
Eur. Phys. J. C (2023) 83:1130
https://doi.org/10.1140/epjc/s10052-023-12291-3

Regular Article - Theoretical Physics

Weak equivalence principle violation for mixed scalar particles

Massimo Blasone1,2,a, Petr Jizba3,4,b, Gaetano Lambiase1,2,c, Luciano Petruzziello2,5,6,d

1 Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
2 INFN, Sezione di Napoli, Gruppo collegato di Salerno, Salerno, Italy
3 FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
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Abstract We investigate the non-relativistic limit of the
Klein–Gordon equation for mixed scalar particles and show
that, in this regime, one unavoidably arrives at redefining the
particle’s inertial mass. This happens because, in contrast to
the case when mixing is absent, the antiparticle sector contri-
bution cannot be neglected for particles with definite flavor.
To clearly demonstrate this feature, we adopt the Feshbach–
Villars formalism for Klein–Gordon particles. Furthermore,
within the same framework, we also demonstrate that, in the
presence of a weak gravitational field, the mass parameter
that couples to gravity (gravitational mass) does not match
the effective inertial mass. This, in turn, implies a violation
of the weak equivalence principle. Finally, we prove that
the Bargmann’s superselection rule, which prohibits oscil-
lating particles on the basis of the Galilean transformation,
is incompatible with the non-relativistic limit of the Lorentz
transformation and hence does not collide with the results
obtained.

1 Introduction

Together with the notion of general covariance, the equiva-
lence principle represents a cornerstone of general relativity.
Since its inception more than one century ago, there have
been a number of distinct interpretations of the equivalence
principle, each with its own set of assumptions and scope of
use [1–7]. The simplest version of the equivalence principle,
the so-called weak equivalence principle (WEP), asserts that
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non-inertial effects caused by acceleration are indistinguish-
able from the effects of an external gravitational field. This is
encoded in the identity between the inertial and gravitational
mass of test bodies subject to gravity.

Among the many theoretical and experimental efforts that
have been done in connection with WEP (a comprehensive
review of recent developments can be found in Ref. [7]),
particularly prominent are those based on particle mixing,
because these can also shed light on the validity of WEP
in the quantum regime. Specifically, the investigations of
WEP in neutrino physics have been a driving force behind
a large number of studies, cf. Refs. [8–17] and references
therein. Along these lines, the primary focus has been on
ultra-relativistic neutrinos, as they are the most pertinent
from a phenomenological standpoint. However, recently it
has been pointed out [18] that, in a non-relativistic setting, it
is simple to differentiate between inertial mass mi and gravi-
tational neutrino mass mg in the weak interaction basis (i.e.,
flavor basis). In other words, for low energy neutrinos the
violation of WEP becomes manifest.

In the case of neutrinos, the mismatch between mi and
mg can be attributed to the unavoidable presence of flavor
mixing. In particular, when performing the non-relativistic
limit, one has to simultaneously deal with large and small
bispinor components (e.g., ψ L and ψ S), which in the case of
mixing are both comparably important. In fact, to identify the
low-energy inertial mass mi , one has to work interchange-
ably with both small and large components because these
are interlocked at all energy scales. On the other hand, when
the conventional minimal coupling to gravity is considered
in the weak-field approximation, the gravitational potential
couples directly to the original flavor masses, allowing them
to be interpreted as equivalent to gravitational masses. Since
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the gravitational mass does not undergo the same redefinition
as the inertial one, the violation of WEP arises.

At this stage, one may wonder if a similar violation of
WEP would be also observed for spin-0 particles, since par-
ticle mixing is not exclusive to neutrino physics, but it is
also found for weakly interacting mesons. The most impor-
tant mixing phenomena in this context are represented by the
oscillations of neutral kaons K 0 � K̄ 0, neutral and strange
B mesons, B0 � B̄0 and B0

s � B̄0
s , respectively, and neutral

D mesons D0 � D̄0. Although the last example has been
definitively established only recently [19], the other meson
oscillations have been known for a long time. In particular,
the strange B meson has attracted a significant attention over
the years, as its phenomenology is considered to be relevant
for understanding the asymmetry of matter and antimatter in
the visible universe [20,21].

Apart from the different spin, there are also other com-
pelling reasons to extend the considerations carried out in
Ref. [18] to bosons. For instance, there is a stark contrast
between the oscillations of mesons and neutrinos. While
neutrinos are elementary particles, mesons are not. They are
hadrons made up of two valence quarks, which means that
the first-quantized description of meson oscillations is only
an effective one that is valid for energies smaller than the
typical mass scales involved. On the other hand, analyzing
low-energy meson oscillations could potentially facilitate the
investigation of WEP violations for composite quantum sys-
tems. Such a study is, however, beyond the scope of this
paper and it will not be pursued here. Another crucial reason
to analyze meson oscillations is their potential for experimen-
tation. Indeed, the elusive nature of neutrinos renders them
unreliable as test particles for preparation and detection with
the currently available technology. Conversely, much heav-
ier mesons offer a wider admissible energy range for exper-
iments, thus enabling the development of potential experi-
mental setups to test the WEP violation.

