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Abstract Heavy quark expansion can nicely explain the
lifetime of �b. However, there still exist sizable uncertainties
from the four-quark operator matrix elements of �b in 1/m3

b
corrections, which describe the spectator effects. In this work,
these four-quark operator matrix elements are investigated
using full QCD sum rules for the first time. At the QCD level,
contributions from up to dimension-6 four-quark operators
are considered. Our method for calculating high-dimensional
operator matrix elements holds promise for use in resolving
the �c lifetime puzzle.

1 Introduction

In 2018, the Large Hadron Collider beauty (LHCb) experi-
ment measured the lifetime of �0

c using �−
b → �0

cμ
−ν̄μX

decays and obtained [1]

τ(�0
c) = 268 ± 24 ± 10 ± 2 fs, (1)

which is roughly four times as large as

τ(�0
c) = 69 ± 12 fs (2)

in the Particle Data Group 2018 archive (PDG2018) [2]. In
2021, LHCb confirmed the previous measurement using �0

c
produced directly from proton–proton collision [3], and in
2022, Belle II reported a similar result using �0

c → �−π+
decays [4]. These recent measurements indicate that �0

c is not
the shortest-lived weakly decaying charmed baryon, which
conflicts with our previous understanding [5]. This demands
theoretical explanation.

At present, the standard framework for understanding
weakly decaying heavy flavor hadrons is heavy quark expan-
sion (HQE) [6–13]. Under this framework, some attempts
have been made to resolve the �c lifetime puzzle [14–16].
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However, there is still a lack of more reliable calculation
based on quantum chromodynamics (QCD) for the hadronic
matrix elements of high-dimensional operators in HQE.

HQE describes inclusive weak decays of heavy flavor
hadrons. It is a generalization of the operator product expan-
sion (OPE) in 1/mQ , and enables the systematic study of
non-perturbative effects. The starting point of HQE is the
following transition operator

T = i
∫

d4x T [LW (x)L†
W (0)], (3)

where LW is the effective weak Lagrangian governing the
decay Q → X f . The total decay width of a hadron HQ

containing a heavy quark Q can be given as

�(HQ) = 2 Im〈HQ |T |HQ〉
2MH

, (4)

where MH is the mass of HQ . The right-hand side of Eq. (4)
is then calculated using OPE for the transition operator T
[5,14]

2 ImT = G2
Fm

5
Q

192π3 ξ

(
c3,Q Q̄Q + c5,Q

m2
Q

Q̄gsσ · GQ

+c6,Q

m3
Q

T6 + · · ·
)

, (5)

where ξ is the relevant Cabibbo–Kobayashi–Maskawa (CKM)
matrix element, and T6 consists of the four-quark operators
(Q̄�q)(q̄�Q), with � representing a combination of Dirac
and color matrices.

In fact, there was also a conflict between theory and
experiment for the lifetime of �b as early as 1996. Taking
τ(B0) = (1.519 ± 0.004) ps in PDG2022 [17] as a bench-
mark, for τ(�b) = (1.14 ± 0.08) ps in PDG1996 [18], one
can find the ratio

τ(�0
b)/τ(B0) = 0.75 ± 0.05. (6)
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Theoretically, the ratio deviating from unity at the level of
20% is considered to be too large. Nowadays, we know that
the low value of τ(�b)/τ(Bd) or the short �b lifetime was a
purely experimental issue. The world averages in PDG2022
are

τ(�b) = (1.471 ± 0.009) ps,

τ (�0
b)/τ(B0) = 0.964 ± 0.007, (7)

which are in good agreement with the HQE prediction [5]:

τ(�b)

τ (Bd )

HQE2014
= 1 − (0.8 ± 0.5)%1/m2

b
− (4.2 ± 3.3)%�b

1/m3
b

− (0.0 ± 0.5)%Bd
1/m3

b
− (1.6 ± 1.2)%1/m4

b

= 0.935 ± 0.054. (8)

However, it can be seen from Eq. (8) that the main uncer-
tainty in the lifetime ratio comes from the 1/m3

b corrections of
the �b-matrix elements. The relevant matrix elements can be
parameterized in a model-independent way as follows [14]:

〈�b|(b̄q)V−A(q̄b)V−A|�b〉 = f 2
BqmBqm�b L1,

〈�b|(b̄q)S−P (q̄b)S+P |�b〉 = f 2
BqmBqm�b L2,

〈�b|(b̄αqβ)V−A(q̄βbα)V−A|�b〉 = f 2
BqmBqm�b L3,

〈�b|(b̄αqβ)S−P (q̄βbα)S+P |�b〉 = f 2
BqmBqm�b L4, (9)

where (q̄1q2)V−A ≡ q̄1γμ(1 − γ5)q2 and (q̄1q2)S±P ≡
q̄1(1 ± γ5)q2. In the literature, a B̃ is usually introduced
to relate L3 to L1

L3 = −B̃ L1. (10)

The theoretical predictions for L1, L2 and B̃ are listed in
Table 1, from which one can see that there are significant
differences in the theoretical predictions for L1 and L2. In
this work, we intend to clarify this issue.

