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Abstract We investigate the application of an equation of
state that incorporates corrections derived from the Sny-
der model (and the Generalized Uncertainty Principle) to
describe the behaviour of matter in a low-mass star. Remark-
ably, the resulting equations exhibit striking similarities to
those arising from modified Einstein gravity theories. By
modeling matter with realistic considerations, we are able to
more effectively constrain the theory parameters, surpassing
the limitations of existing astrophysical bounds. The bound
we obtain is β0 ≤ 4.5 × 1047. We underline the significance
of realistic matter modeling in order to enhance our under-
standing of effects arising in quantum gravity phenomenol-
ogy and implications of quantum gravitational corrections in
astrophysical systems.

1 Introduction

Quantum gravity research and the search for its observable
effects have been drawing ever increasing interest. To recon-
cile the principles of quantum mechanics and general rela-
tivity we must challenge the foundational concepts of clas-
sical space-time and continuous symmetries. Quantum grav-
ity suggests that, at the Planck scale, the known structure
of space-time should be modified, at the same time affect-
ing the quantum-mechanical phase-space. The first example
of deformed (non-commutative) coordinate space as a back-
ground for the unification of gravity and quantum field theory
was introduced in [1,2]. Such feature also appeared in String
Theory, with a constant background field, where coordinates
on the space-time manifolds at the end of strings (D-branes)
do not commute [3]. Additionally, the minimal length or argu-
ments that the space-time can no longer be continuous appear
in various quantum gravity approaches [4–8]. Such modifi-
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cations of space-time should have implications on physical
phenomena such as gravitational and cosmological effects.
This way we can try to model the quantum gravitational cor-
rections in an effective description without full knowledge
of quantum gravity theory itself. In the non-commutative
(NC) geometry approach, it is assumed that the quantiza-
tion process of general relativity, must include the quantiza-
tion of space-time, and the space-time coordinates become
non-commutative. This, in turn, affects the Heisenberg uncer-
tainty relation, through the modifications of the phase space.
Physical effects, relying on such modified uncertainty rela-
tion, can often be expressed in the form of quantum grav-
itational corrections to classical solutions and may provide
physical predictions, guiding us in the choice of the correct
quantum gravity model, when compared against measure-
ments. It should be noted that various approaches to quan-
tum gravity may introduce such quantum gravitational cor-
rections, resulting in an appearance of high curvature terms
in gravitational Lagrangians [9]. Consequently leading to the
modified Einstein equations, which we will refer to as “mod-
ified Einstein gravity” in this text.

The introduction of the generalized Heisenberg uncer-
tainty principle (GUP) [10–13] attracted a lot of attention
due to its potential for measurable outcomes, see e.g. [14–
23]. GUPs have been quite fruitful in investigating measur-
able effects of quantum gravitational nature, irrespective of
the specific model of NC space-time. For instance, extensive
research utilizing the GUP approach has provided bounds
on the minimal length, although these bounds often deviate

from the expected order of the Planck length (LP ∼
√

h̄G
c3 ).

Nonetheless, these investigations have yielded many insights
into the subject [24–32], see also [33] for a recent review and
more references on the topic.

NC space-times can be considered as a natural frame-
work for GUP theories since they lead to deformations of
the Heisenberg uncertainty principle leading to its general-
izations. However the minimal length may not necessarily
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appear if one bases only on the modifications of the phase
space, see e.g. [31,34–36].

One of the quantum space-time models, which may be
associated with GUP framework is the Snyder space [37]. It
was proposed already in 1947 and is known as the first exam-
ple of Lorentz-covariant NC space-time, admitting a funda-
mental length scale. The non-commutativity of the Snyder
space is encoded in the relation between the spacial coordi-
nates x̂i as [x̂i , x̂ j ] = i h̄βMi j , where indices i, j = 1, 2, 3.1

Parameter β is the deformation parameter, of dimension[
L2

h̄2

]
= [p−2], that sets the scale of non-commutativity (as

L length is usually associated with the Planck length L p).
The phase space associated with the Snyder model, involves
modified commutation relations between coordinates and
momenta and, up to the linear order in the non-commutativity
parameter β, can be expressed as follows [38]:

[
pi , x̂ j

] = −i h̄δi j

(
1 + β

(
χ − 1

2

)
pk pk

)

−2i h̄χβpi p j + O(β2). (1)

This form of deformed phase space bases on the ’general
realization’ of the Snyder model, proposed in [39] and allows
us to explore if any measurable effects favour a particular
realization (the choice of χ ).2 The original Snyder realization
[37] is recovered for χ = 1/2. For χ = 0, one obtains the
type of realization which can be linked to [10,11]. These
two choices of realizations of phase spaces have been widely
investigated in the context of GUP theories [10–12,14–17,
19–21,43].