In this paper, we aim to expand the results of Ref. [18] by
studying the non-relativistic limit of mixed scalar particles
and determine if the difference between mi and mg observed
in [18] for mixed Dirac fermions holds also for spinless par-
ticles. To keep our considerations as close as possible to the
spin- 1

2 case, we will resort to the Feshbach–Villars (FV) rep-
resentation of a Klein–Gordon (KG) particle [22,23]. The
FV representation allows to reformulate the Klein–Gordon
equation in a Schrödinger-like form (thereby employing first-
order time derivatives, as for the Dirac equation), where the
ensuing wave function has a two-component form, which
reflects the presence of particles and antiparticles [22]. A
particular advantage the FV representation is that it allows
to pursue a non-relativistic approximation in a systematic
way by mimicking the Foldy–Wouthuysen (FW) procedure
known from the spin- 1

2 wave equation [24,25]. It should also
be stressed that, in a non-relativistic limit, the positive-energy

plane-wave solutions of the FV equation have the upper com-
ponent much larger than the lower components [23]. Simi-
larly, for the negative-energy plane wave solutions one gets
that the lower component is much larger. The analogous sit-
uation holds also for Dirac wave functions, with the only dif-
ference that, in the latter case, one must also consider helicity
components.

In contrast to Dirac fermions where gravity couples
through minimal coupling (with the Fock–Ivanenko connec-
tion), there is not yet a standard theory of massive spinless
bosons in curved spacetime [28]. In our considerations, we
will employ the commonly used conformal coupling, which,
among others, has a correct quasiclassical limit, avoids a
tachyonic behavior and allows for a straightforward transla-
tion in terms of the FV representation [28–30].

For the sake of consistency, we supplement our discussion
by examining Bargmann’s superselection rules [31]. Specif-
ically, we demonstrate why superpositions of states with dif-
ferent masses are not problematic in the non-relativistic limit
of relativistic quantum mechanics, unlike the case in which
one instead starts from Galilean (rather than Lorentz) invari-
ance.

The paper is organized as follows: in Sect. 2, we briefly
review the non-relativistic limit for mixed neutrinos in the
weak interaction basis. In Sect. 3, we study in detail the non-
relativistic limit of the FV equation for mixed scalar particles
and show that, in this framework, one inevitably comes across
a non-trivial correction to the initial inertial mass, which leads
to a low-energy effective inertial mass mi . In addition, if a
weak gravitational field is present, we show that the corre-
sponding gravitational mass mg does not undergo the same
redefinition as the inertial mass, hence mi �= mg , which is
a direct signature of WEP violation. In Sect. 3.3, we briefly
comment on the violation of the Bargmann’s superselection
rules in connection with the non-relativistic limit of a rela-
tivistic theory with mixed particles. Concluding remarks and
generalizations are proposed in Sect. 5.

2 Non-relativistic mixed neutrinos

In this section, we briefly summarize the results of Ref. [7]
regarding the violation of WEP for mixed neutrinos. To this
end, we start from the two-flavor Dirac equation associated
with neutrinos νe and νμ. In a compact notation, this reads
(
iγ ′α∂α − M

)
� = 0, (1)

where γ ′α is the 8 × 8 matrix I2×2 ⊗ γ α , M is the 8 × 8 non-
diagonal mass matrix, which in the 4 × 4 block formalism is
given by

M =
(
me meμ

meμ mμ

)
, (2)
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(note that meμ = mμe), whilst the wave-function � is a
short-hand notation for the neutrino doublet

� =
(

ψe

ψμ

)
. (3)

At this stage, one can choose to work with the electron neu-
trino only, as the implications for the muon neutrino can be
derived by simply swapping the subscripts e ↔ μ. So, for
positive energy solutions, we obtain from Eq. (1) two coupled
algebraic equations in momentum space:

(Ee − me) ϕe − σ · pχe = meμϕμ,

σ · p ϕe − (Ee + me) χe = meμχμ, (4)

with ϕe,μ and χe,μ denoting the “large” (upper) and “small”
(lower) bispinor components. To consider the non-relativistic
limit, one should bear in mind that the dominant contribu-
tion to the energy comes from the rest mass. In light of this,
in Eq. (4) we can factor out from the components of each
spinor with definite flavor ν = (e, μ) a fast-oscillating phase
exp[−imν t]. In position representation, a derivative with
respect to time allows us to obtain a mass term in both expres-
sions (4), but as the rest mass is the leading term in the consid-
ered regime, we can assume |i∂tψν | � |mνψν | and simplify
the equations accordingly. In momentum space, this is equiv-
alent to defining the non-relativistic energy ENR

e ≡ Ee−me,
and write (4) as

ENR
e ϕe − σ · p χe = meμϕμ,

σ · p ϕe − 2meχe = meμχμ. (5)

Analogous equations hold for e ↔ μ.
If there was no mixing, the small component χ would be

negligible compared to the large component ϕ. By taking
particle mixing into account, the small component χe will
still remain much smaller than ϕe, provided a small admixture
of the large component ϕμ is included (a similar statement
holds also for e ↔ μ). This can be seen as follows: we first
eliminate χμ in the second equation in (5) by inserting χμ

from the analogous equation where e and μ are exchanged.
With this, the second equation in (5) can be cast in the form

