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Abstract In this work, we present a new framework for
five-dimensional spherical symmetry anisotropic stars that
admits conformal motion. The behaviour of model charac-
teristic pressure, stress, density profile and surface tension is
investigated with the inclusion of a particular density profile
for the higher dimensional Einstein’s field equations. All the
physical parameters are well-behaved for the presented solu-
tion in higher dimensions. The analysis predict the possible
existence of compact stars in five dimensions, more likely
strange quark star.

1 Introduction

The Einstein field equations (EFEs), which connect space-
time’s geometry and physics, provide the foundation of gen-
eral theory of relativity. Because these equations are nonlin-
ear, finding their exact solutions is quite challenging. Impos-
ing some symmetry constraints is one method for finding EFE
solutions. Since these symmetry restrictions are very helpful
in figuring out the precise solutions of EFEs, they have a spe-
cial place in Einstein’s theory of general relativity (GR). One
of the most significant types of symmetry is killing symme-
try, which occurs when the Lie derivative of a metric tensor
vanishes. The concept of a conformal killing vector (CKV),
denoted as ξ , as a vector field on a manifold is established.
This vector field possesses the remarkable property that when
the metric undergoes displacement along the curves gener-
ated by ξ , its Lie derivative exhibits proportionality to itself. It
is well recognised that employing killing symmetry to deter-
mine the natural connection between geometry and matter
via the EFEs is significant. The symmetry under CKV can
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be written as

Lξ gik = ψgik, i, k = 1, 2, 3, 4, 5. (1)

The conformal factor, denoted by ψ , is an arbitrary function
of both r and t . The Lie derivative of the metric tensor g,
which describes how a compact star’s internal gravitational
field relates to the vector field ξ , is represented by the L . The
vector ξ generates the conformal symmetry, facilitating the
conformal transformation of the metric g onto itself along
ξ . Importantly, both ξ and ψ need not be static, even in the
context of a static metric [1,2]. Notably, Eq. (1) produces
the Killing vector for ψ = 0, a homothetic vector when
ψ = constant , and a conformal vector when ψ = ψ(x, t).
The presence of ψ = ψ(x, t) always gives rise to a conformal
vector [3].

The conformal motion are widely used in the study of
compact objects (COs). The research explores the presence
of a one-parameter group of conformal motions in the con-
text of anisotropic matter. The study reveals that the EFEs,
corresponding to both isotropic and anisotropic matter, dis-
tinctly determine the equation of state. Notably, both solu-
tions exhibit seamless compatibility with the Schwarzschild
exterior metric and possess positive energy density surpass-
ing the stresses throughout the entire spherical region [4].
The EFEs for spherically symmetric distributions of isotropic
and an-isotropic matter are solved using conformal motions.
Solutions are compatible with the Schwarzschild exterior
metric, with a surface potential equal to 1/3. Two families of
solutions describe expanding and contracting spheres, and
oscillating black holes are described by a third family of
solutions. Each solution has a positive energy density that is
greater than the stress everywhere [5,6]. In both perfect and
anisotropic fluids, analytical solutions to the static Einstein-
Maxwell equations have been found, provided that spherical
symmetry and a one-parameter group of conformal motions
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are presented. Connected to the Reissner–Nordström metric,
these solutions always show positive energy density, exceed-
ing the sphere’s total stresses [7]. Different solutions to the
EFEs for a spherically symmetric distribution of anisotropic
matter are presented. Although the stresses and energy den-
sity remain inside the sphere, these solutions are alignable
with flat spacetime at the matter’s boundary [8].

The research illustrates an instance of a perfect fluid
within an Friedmann–Robertson–Walker (FRW) space-time,
highlighting that CKV don’t map the fluid flow lines onto
each other. Furthermore, the investigation explores the
dynamic characteristics of special CKV in a fluid exhibit-
ing anisotropic pressure and zero energy flux, as dictated
by EFEs. Additionally, the study examines the relationship
between anisotropic pressure components and energy den-
sity, with the dynamic outcomes contingent on the absence of
the energy flux vector [9]. The study of radiating anisotropic
spheres with a one-parameter conformal motion approach
reveals two stress equation-based models. The first model
integrates the system of equations by using luminosity as a
function of timelike coordinates, whereas the second model
infers luminosity from the stress equation. Both models are
numerically integrated and analysed in terms of potential
astrophysical applications [10]. This research investigates
the interplay between perfect fluid matter and nonsingular
aligned electromagnetic fields. The findings uncover that
the existence of non-vanishing shear serves as a symmetry
condition, contributing significantly to timelike conformal
collineations. These outcomes have broad applicability to
diverse physical scenarios and offer a coherent counterpart
to space-times devoid of shear [11].

