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Abstract We introduce a two-parameter static,
nonspherically-symmetric black hole solution in the Einstein
theory of gravity coupled with a massless scalar field. The
scalar field depends only on the polar coordinate θ in the
spherical coordinates representation. The scalar invariant of
the spacetime, namely, the Kretschmann scalar reveals that
the black hole is singular on its axis of symmetry for all
nonzero values of the scalar charge. It also manifests two sur-
faces of singularity for a certain interval of the value of the
scalar charge. These singularities are hidden behind the event
horizon’s surface except the singularity on the axis which is
naked. The energy-momentum of the scalar field satisfies all
energy conditions. A simple investigation reveals that the
circular orbits of massive and massless particles in the equa-
torial plane are identical to those near a Schwarzschild black
hole.

1 Introduction

Fisher–Janis–Newman–Winicour (FJNW) metric is the exact
solution of Einstein’s equations in the theory of gravity cou-
pled minimally with a massless scalar field. The solution is
a two-parameter asymptotically flat, static, and spherically
symmetric with a naked singularity. It was first introduced
by Fisher in 1948 [1] and somehow was rediscovered by
Janis, Newman, and Winicour in 1968 [2]. The instability
under radial perturbations of the Fisher’s solution was stud-
ied by Bronnikov and Khodunov in 1979 [3]. Furthermore,
Wyman in 1981 introduced implicitly and independently
the same spacetime [4] in completing the early attempt of
Bergmann and Leipnik [5] to obtain the spherically symmet-
ric solution of Einstein’s equations with a special form of the
energy-momentum tensor. In [4] the uniqueness of the solu-
tion was also proved. The solution introduced by Wyman
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in his original paper doesn’t contain the FJNW metric and
it was shown by Virbhadra in 1997 that these solutions are
the same [6]. Their solution was also reported in some other
works [7–11]. This solution was generalized by Xanthapou-
los and Zannias to arbitrary spacetime dimensions in 1989
in [10] where the fact that the spacetime is naked singular
in 3+1 dimensions was generalized to any arbitrary dimen-
sions. A deep analysis of the d-dimensional FJNW spacetime
was carried out by Abdolrahimi and Shoom in [12]. In 1993,
Robert obtained the same solution in null coordinates and
showed that the asymptotic flatness of the static spherically-
symmetric solution of the Einstein equations in this theory is
not a required pre-assumption but it is intrinsic to the solution
[11]. In other words, the FJNW solution is the most general
static and spherically symmetric solution of the theory. In [9],
FJNW was studied in the Newman-Penrose formalism. The
naked singularity of FJNW spacetime made it a good can-
didate to examine its observational characteristic properties
and compare them with the correspondence black hole i.e.,
the Schwarzschild spacetime [13–25]. A good introduction
to this theory can be found in [26]. The gravitational collapse
of a massless scalar field was also studied in [27–31]. Par-
ticularly, we should mention the recent works on Einstein’s
gravity coupled with a massless scalar field by Turimov, et
al [32,33] as well as [34] where in the latter one the electro-
magnetic field has also been considered.

Keeping in mind the impact of the FJNW metric in the
evolution of our understanding about the formation of singu-
larities in general relativity and their physical effects, we
aim in this Letter to present a new solution in the same
context whose spherically symmetric feature is broken. In
this regard, we introduce a nonspherically-symmetric com-
pact black hole solution in Einstein’s theory coupled with a
nonspherically-symmetric massless scalar field.
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2 The action and the solution

We start with the action of Einstein’s theory coupled with a
massless scalar field (8πG = 1)

I = 1

2

∫
d4x

√−g
(
R − (∇φ)2

)
, (1)

where R is the Ricci scalar and φ is a massless scalar field.
Variation of the action w.r.t the metric tensor and the scalar
field yields, respectively, the Einstein and scalar field equa-
tions given by

Rμν = ∂μφ∂νφ, (2)

and

∇μ∇μφ = 0. (3)

Moreover, we consider the spacetime to be axially symmetric
with the line element

ds2 = − f (r) dt2 + K (r, θ)