In this paper, we are interested in using the most general
one-parameter family of deformed phase spaces (1) corre-
sponding to the Snyder model and investigate the possible
measurable effects associated with this type of noncommu-
tativity and their dependence on the choice of realization.

The form of the generalized phase-space (1) implies one
of the possible definitions of of the inner product3 in the

1 Here we consider the non-relativistic Euclidean case to be in accor-
dance with GUP approach However in the context of NC geometry
the full Snyder model describes quantum space-time and is defined by
[x̂μ, x̂ν ] = i h̄βMμν, μ, ν = 0, 1, 2, 3 where x̂μ are NC space-time
coordinates and Mμν are the generators of the Lorentz algebra which
is the symmetry of this NC space-time.
2 We point out that there is a distinction between the (Heisenberg) real-
ization and the Heisenberg representation and the Hilbert space repre-
sentation, see e.g [40] for details. One can show that different realiza-
tions of NC space-times, as well as different bases of quantum groups
of symmetries, may lead to different physical effects, see e.g. [41,42].
3 Different momentum space representations of x̂i and p j will lead to
different inner products, here we have chosen the following: x̂iφ(p) =
i h̄

((
1 + β

(
χ − 1

2

)
pk pk

)
∂

∂pi
+ 2χβpi p j

∂
∂p j

+ γ pi
)

φ(p) and

piφ(p) = piφ(p).

momentum space [18] (cf. [12,13]):

〈ψ, φ〉 =
∫

d3 p

(1 + ωp2)α
ψ∗(p)φ(p) (2)

where α = (5χ− 1
2 )

(3χ− 1
2 )

is dimensionless and ω = β(3χ − 1
2 ). It is

worth to point out that the values ofα andω are closely related
with the choice of the realization parameter χ . Since the
deformed Heisenberg algebra inducing a measure in momen-
tum space depends on the representation, hence we must
consider the full phase space measure via the Liouville theo-
rem instead (to find the Liouville measure one computes the
determinant of the symplectic form of the phase space), see
Eq. (9) in [13]. For D = 3 the phase space volume element,
corresponding to (1), considered up to linear terms in β, will
be modified as follows:

d3xd3 p

1 + Ωp2 , where Ω = β

(
4χ − 3

2

)
(3)

(for details see the Appendix and [13]). Due to the modi-
fication of the phase space, the thermodynamical relations
and hence physical effects are changed with respect to the
standard case. In what follows, we will be interested in the
Fermi gas equation of state which is commonly used in stel-
lar and substellar physics. It takes various forms, depending
on physics we want to incorporate into it; therefore, we con-
sider the polytropic equations of state [44] in the temperature
T → 0 limit. One can also introduce the finite temperature
corrections [45], allowing to study a more realistic models
of relativistic and non-relativistic stars [46,47], as well as
substellar objects [48,49].

Fermi equation of state resulting from phase space defor-
mations and the measure (3) associated with the Snyder NC
space can be obtained by considering the partition function
in the grand-canonical ensemble, which in the spherical sym-
metric case can be written as [18]:

lnZ = V

(2π h̄)3

g

a

∫
ln

[
1 + aze−E/kBT

] 4πp2dp

(1 + Ωp2)
(4)

where T is the temperature, kB Boltzmann constant, z =
eμ/kBT , while μ is the chemical potential and a = 1 (a =
−1) if the particles are fermions (bosons) and g is a spin of a
particle, V := ∫

d3x is the volume of the cell (of the config-
uration space). By having the appropriate partition function
we can find the thermodynamic variables such as pressure,
number of particles, and internal energy by following the
usual relations. For example, the pressure P = kBT

∂
∂V lnZ ,

with a = 1 for fermions and g = 2 for electrons, becomes
[18]:

P = 1

π2h̄3

∫
1

3
p3

2F1

(
3

2
, 1,

5

2
,−p2Ω

)
f (E)

c2 p

E
dp,

(5)
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where f (E) is the Fermi–Dirac distribution f (E) =(
1 + ze−E/kBT

)−1
and 2F1 is the hypergeometric function.