Anisotropic fluids that admit a generalization of confor-
mal motion, called conformal collineation, are taken into
consideration in GR [12]. The results of the study, pro-
vided spacetimes that are axially and reflection symmetric
and have a conformal motion group with one parameter on
S2. Minkowski is the only physically significant solution to
the Einstein vacuum field equations [13]. The research looks
into the concept of a proper CKV in fluid spacetimes, with
a focus on synchronous spacetimes. Other than FRW space-
times, orthogonal synchronous perfect fluid spacetimes do
not admit proper inherited CKV. The study also considers
generalizations to non-moving perfect fluid and comoving
but non-perfect fluid synchronous spacetimes. Proper CKV
spacetimes are extremely rare, and determining them all is of
interest. It is suggested that a non-existence finding may be
valid when generalised to non-synchronous spacetimes [14].
The work examines solutions to the Einstein–Maxwell equa-
tions for charged imperfect fluids in static spheres while tak-
ing space-time geometry conformal symmetry into account.
It allows nonsingular solutions at the centre and generalises
earlier work to nonstatic conformal symmetry. For charged
spheres, two regular solutions are given; further generalisa-

tion for conformally symmetric stable accurate stellar models
is proposed [15].

In GR, variables and constraints define kinematics and
dynamics. One important restriction is symmetry, which
is divided into two categories: curvature collineations and
killing vectors. The CKV are used to simplify the EFEs for
general spacelike collineations and matter. Applications to
matter described by perfect or anisotropic fluids, as well as
spacelike CKVs, are discussed. We extend the idea of sym-
metry inheritance to conformal Killing vectors, demonstrat-
ing that matter does not inherit symmetry [16]. In the thin-
wall approximation, scalar soliton stars are described by two
families of time-dependent solutions to the Einstein equa-
tion. The development of second-order phase transitions is
supported by the selfsimilarity of the space-time inside the
star. Values for the maximum and minimum surface poten-
tial are discovered [17]. The study compares every possible
scenario of evolution with particular solutions to the differ-
ential equation controlling the time evolution of self-similar
scalar soliton star models provided in [18]. Static spherically
symmetric spacetimes contain the conformal Killing equa-
tion, which unifies and generalises particular scenarios. Non-
con-formally flat spacetimes have three classes, one or both
noninheriting conformal Killing vectors, and a maximum
of two proper conformal motions. Conformally flat space-
times with eleven valid conformal Killing vectors are classi-
fied into three classes, including the Schwarzschild interior
metric [19]. The vector of conformal symmetry is derived
within static and spherically symmetric spacetimes, taking
into account integrability conditions and metric constraints.
Some conformal symmetries are found as specific instances
within this framework [20].

This work examines self-similarity in GR, with a focus on
the first type of similarity, which relates to spacetimes with a
homothetic vector. It investigates numerous self-similar solu-
tions to EFEs, with a focus on spatially homogeneous and
spherically symmetric solutions, possibly asymptotic states,
and applications in astrophysics and cosmology. It also inves-
tigates broader self-similar models [21].

They explored the configuration of charged strange quark
matter connected to a string cloud within spherically sym-
metric spacetime that allows for a one-parameter group of
conformal motions. To achieve this, we solve EFEs for spher-
ically symmetric spacetime, accounting for the attachment
of strange quark matter to the string cloud through confor-
mal motions. Additionally, we discuss the characteristics of
the solutions obtained [22]. They conduct a general investi-
gation into axially symmetric, static fluids with a CKV. The
physical significance of this type of symmetry is highlighted.
Following that, they analyse all possible repercussions that
arise from the implementation of such symmetry. The issue
of symmetry inheritance receives special consideration [23].
The research investigates non-static spherically symmetric
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fluids with a CKV and develops numerous exact analytical
solutions for various CKV choices in both dissipative and
adiabatic regimes. Additional requirements are added, such
as eliminating complexity factor and quasi-homologous evo-
lution. The study deals with the applications of the results in
astrophysical contexts as well as other ways for finding new
solutions [24]. Recently, Herrera et al. [4] discovered that the
stiff equation of state p = ρ is unique for specific conformal
motions if the generating conformal vector field is orthogonal
to the four-velocity. They deal with this problem using con-
formal collineations, demonstrating that the stiff equation
of state isn’t specifically intended for particular conformal
collineations [25].