In Ref. [24], we performed a QCD sum rules analysis
of the weak decay form factors of doubly heavy baryons to
singly heavy baryons. However, considering that there were
few theoretical predictions and experimental data available
to compare with, we then applied our calculation method to
study the semileptonic decay of �b → �clν̄ in Ref. [25].
It turned out that our predictions for the form factors and
decay widths were consistent with those of heavy quark effec-
tive theory (HQET) and lattice QCD. In this work, similar
computing strategies are undertaken. At the QCD level, con-
tributions from up to dimension-6 four-quark operators are
considered to obtain the matrix elements in Eq. (9).

The remainder of this article is organized as follows. In
Sect. 2, the main steps of QCD sum rules are presented, and
in Sect. 3, numerical results are shown. For consistency, the
pole residue of �b is also considered. We conclude this article
in the last section.

2 QCD sum rules analysis

The following interpolating current is adopted for �b:

J = εabc(u
T
a Cγ5db)Qc, (11)

where Q denotes the bottom quark, a, b, c are color indices,
andC is the charge conjugation matrix. The correlation func-
tion is defined as

�(p1, p2) = i2
∫

d4xd4y e−i p1·x+i p2·y〈0|T {J (y)�6(0) J̄ (x)}|0〉,
(12)

with �6 being a four-quark operator given in Eq. (9). Note
that in spin space, J (y), �6(0) and J̄ (x) are 4 × 1, 1 × 1,
and 1 × 4 matrices, respectively, and therefore �(p1, p2) is
a 4 × 4 matrix.

Following the standard procedure of QCD sum rules, one
can calculate the correlation function at the hadron and QCD
levels. At the hadron level, after inserting the complete set of
baryon states, one can obtain

�had(p1, p2) = λ2
H

(/p2 + M)(a + bγ5)(/p1 + M)

(p2
2 − M2)(p2

1 − M2)
+ · · · , (13)

where λH = λ�b , M = m�b are respectively the pole residue
and mass of �b, the parameters a and b are introduced to
parameterize the hadronic matrix element

〈�b(q
′, s′)|�6|�b(q, s)〉 = ū(q ′, s′)(a + bγ5)u(q, s), (14)

and the ellipsis stands for the contribution from higher excited
states. For the forward scattering matrix element, one can
show that

〈�b(q, s)|�6|�b(q, s)〉 = ū(q, s)(a + bγ5)u(q, s)

= 2 a m�b , (15)

where ū(q, s)u(q, s) = 2 m�b and ū(q, s)γ5u(q, s) = 0
have been used. One can see that only the parameter a in Eq.
(14) is relevant to the forward scattering matrix element.

It can be seen from Eq. (13) that there are eight Dirac
structures, but only (at most) two parameters need to be deter-
mined. By considering the contribution of negative-parity
baryons [24–26], one can update Eq. (13) to

�had(p1, p2) = λ+λ+
(/p2 + M+)(a++ + b++γ5)(/p1 + M+)

(p2
2 − M2+)(p2

1 − M2+)

+λ+λ−
(/p2 + M+)(a+− + b+−γ5)(/p1 − M−)

(p2
2 − M2+)(p2

1 − M2−)

+λ−λ+
(/p2 − M−)(a−+ + b−+γ5)(/p1 + M+)

(p2
2 − M2−)(p2

1 − M2+)

+λ−λ−
(/p2 − M−)(a−− + b−−γ5)(/p1 − M−)

(p2
2 − M2−)(p2

1 − M2−)

+ · · · . (16)
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Table 1 L1, L2 and B̃ predicted
by different theoretical methods.
This table is reproduced from
Ref. [5]

L1 L2 B̃

−0.103(10) 0.069(7) 1 2014 Spectroscopy update [19]

−0.22(4) 0.17(2) 1.21(34) 1999 Exploratory Lattice [20]

−0.22(5) 0.14(3) 1 1999 QCDSR v1 [21]