From the properties of the hypergeometric function we can
expand it for the case when |Ωp2| << 1, and take into
account only the first two terms (as we consider the NC defor-
mation only up to linear terms in β):4

P = 1

π2h̄3

∫
p3

3

⎛
⎜⎝

∞∑
k=0

( 3
2

)
k (−Ωp2)k(

5
2

)
k
k!

⎞
⎟⎠ f (E)

c2 p

E
dp.

(6)

Using the expression for energy of the non-relativistic elec-

trons E ≈ p2

2me
and considering the case when T → 0, the

integration of (5) is taken up to the Fermi energy EF resulting
in [18]:

PT→0 = 2

5
vE

5
2
F

(
1 − 3Ω

7
(2me)EF

)
, (7)

where we have defined v = (2me)
2
3

3π2h̄3 . We note that the pressure
PT→0 becomes smaller when Ω > 0 while it increases for
Ω < 0, depending on the choice of realization χ parametriz-
ing the Snyder model.

We can further rewrite (7) in a more familiar form. To
do that, let us use the definition of the measure of electron
degeneracy, where u = (3π2h̄3NA)

2
3 /2me:

ψ = kBT

EF
= 2mekBT(

3π2h̄3
)2/3

[
μe

ρNA

]2/3

≡ u−1kBT

[
μe

ρ

]2/3

(8)

and rewrite (7) as:

PT→0 = 2

5
vu

5
2

(
ρ

μe

) 5
3
[

1 − 3u

7
Ω(2me)

(
ρ

μe

) 2
3
]

. (9)

Therefore, the modification introduced by NC deformation
has a polytropic form.

2 Lane–Emden equation in Snyder model

As briefly recalled in the previous section, our previous work
[18] demonstrated that Fermi equation of state in the limit
T → 0 becomes the polytropic one (9) with the additional
term arising from the non-commutativity of space-time and
deformation of the phase-space and is related with GUP. This
term is parametrized by χ (now included in Ω , instead of αω

considered in [18]) and is governed by the choice of the real-
ization of the Snyder model. The thinking behind NC geom-
etry approach is that non-commutativity should arise due to

4 From the physical point of view, we are interested in temperatures in
stellar objects which are below the Planck temperature.

quantum gravity effects and in investigating phenomenolog-
ical effects of these we can study quantum gravitational cor-
rections to classical solutions. This is in accordance with
GUP approach, where the existence of a minimum measur-
able length and the related generalized uncertainty principle,
influence all quantum Hamiltonians, hence predicting quan-
tum gravity corrections to various quantum phenomena [27].

In the following, we want to investigate the NC effects
(appearing in the Fermi EoS) in a semi-classical regime
describing a spherical symmetric ball made of Fermi gas.
Hence we consider the usual Poisson equation for the gravi-
tational potential φ

∇2φ = 4πGρ (10)

where G is the Newton constant and ρ is an energy den-
sity, assuming ρ = ρ(r) since we investigate the spherical-
symmetric case. Because of that, all quantities appearing fur-
ther in the paper will be only r -coordinate dependent. Addi-
tionally, the usual non-relativistic hydrostatic equilibrium is
given by:

dφ

dr
= −ρ−1 dP

dr
, (11)

while mass is

M =
∫

4π ′r̃2ρ(r̃)dr̃ . (12)

We will consider these classical equations in the non-
relativistic limit in this form, that is, we will assume that the
corrections arising from the (unknown) quantum gravity the-
ory are higher than the second order in velocities, therefore
they do not appear in the Poisson equation (10). However,
we should keep in mind that the effective relativistic theories
(modified Einstein gravity proposals) coming from quantum
gravity can include terms which survive in the non-relativistic
limit [50,51]. Therefore, the only modification (interpreted
as quantum-gravitational correction) appears in the pressure
(9), which is then used in the non-relativistic hydrostatic equi-
librium equation (11). We rewrite our equation of state (9) in
a simplified notation, as:

PT→0 = K1ρ
5
3

[
1 − ερ

2
3

]
(13)

where K1 = 2
5vu

5
2 μ

− 5
3

e and the parameter

ε = 3

7

(
3π2h̄3NA

μe

) 2
3

Ω = 4.47878 × 10−52Ω.