This study investigates fluid space-times in GR, with an
emphasis on metric symmetry and conformal collineation.
It highlights the importance of conformal collineation sym-
metry for smooth transitions at fluid pattern alterations. The
research is applicable to the radiation-like viscous fluid FRW
model, which has a conformal collineation symmetry vec-
tor parallel to the tilted velocity vector. Significant material
curves in fluids as they evolve are revealed by the results
[26]. The research looks at viscous heat-conducting fluid
and anisotropic fluid space-times with a particular CKV and
demonstrates general theorems concerning symmetry inher-
itance linked with the special CKV. It demonstrates that if
the special CKV maps fluid flow lines, the special CKV
symmetry is inherited by all physical components of the
energy-momentum tensor. Furthermore, symmetry inheri-
tance happens when the Lie derivative along a specific CKV
is zero. A unique CKV cannot exist in ideal fluid space-
times [27]. The research looks at ideal fluid spherically sym-
metric spacetimes with a proper inherited CKV. The only
known spacetimes are conformal FRW spacetimes, static
Schwarzschild interior spacetimes, and generalized Gutman-
Be’spalko Wesson spacetimes with a constrained form and
conformal factor. The nonexistence of such spacetimes is
demonstrated, confirming a general non-existence conjecture
[28].

In recent years, there has been a lot of interest in apply-
ing GR to higher dimensions. Rahaman et al. [29] examined
the following four scenarios that were part of the solar sys-
tem experiments in order to assess the feasibility of GR with
larger dimensions: gravitational time delay, gravitational red-
shift, bending of light, and perihelion shift. Liu and Over-
duin [30] conducted some additional investigations about
greater dimensions for the motion of a test particle. The D-
dimensional gravstars are studied by Rahaman et al. [31].

Rahaman et al. investigated the novel class of four-
dimensional interior solutions that accept conformal motion
for anisotropic compact stars [32]. Rahaman et al. [33] also
investigated fluids in higher and lower dimensions using non-
commutative geometry and a Gaussian energy density dis-
tribution. They demonstrated that any spherically symmetric

stellar system can only have a stable configuration in four
dimensions.

The underlying matter distribution of CO is typically
believed to be homogeneous and isotropic, or a perfect fluid
that obeys the Tolman–Oppenheimer–Volkoff (TOV) equa-
tion [34,35]. This method is frequently applied to the char-
acterization of CO, including neutron stars, and polytropic
objects like white dwarfs [36]. Theoretical developments
show that pressure within a CO does not have to be com-
pletely isotropic, and that a variety of causes can contribute
to pressure anisotropy [37]. The truth is that anisotropic flu-
ids have been thoroughly investigated in the past, with the
intent of determining sustainable anisotropy sources. A thor-
ough analysis of anisotropic fluids may be found in [38],
which also provides an extensive list of physical phenom-
ena that may be in play when pressure anisotropy emerges.
Anisotropic fluids exhibit two separate pressure components:
the radial pressure, denoted as pr , and the transverse pres-
sure, denoted as pt , which acts in the opposite direction to
pr . The anisotropic factor, defined as � = pt − pr , becomes
significant. When � > 0 or, equivalently, when pt > pr ,
the anisotropic force ( 2�

r ) manifests as both repulsive and
attractive in nature.Therefore, it seems sense to take pressure
anisotropy into account when developing the model under
study. It is demonstrated that the presence of a repulsive force
facilitates the construction of CO in the case of an anisotropic
fluid [39].

