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Abstract We investigate the anomalous W−W+γ /Z cou-
plings in e−e+ → W−W+ followed by semileptonic decay
using a complete set of polarization and spin correlation
observables of W boson with the longitudinally polarized
beam. We consider a complete set of dimension-six opera-
tors affecting W−W+γ /Z vertex, which are SU (2) ×U (1)

gauge invariant. Some of the polarization and spin corre-
lation asymmetries average out if the daughter of W+ is
not tagged and to overcome this we developed an artifi-
cial neural network and boosted decision trees to distin-
guish down-type jets from up-type jets. We obtain bounds
on the anomalous couplings using MCMC analysis at√
s = 250 GeV with integrated luminosities of L ∈

{100 fb−1, 250 fb−1, 1000 fb−1, 3000 fb−1} and different
sets of systematic errors. We find that using spin-related
observables along with cross section in the presence of ini-
tial beam polarization significantly improves the bounds on
anomalous couplings compared to previous studies.

1 Introduction

The standard model is dimension-4 local quantum field the-
ory, which has been successfully tested experimentally. With
the discovery of a Higgs-like boson at LHC [1,2], the last
missing piece of SM is finally in place. However, despite
all these wonderful experimental justifications, many unex-
plained phenomena suggest SM’s incompleteness. The mass
of the Higgs boson (125 GeV) cannot be explained within
SM. The higher-order quantum corrections would shift the
mass of the Higgs boson to the cut-off scale unless there are
perfect cancellations of these corrections. These fine-tuning
mechanisms are not present within the framework of SM. SM
QCD still has an unexplained problem with the θ parameter
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known as the strong-CP problem. Dark matter constitutes
approximately 80% of all the matter in our universe [3], yet
the structure of dark matter is still a mystery. The recent report
on the magnetic moment of muon [4,5], W bosons mass [6]
are some of the additional reasons to cast doubt that the SM is
not a complete theory of fundamental particle. Though many
theories beyond SM explain deviations with the inclusion of
new particles, symmetry, or dimensions, experiments have
not seen any signature in favor of any of these explicit mod-
els. In this article, we follow a more natural way of extending
the SM called the effective field theory (EFT), which pro-
vides a suitable framework to parameterize deviations from
the SM predictions according to the decoupling theorem [7].
This framework expands the Lagrangian of SM by adding
higher dimensional terms. These higher dimensional terms
are made out of SM fields, assuming that the new degrees of
freedom are too heavy to be observed with currently available
energy and are integrated out of the Lagrangian. The effects
of new physics are encoded in the Wilson coefficient of these
infinite series of higher dimensional operators. Considering
the conservation of the lepton-baryon number, the effective
Lagrangian is compactly written as [8]

Le f t = LSM+ 1

�2

∑

i

C(6)
i O(6)

i + 1

�4

∑

j

C(8)
j O(8)

j +.., (1)

where ci are the Wilson coefficient and Oi are higher order
operators. Each higher dimensional term is suppressed by
the power of �(d−4), where � is a characteristic new physics
scale usually taken to be several TeVs. This suggests that the
contribution to SM decreases as one moves towards d > 6.
Thus, we can truncate the above Lagrangian at some lowest
higher-order terms of one interest. This study focused on
the dimension-6 operators which affect WWV, V ∈ {γ, Z}
vertex. Considering both CP-even and -odd operators, five
relevant dimension-6 operator affects WWV vertex, which
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in HISZ basis [9,10] are listed as:

OWWW = Tr[WνρW
μνWμ

ρ ],
OW = (Dμ�)†Wμν(Dν�),

OB = (Dμ�)†Bμν(Dν�),

O ˜WWW = Tr[W̃μνW
νρWμ

ρ ],
OW̃ = (Dμ�)†W̃μν(Dν�),

(2)

where � =
(

φ+
φ0

)
is the Higgs doublet and Wμν, Bμν repre-

sents the field strengths of W and B gauge Fields. The covari-
ant derivative is defined as Dμ = ∂μ + i

2gτ
iW i

μ + i
2g

′Bμ.

The field tensor are given by Wμν = i
2gτ

i (∂μWi
ν − ∂νWi

μ +
gεi jkW i

μW
k
ν ) and Bμν = i

2g
′(∂μBν − ∂νBμ). The first three

operators in Eq. (2) are CP-even, and the last two are CP-
odd. After electroweak symmetry breaking (EWSB), each
operator of Eq. (2) generates anomalous WWV vertex along
with triple vertex containing Higgs and vector gauge boson.
These operators (cWWW , cW and theirs dual) also generate
quartic gauge boson couplings. The general couplings of two
charged vector bosons with a neutral vector boson can be
parameterized in an effective Lagrangian [9]:

L
e f f
WWV = igWWV

[
gV1 (W+

μνW
−μ − W+μW−

μν)V
ν

+ kVW
+
μ W−

ν Vμν + λV

m2
W

W ν+
μ W−ρ

ν Vμ
ρ

+ igV4 W+
μ W−

ν (∂μV ν + ∂νVμ)

− igV5 εμνρσ (W+
μ ∂ρW

−
ν − ∂ρW

+
μ W−

ν )Vσ

+ k̃V W
+
μ W−

ν Ṽμν + λ̃V

m2
W

W ν+
μ W−ρ

ν Ṽμ
ρ

]
, (3)

where W±
μν = ∂μW±

ν − ∂νW±
μ , Vμν = ∂μVν − ∂νVμ,

gWWγ = −e and gWWZ = −e cot θW , where e and θW
are the proton charge and weak mixing angle respectively.
The dual field is defined as Ṽμν = 1/2εμνρσVρσ , with Levi-
Civita tensor εμνρσ follows a standard convention, ε0123 = 1.
As discussed in Ref. [9], these seven operators exhaust
all possible Lorentz structures to define the most general
WWV interaction. Within the SM, the couplings are given
by gZ1 = gγ

1 = kZ = kγ = 1 and all others are zero. The
gauge invariance fixes the value couplings like gγ

1 , gV4 , gV5 ,
but in the presence of the effective operators given in Eq. (2),
the values of other couplings changes, and are listed below:

�gZ1 = cW
m2

Z

2�2 , λV = cWWW
3m2

Wg2

2�2

�kZ =
[
cW − sin2 θW (cB + cW )

] m2
Z

2�2

�kγ = (cB + cW )
m2

Z

2�2 , λ̃V = c
˜WWW

3m2
Wg2

2�2

k̃Z = −cW̃ sin2 θW
m2

Z

�2 , k̃γ = cW̃
m2

W

2�2 . (4)

Here,

ci = {cWWW , cW , cB, cW̃ , c
˜WWW

}, (5)

are the Wilson coefficient associated with the effective oper-
ators listed in Eq. (2). The presence of these anomalous cou-
plings will bring change in the observable that could be mea-
sured in the current or future collider, given that the devia-
tion is within the measurable reach of the collider. The BSM
matrix element for a given process in the presence of effec-
tive operators of Eq. (1) truncated at dimension-6 is given by

|MBSM |2 = |MSM |2 + 2Re
{MSMM∗

d6

} + |Md6|2. (6)

The interference, i.e., the second term of Eq. (6) between the
SM amplitude and the dim-6 amplitude, induces asymmetries
in appropriately constructed CP-odd observable. The direct
observation of the non-zero value of observable related to
CP-odd operators would be a strong marker for the new
physics as their values are predicted to be zero in SM at
tree and loop level [11]. The last term, i.e., square term if
the dimension-6 operator is of order �−4, comparable to
SM’s interference with dimension-8 operators. However, we
have assumed all dimension-8 couplings to be zero while
performing the analyses upto order �−4.

