surface elements
dA; and dA, with V x E/ leads to

VxE|-dA; =+V x E/ -?zAd)q

=+E A FE, Anq:dkl—(E AA) F Elfda

= FE fid} ;d}\l—(E;,fiA),
ol
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V x E! -dAy = FV x E! -} Ad,

oo 9 - -
=xE,AnFE,AnF dAZW(E,;nA) F E,rhd)s
2

- 3 .
= ZFE;ltzd)Q F d)»z—(E;lnA),
ol

where we expanded (E;ﬁA)(ﬁ1,2+d)\1,2f1,2) up to first order
and used that E, |'; = 0 on the perturbed surface (see Fig.4).
By eliminating dA and dA,, we find

= -

S5 J o, .
E, -t ==V XxE, -hA——(E,nA),
oA

- S 0 -,
E, - h=VXxE, - t1A——(E,iA).
BIY)

These results can be now combined to

-

E, = (E,i) -1 + (Ejf) - 1o + (Ejii) - ii
—~(VX E'DA) -1+ (VX ELGA) -1

a -, . > 9 =, . > S S

On the shell of the unperturbed cavity, this expression reads
Ells =17 x (V x ED)Als — V(ELiA)|s + (EL7i) - 7ils,

where we used the standard gradient in the coordinate system
(1, 1o, 1) together with the identity @ x (b x ¢) = b - (@ -
&) —¢-@-b). Inserting Eq. (51) finally yields the perturbed
version of the boundary condition 77 x En |s = 0. The result
is

i x El|s = Awy By x it) x iils + V(EaiiA) X iils,

so the perturbed electric field does not vanish in the unper-
turbed shell. This will now help us to find a series expansion
for E,’l (or é,/l) in terms of E,, (or En). Note that we have
dropped the primes on the right hand side as we assumed A
to be small. It is therefore sufficient to consider leading order
terms only.

B.2 Solving the Boundary Value Problem

According to the general idea of perturbation theory, we can
decompose the perturbed eigenmodes as [16]

E;l —E, + O'E,(ll) + O(c?),
é;l =B, + olg’,(ll) + O(c?),
W), = wp + ool + O0@6?).

Substituting this into the perturbed BVP and using the unper-
turbed BVP (see Eq 51), we obtain a BVP for the first order
corrections crE ) and oB )Tt can be written as
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Fig. 4 Construction of the 3

boundary conditions for the
perturbed mode. The idea is to
use the area elements dA »,
Stoke’s theorem and that E. .
vanishes on the perturbed shell
to find an expression for

7i x E}|s on the unperturbed
shell. This sketch should help to
track the correct signs for
inward/outward deformation
and 11 /f>-direction respectively

VxoEWD — w,,aé,(ll) = ooV B,, (52)
)
owy,’ =
V x (TB(I) E(l) = _;En (53)
c
i x 0 EV|s = w,Vils, (54)

where we again consider leading order terms in A and o only.
In order to abbreviate notation, we have defined

> > R R 1 > N
V, == A(B, xn) xn|ls+ —V(E,nA) X n|s (55)
wp

here. We can now expand the first order corrections in terms
of the unperturbed modes, i.e.

UESll) = Zanméms (56)
m

0B =" BunBu, (57)
m

oa),(ll) = anma)m. (58)
m

The remaining task then is to find the coefficients o, Bum
and «,,,,. We start by integrating equation 52 over B,, such
that

/ d3xl§m -V x O'E’(ll) — wnf d3x1§m, -Ué,(ll)

=o', / d*xB2. (59)

Equivalently, we can integrate equatlon 53 over E which
leads to a similar expression with Band E exchanged. Using
standard nabla identities and Gauss’s law, we can rewrite the
first integral of Eq. (59) as

/ &*xB,, -V x (IE’(ll)
V(.dV
- _/ dS(B, x o EV)
8‘/CdV

+/ &xoEVV x By,
VCZIV

Perturbed shell S’

d, 2t ,2)

To evaluate the surface integral, we can use the boundary
conditions in 51 and 54. Note that there is now a difference
between the E-field and B-field because

dS(By x 0 EV) =i - (B, x 0 EV)d
S =By - (0ED x i)dS = —w, B, - V,dS
dS(Ep x 0 BV) =i - (E,, x 0 BV)d
S=0B" . (i x E,)dS =0.