χe = σ · p
2me

ϕe − meμ

4memμ

σ · pϕμ + ωχe, (6)

or equivalently

χe = σ · p
(1 − ω)2me

ϕe − meμσ · p
(1 − ω)4memμ

ϕμ, (7)

where

ω = m2
eμ

4memμ

. (8)

Should mixing be absent (i.e., meμ = ω = 0), we would end
up with

χν = σ · p
2mν

ϕν ν = (e, μ) , (9)

which would clearly yield the standard, non-relativistic
Schrödinger equation and thus prevent the inertial mass from
undergoing any form of redefinition (such as in Ref. [7]). Fur-
thermore, we stress that the expression (9) tells us why the
“large” and “small” components are called like this: in the
non-relativistic limit, m � | p|, thus making χ less relevant
with respect to the component ϕ.

It is not difficult to see that, even with weak mixing, the
notions “large” and “small” bispinor components still retain
their traditional meaning. In fact, going back to the case of
flavor mixing, by assuming that me ≤ mμ and expanding (7)
up to O(ω), we note that

||χe||2 = | p|
2

∣∣
∣
∣∣
∣
1 + ω

me
ϕe − meμ(1 + ω)

2memμ

ϕμ

∣∣
∣
∣∣
∣
2
, (10)

where || . . . ||2 denotes the �2-norm. Now, since from Eq. (8)
we see that meμ ∝ √

ω, the linear terms in ω are of higher
order, and can thus be neglected. Furthermore, by making use
of the triangular inequality, the above expression becomes

||χe||2 ≤ | p|
2

( ||ϕe||2
me

+
√

ω√
memμ

||ϕμ||2
)

≤ | p|
2me

(||ϕe||2 + √
ω||ϕμ||2

)
, (11)

where in the last step we have relied on our initial assumption
of the hierarchy of masses. Clearly, a similar relation holds
also for the muon particle

||χμ||2 ≤ | p|
2
√
memμ

(||ϕμ||2 + √
ω||ϕe||2

)
. (12)

In particular, when
√

ω||ϕμ||2 � ||ϕe||2 and
√

ω||ϕe||2 �
||ϕμ||2, we have that in the non-relativistic limit (i.e., when
| p| � me) the large components are much larger than their
respective small components. Note that the relativistic regime
enters at scales where | p| � √

memμ, which is also in agree-
ment with QFT considerations [32].

By substituting χe from (7) into the first equation in (5), we
eliminate the small component from the equation and obtain

ENR
e ϕe = p2

2me(1 − ω)
ϕe

+
[
meμ − meμ

2me

1

(1 − ω)

p2

2mμ

]
ϕμ

= p2

2mi,e
ϕe + meμ

[
1 − p2

4memi,μ

]
ϕμ. (13)

where we have defined the effective inertial mass mi,e =
me (1 − ω) (and similarly for mi,μ). In Ref. [18], the same
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result was obtained by means of the iteration method. An
analogous relation holds also for e ↔ μ. Before we pro-
ceed, let us to clarify why we have identified the quantity
mi,e = (1−ω)me as the effective inertial mass. We can draw
here upon the arguments presented in Refs. [33,34], which
state that “... at the level of the relativistic wave equation
(both for the Klein–Gordon and the Dirac scenario) there is
no unambiguous way of discerning the inertial from the grav-
itational mass, as one can only introduce the notion of “phase
space” mass, which is the pole of the propagator associated
with the given field. To establish a meaningful definition of
inertial mass, one has to perform a non-relativistic limit and
look at the mass term appearing in the kinetic operator”.

Bearing this in mind, we can move on. Equation (13) is
the sought non-relativistic limit of the Dirac equation for a
mixed electron neutrino. Ifmeμ is equal to zero, the equations
for ϕe and ϕμ become independent, resulting in free electron
and muon neutrinos with masses me and mμ, respectively.
The presence of the amplitude in square brackets in the r.h.s.
of (13), however, creates a connection between the two fla-
vor neutrinos, implying that one flavor might “leak” into the
other. In fact, such an amplitude is nothing but the “flip-flop”
amplitude of a two-state system [35]. The amplitude modulus
is manifestly invariant under the exchange of flavors e ↔ μ,
thus reflecting the principle of detailed balance in the oscil-
lation phenomenon. From (13), it is evident that the inertial
mass mi appearing in the kinetic term must be re-scaled by
a factor 1 − ω, which reduces to unity only when mixing is
removed, i.e., when meμ → 0.