(
dr2

f (r)
+ r2dθ2

)

+r2 sin2 θdϕ2, (4)

in which f (r) and K (r, θ) are two metric functions to be
found. Herein, {t ∈ (−∞,+∞) , r ∈ [0,∞) , θ ∈ (0, π) ,

ϕ ∈ [0, 2π)} are the standard spherical coordinates such that
with f (r) and K (r, θ) equal to unity, (4) reduces to the flat
Minkowski spacetime in the spherical coordinates represen-
tation. Concerning the line element (4) the nonzero compo-
nents of the Ricci tensor are given by

Rtt = f
(
r f ′′ + 2 f ′)

2K
, (5)

Rrr = − f ′′

2 f
+ 1

2r2 f

((
K,θ

K

)2

− K,θθ

K
− K,θ

K tan θ

)

+1

2

((
K,r

K

)2

− K,rr

K

)
, (6)

Rrθ = K,θ

4K

(
f ′

f
+ 2

r

)
+ K,r

2K tan θ
, (7)

Rθθ = 1 − f − r f ′ − K,r

2K

(
r2 f ′ + 2r f

)

+r2 f

2

((
K,r

K

)2

− K,rr

K

)

+1

2

(
K,θ

K

)2

− K,θθ

2K
+ K,θ

2K tan θ
, (8)

and

Rϕϕ = − sin2 θ

K

(
r f ′ − 1 + f

)
, (9)

where ′ = d
dr ,

′′ = d2

dr2 , K,r = ∂K
∂r , K,θ = ∂K

∂θ
, K,rr = ∂2K

∂r2

and K,θθ = ∂2K
∂θ2 . By assuming a nonspherically-symmetric

scalar field φ = φ (θ) i.e., the scalar potential depends only
on the polar coordinate θ, one obtains exact solutions of the
field equations expressed by

f (r) = 1 − 2m

r
, (10)

K (r, θ) =
(
m2 sin2 θ

r2

)2β2

(
1 − 2m

r + m2 sin2 θ
r2

)2β2 , (11)

and

φ (θ) = ±β ln

(
1 − cos θ

1 + cos θ

)
, (12)

in which m and β are two integration constants representing
the gravitational mass and the scalar field, respectively. Since
the sign of ±β doesn’t change the physical properties of the
solution without loss of generality we consider the positive
branch and β ≥ 0. The line element, hence, reads

ds2 = −
(

1 − 2m

r

)
dt2

+
(
m2 sin2 θ

r2

)2β2

(
1 − 2m

r + m2 sin2 θ
r2

)2β2

(
dr2

1 − 2m
r

+ r2dθ2

)

+r2 sin2 θdϕ2 (13)

which clearly is a 2-parameter, namely m, and β, metric
that reduces to the standard Schwarzschild black hole in the
absence of the scalar field i.e., β → 0. The Kretschmann
scalar is calculated to be

K = 48
(
r2 − 2mr + m2 sin2 θ

)4β2−1

(sin θ)4(2β2+1) m8β2r6

(
m4 sin6 θ

+2rm3
(
4β2 − 3

)
sin4 θ

3

+r2m2 sin2 θ
((

6β2 − 3
)

cos2 θ + 11β4 − 10β2 + 3
)

3

+2r3mβ2
((

2β2 − 1
)

cos2 θ − 5β2 + 1
)

3
+ β4r4

)
.

(14)

The latter expression reveals that for 4β2 − 1 ≥ 0 or equiva-
lently β ≥ 1

2 , the Kretschmann scalar diverges at θ = 0, π,

and r = 0 which are located on the axis of symmetry, namely,
the z -axis in the corresponding cylindrical coordinates. On
the other hand, with 4β2 − 1 < 0 or equivalently β < 1

2 ,
the spacetime is singular not only at θ = 0, π, and r = 0
but also at the surface of r2 − 2mr +m2 sin2 θ = 0 which is
plotted in Fig. 1.