−0.60(15) 0.40(10) 1 1999 QCDSR v2 [21]

−0.033(17) 0.022(11) 1 1996 QCDSR [22]

≈ −0.03 ≈ 0.02 1 1979 Bag model [23]

≈ −0.08 ≈ 0.06 1 1979 NRQM [23]

Here, M+(−) and λ+(−) respectively denote the mass and pole
residue of �b(1/2+(−)), and a+− is the parameter a for the
positive-parity final state �b(1/2+) and the negative-parity
initial state �b(1/2−), and so forth. When arriving at Eq.
(16), we have adopted the following conventions:

〈�b+(q ′, s′)|�6|�b+(q, s)〉
= ū+(q ′, s′)(a++ + b++γ5)u+(q, s),

〈�b+(q ′, s′)|�6|�b−(q, s)〉
= ū+(q ′, s′)(a+− + b+−γ5)(iγ5)u−(q, s),

〈�b−(q ′, s′)|�6|�b+(q, s)〉
= ū−(q ′, s′)(iγ5)(a

−+ + b−+γ5)u+(q, s),

〈�b−(q ′, s′)|�6|�b−(q, s)〉
= ū−(q ′, s′)(iγ5)(a

−− + b−−γ5)(iγ5)u−(q, s). (17)

In Eq. (17), these iγ5 are not necessary, but they are conve-
nient.

At the QCD level, the correlation function can be written
formally as

�QCD(p1, p2) = A1 /p2 /p1 + A2 /p2 + A3 /p1 + A4

+ A5 /p2γ5 /p1 + A6 /p2γ5

+ A7 γ5 /p1 + A8 γ5. (18)

The coefficients Ai are then expressed as double dispersion
relations

Ai (p
2
1, p2

2, q2)=
∫ ∞

ds1

∫ ∞
ds2

ρAi (s1, s2, q2)

(s1− p2
1)(s2 − p2

2)
,

(19)

where the spectral function ρAi (s1, s2, q2) can be calcu-
lated using Cutkosky cutting rules, see Fig. 1. Sum rules are
obtained by equating Eq. (16) with Eq. (18) and then using
quark–hadron duality to eliminate the contribution of excited
states. Furthermore, by equating the coefficients of the same
Dirac structure, one can have eight equations to solve eight
unknown parameters a±± and b±±. In particular, after per-

Fig. 1 Perturbative contribution. Cutting rules are also shown

forming the Borel transform, one can arrive at

a++ = {M2−, M−, M−, 1}.{BA1,BA2,BA3,BA4}
λ2+(M+ + M−)2

exp

(
2M2+
T 2

)
, (20)

where BAi are doubly Borel-transformed coefficients

BAi =
∫ s0

ds1

∫ s0

ds2 ρAi (s1, s2, q
2) exp

(
− s1 + s2

T 2

)
,

(21)

and s0 and T 2 are the continuum threshold parameter and the
Borel parameter, respectively.

In this work, contributions from up to dimension-6 four-
quark operators are considered at the QCD level.1 For the
matrix elements in Eq. (9), we find that contributions from
quark condensate (dimension-3) and quark-gluon condensate
(dimension-5) are proportional to the mass of the u/d quark,
which is taken to be zero in this work. All nonzero, “inde-
pendent” diagrams are shown in Fig. 2. Here, “independent”
implies non-equivalence. For example, diagram dim-4-2,5
with quark 2 and quark 5 each emitting a gluon is equal
to diagram dim-4-1,4; therefore, the former is not listed in
Fig. 2.

1 Readers should not confuse the four-quark operators in HQE with
those at the QCD level in QCD sum rules.
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Fig. 2 All nonzero, “independent” diagrams considered in this work

2.1 The pole residue

As can be seen in Eq. (20), the pole residue of �b is an
indispensable input. For consistency, in this work, we also
perform an analysis on the pole residue of �b, whose sum
rule is [25]

(M+ + M−)λ2+ exp(−M2+/T 2+)

=
∫ s0

ds (M−ρA + ρB) exp(−s/T 2+), (22)

from which, one can obtain the mass formula for �b

M2+ =
∫ s0 ds (M−ρA + ρB) s exp(−s/T 2+)∫ s0 ds (M−ρA + ρB) exp(−s/T 2+)

. (23)

Equation (23) can be viewed as a constraint to Eq. (22). Fol-
lowing Ref. [27], in this work, we use Eq. (23) to deter-
mine the continuum threshold parameter s0. Specifically, for
a set of fixed parameters (renormalization scale, condensate
parameters, etc.), the optimal (s0, T 2+) are obtained through
the following procedure:

1. For a trial s0, plot the pole residue curve with respect to
the Borel parameter T 2+ using Eq. (22). Find the mini-
mum point T 2+ on the curve (see Fig. 3 for some intuitive
impressions).