Many theoretical studies on W−W+γ /Z couplings are
done at e−e+ collider [12–26] and hadron collider [25–45]
and large hadron electron collider (LHeC) [46–50]. On exper-
imental side, the similar studies was reported by different
collaborations like OPAL [51–56], ALEPH [57–61], DEL-
PHI [62], CDF [63,64], D0 [65–67], ATLAS [68–77] and
CMS [78–80,80–90]. We list the experimentally measured
current tightest limits on anomalous couplings (ci ) at 95%
confidence level (CL) in Table 1.

Table 1 The list of tightest constraints observed on the anomalous
couplings in SU (2) × U (1) gauge at 95% confidence level (CL) from
various experiments

cOi Limits (TeV−2) Remarks

cWWW /�2 [− 0.90, +0.91] CMS [79]

cW /�2 [− 2.50, +0.30] CMS [78]

cB/�2 [− 8.78, +8.54] CMS [82]

cW̃ /�2 [− 20.0, +20.0] CMS [79]

c
˜WWW

/�2 [− 0.45, +0.45] CMS [79]
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The limits on the anomalous couplings listed in Table 1
are obtained by varying one parameter at a time and keeping
other couplings to zero.

Due to the SU (2)L × U (1)Y gauge structure of SM,
the electro-weak interactions are susceptible to the chiral-
ity of fermions. Left-handed fermions interact fundamen-
tally differently than their right-chiral counterpart with the
weak boson. This fundamental difference in interaction can
be used as a tool to probe a deviation from the Standard
Model (SM) prediction. Apart from increasing the luminos-
ity, it has been shown [91] that the use of polarized beams
can bring down the systematic error on the measurement of
the left-right asymmetry (ALF). Reducing systematic error
of asymmetries becomes important when observables like
polarization and spin correlation asymmetries are used as
observables to probe beyond Standard Model (BSM) physics.
The polarized positron beams can be used to probe physics
models that would allow some unconventional combinations
of helicities like in Minimal Sypersymmetric SM (MSSM)
where e+

R e
−
R → ẽ−

R χ̃+ν̄e and e+
L e

−
L → ẽ+

L χ̃−νe [92]. Also,
the ability to adjust the polarization of both beams indepen-
dently provides unique possibilities for directly probing the
properties of the produced particles like quantum numbers,
and chiral couplings. The important effects of initial beam
polarization are [93]

• e− and e+ polarization allow obtaining a subset of the
sample with higher rates for interesting physics and lower
background. It would lead to an overall increase in sen-
sitivities,

• When both beams are polarized, one obtains four distinct
data sets instead of the two available if only the e− beam
can be polarized.

• The likely most important effect is the control of system-
atic error for precision studies in Lepton collider.

The future Lepton collider viz. International Linear Col-
lider (ILC) [94,95], Compact Linear Collider (CLIC) [96],
Future Circular Lepton Collider-ee (FCC-ee) [97] will be
equipped with the potential of colliding polarized beams.
With such specifications, these colliders will be the ideal
place to undertake precision measurements.

In the current article, we use polarized e− and e+ beams
to probe a set of dimension-6 operators listed in Eq. (2) using
various observable like cross section, polarization asymme-
tries, and spin correlation asymmetries. The study is done
at the center-of-mass energy (

√
s) of 250 GeV at machine

parameters planned for ILC using longitudinal polarized
beams. However, the analysis can be easily translated to other
colliders. The process we probed is the di-boson production
of W−W+ followed by their semi-leptonic decay,

e− + e+ → W− + W+ → l− j j /E, (7)

Fig. 1 Leading order Feynman diagrams for the W−W+ production
process in e−e+ lepton collider. The blob in the diagram in the left panel
represents anomalous vertex contribution

where j are the light quarks and l− ∈ {e−, μ−}. The ampli-
tude of the process e−e+ → W−W+ results from the t-
channel neutrino and s-channel γ and Z exchange, see Fig. 1.
The current study focus on the leading order (LO) pro-
duction of W−W+, and for a comprehensive treatment of
e−e+ → W−W+ production in next-to-leading order, one
may refer to [98–104].

In the leading order the s-channel diagrams contain trilin-
ear γW−W+ and ZW−W+ gauge boson couplings whose
deviations from SM due to the above given dim-6 EFT oper-
ators are being probed in this current article.

Some of the asymmetries we use require knowledge about
the W boson decay products being up/down fermions. It is
straightforward in the leptonic channel but requires us to
flavor tag the hadronic decay of W+ into up-type and down-
type jets. We use machine learning (ML) models to develop
such a tagger. ML has been used to identify the jets origi-
nated from the gluon and quarks [105–111]. The generic ML
models have also been developed to classify the jets as origi-
nating from light-flavor or heavy-flavor quarks [112–117]. In
this article, we develop artificial neural network (ANN) and
boosted decision tree (BDT) to assist in classifying the jets
from theW+ boson as originating from up-type or down-type
light quarks.

We describe in Sect. 2 the effect of beam polarization
on the observable. We also describe spin-related observables
like polarization asymmetries and spin correlation asymme-
tries and the method to calculate them. In Sect. 3, we describe
the machine learning (ML) technique, especially artificial
neural networks (ANN) and boosted decision tree (BDT)
that will be used for flavor tagging or to reconstruct W+
boson. We also discuss the performance of various mod-
els in classifying the jets. Section 4 deals with the param-
eter estimation to find the limits on various anomalous cou-
plings and discuss the results obtained. We conclude in
Sect. 5.