In this paper, we investigated the five-dimensional non-
static spherically symmetric distribution in Schwarzchild-
like non-comoving coordinates with an energy density profile
as shown in [40,41]. The Eqs. (15) and (16) that appeared in
the set of Eqs. (15–17) are similar to equations in four dimen-
sions. We can demonstrate that compact stars can exist even
in higher dimensional non-static spherical symmetry using
this method. The following is the outline for this article: We
reported the EFEs for the anisotropic star’s internal space-
time in Sect. 2. Section 3 employs the Particular density pro-
file found in Equation (21) to solve the EFEs. We presented
the five-dimensional exact solution in Sect. 4 to study the
physical parameters. In Sect. 5, we studied the model’s char-
acteristics, stability conditions, and graphical plot in the fifth
dimension. In Sect. 6, we provide our final views for con-
cluding the paper.

2 The Einstein field equations in higher dimension

The line element consedered have represents five-dimensional
Schwarzschild-like coordinate dynamic system, which char-
acterized the non-static spherically symmetric spacetime in
five dimensions [42] as follows:

ds2=eν(r,t)dt2−eλ(r,t)dr2−r2(dθ2+sin2dφ2)−eμ(r,t)dw2,

(2)
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The spacetime coordinates are x0 = t, x1 = r, x2 = θ, x3 =
φ, x4 = w. We will use geometries units i.e., c = G = 1.
The inner matter distribution is anisotopic written as [43].

Tμ
ν = (ρ + pr )u

μuν − pr g
μ
ν + (pt − pr )η

νημ. (3)

Here ρ, pr , pt , uμ, and ημ represents the density, radial pres-
sure, transverse pressure, fluid five velocity and unit space
like vectors respectively. For line element Eq. (2) and energy
momentum tensor in Eq. (3) the EFEs in five dimension are
[44]

8πρ = − 1

r2 +e−λ

(
1

r2 + (μ,r−λ,r )

r
+

(
(μ,r )

2−μ,rλ,r
)

4

+μ,rr

2

)
+ e−ν

(
μ,tλ,t

4

)
, (4)

8πpr = − 1

r2 + e−λ

(
1

r2 + (ν,r + μ,r )

r
+ μ,rν,r

4

)

−e−ν

4

(
2μ,t t + (μ,t )

2 − μ,tν,t

)
, (5)

8πpt = e−ν

4

(
2
(
μ,t t + λ,t t

) + μ,t
(
μ,t − ν,t + λ,t

)

+λ,t
(
λ,t − ν,t

)) −
{
e−λ

4

(
2
(
ν,rr+μ,rr

) + (ν,r )
2
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2 − ν,rλ,r − μ,r

(
λ,r + ν,r

))

+2

r

(
ν,r − λ,r + μ,r

)}
, (6)

8πT 0
1 =

(
μ,rμ,t

4
− μ,tν,r

4
− μ,rλ,t

4
+ μ,tr

2
− λ,t

r

)
.

(7)

Here subscripts r and t represent the partial derivative with
respect to the radial and temporal coordinates respectively.

3 Conformal killing vector in five dimension

The metric tensor of a spacetime remain invariant during con-
formal motions, commonly referred to as CKVs, up to a scale
factor. An everywhere differentiable vector field denoted as
ξ on a manifold β is termed a conformal vector field. This
vector field satisfies a specific property with respect to the
metric gab in any given coordinate system on β. The prop-
erty is expressed as ξa;b = ψgab+Fab, where ψ : β → R is
a smooth function called the conformal function associated
with the vector field ξ , and Fab represents the conformal
bivector linked to x . This definition can also be expressed as
Lξ gik = ψgik , where Lξ denotes the Lie derivative along
the vector field ξ . The CKV provide a more in-depth under-

standing of spacetime geometry. The CKVs make it easier
to generate exact solutions to EFEs. Physically, it is crucial
to understand conformal motions in spacetime because this
could result in conservation laws, which are then used to cre-
ate spacetime classification systems. The EFEs exhibit sig-
nificant nonlinearity, the utilization of CKVs offers a method
to transform PDEs into linear ODEs. The precise properties
of compact stars and electron structures, which bear resem-
blance to fundamental particles, continue to be uncertain for
theoretical physicists. Thus, let us explore a case where a one-
parameter group of conformal motion is allowed to exist in a
non-static, spherically symmetric spacetime. The CKV can
be stated in a more practical form than that found in Eq. (1):

Lξ gmn = ξm;n + ξn;m = ψgmn, (8)

where m, n = 1, 2, 3, 4, 5. Here orbit group is denoted by ξ ,
while ψ is an arbitrary function of both r and t . When consid-
ering ξi , the metric gi j undergoes a conformal transformation
unto itself. Furthermore, let’s extend the assumption that the
orbit of the group is orthogonal to the vector field represent-
ing the velocity of the fluid.