The root cause of the violation of the weak equivalence
principle for mixed particles can be traced back to the pre-
vious observation. Indeed, the weak equivalence principle
states that inertial and gravitational mass are equal, and it is
not difficult to check that, when a gravitational potential is
switched on, then the gravitational mass is not redefined in
the same way as the inertial mass. To see this, it is conve-
nient to study the Dirac equation in the weak-field regime of
the Schwarzschild solution in isotropic coordinates. The line
element in this case is expressed as follows [28]:

ds2 = (1 + 2 φ ) dt2 −(1 − 2 φ)
(
dx2 + dy2 + dz2

)
, (14)

with φ = −GM/|x| being the Newtonian potential. Now,
the Dirac equation must be rephrased to take into account
the presence of gravity. This is done by means of the Fock–
Ivanenko connection μ, see Ref. [26,27], i.e.,

μ = 1

8

[
γ a, γ b

]
eλ
a∇μebλ, (15)

which replaces the standard derivatives appearing in (1) with
covariant ones ∂μ → Dμ = ∂μ + μ. The quantities eλ

a
are called tetrad fields or vierbeins, and are necessary for the

treatment of spinor dynamics on curved backgrounds. These
fields are determined by the requirements:

gμν = eaμe
b
νηab, eaμe

μ
b = δab , eμ

a e
a
ν = δμ

ν , (16)

meaning that eμ
a is the inverse of eaμ. Whenever vierbeins

are present in the equations, Greek indices are associated
with manifold coordinates, whilst Latin indices are related to
local Lorentz frame vector labels. So, Latin indices are raised
and lowered with ηab, ηab and Greek ones with gμν , gμν .
For further details on this formalism, the interested reader is
referred, e.g. to Ref. [28].

In the simplest case of a weak and slowly varying potential
(i.e., φ � 1 and ∂iφ ≈ 0 with i = x, y, z), though, the Fock–
Ivanenko connection can be neglected, since for the metric
(14) its expression reads [7]

μ = 1

8

[
γ a, γ b

]
eλ
a

(
ημλ∂ρφ − ημρ∂λφ

)
eρ
b . (17)

Thus, all the information on the curved nature of spacetime
is stored in the “generalized” gamma matrices γ μ = γ aeμ

a ,
cf. Ref. [28], where γ a fulfill the usual Clifford algebra
Cl1,3(R). Therefore, Eq. (4) now becomes

[(1 − φ)Ee − me] ϕe − σ · pχe

= meμϕμ + O( pφ),

σ · p ϕe − [(1 − φ)Ee + me] χe

= meμχμ + O( pφ), (18)

where O( pφ) represents post-Newtonian corrections. If we
now want to define the non-relativistic energy ENR

e as before,
we have to add and subtract the quantity meφ. In so doing,
the above expression can be simplified, thereby yielding up
to O(φ)

(ENR
e − meφ)ϕe − σ · p χe = (1 + φ)meμϕμ + O( pφ),

σ · p ϕe − 2meχe = meμχμ + O( pφ).

(19)

At this point, we follow exactly the same steps as in the pre-
vious paragraphs where the presence of gravity was not con-
sidered. In this way, Eq. (13) is modified into (cf. Ref. [18])

ENR
e ϕe =

[
p2

2me(1 − ω)
+ meφ

]
ϕe

+ V
(
p2, φ

)
ϕμ + O( pφ), (20)

where the details of V ( p2, φ) are not relevant for the pur-
pose of the current analysis. The non-relativistic wave
Eq. (20), where the large bispinor component is sepa-
rated from the small one, represents the leading-order non-
relativistic approximation in the Foldy-Wouthuysen proce-
dure. In practice, using the FW procedure, one can system-
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atically proceed to higher orders in (kinetic energy/me) or
(kinetic energy × potential/m2

e); however, this is unneces-
sary here. In fact, the most important term in (20) is the term
representing the Newtonian coupling to the external poten-
tial, from which the expression for the gravitational mass
mg = me can be unambiguously identified. Therefore, since
mg is not redefined in the same way as the inertial mass,
we can conclude that mi �= mg for mixed particles, which
implies the violation of the weak form of the equivalence
principle. A similar equation also holds when e ↔ μ.

Let us stress in passing that the results of the WEP vio-
lation were obtained by considering mixed neutrinos in the
flavor basis and with only two generations. This approach is
not applicable in the mass basis, because the non-relativistic
limit and the mixing transformations are not interchangeable
in this case [18].

In the following section, we will observe that the violation
of WEP is not exclusive to mixed Dirac fields, but also occurs
for mixed scalar fields.

3 Mixed Klein–Gordon particles

3.1 General setup

To keep our discussion as close as possible to the Dirac
equation treatment from the previous section, we start from
the observation that the Klein–Gordon equation for a free
spinless particle can be rewritten in a Schrödinger-like form
– the so-called Feshbach–Villars representation, cf. e.g.,
Refs. [22,23]. In order to see what is involved, we start with
the standard Klein–Gordon equation

(
� + m2c2

)
� = 0, (21)

(� = ∂2
t − ∇2 denotes the flat D’Alembertian), and define a

two-component wave function

� =
(

ζ

ζ̄

)
, (22)

where the components ζ and ζ̄ are represented as [23]

ζ = 1√
2

(
� − 1

imc2

∂�

∂t

)
,

ζ̄ = 1√
2

(
� + 1

imc2

∂�

∂t

)
. (23)

Here, � is a Klein–Gordon field fulfilling (21). Combin-
ing (23) with (21), one can easily check that � satisfies the
parabolic Schrödinger-like equation

i∂t� = HFV ( p̂)�, (24)

where the Hamiltonian operator is a 2 × 2 Hermitian matrix

HFV ( p̂) = (σ3 + iσ2)
p̂2

2m
+ σ3mc2, (25)

with p̂ = −i∇x . We might note in passing that the charge-
conjugated wave function has the form [22]

�c = σ1�
∗
c =

(
ζ̄ ∗
ζ ∗

)
. (26)

The two-component form of the FV wave function thus indi-
cates the existence of both particles and their antiparticles.