2 Beam polarization and observables

The polarization of resonance W bosons is reconstructed
through the angular distribution of its decay products. The
full hadronic channel suffers from the significant background
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contribution from the decay of Z to hadrons. The full leptonic
channel is cleaner to detect the polarization but comes with
two missing neutrinos, which makes the reconstruction of the
rest frame of the W boson non-trivial. Thus, for a W−W+
final state, the optimal channel to study the polarization and
spin correlations is the semi-leptonic channel. The normal-
ized production density matrix of aW boson which is a spin-1
boson can be written as [118]:

ρ(λ, λ′) = 1

3

[
I + 3

2
�P · �S +

√
3

2
Ti j (Si S j + S j Si )

]
, (8)

where �P = {Px , Py, Pz} is the vector polarization of W
boson, �S = {Sx , Sy, Sz} is the spin basis and Ti j (i, j =
x, y, z) is the second-rank symmetric traceless tensor and
λ, λ′ are the helicities of the W boson. Similarly, the nor-
malized decay density matrix of W boson decaying to two
fermions with helicities s1 and s2 via an interaction vertex
W f f̄ : γ μ(L f PL +R f PR) is given in equation below [118],

�W (s1, s2) =

⎡

⎢⎢⎢⎣

1+δ+(1−3δ) cos2 θ f +2α cos θ f
4

sin θ f (α+(1−3δ) cos θ f )

2
√

2
eiφ f (1 − 3δ)

(1−cos2 θ f )

4 ei2φ f

sin θ f (α+(1−3δ) cos θ f )

2
√

2
e−iφ f δ + (1 − 3δ)

sin2 θ f
2

sin θ f (α−(1−3δ) cos θ f )

2
√

2
eiφ f

(1 − 3δ)
1−cos2 θ f

4 e−i2φ f sin θ f (α−(1−3δ) cos θ f )

2
√

2
e−iφ f 1+δ+(1−3δ) cos θ f −2α cos θ f

4

⎤

⎥⎥⎥⎦ , (9)

where the parameters α and δ are given in terms of chiral
couplings and the ratio of mass of final fermions and mother
resonance, xi as [118],

α =
2(R2

f − L2
f )

√
1 + (x2

1 − x2
2 )2 − 2(x2

1 + x2
2 )

12R f L f x1x2 + (R2
f + L2

f )
[
2 − (x2

1 − x2
2 )2 + (x2

1 + x2
2 )

] ,

(10)

δ = 4R f L f x1x2 + (R2
f + L2

f )
[
(x2

1 + x2
2 ) − (x2

1 − x2
2 )

]

12R f L f x1x2 + (R2
f − L2

f )
[
2 − (x2

1 − x2
2 )2 + (x2

1 + x2
2 )

] .

(11)

Assuming narrow width approximation, the production and
decay part can be factorized into different terms, and on com-
bining Eqs. (9) and (8), the differential cross-section would
be,

1

σ

dσ

d� f
= 3

8π

[(
2

3
− (1 − 3δ)

Tzz√
6

)
+ αPz cos θ f

+
√

3

2
(1 − 3δ)Tzz cos2 θ f

+
(

αPx + 2

√
2

3
(1 − 3δ)Txz cos θ f

)
sin θ f cos θ f

+
(

αPy + 2

√
2

3
(1 − 3δ)Tyz cos θ f

)
sin θ f sin θ f

+ (1 − 3δ)

(
Txx − Tyy√

6

)
sin2 θ f cos(2φ f )

+
√

2

3
(1 − 3δ)Txy sin2 θ f sin(2φ f )

]
(12)

where θ f , φ f are the polar and azimuth orientation of the
fermion f , in the rest frame of W boson with its would-be
momentum along z-axis. The initial beam direction and the
W− momentum in the lab frame define the x–z plane, i.e.,
φ = 0 plane, in the rest frame of W−. In this case, along with
assuming high energy limits, the mass of final state fermions
can be zero, then α = −1 and δ = 0. The construction of
various polarization at the rest frame of W boson requires
one to find the single missing neutrino. As the Lepton col-
lider does not involve PDFs, reconstructing four momenta of
a single neutrino is straightforward. One can construct sev-

eral asymmetries to probe various polarization parameters
using partial integration of the differential distribution given
in Eq. (12) of the final state f . For example, we can get Px
from the left-right asymmetry as:

Px = 4

3α

[∫ π

θ=0

∫ π
2

φ=− π
2

−
∫ π

θ=0

∫ 3π
2

φ= π
2

]
1

σ

(
dσ

d� f
d� f

)
.

(13)

Finding Px would be a counting procedure, which can be
written in terms of asymmetries in cx ,

Px = 4

3α

σ(cx > 0) − σ(cx < 0)

σ (cx > 0) + σ(cx < 0)
,

= 4

3α
Ax . (14)

Similarly, the tensorial polarization parameter Txy can be
obtained by integrating the differential rate as,

Txy =
√

2

3

π

2

1

(1 − 3δ)

[∫ π

θ=0

∫ π
2

φ=0
−

∫ π

θ=0

∫ π

φ= π
2

+
∫ π

θ=0

∫ 3π
2

φ=π

−
∫ π

θ=0

∫ 2π

3π
2

]
d�

(
1

σ

dσ

d�

)
,
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Table 2 List of correlators used to construct asymmetries

Ai c j Functions

Ax c1 ≡ cx sinθcosφ

Ay c2 ≡ cy sinθsinφ

Az c3 ≡ cz cosθ

Axy c4 ≡ cxy sin2θsin(2φ)

Axz c5 ≡ cxz sinθcosθcosφ

Ayz c6 ≡ cyz sinθcosθsinφ

Ax2−y2 c7 ≡ cx2−y2 sin2θcos(2φ)

Azz c8 ≡ czz sin(3θ)

=
√

2

3

π

2

1

(1 − 3δ)

σ (cxcy > 0) − σ(cxcy < 0)

σ (cxcy > 0 + σ(cxcy < 0))
,

=
√

2

3

π

2

1

(1 − 3δ)
Axy . (15)

All other polarization parameters can be obtained in a similar
fashion using various angular functions listed in Table 2.

When a pair of particles is produced as in the process
probed in this article, i.e., e−e+ → W−W+, one can cre-
ate various observables related to the spin correlations of
these two W bosons. Studies [119] show angular correlations
between the decay products of two W bosons. W-boson spin
correlations are measured by tagging the helicity of the W
boson, which decays into hadrons, and measuring the helic-
ity of the W boson, which decays into leptons. Spin corre-
lations of W boson had been used to study the triple gauge
boson couplings in Refs. [24,52,58]. We construct various
spin correlation asymmetries using the angular distribution
of the decay products of W bosons using the correlators listed
in Table 2. Similar to polarization, the spin correlation can
be calculated in terms of asymmetries as,

AWW
i j = σ(cai c

b
j > 0) − σ(cai c

b
j < 0)

σ (cai c
b
j > 0) + σ(cai c

b
j < 0)

, (16)

where a and b are the final state leptons and jets coming from
the decay of W bosons, and c′s are the correlators listed in
Table 2. There will be 64 spin correlation asymmetries for a
pair of spin-1 particles. Since the polarization and correlation
depend strongly on the cos θ , where θ is the production angle
of W− boson in the lab frame, we can divide the events in
certain bins of cos θ to increase the overall sensitivity.

Effect of initial beam polarization: The future particle col-
lider like ILC will use polarized beams for both electron and
positron [95,120] to increase its sensitivity to new physics
and to improve its measurement accuracy. The presumed
design values of the beam polarization are 80% for the elec-
tron and 30% for the positron beam [94]. Here, we will dis-

cuss how various observable changes in the presence of ini-
tial beam polarization. The observables like cross section and
asymmetries change in the presence of initial beam polariza-
tion, and we can show this with the change in the transition
amplitude as defined in [121]

|M|2 =
∑

λ′s
ρλe− ,λ′

e−
ρλe+ ,λ′

e+
Fλe− ,λe+ F∗

λ′
e−λ′

e+
(17)

where ρ are the spin density matrix of e−/e+ and F are the
helicity amplitude.