Now let us introduce the Lane–Emden formalism [44], that
is, the Lane–Emden dimensionless quantities:

r = rcξ, ρ = ρc[θ(ξ)]n, P = pc[θ(ξ)]n+1, (14)

where ρc and pc are the star’s central density and pressure,
respectively, and ξ is a dimensionless radial coordinate while
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θ can be treated as dimensionless temperature. The parameter
rc is defined via the expression

r2
c = 2(n + 1)pc

4πGρ2
c

= 2(n + 1)Kρ
1/n−1
c

4πG
. (15)

This allows us to rewrite the Poisson equation (10) in the
following way. With the use of (11) and the modified (13)
we get the modified Lane–Emden equation with n = 3/2

d

dξ

{
ξ2 dθ

dξ
[1 − εθ ]

}
= −ξ2θ

3
2 (16)

where ε = 7
5ερ

2
3
c = 6.2703 × 10−52ρ

2
3
c Ω which includes

corrections arising from the Snyder model. The boundary
conditions are given by θ(0) = 1 and θ ′(0) = 0.

Note that the above equation can be considered indepen-
dently as a modified Lane–Emden equation, arising from
some model of modified Einstein gravity (for more details,
see review [50,52]). Indeed, (16) corresponds to a modified
Poisson equation

∇2φ = 4πGρ − ε̃∇2ρ
4
3 . (17)

On the other hand, if we considerunmodifiedpolytropic equa-

tion of state P = K1ρ
5
3 and use (11) and apply them to

(17) we will obtain (16). It means (9) is taken in the limit
of β → 0 (of the usual commutative space-time) with the
modified Poisson equation. The parameter ε̃ appearing in
the modified Poisson equation is re-scaled as ε̃ = 7

4 K1ε.
Therefore, if one day we observe any such an effect in

widely understood stellar astrophysics, we should remember
that the effects of NC space-time as an approach to quantum
gravity may be indistinguishable from effects of modified
Einstein gravity approach. On the other hand, one should
expect that a future quantum gravity theory will reduce to
a modified Einstein gravity, such that any modification with
respect to Newtonian physics appearing in, for instance, stel-
lar equations, should not surprise us when we deal with
approaches to quantum gravity models.

Regardless of the origin, NC geometry or modified Ein-
stein gravity, the modified Lane–Emden equation (16) can be
used to rewrite the mass function, radius, central density ρc,
and the temperature profile T in terms of its solutions (note
that we consider the case when n = 3/2):

M = 4πρcr
3
cω, (18)

R = γ

(
K

G

)
M

1−n
3−n (19)

ρc = δ

(
3M

4πR3

)
(20)

T = Kμ

NAkB
ρ

2/3
c θ (21)

Fig. 1 Solutions of the Lane–Emden equation with n = 3/2 in Snyder
model for a few values of the parameter ε

where kB is Boltzmann’s constant, NA the Avogadro number
and μ the mean molecular weight. The central temperature
is defined as Tc = Kμ

NAkB
ρ

2/3
c . The constants Ω , γ , and δ are

defined with respect to the solutions of the generalized Lane–
Emden equation (16), taken at the star’s surface ξR (given by
θ(ξR) = 0, where ξR is a dimensionless star’s radius)

ω =
[
−ξ2 dθ

dξ

]

ξ=ξR

, (22)

γ = (4π)
1

n−3 (n + 1)
n

3−n ω
n−1
3−n
n ξR, (23)

δ = = − ξR

3 dθ
dξ

∣∣∣
ξ=ξR

. (24)

Generally, analytic solutions to the modified Lane–Emden
equation are difficult to get, or impossible (even in Newtonian
case there is no exact solution for n = 3/2), and hence one
can solve this equation numerically. However, we can usually
find an approximate solution at the center of the star θ(ξ ≈
0), which in our case has the following form:

θ(ξ ≈ 0) = 1 − ξ2

6(1 − ε)
∼ exp

(
− ξ2

6(1 − ε)

)
. (25)

Note that it depends on the parameter ε, and it is singular for
ε = 1 although the general numerical solution (see Fig. 1) is
not for this particular value.