With these results and using Eq. (51), we can write Eq. (59)
as

= aa),(ll)anm/ d3x1§3 —
VC'IV

> 1y o 1) 51y o
wm/ d&*xoBV B, — —;/ &xoEVE,
Vcav ¢ VCEIV
(1)

o w, -
= 2”5,,,,1/ dxE2,
C

cav

where we also gave the corresponding expression for the B-
field. The next step is to insert the expansions Egs. (56) and
(57). We can use Eq. (17) to simplify the notation and arrive
at

) 20,
_rznanm_m — onBum20Unm
C
2U,
= 6un 0@} 210U + = = Co. (60)
Cc
Wy, 2U,, aa),(ll) 20U,
Om Bum20Um — S %m— = _28nm_» (61)
¢ €0 ¢ €0

where a new coupling coefficient is defined by

02

Cnm =

dSeo By, V. 62
2Um Ve 0OmVn ( )

To find the coefficients &, Bnm and kp;,, we have to solve
Egs. (60) and (61). Therefore, we have to distinguish between

@ Springer
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the cases n = m and n # m. We start with the latter, which
yields

W Wn

_ Omn o 63
Unm w’% _w’% nm (63)
(,()2
IBnm = ﬁcnm (64)
Wy — Wy

The case n = m needs a bit more work. From Eqs. (60) and
(61), we directly find

1
oa),(ll) = ——w,Cun.

2
This leads to a solution for k,;, and an expression for
and B, which read

Cnm ’

Knm = _Eanm
1
Aun = Bun + Ecnn-

However, we have to fix another degree of freedom to get a
final result for the remaining coefficients. That is because we
have not yet chosen a normalization for the perturbed fields.
An appropriate choice is to define

/ $PrE? = 2Un

— / PrE2. (65)
60 cav
By observing that

20, - .
n = / Ex(E, + 0 EM? = (1 + 20)
VCELV

2U,
€0 €0 ’
we find that the diagonal coefficients are asymmetric and
given by

1
IBnn = _E nn-

Finally, we write the perturbed solutions in terms of the time
modes e, (t) and b, (). By substituting the expansions 5658
into Eq. (18), we end up with

(66)

oy =0,

U,
e;;(t) =ey(t) + Z Anm U_mem(t)a
m#n n
Wy
Anm = %Cnmv (67)
Wy — Wy
/ 1 Upn
by(®) = bu(®) = SCanbn () + Y T Bambm ©),
m#n n
(1)2
IBnm = ﬁcnm» (68)
Wy — Wy
1
w, = w, — EwnC,m. (69)

The remaining task is to determine the connection coeffi-
cients C,.

@ Springer

B.3 The connection coefficient

We return to Egs. (55) and (62), which define the connection
coefficient Cy;,. The full expression reads

2 -
Com = _ZCT,,, favcav dSeo B,
x[(m}n X ) X7+ =V EE,A) x ﬁ].
We can write this in a shorter form by using the boundary

condition én -#i|s = 0 for the unperturbed cavity. The left
integral can be then written as

/ ds-ém(énxﬁ)xm:—/ dS - BB, A.
a‘/CZJ.V a‘/CEIV

For the right integral, we use that dS = 7dS and Eq. (51) to
find

/ dS - €0BnV(HEnA) x it
Bvcav
€ = =
= a)m/ ds - —ZA(nE,,)(nEm)
avcav C

—/ dS -V x ((REn)BnA).
O Veay

Using the boundary condition En,m x i|s = 0, we can write
(fi . En)(r_i : Em)lS = En : Em|S~

in the first integral. The second integral vanishes due to
Stoke’s law. Combining all results leads to the relation

1 1 wma—»]

Com = 577 n as - A[— B, — M eoE, Eny

Mo Wp
Note that in cases where w,, ~ w, like in heterodyne cavity
experiments, we can write the simplified form

1

1 - - ..
~ ds - A[—B,,Bm _ eOE,,Em]. (70)
2Um Jav,,

o

Cn m

References

1. B.P. Abbott et al., Observation of gravitational waves from a binary
black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