The cross-section with beam polarization η3 and ξ3 for
electron and positron, respectively, can be written as:

σ(η3, ξ3) = (1 + η3)(1 + ξ3)

4
σLR

+ (1 − η3)(1 − ξ3)

4
σRL, (18)

where σLR(σRL) is the cross-section with 100% left polar-
ized (right polarized) electron beam and 100% right polar-
ized (left polarized) positron beam. The contribution like
σLL(σRR) can be safely dropped as they are negligible. The
SM cross section and its modifications due to the anoma-
lous couplings are shown in Fig. 2 for beam polarization
(η3, ξ3) = (−0.8,+0.3) in the left panel and for the flipped
polarization in the right panel. The anomalous couplings are
chosen to be 20 TeV−2 one at a time, keeping others to zero.
We see that the flipped polarization has smaller σ for SM,
and the fractional change due to anomalous couplings is large
and increases with the increase in

√
s. We further observe that

the contribution from the CP-odd couplings is much smaller
than the CP-even couplings due to the interference effect,
which will be discussed later.

3 Flavor tagging

As discussed in Sect. 1, constructing some of the polariza-
tion asymmetries and spin correlation asymmetries requires
identifying the daughter of W boson. From Eq. (12) and
Table 2, we note that the correlators of vectorial polariza-
tion �P ∈ {Px , Py, Pz} are parity odd and that of tenso-
rial polarization, the correlators are parity even. It suggests
that unless the daughter fermion is not tagged, the vec-
torial polarization and its related spin correlation parame-
ters average out. Since the daughter of W− boson is a lep-
ton, the identification becomes non-ambiguous in such a
topology. Whereas, in the case of W+ decaying hadroni-
cally, the identification of the jet initiator (quark) remains
fuzzy due to the close behavior of light quarks. In this
article, we classify the final jets as initiated by up-type or
down-type quarks. We used MadGraph5_aMC@NLO (MG5
henceforth) [122,123] to generate event sets using a
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Fig. 2 Total production cross-section of W−W+ pair with respect to the center-of-mass energy
√
s in the presence of initial beam polarization

and anomalous triple gauge couplings. The left panel represents (η3, ξ3) = (+0.8,−0.3), and right panel represents flip polarization

diagonal Cabibbo Kobayashi Maskawa (CKM) matrix for
training and testing purposes. The parton-level events were
used as an input to the Pythia8 [124] for showering and
hadronization of the colored partons. This process will lead
to the formation of hadrons which can undergo further decay
within a detector given their short lifetime. The final state,
colorless particles, are clustered in a region called jets. The
final state particles with pT ≥ 0.3 GeV and |η| ≤ 3.0 are
selected for jet clustering using Fastjet [125]. The lepton
from the decay of W− is excluded from jet analyses. The jet
clustering is done using anti-kT [126] algorithm with jet
radius R = 0.7, and the jets thus obtained are re-clustered
using kT [127] algorithm with jet radius R = 1.0. The two
hardest jets account for more than 90% of the parton level
momentum of W+ boson, and they are passed through ML
models for tagging as up/down-type. These two jets’ truth
labeling is done by using the distance �R jq with the initia-
tor quarks. In a case when both the jets become close to a
single quark, the hardest jet is selected.

For tagging purposes, apart from the features listed in
Ref. [24], additional features are obtained from the jets,
which are used as input to ANN and BDT models. For a
up/down tagger, a strange tagging can enhance the over-
all efficiency of classification. In an event where a strange
quark is present along with other light quarks, due to a
comparatively longer lifetime of strange meson K 0

S with
τ = O(10−10) s can decay within the detector range,
one can obtain a secondary vertex resulting to displaced
tracks. Similarly, the charmed mesons can provide displaced
tracks provided such particles gets a significant βγ fac-
tor. Such displaced tracks act as a good classifier for light
quarks. A charged kaons K± with τ = O(10−8) s are
collider-stable particles; hence the multiplicity and momenta

of charged kaons are used as features. To use the charged
kaons as a feature, it is necessary to distinguish them from
charged pions, protons, and vice-versa. Many techniques
have been developed to perform particle identification like
using mean ionization energy loss, dE/dx [128–136], time-
of-flight [137,138]. The higher multiplicity of kaons on
strange jets can act as a good classifier of strange vs. other
light quark jets. In general, we construct xi using the infor-
mation of the jet and the objects contained within a jet. The
variables we obtained to use as input to our network can be
divided into two classes, discrete and continuous variables,
and they are listed below.

– Discrete Variables:

– Total number (nlep), positive leptons (nl+), nega-
tive leptons (nl−);

– Total number of visible particles (nvis);
– Total number of charged particles (nch), positive

charged particles (nch+), negative charged parti-
cles (nch−);

– Total number of charged kaons (nK+, nK−)�;
– Total number of charged pions (npi+, npi−)�;
– Total number of hadrons (nhad);
– Total number of charged hadrons (nChad), positively

charged hadrons (nChad+),
negative hadrons (nChad−);

– Displaced tracks satisfying pT > 1.0 GeV are used.
They are binned with respect to the lifetime (τ ) in
mm of their mother particles:

– c1: τ < 3.0 and τ > 0.3,
– c2: τ < 30.0 and τ > 3.0,
– c3: τ < 300.0 and τ > 30.0,
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– c4: τ < 1200.0 and τ > 300.0,
– c5: τ > 1200.0.

– Total number of +ve (pcl) and −ve (ncl) mother
particles are also counted. The particle that decay and
produces secondary displaced vertex are considered.

– Continuous variables:

– Energy of photons (egamma)�;
– Pμ�

i = ∑
j∈i p

μ
j , P�

i = ∑
j∈i | �p j |, |(Pμ

i )T |�,

i ∈ {Leptons, K+, K−, π+, π−, K 0
L , Hadrons};

– Energy of charged hadrons (E+
Had, E

−
Had).

The features with (�) represent the additional features on top
of all the features used in Ref. [24]. One can also obtain
features related to the jet and use them as input to the classi-
fying network. These variables, in general, provide a signifi-
cant correlation to the jet class, which translates to increased
classification accuracy. Some of the features related to the jet
itself are:

– Transverse momentum pT , magnitude of momentum | �p|,
transverse mass mT and mass of Jet;

– Pseudo rapidity η, azimuth angle φ of the jets;
– Momentum component (px , py, pz).

The jet variables like pT , η, E , and the three-momenta have
large correlation with the label of jets. These variables depend
on the polarization of the mother particle, and since we are
using the observable related to polarization to constrain the
new physics parameters, using these variables to flavor tag
will not be useful. Hence, these jet features are excluded from
our inputs to train the ML models. We use the above-listed
discrete and continuous variables in a concatenated form for
our ANN and BDT models.