In the context of spin-0 particles, the FV representation is
very practical and in many respects superior to the conven-
tional KG formulation [24]. A particular advantage of the
parabolic form of the wave equation (24) is that it allows
to pursue a non-relativistic approximation in a systematic
way by mimicking the procedure from the previous section.
While the subsequent analysis could in principle be carried
on within the KG representation, we find it more instructive
to work with the FV representation. In particular, the latter
allows to rotate the mass basis to the flavor basis before tak-
ing the non-relativistic limit along the same lines we used
in Dirac’s case (hence the mass matrix is related to m not
m2), and treats both particles and antiparticles along with
their coupling to the gravitational field in a unified manner.
Further technical details related to the FV representation can
be found, e.g. in Refs. [24,36].

Within the FV representation, the two-flavor mixing of
scalar particles can be formulated in a similar manner to that
of neutrino mixing. Namely, we first write two decoupled
Eq. (24) for different masses m1 and m2 (as in the case of
the mass basis). We then rotate the ensuing diagonal mass
matrix to a flavor basis where the mass matrix acquires also
off-diagonal terms, so that
(
m1 0
0 m2

)
�→

(
mI mI,II

mI,II mII

)
≡ M, (27)

and (�1,�2)
T �→ (�I ,�II)

T .
In analogy with the mixing of spin-1/2 particles we now

formally replace in (25) the mas m with the mass matrix M.
This yields

HFV ( p̂) = (σ3 + iσ2)
p̂2

2
M

−1 + σ3Mc2. (28)

Starting from this form of HFV , we can explicitly write the
two FV equations for mixed particles in the form (c = 1)

i∂t�I = (σ3 + iσ2)
p̂2

2D

(
mII�I − mI,II�II

)

+ σ3
(
mI�I + mI,II�II

)
, (29)

i∂t�II = (σ3 + iσ2)
p̂2

2D

(
mI�II − mI,II�I

)

+ σ3
(
mII�II + mI,II�I

)
, (30)

123



1130 Page 6 of 10 Eur. Phys. J. C (2023) 83 :1130

where D represents the (flavor basis) mass matrix determi-
nant

D = mImII − m2
I,II

≡ mImII(1 − ω̄). (31)

Here, ω̄ = m2
I,II

/(mImII) is an analogue of ω from Eq. (8).

3.2 Non-relativistic limit

Let us now focus on Eq. (29), since the following reasoning
for �I can be easily repeated also for �II via the exchange of
subscripts I ↔ II. In momentum representation, the positive-
energy wave functions satisfy the algebraic equations

EI�
L
I

= p2

2D

(
mII�

L
I

+ mII�
S
I

− mI,II�
L
II

− mI,II�
S
II

)

+ mI�
L
I

+ mI,II�
L
II
, (32)

EI�
S
I

= p2

2D

(
mI,II�

L
II

+ mI,II�
S
II

− mII�
L
I

− mII�
S
I

)

− mI�
S
I

− mI,II�
S
II
. (33)

The superscripts L and S denote the “large” (upper) and
“small” (lower) components of the FV wave functions,
respectively [22,23]. The non-relativistic limit of (32)-(33)
is now obtained along the same line as in the Dirac case,
namely

ENR
I

�L
I

= p2

2D

[
mII(�

L
I

+ �S
I
) − mI,II(�

L
II

+ �S
II
)
]

+ mI,II�
L
II
, (34)

and

�S
I

= p2

4DmI

[
mI,II(�

L
II

+ �S
II
) − mII(�

L
I

+ �S
I
)
]

− mI,II

2mI

�S
II
, (35)

where ENR
I

≡ EI − mI and EI + mI ≈ 2mI . As in the
neutrino case, one can now use the non-relativistic relation
for �S

II
, which reads, cf. (35)

�S
II

= p2

4DmII

[
mI,II(�

L
I

+ �S
I
) − mI(�

L
II

+ �S
II
)
]

− mI,II

2mII

�S
I
, (36)

and from (35)–(36) resolve �S
I

and �S
II

in terms of �L
I

and
�L

II
. On the one hand, by assuming that mI ≤ mII and mI �

| p|, we can write for |�S
I
| up to the order O(ω̄)

|�S
I
| ≤ p2

4

( |�L
I
|

m2
I

+
√

ω̄(mI + 2mII)

2(mImII)
3/2 |�L

II
|
)

≤ p2

4m2
I

(
|�L

I
| + 3

2

√
ω̄ |�L

II
|
)

. (37)

Similarly, for |�S
II
| we get

|�S
II
| ≤ p2

4m2
I

(
|�L

II
| + 3

2

√
ω̄ |�L

I
|
)

. (38)

The results of (37) and (38) demonstrate that the small com-
ponents �S

I
and �S

II
still remain much smaller than �L

I
and

�L
II

, respectively, even after having introduced particle mix-
ing.