2. N. Aggarwal et al., Challenges and opportunities of gravitational-
wave searches at MHz to GHz frequencies. Living Rev. Relativ
24(1), 1-74 (2021)

3. A.Berlinetal.,, MAGO 2.0: electromagnetic cavities as mechanical
bars for gravitational waves (2023). arXiv:2303.01518v1 [hep-ph]

4. R. Brito, V. Cardoso, P. Pani, Superradiance: New Frontiers in
Black Hole Physics (Springer, Berlin, 2020)

5. V.B. Braginskii, M.B. Menskii, High-frequency detection of grav-
itational waves. JETP Lett. 13(11), 417-419 (1971)

6. V.B. Braginskii et al., Electromagnetic detectors of gravitational
waves. Zh. Eksp. Teor. Fiz. 65, 1729-1737 (1973)

7. C.M. Caves, Microwave cavity gravitational radiation detectors.
Phys. Lett. B 80(3), 323-326 (1979)


http://arxiv.org/abs/2303.01518v1

Eur. Phys. J. C (2023) 83:1153

Page 13 of 13 1153

10.

12.

13.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

F. Pegoraro et al., Electromagnetic detector for gravitational waves.
Phys. Lett. A 68(2), 165-168 (1978)

F. Pegoraro, E. Picasso, L.A. Radicati, On the operation of a tunable
electromagnetic detector for gravitational waves. J. Phys. A Math.
Gen. 11(10), 1949 (1978)

F. Pegoraro, L.A. Radicati, Dielectric tensor and magnetic perme-
ability in the weak field approximation of general relativity. J. Phys.
A Math. Gen. 13(7), 2411-2421 (1980)

. C.E. Reece, P.J. Reiner, A.C. Melissinos, Observation of 4x 10—

17 cm harmonic displacement using a 10 GHz superconducting
parametric converter. Phys. Lett. A 104(6-7), 341-344 (1984)

R. Ballantini et al., Microwave apparatus for gravitational waves
observation (2005). arXiv:gr-gc/0502054v1

P. Bernard et al., A detector of small harmonic displacements based
on two coupled microwave cavities. Rev. Sci. Instrum. 72(5), 2428—
2437 (2001). arXiv:gr-gc/0103006v2

P. Bernard et al., Coupled microwave cavities for the detection of
small harmonic displacements. Tech. rep. SCAN-9906068 (1998)
P. Bernard et al., Coupled superconducting cavities for the detection
of weak forces. Part. Accel. 61, 79-86 (1998)

P. Bernard et al., A detector of gravitational waves based on coupled
microwave cavities (2002). arXiv:gr-gc/0203024v1

J.D. Jackson, Klassische Elektrodynamik. de Gruyter (2006)

A. Berlin et al., Heterodyne broadband detection of axion dark
matter (2020). arXiv:2007.15656v1 [hep-ph]

A. Berlin et al., Detecting high-frequency gravitational waves with
microwave cavities (2021). arXiv:2112.11465v1 [hep-ph]

M.E. Gertsenshtein, Wave resonance of light and gravitational
waves. Sov. Phys. Jetp 14, 84-85 (1962)

Y.B. Zel’dovich, Electromagnetic and gravitational waves in a sta-
tionary magnetic field. Zh. Eksp. Teor. Fiz 65, 1311-1315 (1973)
R. Khatiwada et al., Axion dark matter experiment: detailed
design and operations. Rev. Sci. Instrum. 92(12), 124502 (2021).
arXiv:2010.00169v1 [astro-ph.IM]

L. Zhong et al., Results from phase 1 of the HAYSTAC microwave
cavity axion experiment. Phys. Rev. D 97(9), 092001 (2018).
arXiv:1803.03690v1 [hep-ex]

J. Weber, Detection and generation of gravitational waves. Phys.
Rev. 117, 306-313 (1960)

P. Astone et al., Long-term operation of the Rome explorer cryo-
genic gravitational wave detector. Phys. Rev. D 47,362-375 (1993)
P. Astone et al., The gravitational wave detector NAUTILUS oper-
ating at T = 0.1 K. Astropart. Phys. 7(3), 231-243 (1997)

E. Mauceli et al., The Allegro gravitational wave detector: Data
acquisition and analysis. Phys. Rev. D 54(2), 1264-1275 (1996).
arXiv:gr-qc/9609058v3