BDT : The ML models using BDT are implemented in
XGBoost [139]. The parameter of our BDT models is as
follows:

• Sub-sample ratio of columns for when constructing each
tree: colsample_bytree = 0.6;

• Step size shrinkage used in the update to prevent overfit-
ting: eta = 0.3;

• Minimum loss reduction required to make a further par-
tition on a leaf node of the tree: gamma = 1.5;

• Maximum depth of a tree: max_depth = 6;
• Number of decision tree: n_estimators = 300;
• L2 regularization term on weights: lambda = 1.0.

ANN: The ANN models are implemented using
TensorFlow. The architecture of ANN consists of three

hidden layers, each consisting of 160, 80, and 40 nodes,
respectively; see Fig. 3. We used Relu as an activation func-

Fig. 3 Architecture of ANN used for flavor tagging. It contains three
hidden layers (HL). The input layer contains 79 nodes, 1st hidden layer
with 160 nodes, 2nd HL with 80, 3rd HL contains 40 nodes, and the
output layer has one node

tion for each hidden layer, and for the output layer,Sigmoid
function is used. The optimization is done using adam algo-
rithm.

The training datasets (107 events) and test datasets (106

events) were generated for three different beam polarization
(η3, ξ3) ∈ {(0, 0), (+0.8,−0.3), (−0.8,+0.3)}. We train
ANN and BDT models separately for three polarization
datasets and test them on all three test datasets. The final
accuracy obtained using different sets of datasets (with dif-
ferent polarization) are listed in Table 3. We estimate the
efficiency of our ML models as follows; a random subset
with 60% of the test sample is taken, and we estimate the
model accuracy on that subset. This process is repeated 1000
times, and the average accuracy is quoted in Table 3. We note
that all the accuracy listed in Table 3 are comparable, i.e., one
can use any of the models on any datasets with varying beam
polarization (and hence varying W polarization) with com-
parable efficiency. For the rest of the paper, we choose BDT
trained on an unpolarized beam. We want to highlight the fact
that using the additional features (�) increases the accuracy
from ≈ 70% in Ref. [24] to ≈ 80%, which should improve
the constrain on anomalous couplings. In the later section,
we describe the tagger’s role in constraining the anomalous
couplings.

4 Parameter estimation

In order to constrain the new physics parameters effectively, it
is advantageous to utilize a wide range of observables that are
sensitive to such phenomena. This article employs cross sec-
tion, polarization, and spin correlation asymmetries as the
observables of interest. With two spin-1 W bosons, there
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Table 3 Accuracy on
classifying two hard jets as
up-type or down-type using
different train and test models
using artificial neural
network (ANN) and boosted
decision tree (BDT). The model
differs in the initial degree of
beam polarization

ML Train Test

(η3, ξ3) (0.0, 0.0) (−0.8,+0.3) (+0.8,−0.3)

ANN (0.0, 0.0) 82.0 81.9 79.3

ANN (−0.8,+0.3) 82.0 82.3 79.3

ANN (+0.8,−0.3) 81.7 81.9 80.0

BDT (0.0, 0.0) 81.0 80.5 77.5

BDT (−0.8,+0.3) 80.1 79.5 78.6

BDT (+0.8,−0.3) 80.1 79.5 78.6

exist 80 spin-related observables, of which 16 are polariza-
tion, and the rest 64 are spin correlation asymmetries. To
further enhance the sensitivity to new physics, a division of
these observables into intervals of cos θ is proposed, where
θ is the production angle of W− boson in the lab frame.
It is motivated by the fact that due to the chiral couplings,
the polarization and spin correlations depend on cos θ . By
dividing the backward region (cos θ ≤ 0.0) into four equal
intervals, which corresponds to the region where the new
physics contributions are maximal, the statistical error dom-
inance, which could be substantial due to the lower rate in
this region, can be mitigated. In contrast, the forward region
exhibits a significantly higher rate statistically and, there-
fore, can be divided into finer bins. However, to maintain
uniformity, the forward region is also divided into four equal
bins of cos θ . This binning approach allows for the identi-
fication of specific regions that possess greater sensitivity
than the case without binning, leading to an overall increase
in sensitivity when the contributions from all these bins are
combined. A detailed demonstration of the enhanced sensi-
tivity achieved through this binning scheme is provided in
Appendix A. With this kind of binning, we would have 648
different observables. The value of these observables in each
bin is obtained for a set of couplings. Then those are used
for numerical fitting to obtain a semi-analytical expression
of all the observables as a function of the couplings. For
cross-section, which is a CP-even observable, the following
parameterization is used to fit the data,

σ({ci }) = σ0 +
3∑

i=1

ciσi +
5∑

i=1

c2
i σi i

+1

2

3∑

i, j ( �=i)=1

ci c jσi j + c4c5σ45. (19)

For the asymmetries, the denominator is the cross-section,
and the numerator �σ {ci } = A{ci }σ is parameterized sep-
arately. For the CP-even asymmetries the parameterization
of �σ is same as in Eq. (19) and for CP-odd asymmetries it
is done as,

�σ({ci }) =
5∑

i=4

ciσi +
3∑

i=1

ci c4σi4 +
3∑

i=1

ci c5σi5. (20)

Here, ci denotes the five couplings of the dimension-6 oper-
ators ci = {cWWW , cW , cB , cW̃ , c

˜WWW
}. We define χ2 dis-

tance between the SM and SM plus anomalous point as,

χ2({ci }) =
∑

k

∑

l

(
O l
k({ci }) − O l

k(0)

δO l
k

)2

, (21)

where k and l corresponds to observable and bins respectively
and ci denotes some non-zero anomalous couplings. The

denominator δO =
√

(δOstat )2 + (δOsys)2 is the estimated

error in O . If an observable is asymmetries A = N+−N−
N++N− , the

error is given by

δA =
√

1 − A2

Lσ
+ ε2

A, (22)

where N+ + N− = Lσ, L being the integrated luminosity
of the collider. The error in the cross-section σ is given by

δσ =
√

σ

L + (εσ σ )2. (23)

Here, εA and εσ are the fractional systematic error in asym-
metries (A) and cross-section (σ ) respectively. The bench-
mark systematic errors chosen in our analysis are:

(εA, εσ ) ∈ {(0, 0), (0.25%, 0.5%), (1%, 2%)}. (24)

We perform our analysis at
√
s = 250 GeV and different

values of integrated luminosity,

L ∈ {100 fb−1, 250 fb−1, 1000 fb−1, 3000 fb−1}. (25)

The SM cross sections at the LO obtained using MG5 for
the process given in Eq. (7) with initial beam polarizations
of (0, 0), (+0.8,−0.3), and (−0.8,+0.3) are 2.347 pb,
0.396 pb, and 5.467 pb, respectively. With these values of
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cross-sections, the relative statistical error for the chosen set
of luminosities is:

δσ(0,0)

σ(0,0)

= {0.2%, 0.1%, 0.06%, 0.03%},
δσ(+,−)

σ(+,−)

= {0.5%, 0.3%, 0.015%, 0.09%},
δσ(−,+)

σ(−,+)

= {0.1%, 0.08%, 0.04%, 0.02%}.