ξμuμ = 0. (9)

The spherical symmetry from Eq. (9) leads to the following:

ξ1 = ξ3 = .... = ξn+1 = 0.

By using the CKV on the line element (2) yields the subse-
quent set of equations:

ν,r ξ
2 = ψ, (10)

−eλξ2
,1 = 0, (11)

λ,rξ
2 + 2ξ2

,2 = ψ, (12)

ξ2 = ψr

2
, (13)

μ,rξ
2 = ψ. (14)

The result of the equations in the previous set is

eν = r2C2
1 , (15)

eλ = C2
2

ψ2 , (16)

eμ = r2C2
3 (17)

where C1, C2, and C3 represent the integration constants.
Substituting Eqs. (15)–(17) into the EFEs (4)–(6), we obtain:

8πρ = 1

r2

(
1 − 3ψ2

C2
2

)
− 3ψψ,r

rC2
2

(18)

8πpr = − 1

r2

(
1 − 6ψ2

C2
2

)
(19)
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8πpt = − ψ,t

r2ψC2
1

− ψ2
,t

2ψ2r2C2
1

− 2ψψ,r

rC2
2

+ ψ2

r2C2
2

− 2

r2 − ψ,r

rψ
(20)

The above system of non-linear differential equations have
four dependent variables ρ, pr , pt , and ψ and two inde-
pendent variables r and t . As a result, we end up with
three distinct equations, namely Eqs. (18)–(20), involving
the four unknowns: ρ, pr , pt , and ψ . Therefore, we have
four unknowns and three equations, so we will use the den-
sity profile for balancing the equations, which is given in [34]
as

ρ = 1

8π

( a

r2 + 3b
)

(21)

Here, the constants a and b yield different star configurations.
Therefore, by substituting Eq. (21) into Eq. (18), we get

3ψ2 − ψ3 = 2(1 − a)C2
2 − 2bC2

2r
2 + 2C

r
(22)

In Eq. (22) C is the integration constant, we get

ψ = −1 + 3 × 21/3

A
+ A

3 × 21/3 (23)
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(
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r
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2r
2

+
√
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r
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2r
2
)2

)1/3

(24)

4 Model’s exact analytical solution

The exact analytical solution can be obtained as

eλ = C2
2(

−1 + 3×21/3

A + A
3×21/3

)2 (25)

The two pressure are obtained as
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γ
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r
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(
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(
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β + γ
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)1/3
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)
⎤
⎥⎥⎥⎥⎥⎦

(27)

where α = (−54C
r2 −108bC2

2r), β = (−54+54C2
2 −54aC2

2 +
54
C r − 54bC2

2r
2), and γ = √−2916 + β2.

5 Analysis of model

Now, we will proceed with a comparative investigation of the
physical properties. Several approaches can be adopted for
this purpose. However, in our current study, we will focus
on two main aspects. Firstly and most importantly, we will
evaluate the models’ stability in five dimensions. Second,
to acquire more insights, we will examine variations in var-
ious physical parameters such as ρ, pr , pt , �, conformal
parameter, pressure gradient, and metric potential. The five
dimensional TOV equation is defined as

−MG(r)(ρ + pr )

r2 e
ν−μ

2 − dpr
dr

+ 2

r
(pt − pr ) = 0. (28)

Here, the gravitational mass contained in a sphere of radius
r is denoted by MG(r), whose expression is as follows:

MG(r) = 1

2
r2(ν,r + μ,r )e

μ−ν
2 (29)

Substituting (29) into (28), we obtain

− (ν,r + μ,r )

2
)(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0. (30)

The aforementioned TOV equation can be expressed in the
following way since it describes the equilibrium of the star
configuration under the influence of the forces of gravity Fg ,
hydrostatic force Fh , and anisotropic stress Fa :

Fg + Fh + Fa = 0, (31)

where

Fg = − (ν,r + μ,r )

2
(ρ + pr ), (32)

Fh = −dpr
dr

, (33)
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Fig. 1 Energy conditions for a = 0.1, a = 0.2, a = 0.3, b = 0.03,
C = 0.5 and C2 = 0.1

Fig. 2 The conformal factor ψ for b = 0.03, C = 0.5 and C2 = 0.1

Fa = 2

r
(pt − pr ). (34)

5.1 Energy conditions

We now determine whether or not all of the energy conditions
have been satisfied. We will take into account the following
inequalities given in [45]:

• Null energy conditions: ρ ≥ 0,

• Weak energy conditions: ρ + pr ≥ 0, ρ + pt ≥ 0,
• Strong energy conditions: ρ + pr + 2pt ≥ 0.