Nevertheless, with the numerical solutions of (16) we
can compare the physical properties of a fully convective
star from this toy-model. One can get them by applying the
solutions to (22–24) and utilizing the formulas (18–21). The
results are given in the Table 1.

3 Light elements burning in low-mass stars

Let us briefly recall the early phase of the low-mass stars’ evo-
lution. During the pre-main sequence stage, a proto-star still
contracts due to the gravitational attraction. Such an object
is luminous but cold, and it follows a Hayashi track on the
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Table 1 Stellar mass, radius, central density and central temperature
ratios with respect to the Newtonian values (MN , RN , and so on) for a
few values of the non-commutative parameter ε

ε M/MN R/RN ρc/ρ
N
c Tc/T N

c

−1 1.95 1.39 0.71 0.79

−0.5 0.99 1.08 1.16 1.11

−0.1 1.08 1.04 0.95 0.97

0 (Newt) 1 1 1 1

0.1 0.92 0.96 1.06 1.04

0.5 0.64 0.84 1.46 1.29

1 0.4 0.77 2.86 2.01

H–R diagram [53]. It is characterized by the almost constant
effective temperature. Its further evolution depends on the
particular conditions occurring in its core, which can be also
rewritten in terms of the stellar mass. That is, the pre-main
sequence star eventually departs from the Hayashi track due
to certain processes. It can happen on the onset of the radia-
tive core development as the luminosity and/or opacity grows
– then the star follows the so-called Henyey track. This evo-
lutionary phase is specific for the stars with masses bigger
than about 0.6M, although it can also depend on a given
theory of gravity [54–56]. Since modelling of such objects
is much more complicated that stars with lower masses, in
what follows, we will focus on objects with masses lower
than 0.6M.

Independently of the further evolution, the pre-main
sequence stars can already burn lithium when they still fol-
low the Hayashi tracks. It is so because the core temperature
needed to ignite lithium is lower than the one for the hydrogen
burning. However, when the central temperature and pressure
reach a level where hydrogen ignition takes place and the pro-
cess is stable,5 the star enters the main sequence phase and
it is considered as a true star. In what follows, we will focus
on such objects, that is, we will calculate the minimal mass
for hydrogen burning in Snyder model.

On the other hand, if the object’s interior is too cold
for hydrogen ignition to begin, the object still contracts till
the balance between gravitational contraction and electron
degeneracy pressure is not reached. These objects, known as
brown dwarfs, lack a source of energy production in their
cores and will gradually cool down over time. It is expected
that brown dwarf cooling will be also affected by the non-
commutative corrections in similar manner as in modified
Einstein gravity [57,58].

Having considered the aforementioned properties of the
modified Lane–Emden equation, we are now able to deter-
mine the minimum main sequence mass (MMSM) in Sny-

5 It means that that energy radiated from the photosphere is balanced
by energy produced through hydrogen burning in the core.

der model. This particular mass represents the threshold
mass required for a star to maintain stable thermonuclear
reactions within its core and counterbalance energy dissipa-
tion on its surface. The magnitudes of thermonuclear reac-
tion rates are predominantly governed by temperature and
density, enabling us to estimate the energy generation rate
through the application of power laws [48]

Ė pp = Ėc

(
T

Tc

)s (
ρ

ρc

)u−1

(26)

where the two exponents can be phenomenologically fitted
as s ≈ 6.31 and u ≈ 2.28 at the transition mass of the core
[48], while the function

Ėc = Ė0 T
s
c ρu−1

c ergs g−1s−1 (27)

with Ė0 ≈ 3.4 × 10−9 in suitable units. For more details,
refer to [48]. Therefore, in order to calculate the luminosity
of the hydrogen burning, we need to integrate (26) over the
stellar mass:

L pp =
∫

Ė pp dM = 4πε̇cr
3
c ρc

∫ ξR

0
θ

3
2

(
u+ 2

3 s
)
ξ2dξ.