On the other hand, by inserting the solutions for �S
I

and
�S

II
back into (34), we obtain after some algebra that

ENR
I

�L
I

= Ā(M)
p2

2mI

�L
I

+ B̄(M)�L
II
, (39)

where

Ā(M) = 4m2
I
(4m2

II
+ p2) − 4mImIIm

2
I,II

4D(4mImII − m2
I,II

) + 4(m2
I
+ m2

II
+ m2

I,II
) p2 + p4 ,

(40)

B̄(M) = mI,II −
mI,II

(
8mImII − 2m2

I,II
− p2

)

2mI

(
4m2

II
+ p2

) − 2mIIm
2
I,II

Ā(M)
p2

2mI

. (41)

By employing the non-relativistic assumption mI ,mII �
| p|, Eq. (39) reduces to

ENR
I

�L
I

= p2

2mI (1 − ω̄)
�L

I
+

{
mI,II

[
1 − p2

2mImII (1 − ω̄)

]}
�L

II

= p2

2mi,I

�L
I

+
{
mI,II

[
1 − p2

2mImi,II

]}
�L

II
, (42)

where we have defined the effective inertial mass mi,I =
mI (1 − ω̄) (and similarly for mi,II ). An analogous equation
holds also for I ↔ I I . This outcome should be compared
with the expression (13) for flavor neutrinos. The extra factor
2 in (13) (respective 4 in ω) is a consequence of the way
how the factor appears in the kinetic versus mixing term in
non-relativistic Eqs. (5) and (34)–(35), thereby denoting a
different spin content. Such a spin-dependent behavior of the
effective mass can also be observed for higher-spin particle
states described via Bargmann–Wigner equations.

3.3 Non-relativistic limit in presence of gravitational field

Let us now focus on what happens when we switch a grav-
itational potential on. It is not a priori evident whether the
effective inertial masses mi,I and mi,II will also couple to the
gravitational potential. To explore this issue, we will employ
the conformal coupling to gravity and restrict our analysis to
the weak-field metric (14).

When mixing is absent, one can show [29] that the form
of the Klein–Gordon equation in the Feshbach–Villars rep-

123



Eur. Phys. J. C (2023) 83 :1130 Page 7 of 10 1130

resentation (24) gets modified in the following way:

HFV ( p̂) = (σ3 + iσ2)

[

(1 + 4φ)
p̂2

2m
+ mφ

]

+ σ3m. (43)

This Hamiltonian can be easily deduced from the Klein–
Gordon equation (21) by recalling that, in the presence
of an underlying curved background, the action of the
D’Alembertian operator on a scalar quantity � is given
by [28]

�� = 1√−g
∂μ

(√−ggμν∂ν�
)
. (44)

Thus, by following the same steps that led to the introduction
of ζ and ζ̄ in (23) and resorting to the weak-field metric
tensor that can be deduced from the line element (14), one can
show that the new Hamiltonian which allows for a rephrasing
of the Klein–Gordon equation in a Schrödinger-like form is
precisely the one reported in Eq. (43).

Bearing this in mind, when we rotate in HFV from the
diagonal mass matrix (with masses m1 and m2) to the flavor
mass matrix M, Eq. (29) becomes

i∂t�I = (σ3 + iσ2)
[
(1 + 4φ)

p̂2

2D

(
mII�I − mI,II�II

)

+ (
mI�I + mI,II�II

)
φ
]

+ σ3
(
mI�I + mI,II�II

)
,

(45)

and similarly for �II .
Following the analysis of the previous section, we pursue

our argument in momentum representation, in which the large
and small components of the particle I satisfy the following
equations:

EI�
L
I

= (1 + 4φ)
p2

2D

(
mII�

L
I

+ mII�
S
I

− mI,II�
L
II

− mI,II�
S
II

)

+
(
mI�

L
I

+ mI�
S
I

+ mI,II�
L
II

+ mI,II�
S
II

)
φ

+mI �
L
I

+ mI,II�
L
II
, (46)

EI�
S
I

= (1 + 4φ)
p2

2D

(
mI,II�

L
II

+ mI,II�
S
II

− mII�
L
I

− mII�
S
I

)

−
(
mI�

L
I

+ mI�
S
I

+ mI,II�
L
II

+ mI,II�
S
II

)
φ

−mI �
S
I

− mI,II�
S
II
. (47)

We obtain the non-relativistic limit by setting ENR
I

≡ EI −
mI and assuming that EI +mI ≈ 2mI . With this, we can write

ENR
I

�L
I

= (1 + 4φ)
p2

2D

[
mII

(
�L

I
+ �S

I

)
− mI,II

(
�L

II
+ �S

II

)]

+
[
mI

(
�L

I
+ �S

I

)
+ mI,II

(
�L

II
+ �S

II

)]
φ

+ mI,II�
L
II
, (48)

and

�S
I

= (1 + 4φ)
p2

4DmI

[
mI,II (�

L
II

+ �S
II
) − mII (�

L
I

+ �S
I
)
]

−
[
mI

(
�L

I
+ �S

I

)
+ mI,II

(
�L

II
+ �S

II

)] φ

2mI

− mI,II

2mI

�S
II
. (49)