2. Substitute the set of (s0, T 2+) obtained in step 1 into Eq.
(23) to calculate the baryon mass, and compare it with the

5 10 15 20 25 30

0.03

0.04

0.05

0.06

T 2 GeV2

Λ
b

G
eV

3

Fig. 3 The pole residue λ�b as a function of the Borel parameter T 2+.
The red, orange and blue dots respectively correspond to the renormal-
ization scales μ = mb, μ = 6 GeV and μ = 3 GeV. The minimum
points are marked, and they correspond to the experimental mass of �b
via Eq. (23)

experimental value. If equal (within a small error range),
terminate; otherwise, go to step 1.

For different input parameters, one can obtain different opti-
mal (s0, T 2+), which are listed in Table 2.

In this work, contributions from up to dimension-6 four-
quark operators are also considered for the sum rule in Eq.
(22).
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3 Numerical results

3.1 Inputs

Our main inputs in numerical calculation can be found in
Table 2. We take the MS mass for the bottom quark [17] and
neglect the mass of the u/d quark. The condensate param-
eters are taken from Ref. [28]. The renormalization scale is
taken as μb = 3−6 GeV, with mb(mb) the central value
[27], from which one can estimate the dependence of the
calculation results on the renormalization scale.

3.2 The pole residue and the continuum threshold
parameter

Our predictions for the pole residue λ�b , together with the
continuum threshold parameter s0, can be found in Table 2.
A similar investigation was also performed in our previous
work [25]; however, in this work, more contributions from
higher-dimensional operators are considered. Numerically,
the predictions in this work are close to those in Ref. [25].
This is essentially because the contributions from higher-
dimensional operators are small. A comprehensive study of
the pole residues of anti-triplet heavy baryons can be found
in Ref. [29].

3.3 The four-quark operator matrix elements

The four-quark operator matrix elements in Eq. (9) are all
proportional to some parameter Li . In Fig. 4, we plot the
curves of L1,2,3,4 as functions of the Borel parameter T 2, on
which the stability region can be found. In these figures, we
have also evaluated the dependence of L1,2,3,4 on the renor-
malization scale. The corresponding results are summarized
in Table 2.

Adding all the uncertainties from various input parameters
in quadrature, our final results of L1,2,3,4 and B̃ ≡ −L3/L1

are respectively

L1 = −0.143 ± 0.028,

L2 = +0.0746 ± 0.0142,

L3 = +0.151 ± 0.027,

L4 = −0.0764 ± 0.0139, (24)

and

B̃ = 1.057 ± 0.030, (25)

where mBq = 5.280 GeV and fBq = 186 MeV [14] have
been used.

Some comments are in order.

• The spectral density in Eq. (19) also depends on q2 ≡
(p1 − p2)

2. For the forward scattering matrix elements
of interest, q2 is taken to be 0.

• In Eq. (9), the only difference between the first matrix
element 〈�b|(b̄q)V−A(q̄b)V−A|�b〉 and the third matrix
element 〈�b|(b̄αqβ)V−A(q̄βbα)V−A|�b〉 is in the color
space. For all the diagrams in Fig. 2 except for diagrams
(dim-4-1,4), (dim-4-1,5) and (dim-4-2,4), the color fac-
tors for the two matrix elements differ only by a negative
sign. Considering that the contributions of these three
gluon condensate diagrams are small, B̃ ≡ −L3/L1 only
deviates slightly by 1.

• One can see from Table 2 that the uncertainty caused by
μ dependence is dominant, which is about 20%. As a
comparison, in Ref. [27], the authors performed a QCD
sum rules analysis on the decay constants of B and Bs

mesons. μ is also taken in the range of 3–6 GeV with
mb(mb) as the central value. For the perturbative spectral
function, contributions from up to α2

s order are consid-
ered. Scale dependence is also the main source of error,
which is approximately 10%. It can be expected that when
higher-order corrections are considered, the scale depen-
dence should decrease.

• In Fig. 4, we have also shown the calculation errors,
which are essentially small. Nevertheless, when we try to
find the stability region on the curve, these small errors
also play a role.

• As can be seen in Table 2, for a set of fixed parameters
(quark mass, renormalization scale, condensate parame-
ters), the continuum threshold parameter s0 can be deter-
mined, and then the quantities we are interested in can
also be determined—by requiring them to have as little
dependence on the Borel parameter as possible.