(28)

To obtain the second equality, we have used the adiabatic core
property that (T/Tc) = (ρ/ρc)

2/3 and we have changed the
integration variables from M to the radial coordinate using
(18), such that we can then applied the Lane–Emden formal-
ism. Since most of the hydrogen is burnt in the stellar core,
we can use the approximation (25) in (28), providing

L pp ≈ 6
√

3π(1 − ε)3

ω3/2(2s + 3u)3/2 ĖcM. (29)

A typical low-mass star consists of X = 75% of hydro-
gen.6 Therefore, the number of barions per electron is μe =(
X + Y

2

)−1 = 1.143. Moreover, in such objects the evolution
of the electron degeneracy η is still important, and although
we will not considered here its evolution and dependence
on the considered model [45,57,58], we should take it into
account in the polytropic constant

K = (3π2)2/3h̄

5mem
5/3
H μ

5/3
e

(
1 + αd

η

)
, (30)

where mH is the proton mass while αd ≡ 5μe/2μ ≈ 4.82,
where μ is the mean molecular weight of ionized hydro-
gen/helium mixtures while η = Ψ −1. The provided value is
for the considered fractions X and Y . Then, using it in (20)
and (21) and applying the results to (27), yields the following
form of the luminosity (29):

6 With Y = 25% of helium, and we will assume that metallicity Z = 0,
however it is very important in a more realistic modelling than in the
one we present here.
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L pp = 1.54 × 107L
δ5.49 (1 − ε)3/2

γ 16.46ω
M11.97−1

η10.15

(αd + η)16.46

(31)

where M−1 = M/(0.1M). This is a partial result of this
section. Moreover, the given description can be only applied
to the interior region of the star up to a photosphere. Roughly
speaking, the photosphere is an outer, luminous layer which
one defends as a radius for which the optical depth is [47]

τ(r) =
∫ ∞

rph
κop ρ dr = 2

3
. (32)

The opacity κop describes the optical properties of matter7

and it was demonstrated to be a crucial quantity in the stellar
modelling. In the further part we will take it as a constant
value in order to able to continue the analytical considerations
although we should be aware that this is one of the most
important parts of our modelling which needs to be improved
in the nearest future.

Moreover, the photosphere lies close to the surface of the
stellar object and its radius, denoted above as rph, is well
approximated by the star’s radius, R. Another safe approx-
imation is that the photospheric temperature can be consid-
ered as the effective one, that is, the one which appears in the
Stefan–Boltzmann equation

L = 4πσ R2T 4
eff . (33)

The parameter σ is the Stefan–Boltzmann constant while
L is the luminosity of a black body with temperature Teff .
Therefore, the luminosity of our low-mass object can be also
described by the above expression.

Let us note that the optical depth, when κop = constant,
can be used to integrate the hydrostatic equilibrium equation
at the photospheric region. Writing it as

p′
ph = −ρg, (34)

where g is the surface gravity defined as

g ≡ GM(r)

r2 ≈ constant, (35)

and applying to (32) will provide that the photospheric pres-
sure is given simply as

pph = 2g

3κop
. (36)

The above expression confirms that the opacity is a crucial
element for the photosphere’s description. In further part, we
will consider the Rosseland mean opacity κop = 10−2cm2/g.
Moreover, we can assume that the photosphere is made of
particles whose behaviour is well described by the ideal gas

7 That is, it says how opaque matter is to the electromagnetic radiation.

properties. Therefore, the pressure (36) can be equalled to

ρphkBTph

μmH
= 2g

3κop
. (37)

On the other hand, one finds the photospheric temperature
by matching the specific entropies of the gas/metallic phases
[48], providing

Tph = 1.8 × 106ρ0.42
ph

η1.545
. (38)

Writing down the surface gravity g defined (35) as

g = G3M5/3

γ 2K 2 (39)

and applying it, together with photospheric temperature (38)
to (37), one can obtain the photospheric density as a function
of mass of a star:

ρph = 2.957 × 10−5 η1.09G2.11M1.17 (μmH )0.70

(γ K )1.41 (kBκop)0.70
. (40)

To get the photospheric temperature as a function of mass,
we can apply the above expression to (38), yielding

Tph = 2.254 × 104 G0.89M0.49 (μmH )0.30

η1.09 (γ K )0.59 (kBκR)0.30
, (41)

allowing now to write the photospheric luminosity (33) also
in terms of the star mass M as