In analogy with the previous section, we now resolve �S
I

and
�S

II
in terms of �L

I
and �L

II
. This allows to cast Eq. (48) for

�L
I

(and the analogous equation for �L
II

) in terms of large
components only. If post-Newtonian corrections of the order
O( pφ) are neglected (as their explicit form is irrelevant for
the identification ofmi andmg), we obtain after a simple alge-
bra the non-relativistic, Schrödinger-like equation for �L

I
in

the regime mI ,mII � | p|, which turns out to be

ENR
I

�L
I

=
(

p2

2mi,I

+ mIφ

)
�L

I

+
{
mI,II

[
1 + φ − p2

2mImi,II

]}
�L

II
. (50)

From this, we can immediately deduce that, whilst the iner-
tial mass is still represented by the effective quantity mi,I , the
gravitational mass mg,I must be identified with mI , and sim-
ilarly for I ↔ I I . This implies a violation of WEP, which
is completely analogous to WEP already encountered in the
case of neutrino mixing.

In passing, we note that we employed the FV representa-
tion because we wished, as in Sect. 2, to rotate the mass basis
to the flavor basis before taking the non-relativistic limit, as
the two operations do not commute according to Ref. [18].
Due to the Foldy–Wouthuysen procedure, the ensuing non-
relativistic limit appeared to be more straightforwardly done
by employing the FV representation rather than the KG one.

4 A closer look at the non-relativistic limit of mixed
particles: inadequacy of Bargmann’s superselection
rule

So far, we have shown that, in order to render WEP violation
explicit in the context of flavor mixing, one has to start from
a fully relativistic theory and take a non-relativistic limit to
observe the discrepancy between mi and mg , regardless of
the nature of the particle considered (i.e., spin-0 boson or
spin-1/2 fermion). In principle, if it were possible to perform
the analysis directly with the full-fledged non-relativistic
wave equation, we would not need to distinguish between
fields possessing different spins (and thus to undergo distinct
investigations), as we could take the advantage of the unify-
ing framework of Schrödinger’s equation. Unfortunately, in
such a physical setting flavor mixing cannot be consistently
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described because of a superselection rule (SSR) known as
Bargmann’s superselection rule.

Bargmann’s SSR arises as a consequence of demand-
ing Galilean covariance for the Schrödinger equation. This,
in turn, implies that superposition of states with different
masses is forbidden [31] and thus one cannot coherently
describe unstable or oscillating particles at non-relativistic
energies [37–41]. So, in order to keep our presentation self-
consistent, we should demonstrate that Bargmann’s SSR is
not applicable in the present case.

While the impossibility of oscillating particles can be eas-
ily deduced in the context of Galileo transformations, it is in
conflict with the principles of relativistic quantum theory.
Indeed, the description of systems where superpositions of
states with different mass occur can be carried out without
difficulty within relativistic quantum mechanics and quan-
tum field theory, and the significant number of mixed parti-
cles observed in high-energy particle physics is evidence of
the consistency of such treatment. It is thereby unclear why
they should cease to oscillate in the non-relativistic limit.

We propose that this issue can be addressed by recognizing
that non-relativistic quantum mechanics can be influenced by
relativistic effects, which are not visible or even forbidden
when Galileo covariance is strictly enforced. The appearance
of such effects is often proclaimed as non-physical and ban-
ished from the general framework via superselection rules. A
particular example of the latter is represented by measurable
phase shifts in particle mixing. For the sake of simplicity, we
will employ mixed neutrinos, though our argument can be
adapted also to scalar particles with minor adjustments. We
start by considering plane-wave solutions of Eq. (4), which
in position representation acquires the form

(i∂0 − me) ϕe + iσ · ∇χe = meμϕμ,

−iσ · ∇ϕe − (i∂0 + me) χe = meμχμ. (51)

By realizing that, for an observer moving with the particle,
the plane-wave phase is

kμxμ = ωt − k · x = mc2τ/h̄, (52)

where τ is the observer’s proper time (for future convenience,
we have reinstated c and h̄), we can write for the positive-
energy plane waves

ψe = cos θe−im1c2τ1/h̄u1(k) + sin θe−im2c2τ1/h̄u2(k)

= e−im1c2τ1/h̄[cos θ u1(k) + sin θ ũ2(k)], (53)

with ũ2 = ei(m1−m2)c2τ1/h̄u2. Here, m1 and m2 are masses in
the mass basis and θ is the mixing angle. The flavor masses
and mixing term me, mμ, meμ are related to m1 and m2

through [32]

me = m1 cos2θ + m2 sin2θ,

mμ = m1 sin2θ + m2 cos2θ,

meμ = (m2 − m1) sinθ cosθ. (54)

Let us now apply on ψe a sequence of transformations à la
Bargmann [31], but instead of Galilean boosts we use Lorentz
boosts. We start from the original system S and then perform
4 transformations [41]

Translation by a from S to SI :
x → x + a = xI ,

x0 = x0,I .

Boost by v from SI to SI I :
xI I = γ (xI − βx0,I ),

x0,I I = γ (x0,I − βxI ).

Translation by − a from SI I to SI I I :
xI I → xI I − a/γ = xI I I ,

x0,I I = x0,I I I .