A. Vinante, (forthe AURIGA Collaboration), Present performance
and future upgrades of the AURIGA capacitive readout. Class.
Quantum Gravity 23(8), S103-S110 (2006)

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

M.E. Tobar, D.G. Blair, Sensitivity analysis of a resonant-mass
gravitational wave antenna with a parametric transducer. Rev. Sci.
Instrum. 66(4), 2751-2759 (1995)

D.G. Blair et al., High sensitivity gravitational wave antenna with
parametric transducer readout. Phys. Rev. Lett. 74(11), 1908 (1995)
M.E. Tobar, E.N. Ivanov, D.G. Blair, Parametric transducers for the
advanced cryogenic resonant-mass gravitational wave detectors.
Gen. Relativ. Gravit. 32(9), 1799-1821 (2000)

R. Lowenberg, Revisiting gravitational wave detection with SCRF
cavities at DESY. Master Thesis, University of Hamburg (2023)
P. Fortini, A. Ortolan, Gauge transformations in linearized theory
of gravitational waves, in Problems of Fundamental Physics II,
Proceedings of the 5th Winter School on Hadronic Physics (1990),
p- 379-389

1.B. Hartle, Gravity, An Introduction To Einstein’s General Rela-
tivity (Pearson Education, London, 2003)

C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan
Education, Berlin, 1973)

M. Rakhmanov, Fermi-normal, optical, and wave-synchronous
coordinates for spacetime with a plane gravitational wave. Class.
Quantum Gravity 31, 1-34 (2014)

C. Caprini, D.G. Figueroa, Cosmological backgrounds of gravita-
tional waves (2020). arXiv:1801.04268v3 [astro-ph.CO]

K.-P. Marzlin, Fermi coordinates for weak gravitational fields.
Phys. Rev. D 50, 888-891 (1994)

M. Maggiore, Gravitational Waves Volume 1: Theory and Experi-
ments (Oxford University Press, Oxford, 2007)

L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik
VII, Elastizitdtstheorie (Akademie Verlag, Cambridge, 1987)
K.S. Thorne, R.D. Blandford, Elasticity and Fluid Dynamics Vol-
ume 3 of Modern Classical Physics (Princeton University Press,
Princeton, 2021)

A.J. Lobo, What can we learn about gravitational wave physics
with an elastic spherical antenna. Phys. Rev. D 52 (1995)

A. Berlin et al., Axion dark matter detection by superconducting
resonant frequency conversion (2019). arXiv:1912.11048 [hep-ph]
G. Goubau, Electromagnetic Waveguides and Cavities (Pergamon
Press, Oxford, 1961)

F.K. Manasse, C.W. Misner, Fermi normal coordinates and some
basic concepts in differential geometry. J. Math. Phys. 4, 735-745
(1963)

W.-T. Ni, M. Zimmermann, Inertial and gravitational effects in the
proper reference frame of an accalerated, rotating observer. Phys.
Rev. D 17, 1473-1476 (1978)

@ Springer


http://arxiv.org/abs/gr-gc/0502054v1
http://arxiv.org/abs/gr-gc/0103006v2
http://arxiv.org/abs/gr-gc/0203024v1
http://arxiv.org/abs/2007.15656v1
http://arxiv.org/abs/2112.11465v1
http://arxiv.org/abs/2010.00169v1
http://arxiv.org/abs/1803.03690v1
http://arxiv.org/abs/gr-qc/9609058v3
http://arxiv.org/abs/1801.04268v3
http://arxiv.org/abs/1912.11048

	Lorentz force detuning in heterodyne gravitational wave experiments
	Abstract 
	1 Introduction
	2 The Gertsenshtein-effect
	3 Wall deformation
	4 Tidal force density for monochromatic gravitational waves
	5 Mode decomposition and cavity perturbation theory
	6 The equations of motion
	7 Solution for monochromatic gravitational waves
	8 Impact of the damping term
	9 Conclusion
	Acknowledgements
	Appendix A: The proper detector frame
	Appendix B: Cavity perturbation theory
	B.1 The perturbed boundary condition
	B.2 Solving the Boundary Value Problem
	B.3 The connection coefficient

	References