(26)

For the unpolarized case, the number corresponds to lumi-
nosity L listed in Eq. (26), while the polarized cases stand
for luminosity L/2 each. It has been shown in Ref. [13] that
combining the two opposite beam polarization at the level of
χ2 provides tighter constraints on anomalous couplings than
combining the observable algebraically. The combined χ2 at
different set of beam polarization (±η3,∓ξ3), and using dif-
ferent observableO for a given value of anomalous couplings
c is defined as,

χ2(O, ci ,±η3,∓ξ3)

=
∑

l,k

⎡

⎣
(
O l
k(ci ,+η3,−ξ3) − O l

k(0,+η3,−ξ3)

δO l
k(0,+η3,−ξ3)

)2

+
(
O l
k(ci ,−η3,+ξ3) − O l

k(0,−η3,+ξ3)

δO l
k(0,−η3,+ξ3)

)2
⎤

⎦ , (27)

where k and l correspond to different observables and bins.
We perform χ2 analysis by varying one parameter and two

parameters at a time which will be described below. We also
perform a set of Markov-Chain-Monte-Carlo (MCMC) anal-
yses with a different set of observable with polarized beams
to obtain simultaneous limits on the anomalous couplings.

4.1 One parameter estimation

This section discusses the analysis done by varying one
anomalous coupling ci at a time while others are kept at
zero. The analysis are done at the center-of-mass energy,√
s = 250 GeV, integrated luminosity, L = 100 fb−1 with

zero systematic errors. The polarized beams are used with a
degree of polarization (+0.8,−0.3) and (−0.8,+0.3). Vari-
ation of χ2 for different sets of observables as a function of
one anomalous coupling is shown in Fig. 4. The different
sets of observables are: cross section σ , set of W− asym-
metries Pol(W−), set of W+ asymmetries Pol(W+), union
of W− and W+ asymmetries Pol(W− + W+), spin corre-
lations Corr(W−W+), union of all asymmetries Pol(W− +
W+) ∪ Corr(W−W+) and set of all observables. The hor-
izontal line in all panels represents χ2 at 95% confidence
level (CL). From the bottom row of Fig. 4, it is evident that
the cross section (shown in the red curve) provides the least
contribution to χ2 in the case of CP-odd couplings, i.e., cW̃

and c
˜WWW

. This behavior can be explained by the fact that in
case of cross section or any other CP-even observables, the
contribution from CP-odd anomalous couplings comes only
in a quadratic form or 1/�4 term, which naturally becomes
tiny. Generally, cross section, in the presence of one anoma-
lous coupling ci , can be parameterized as:

σ(ci ) = σ0 + σi × ci + σi i × c2
i . (28)

Thus, the absence of a linear term in case of CP-odd cou-
plings ci ∈ {cW̃ , c

˜WWW
} suggests that the significant con-

tribution will only arise when large values of anomalous cou-
plings are taken. Whereas, in the case ofCP-even couplings,
the cross section provides a reasonable contribution due to
linear term, see top row of Fig. 4. The sensitivity of the
polarization asymmetries constructed from the W− boson
is comparatively more prominent than that of the W+ boson
because the accuracy with which we can tag the daughter
lepton of W− boson is close to 100%. While, as discussed
in Sect. 3, the machine learning (ML) models achieved an
approximate accuracy of 80% in classifying up-type versus
down-type jets from W+ boson. In our specific scenario,
these jets are initiated by light quarks, resulting in similar
overall hadronization and jet contents. Consequently, dis-
tinguishing between them becomes challenging for the tag-
ging process, and this would dilute the overall sensitivity of
polarization asymmetries related to the W+ boson. For the
CP-even parameters, the contribution from the spin correla-
tions is comparable to the W− polarization for cW and to the
cross section in the case of cWWW . On the other hand, for
the CP-odd parameters, the spin correlations perform better
than polarizations of either W bosons. We list the one param-
eter limits on all anomalous couplings ci obtained using all
observables in Table 4.

The confidence interval obtained for various anomalous
coupling ci ∈ {cW , cB , cW̃ } are significantly tighter than that
of the experimental confidence interval listed in Table 1. In
contrast, for cWWW and c

˜WWW
, the limits remain compara-

ble. Next, we discuss the significance of various observable
on constraining the limits of two anomalous couplings at a
time.

4.2 Two parameter estimation

Here, we vary two anomalous couplings simultaneously
while keeping all others to zero. The systematic error is taken
to be zero, and luminosity is set to 100 fb−1 with the center-
of-mass energy,

√
s of 250 GeV in the presence of polarized

beams.
We study the role of various observables in setting simul-

taneous limits on different pairs of anomalous couplings. The
observables are described in the previous section. To under-
stand the role of these observables, we show two dimen-
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Fig. 4 Variation of χ2 for a set of observables as a function of one anomalous coupling ci (TeV−2) at a time. The systematic errors are chosen to
be zero

sional 95% CL contours for different pairs of anomalous
couplings in Fig. 5. For a case when both the parameters are
CP-odd, cross section provides the poorest bounds on both
the axis (see left panel top row) due to a tiny contribution
from 1/�4 term. While for a case when both the parameters
are CP-even, cross section can be parameterized as,

σ(ci , c j ) = σ0 + σi × ci + σ j × c j + σi i × c2
i

+σ j j × c2
j + σi j × ci c j . (29)

The cross section provides tighter limits in the orthogonal
direction and extended limits in the second and fourth quad-
rants. It is due to the cancellation of the linear terms in
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Table 4 The list of constraints on five anomalous couplings ci (TeV−2)
at 95% confidence level obtained by varying one parameter at a time
and keeping the other at zero. The limits are obtained for

√
s = 250

GeV, integrated luminosity L = 100 fb−1 and initial beam polarization
of η3 = ±0.8, ξ3 = ±0.3. The systematic errors are kept to zero

Parameters (cOi ) Limits (TeV−2)

cWWW /�2 [−0.92,+0.92]

cW /�2 [−0.67,+0.67]

cB/�2 [−1.46,+1.46]

cW̃ /�2 [−4.62,+4.62]

c
˜WWW

/�2 [−1.00,+1.00]

Eq. (29), i.e., ciσi + c jσ j = 0, or ci ∼ −c jσ j/σi . The
polarization of W− contributes more to χ2 than that of W+
boson due to the reconstruction error of W+ boson as seen
in the 1-D case. The bounds obtained using spin correlations
alone are tighter than that of a combination of polarization
of W boson in case of (cWWW , c

˜WWW
) pair. In the case of

the first panel, spin correlation alone provides a maximal
contribution to χ2 along the y-axis, i.e., c

˜WWW
.

Below, we discuss the impact of beam polarization, flavor-
dependent asymmetries, and tagger efficiency on determin-
ing the limits on anomalous couplings separately.