The model’s properties are depicted graphically in Figs. 1, 2,
3, 4, 5, 6, 7, 8 and 9.

6 Discussion

In this work, we examined a novel framework for anisotropic
stars that allow conformal motion in a dynamical spherical
system with five dimensions. The EFEs are solved using this

Fig. 3 Variation of metric coefficient eλ for b = 0.03, C = 0.5 and
C2 = 0.1

Fig. 4 Anisotropy factor for b = 0.03, C = 0.5 and C2 = 0.1

Fig. 5 Variation of radial pressure against for b = 0.03, C = 0.5 and
C2 = 0.1

spacetime geometry by selecting a specific density distri-
bution function. It is widely acknowledged that the density
within a compact star can surpass nuclear density, poten-
tially leading to the emergence of anisotropy within the star.
To model a compact star effectively, featuring a substan-
tially anisotropic matter distribution, a relativistic approach
is required.
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Fig. 6 Variation of transverse pressure for b = 0.03, C = 0.5 and
C2 = 0.1

Fig. 7 Anisotropy force for b = 0.03, C = 0.5 and C2 = 0.1

Fig. 8 The density profile ρ for b = 0.03

A spherically symmetric fluid distribution is envisioned
for the anisotropic star. The fluid’s overall pressure is sepa-
rated into two independent components here: radial pressure
and transverse pressure. The difference between the two mea-
sures the surface tension of the star in relation to its core
stiffness. Here, we have presented a novel analytical solu-

Fig. 9 The three different forces and sum of forces for b = 0.03,
C = 0.5 and C2 = 0.1

tions characterising anisotropic stars that admit conformal
motion. These are derived by using energy density.

These concise and well-defined solutions provide a valu-
able resource for developing into the physical dynamics of
compact anisotropic celestial bodies. Investigating the behav-
iors of key physical attributes such as energy density, force
parameter, the equilibrium of the stellar configuration of the
star is crucial for attaining a stable solution and deeper com-
prehension. The behavior of the model’s parameters is shown
in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9.

• The interior region of five-dimensional spacetime satis-
fies the energy conditions shown in Fig. 1.

• The plots in Figs. 2 and 3 depict conformal factor and
metric potential variations.

• If pt > pr , or � > 0, the anisotropy will be directed
outward; otherwise, it will be directed inward when pt <

pr , or � < 0. The � > 0 implies a repulsive anisotropic
force, whereas the curve in Figs. 4, 5 and 6 shows that
� < 0, i.e., pt < pr and anisotropic force, are attractive
in nature.

• The force caused by the star’s anisotropic nature is rep-
resented as �

r . If �
r > 0, i.e., pt > pr , this force will be

repulsive; otherwise, it will be attractive. Figure 7 indi-
cates that the force parameter’s behavior is attractive in
nature.

• The energy density has a positive characteristic as pre-
sented in Fig. 8 of the energy density depicts a stable
configuration.

• The three forces Fg , Fh , Fa , which contributes towards
stability of system from TOV equation and their sum Fg+
Fh+Fa profiles for our chosen source are demonstrated in
Fig. 9. Since the sum of pressure anisotropy, gravitational
forces, and hydrostatic forces is zero, so system is in the
state of equilibrium and TOV is satisfied.
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On the basis of above discussion and the results presented
here, leads us towards possible existence of compact stars
in higher dimensions. With the incorporation of a specific
density profile for higher-dimensional spacetime, the behav-
ior of model parameters such as metric potential, conformal
factor, pressure, anisotropy, and energy conditions is investi-
gated. All of these parameters are well-behaved for the solu-
tion of higher dimensions. The chosen energy density dis-
tribution clearly demonstrates the presence of CO in higher
dimensions. We can also employ alternative energy density
profiles for the higher dimensions of spherically symmetric
spacetime to investigate stellar structure.
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