Boost by − v from SI I I to SIV :
x = xIV = γ (xI I I + βx0,I I I ),

x0,I V = γ (x0,I I I + βxI I I ) = x0 − βa. (55)

Here, β = v/c and γ = (1 − β2)−1/2. After the sequence
of transformations S → SI → SI I → SI I I → SIV we
end up in the original point x but in the Lorentz shifted time
tI V �= t . In the version with Galileo boosts, we would have
t = tI V , and so we would end up in the frame SIV = S.
From the point of view of the observer who has undertaken
the sequence of above transformations, the mixing (53) reads

ψ ′
e = cos θe−im1c2τ2/h̄u1 + sin θe−im2c2τ2/h̄u2

= e−im1c2τ2/h̄[cos θ u1 + sin θ e−i�mc2�τ/h̄ ũ2], (56)

where �m = m1 − m2 and �τ = τ1 − τ2 is the differ-
ence between proper times of both observers. Note that the
momentum bispinors u1 and u2 are not affected by the com-
bined transformation, as the net effect of the sequence of
transformations is reflected only in the phase parts.

Due to the lack of simultaneity between the two observers
(twin paradox), the two states ψe and ψ ′

e must be different
(i.e., they are not members of the same projective ray in the
Hilbert space). The appearance of the extra relative phase
factor e−i�mc2�τ/h̄ is thus not surprising as �τ �= 0.

In the Galilean framework, the analogous situation looks
different. The sequence of the four transformations gives an
identity operation and the presence of a non-relativistic ana-
logue of the above relative phase is inconsistent with the fact
that the state ψe should coincide with the state ψ ′

e (they lie on
the same ray). In fact, such a relative phase does not have any
meaning and is forced to be 1 by proclaiming that the only
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logically consistent situation is m1 = m2 (i.e., Bargmann’s
SSR), implying that no neutrino mixing can take place non-
relativistically.

Let us note that the phase factor e−i�mc2�τ/h̄ will not
disappear in the non-relativistic limit, but it will leave an
imprint that is independent of c. Indeed

�τ = τ1 − τ2 = t −
∫ t0,I V

t0

√

1 − v2(t)

c2 dt

= t −
∫ t0,I I

t0,I

√

1 − v2

c2 dt +
∫ t0,I V

t0,I I I

√

1 − v2

c2 dt

= t −
√

1 − v2

c2 t
N R→ v2

2c2 tN R = va

c2 , (57)

where ct = x0,I V −x0 and tN R = [(a+a/γ )/v]N R = 2a/v.
Hence, we obtain that

e−i�mc2�τ/h̄ N R→ e−i�mva/h̄ . (58)

This phase factor, though not depending on c, has no basis
in the Galileo transformations (where the concept of proper
time is meaningless) and is erroneously seen as non-physical
and removed via SSR.

In short, the non-relativistic limit of superpositions of
states with different mass can comfortably accommodate a
relative phase that is otherwise problematic from the point
of view of Galileo transformations. So, neutrino mixing
and ensuing oscillations do not pose any conceptual diffi-
culties in the non-relativistic limit, and certainly they are
not prohibited by Bargmann’s SSR. Similar considerations
hold true also for scalar particle in the FV representation.
The only difference is that for spinless particles ψe → �I ,
me,mμ,meμ → mI ,mII ,mI,II and θ → θ̃ , where θ̃ is the
mixing angle through which we must rotate the diagonal
mass-matrix to obtain M in (27).

5 Conclusions

In this Letter, we have investigated the non-relativistic limit
of the Klein–Gordon equation for mixed scalar particles.
To mimic our treatment for spin-1/2 particles outlined in
Ref. [18] (and summarized in Sect. 2), we have employed
the Feshbach–Villars representation, according to which
the wave function of a spinless particle becomes a two-
component object and the equation of motion is of the first
order in time. Within this setting, we have demonstrated that
the resulting Schrödinger-like equation predicts an effective
inertial masses, which does not coincide with eigenvalues of
the mass matrix in the relativistic regime. In particular, the
ensuing low-energy inertial masses non-trivially depend on
a mixing term.

We have also shown that, when a weak external gravita-
tional field is taken into account, the resulting gravitational
masses remain unchanged in the non-relativistic limit, giving
thus rise to a violation of WEP. Interestingly, the rate of this
violation is identical to the one encountered in the frame-
work of spinor flavor mixing, the only difference being an
overall numerical factor which is associated to the spin of
the considered particle. For the sake of consistency in our
presentation, we have further proved that the non-relativistic
limit for superposition of states with different masses does
not produce any inconsistency in non-relativistic quantum
mechanics – as it could be naively inferred from the applica-
tion of Bargmann’s SSR.

Finally, it is important to note that, unlike the case in
neutrino physics, the current model of meson oscillations is
inevitably an effective model since mesons are not fundamen-
tal particles. Indeed, a full-fledged treatment should involve
quarks, whose mixing properties are encoded in the Cabibbo–
Kobayashi–Maskawa matrix [42,43]. However, such an anal-
ysis would pose a series of problems, the majority of which
are related to the fact that mesons are made up of quarks tied
together by the strong force. In order to properly understand
the issue at high enough energies, it is necessary to use quan-
tum field theory instead of first quantization. For energies
lower than m1 and m2, it is reasonable to assume that our
first-quantized analysis should be viable.
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