Role of beam polarization: We choose two sets of beam
polarization for electron and positron beams, (−0.8,+0.3)

and (+0.8,−0.3). Figure 6 presents the 95% CL χ2 con-
tours for a combination of all observables as a function of
two anomalous couplings. The contours correspond to each
beam polarization and unpolarized and combined cases. For
individual set of beam polarization, χ2 is obtained at lumi-
nosity L = 100 fb−1, while for a combined case each con-
tribution is computed at 50 fb−1. The contour due to the two
sets of opposite beam polarization provides directional limits
on anomalous couplings. The intersection of these two con-
tours corresponds to the bounds on the anomalous couplings
obtained by combining the two sets of beam polarization (see
magenta curve). In case of (cWWW , cB) pair, (−0.8,+0.3)

provides tighter limits on cW and loose bounds on cWWW ,
while with (+0.8,−0.3) limits on cW becomes loose and
cWWW gets tighter. Moreover, on combining two beam polar-
ization, the overall limits get tighter, which is also seen in
(c

˜WWW
, cW̃ ) pair. The contour without beam polarization is

displayed in red and is wider than the one created by adding
two sets of beam polarization. It emphasizes the importance
of using polarized beams when investigating beyond the SM
physics. Next, the contrast between the flavor-dependent and
-independent asymmetries is emphasized.

Comparison between flavor dependent and independent
observable: As discussed in Sect. 3, some of the asymme-
tries are flavor-dependent, i.e., the value of those observ-

ables averages out unless the daughter of W bosons is tagged.
In each bin, there are 45 different flavor-dependent and 35
flavor-independent asymmetries. Here, we compare the role
of these two different sets of asymmetries in constraining the
anomalous couplings. For this, we show 95% CL contours
for all observables as a function of two anomalous couplings
in Fig. 7. We choose a pair (cW , cB) and (cWWW , cW ) for
graphical demonstration. The contours are obtained by com-
bining two sets of beam polarization at L = 50 fb−1 each.
In both panels, the limits set by flavor-dependent (red curve)
are tighter along both axes than those obtained by flavor-
independent (green curve). The 45 distinct flavor-dependent
asymmetries thus make up most of the χ2 contribution in
the case of spin-related observables. It strongly advises the
development of taggers or machine learning models that are
incredibly efficient. To better understand the direct impact
of taggers on limiting anomalous couplings, we will com-
pare two machine learning models with varying degrees of
efficiency.

Role of tagger efficiency: To understand the role of the effi-
ciency of the tagger in constraining the anomalous couplings,
we compare two different BDT models with different accu-
racy. One BDT model is trained using all the features listed
in Sect. 3, and another model is trained using features apart
from those listed as additional features.

The second class of models was used for flavor tagging in
Ref. [24] with an accuracy of ≈ 70%, while the former model
provides an accuracy of ≈ 80%. To demonstrate the role of
the tagger, we compute χ2 for the combination of flavor-
dependent asymmetries as a function of two anomalous cou-
plings with two sets of beam polarization. For each set of
beam polarization, χ2 is calculated at luminosityL = 50 fb−1

and zero systematic errors. It is sufficient to demonstrate the
involvement of the tagger with flavor-dependent asymmetries
because the contribution from flavor-independent observ-
ables will be similar in both cases. In Fig. 8, the resulting
95% CL contours are displayed. According to the figures in
both panels, the simultaneous bounds on a pair of anomalous
couplings obtained using ML models with ≈ 80% accuracy
are tighter than those produced with 70% accuracy.

In conclusion, we need to use two beam polarization com-
bination with as good a flavor tagger as possible to include
the flavor-dependent asymmetries in the analysis. With these
choices, we do a full five coupling simultaneous analysis
below.

4.3 Five parameter analysis

In this section, we comprehensively explain the methodology
used to obtain simultaneous limits on anomalous couplings
and the impact of systematic errors on those limits. The like-
lihood function used in this analysis is constructed using the
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Fig. 5 Two dimensional 95% CL contours for a set of observables as a function of two anomalous couplings ci (TeV−2) at a time. The legend for
all the panels follows the upper row first panel. The contours are shown for

√
s = 250 GeV, L = 100 fb−1 and zero systematic errors

chi-squared distance between the Standard Model (SM) and
the SM plus anomalous points, which is expressed in Eq. (27).
The likelihood function is then defined as,

λ(�x, ci ) ∝ Exp

[
−χ2(�x, ci )

2

]
, (30)

where �x ∈ {O, η3, ξ3} represents observable and the degree
of initial beam polarization.

The Markov-Chain-Monte-Carlo (MCMC) integration
technique is used to obtain the posterior distribution of the
anomalous couplings, ci , based on the likelihood function.
Specifically, the MCMC algorithm generates a set of sam-
ples from the posterior distribution by iteratively sampling

the likelihood function and updating the current position in
the parameter space. The resulting posterior distribution is
then used as an input chain to the GetDist [140] package,
which provides the marginalized limits on the couplings.

The analysis is performed for different values of luminos-
ity values and systematic errors. The chi-squared values are
calculated separately for each beam polarization and then
combined to obtain the overall chi-squared value. Specif-
ically, we combine the two beam polarizations at half the
luminosity stated in Eq. (25).

To visualize the variation of limits on anomalous cou-
plings with respect to luminosities, the 95% Bayesian confi-
dence intervals obtained from the MCMC global fits on the
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Fig. 6 Two dimensional 95% CL contours for combining all observables as a function of two anomalous couplings ci (TeV−2) at a different set
of beam polarization. The analysis is done with zero systematic errors

Fig. 7 Two dimensional 95% CL contour for combining all flavor-dependent and flavor-independent asymmetries as a function of two anomalous
couplings ci (TeV−2). The systematic errors are kept at zero

anomalous couplings for
√
s = 250 GeV and one specific set

of systematic errors are illustrated in Fig. 9. The results show
that the limits become tighter as the luminosity increases for
zero systematic error. However, the saturation of the limits is
observed for most of the couplings at particular luminosity
values under conservative values of systematic error. Specif-
ically, for the systematic error of (2%, 1%) in the case of
cWWW , cW , and c

˜WWW
, the boundaries of each anomalous

coupling saturate at a luminosity value of 250 fb−1. How-
ever, for cW̃ and cB , the limits saturate at a luminosity value
of 1000 fb−1.