Having the singularities located on the axis of symmetry
and hidden by the hypersurface r = 2m, Eq. (13) admits a
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Fig. 1 The plots of the singular hypersurfaces for 4β2 − 1 < 0 which
are the inner surfaces. The outer spherical surface is defined by r = 2m
which is nothing but the surface of the event horizon. The singular
hypersurfaces are hidden behind the event horizon. Furthermore, the
axis of symmetry is also a singular line

spherical event horizon located at r = 2m which is practi-
cally the same as the event horizon of the black hole in the
absence of the massless scalar field. This is worth noting that

lim
r→2m

(
m2 sin2 θ

r2

)2β2

(
1 − 2m

r + m2 sin2 θ
r2

)2β2 = 1, (15)

indicating that the area of the black hole is the same as the
corresponding Schwarzschild black hole.

Introducing the prolate spheroidal coordinates given by
X = r

m − 1 ∈ [−1,∞) , Y = cos θ ∈ [−1, 1) , ϕ = ϕ ∈
[0, 2π), and t = t ∈ (−∞,∞) , Eq. (13) becomes

ds2 = −
(
X − 1

X + 1

)
dt2 + m2

(
X + 1

X − 1

)

×
{(

X2 − 1
) (

1 − Y 2

X2 − Y 2

)2β2 (
dX2

X2 − 1

+ dY 2

1 − Y 2

)
+

(
X2 − 1

) (
1 − Y 2

)
dϕ2

}
. (16)

Calculating the Kretschmann scalar in this coordinates sys-
tem reveals

K = 48

m4

(
X2 − Y 2

1 − Y 2

)4β2

×
(

β4
(
X2 + 4

3

(
XY 2 − X + 1

) − 7
3Y

2
)

(
X2 − Y 2

) (
1 − Y 2

)2
(1 + X)4

+
2
3β2

(
X2 − Y 2 + 3XY 2 − 3X

)
(
X2 − Y 2

) (
1 − Y 2

)
(1 + X)5

+ 1

(1 + X)6

)
(17)

which shows the singularities at X = −1 corresponding to
r = 0, Y 2 = 1 corresponding the poles, X2 = Y 2 cor-

responding to
( r
m − 1

)2 = cos2 θ provided 4β2 < 1. The
scalar potential is also transformed to be

φ (Y ) = β ln

(
1 − Y

1 + Y

)
, (18)

which is clearly singular at Y = ±1 which is the boundary
of the domain of Y.

3 The energy conditions

The black hole introduced in the previous section is sup-
ported by a nonspherically symmetric scalar field. In this sec-
tion, we investigate the energy conditions, namely the null,
weak, strong, and dominant energy conditions, abbreviated
by NEC, WEC, SEC, and DEC, respectively. To do so we
calculate the energy-momentum of the scalar field given by

T ν
μ = ∂μφ∂νφ − 1

2
δν
μ∂αφ∂αφ (19)

which knowing that φ (Y ), Eq. (18) explicitly reads

T ν
μ = −1

2

(
∂Yφ∂Yφ

)
diag [1, 1,−1, 1] (20)

where

∂Yφ∂Yφ = gYY (∂Yφ)2 = 4β2

m2

1

(X + 1)2

(
X2 − Y 2

)2β2

(
1 − Y 2

)2β2+1
.

(21)

Hence, introducing T ν
μ = diag

[−ρ, pX , pY , pϕ

]
, we

implicitly find the energy density and the pressures in dif-
ferent directions to be given by

ρ = −pX = pY = −pϕ = 2β2

m2

1

(X + 1)2

(
X2 − Y 2

)2β2

(
1 − Y 2

)2β2+1
.