• In our opinion, the continuum threshold parameter s0 is
the most important parameter in QCD sum rules. In fact,
once s0 is fixed, the quantity that we are interested in is
almost determined by searching for the stability region.
In the literature, there exist at least two approaches for
determining s0. One approach is to empirically select

√
s0

approximately 0.5 GeV larger than the ground state mass.
Another approach is to determine s0 through the mass for-
mula. We have adopted the latter approach in this work.
The basic logic behind doing so is that the mass formula
can be seen as a constraint to the sum rule of the two-point
correlation function. Of course, this comes with the cost
of abandoning the predictive power of hadron mass.

4 Conclusions

Heavy quark expansion can nicely explain the lifetime of �b.
However, there still exist sizable uncertainties in the four-
quark operator matrix elements of �b in 1/m3

b corrections,
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Fig. 4 L1,2,3,4 as functions of
the Borel parameter T 2
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Table 2 Our predictions of the pole residue λ�b , L1,2,3,4 defined in Eq.
(9), and B̃ ≡ −L3/L1. For a set of fixed parameters (renormalization
scale, condensate parameters, etc.), the continuum threshold parameter

s0 can be determined, and then the quantities we are interested in can
also be determined—by requiring them to have as little dependence on
the Borel parameter as possible

Central value
mb/GeV =
4.18 ± 0.03

μ/GeV = 6.0
μ/GeV = 3.0

〈q̄q〉(1 GeV)/GeV3

= −(0.24 ± 0.01)3
〈g2

s GG〉/GeV4 =
0.47 × (1.0 ± 0.3)

m�b/GeV =
5.620 ± 0.001

s0/GeV2 36.08
36.08
36.01

36.09
36.03

36.09
36.04

36.08
36.08

36.09
36.07

T 2+/GeV2 16
16
17

19
16

19
14

16
16

16
16

λ�b 0.0448
0.0429
0.0465

0.0596
0.0319

0.0452
0.0443

0.0448
0.0448

0.0449
0.0447

�λ�b –
−0.0019
+0.0017

+0.0148
−0.0129

+0.0004
−0.0005

−0.0000
+0.0000

+0.0001
−0.0001

T 2/GeV2 100
150
180

180
180

150
120

100
90

150
120

L1 −0.143
−0.139
−0.144

−0.171
−0.119

−0.150
−0.136

−0.144
−0.143

−0.143
−0.143

�L1 –
+0.004
−0.001

−0.027
+0.024

−0.007
+0.007

−0.001
+0.001

−0.000
+0.000

T 2/GeV2 100
210
240

260
220

270
120

100
90

150
120

L3 0.151
0.147
0.151

0.177
0.128

0.156
0.144

0.154
0.148

0.151
0.151

�L3 –
−0.004
−0.000

+0.026
−0.024

+0.005
−0.007

+0.003
−0.003

−0.000
−0.000

B̃ =
−L3/L1

1.057
1.056
1.049

1.041
1.073

1.040
1.060

1.073
1.040

1.056
1.056

�B̃ –
−0.000
−0.007

−0.016
+0.017

−0.016
+0.003

+0.017
−0.017

−0.001
−0.000

T 2/GeV2 160
170
200

190
140

220
190

160
160

140
180

L2 0.0746
0.0728
0.0750

0.0882
0.0632

0.0780
0.0713

0.0758
0.0733

0.0745
0.0744

�L2 –
−0.0018
+0.0004

+0.0136
−0.0114

+0.0033
−0.0033

+0.0011
−0.0013

−0.0001
−0.0002

T 2/GeV2 160
170
200

190
140

220
190

160
160

140
180

L4 −0.0764
−0.0746
−0.0767

−0.0896
−0.0654

−0.0797
−0.0732

−0.0781
−0.0745

−0.0763
−0.0762

�L4 –
+0.0018
−0.0003

−0.0133
+0.0110

−0.0033
+0.0032

−0.0017
+0.0018

+0.0001
+0.0002

which describe the spectator effects. In this work, these four-
quark operator matrix elements are investigated using full
QCD sum rules. At the QCD level, contributions from up
to dimension-6 four-quark operators are considered. A sta-
ble Borel region can be found. We have also considered the
uncertainties from various input parameters, and find that
the main source of error is scale dependence, which is about
20%. Our method for calculating high-dimensional operator
matrix elements holds promise for use in resolving the �c

lifetime puzzle.
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