The significant influence of systematic errors on the con-
straints of anomalous W−W+Z/γ couplings can be elu-
cidated as follows: At the center-of-mass energy

√
s =

250 GeV, the cross-section forW−W+ production approaches
its maximum in the Standard Model scenario, thereby lead-
ing to lower statistical errors for large luminosities. Conse-
quently, the estimated uncertainty in the measurement is pri-
marily governed by systematic errors. It leads to the observed
trend of saturation of limits for conservative levels of system-
atic errors.
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Fig. 8 Two dimensional χ2 for a combination of all flavor-dependent observable as a function of two anomalous couplings ci (TeV−2). The
systematic errors are kept at zero

Fig. 9 The graphical visualizations of 95% BCI limits obtained from
MCMC global fits on the anomalous couplings ci (TeV−2) for a dif-
ferent set of systematic error, (εσ , εA) = (0,0) in the leftmost panel,

(1%, 0.25%) in the middle panel and (2%, 1%) in the right-most panel.
The limits are obtained at

√
s = 250 GeV and luminosity given in

Eq. (25)

Table 5 The list of posterior 95% BCI of anomalous couplings ci
(TeV−2) of effective operators for

√
s = 250 GeV with beam polar-

ization (η3, ξ3) = (±0.8,±0.3) at systematic error of (εσ , εA) =
(2%, 1%) from MCMC global fits at the reconstruction level at dif-
ferent values of L. The reconstruction of W+ is done using an artificial
neural network

ci (TeV−2) 100 fb−1 250 fb−1 1000 fb−1 3000 fb−1

cWWW
�2

+1.8
−1.8

+1.5
−1.5

+1.2
−1.2

+1.1
−1.1

cW
�2

+1.3
−1.3

+1.1
−1.1

+0.86
−0.86

+0.82
−0.81

cB
�2

+1.6
−1.8

+1.2
−1.3

+0.81
−0.85

+0.78
−0.75

cW̃
�2

+5.8
−5.8

+4.0
−4.0

+2.1
−2.1

+1.8
−1.8

c
˜WWW
�2

+1.6
−1.6

+1.3
−1.3

+1.0
−1.0

+0.99
−0.98

Finally, we list down the 95% BCI of anomalous couplings
ci (TeV−2) of effective operators given in Eq. (2) at the center-
of-mass energy of 250 GeV and systematic errors (εσ , εA) =
(2%,1%) in Table 5. The translation of these bounds to the
LEP parameters can be found using Eq. (4). In comparison

to [24], the current limits on cB, cW̃ are ≈ a factor four and
three tighter respectively, and all other couplings are reduced
by a factor, k, of 1 ≤ k ≤ 2.

The di-boson (W−W+) production process stands to be
a very important platform to test the electroweak sector of
SM and thus for a stability of theoretical precision results,
a study of higher quantum corrections to the said process
become very important. Though the study in this article is
limited to the LO, we estimate the effect of initial state radia-
tion (ISR) on the cross-sections and angular distributions. At
a center-of-mass energy of

√
s = 250 GeV, the cross-section

experiences a reduction of approximately 2% and so does the
cos θW distribution. In case of asymmetries, Az (cos θ) con-
structed from lepton and jet at the rest frame of the W boson
were compared a reduction of 3% and 9%, respectively, were
observed in presence of ISR. In case of the binned asym-
metries, some were enhanced while some were diluted due
to ISR. We note that a comprehensive exploration involv-
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ing higher-order real and virtual electroweak corrections lies
beyond the scope of this article.

5 Conclusion

In this article, we examine the impact of dimension-6 opera-
tors on the charged triple gauge boson vertex in e−e+ Collider
at

√
s = 250 GeV. The notion is that when new physics is

present at the top of the energy pyramid, sectors like elec-
troweak are most likely to experience their indirect effects.
We used a variety of observables, including asymmetries in
cross section, polarization, and spin correlation asymmetries,
to restrict a set of anomalous couplings. Since some of these
asymmetries requires the daughter ofW+ boson to be tagged,
we developed machine learning models for flavor tagging.
With the features listed in Sect. 3, we were able to classify
the jets as up-type anddown-type with an efficiency of around
80%. Several studies [114–117] use features like jet energy,
transverse momenta of jet for generic flavor tagging, while
in our case, we excluded them because these are polarization
dependent features. Using these features would increase the
efficiency of our ML models above 90% and thus tighten the
anomalous couplings better.

The limits on each anomalous coupling are studied under
different sets of luminosity, systematic error, and beam polar-
ization. Initial beam polarization provides directional cuts,
which results in tighter constraints. Hence a future collider
like ILC would be a perfect machine to probe such weak
effects of new physics in the electroweak sector. Our five
parameter simultaneous limits in Table 5 at 100 fb−1 are
tighter than the experimental one parameter limits listed
in Table 1 for cW , cB and cW̃ , while for cWWW , c

˜WWW
,

the limits obtained by CMS using production rates alone
remains better. It is due to the presence of p2 term in case of
cWWW and c

˜WWW
, which leads to enhanced contribution in

machines like LHC running at 13 TeV. While in our case, the
limits on these couplings are obtained using asymmetries at
smaller momentum. Also, in the presence of beam polariza-
tion, the contribution of asymmetries increases significantly
over the cross section. There is a cancellation of the cross sec-
tion due to non-zero values of CP-even couplings in Fig. 5.
All these effects would add up, leading to a poorer limit on
cWWW and c

˜WWW
in Table 5.

In our study, we found that systematic error is a sig-
nificant challenge when it comes to constraining anoma-
lous couplings. When we assume a conservative choice
of systematic error (εσ , εA) = (2%, 1%), we found that
the limits on certain anomalous couplings like cWWW , cW
and c

˜WWW
only improved by a factor of approximately

1.5 when we increased the luminosity from 100 fb−1 to
3000 fb−1. The improvement on the limits of cB and cW̃
saturates to a factor of 2.3 and 3.1, respectively. This is not

very encouraging, given the substantial increase in lumi-
nosity. Therefore, in significant systematic errors, it may
be necessary to look for additional observables from vari-
ous processes to constrain anomalous couplings more effec-
tively. Our study suggests that a more efficient flavor tag-
ging method could be implemented to reduce the depen-
dence on certain polarization-dependent observables, which
could help tighten the limits on anomalous couplings in the
future.
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6 Appendix A: Significance of binning

In the earlier section, we discussed that to obtain a more
significant number of observables to scan the effect of new
physics; each observable is divided into eight bins of cos θW− .
Moreover, in finding the final limits of anomalous couplings
ci , we combine all 648 observable of eight bins. Here, we
tried to quantify the effect of binning, and for that, 1-D chi-
squared plots for cross section and asymmetries are shown
for each bin along with a combination of all bins in Fig. 10.
In the left panel top row, the limit provided by cross sec-
tion without binning (Full) is looser than some bins in the
range −1.0 ≤ cos θW− ≤ 1.0. Furthermore, in the case of
CP-odd couplings c

˜WWW
, the unbinned limit is tighter but

remains weaker than the limit provided by combined bins.
In the bottom row of Fig. 10, a forward–backward asymme-
try exists only in CP-odd case (right panel). For c

˜WWW
, the

unbinned limit is tighter than that of individual bins obtained
using asymmetries but remains poorer than the combined
limit of all bins. The tightest limit is obtained in each panel
by combining all the bins. It highlights the importance of
binning technique to increase observables’ sensitivity to new
physics.
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Fig. 10 1-D chi-squared plots for cross-section and asymmetries for each bin as a function of one anomalous coupling ci (TeV−2) at a time. The
χ2 is obtained at

√
s = 250 GeV, L = 100 fb−1 and zero systematic error
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