(22)

The NEC implies ρ + pi ≥ 0 which clearly satisfied. Fur-
thermore, the WEC is the union of NEC and ρ ≥ 0 which is
also perfectly satisfied. Next is the SEC which is the union
of NEC and ρ + pX + pY + pϕ ≥ 0 which is certainly sat-
isfied. Finally the DEC implies ρ ≥ 0, and ρ − |pi | ≥ 0
in which i = X,Y, ϕ. With (22) one can easily see that
DEC is also satisfied. Therefore, all energy conditions are
perfectly satisfied by the energy-momentum tensor of the
scalar field that indicates the black hole is supported by a
physical scalar field. This is also important to mention that
the energy-momentum tensor is singular at X = −1 and
Y = ±1. The former singular point is the center of the black
hole corresponding to r = 0 in the spherical coordinates sys-
tem. The latter implies the north and the south poles which
effectively addresses the axis of symmetry. On the surface
of singularity i.e., X2 = Y 2, the energy-momentum tensor
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vanishes which indicates the nature of this singularity is not
the energy-momentum tensor or the scalar field but it is due
to the geometry of the spacetime. It is in analogy with the γ

metric [35,36].

4 The photon orbit

In this section, we investigate the effect of the scalar field on
the photon orbit around the black hole. The Lagrangian of a
null particle moving in the vicinity of the black hole (13) is
given by

2L = −
(

1 − 2m

r

)
ṫ2

+
(
m2 sin2 θ

r2

)2β2

(
1 − 2m

r + m2 sin2 θ
r2

)2β2

(
ṙ2

1 − 2m
r

+ r2θ̇2

)

+r2 sin2 θϕ̇2, (23)

where a dot stands for the derivative with respect to an affine
parameter. The energy of the particle as well as its angular
momentum about the axis of symmetry are conserved such
that

E = −∂L
∂ ṫ

= 1 − 2m

r
, (24)

and

 = ∂L
∂ϕ̇

= r2 sin2 θϕ̇. (25)

The equation of motion in θ direction is rather far from being
trivially satisfied simply by θ = θ0 unless θ0 = π

2 . Applying
the constraint of the null geodesics i.e., ẋμ ẋμ = 0, on the
equatorial plane where θ0 = π

2 the main radial equation is
obtained to be
( r

m
− 1

)−4β2

ṙ2 + Vef f (r) = E2, (26)

where the effective potential is given by

Vef f (r) = 2

r2

(
1 − 2m

r

)
. (27)

We observe from the effective potential that the circular orbit
where ṙ = 0 and r̈ = 0 is possible at rc = 3m where
V ′
e f f (rc) = 0 however since V ′′ (rc) < 0 this circular orbit

is unstable. The situation is the same as the Schwarzschild
black hole. Although the circular orbit of the null particle is
β-independent, the actual general motion of a null as well as
a massive particle very much depends on β which is clearly
observed from (26).

5 Conclusion

In this Letter, we introduced an exact black hole solution in
the theory of gravity coupled with a massless scalar field.
The solution contains two integration parameters which are
m and β. These parameters are related to the mass of the
black hole and the charge of the scalar field. In particular,
β ≥ 0 may be called the charge of the scalar field and it
plays a crucial role in the global configuration of the solution.
The contribution of β is in analogy with the parameter γ

in γ -metric which is also known as Zipoy-Voorhees metric
[35,36]. For β = 0 the solution becomes the Schwarzschild
black hole with a timelike singularity at r = 0. For 0 <

β the solution is axially symmetric and geometrically the
spacetime is deformed such that β = 1

2 seems to play a
topological phase transition point such that for β ≥ 1

2 the
surfaces of singularities disappear. Hence, topologically one
defines three regions: (i) β = 0, ii. 0 < β < 1

2 and (ii)
1
2 ≤ β. In all three cases, the event horizon is formed at
r = 2m although for β > 0 the horizon surface is singular
at the poles. The scalar field depends only on the polar angle
θ and is singular at the poles. Unlike, the well-known FJNW
metric which is spherically symmetric, asymptotically flat,
and naked singular, the solution we presented here is non-
spherical, non-asymptotically flat with an event horizon. The
main singularity is the axis of symmetry of the black hole in
analogy with the Levi-Civita spacetime [37], however, the
event horizon is spherical and covers the singularity, except
on the axis of symmetry. Except for the poles, which are
singular, the event horizon in other directions is regular. We
have also shown explicitly that the energy conditions are all
satisfied unconditionally. The photon orbit on the equatorial
plane is exactly the same as the Schwarzschild black hole.
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