L ph = 0.534L
M1.31−1

η3.99γ 0.37(αd + η)0.37κ1.18−2

(42)

where κ−2 = κR/(10−2cm2g−1).
As mentioned, the star burns hydrogen in a stable way

if the energy radiated from the photosphere is balanced by
energy produced through hydrogen burning in the core. We
can write this condition as L ph = L pp given by (42) and
(31), and solve it with respect to the stellar mass. It provides
the minimum main sequence mass (MMSM):

MMMSM−1 = 0.227
γ 1.51ω0.09(αd + η)1.51

(1 − ε)0.14δ0.51η1.33κ0.11−2

, (43)

Note that (αd + η)1.51/η1.33 possesses a unique minimum
value for a typical electron degeneracy η = 34.7 for the con-
sidered class of astrophysical bodies (we take the Rossland
opacity, that is, κ−2 = 1). Therefore, if the mass is too low,
the above equation has no solution; in other words, MMMSM−1
is the smallest mass for which (43) is satisfied. For New-
tonian gravity, the MMSM is MNewt = 0.084M. Clearly,
altering gravitational or microphysical interactions, we will
deal with a different set of solutions. We depict them on the
Fig. 2; that is, MMSM as a function of the parameter ε.

Taking into account that the lowest observed M dwarf
star is G1 866C [59] with mass M = 0.0930 ± 0.0008M,
which is obtained for ε ≈ −0.1, while the values smaller
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Fig. 2 The minimum main sequence mass (MMSM) as a function of
the parameter ε which carries the information about the Snyder defor-
mation parameters

than that are excluded as they provided higher masses. There-

fore, ε ≥ −0.1, which corresponds to (since ε = 7
5ερ

2
3
c =

6.2703ρ
2
3
c Ω × 10−52)

Ω ≥ −0.016 × 1048 (44)

for the typical central energy density ρc ∼ 106 kg/m3 in
these objects. In D = 3, we therefore have:

Ω = β

(
4χ − 3

2

)
≥ −1.6 × 1046 (45)

and this gives two possibilities depending on realization
choice:

– for
(
4χ − 3

2

)
> 0, implying χ > 3

8 , we get:

β ≥ − 1.6

(4χ − 3
2 )

× 1046,

which is obvious as we assumed β > 0,8

– for (4χ − 3
2 ) < 0, implying χ < 3

8 , we get:

β ≤ 1.6

( 3
2 − 4χ)

× 1046.

For example, choosing the value of χ = 0 (which was
considered in e.g. [10,11] and studied in many GUP
related effects) we get:

β ≤ 1.067 × 1046

8 It is worth to point out that one can consider models called anti-Snyder,
see e.g. [60] with negative β. Such possibility of negative parameter in
GUP theories was also investigated, see e.g. [61,62].

or, taking the dimensionless parameter, our bound takes

β0 ≤ 4.5 × 1047, (46)

where we have used a more common notation, that is,
β0 = βM2

Pc
2. It seems that our investigation provides

a better upper bound based on astrophysical effects than
obtained in literature so far, up to our knowledge, see e.g.
[33]. The best astrophysical constraint was obtained by
examining the perihelion precession in the Solar System
[63], that is, β ≤ 1069. However, it is worth to point
out that better bounds were obtained based on the micro-
scopic effects (for review, see [33]), for example in [64] it
was shown that β < 1016. Although our stellar modelling
is very simple, it should be underlined that it is crucial
to take into account more realistic matter description in
stellar objects to obtain better bounds. Note that consid-
ering values of χ < 0 can lower the bound; for example
choosing χ = −20 we improve the bound by 2 orders of
magnitude. Let us recall that χ parametrizes the choice
of the realization for the Snyder model, appearing in the
phase-space relation (1) and gives us certain freedom to
assign a numerical value.

4 Conclusions

The aim of this paper was to investigate how quantum gravi-
tational corrections affect stellar interiors of low-mass stars.
Considering NC space-time, with an example of the Snyder
model, allowed us to check how various parametrizations
of the deformed phase space, stemming from the choice of
representation of the Snyder space, affect physical solutions.
We have relied on the Fermi equation of state with the non-
commutative (quantum-gravitational) corrections which we
previously derived in [18], with the change of the measure to
(3). Applying such modified polytrope to the Poisson equa-
tion, together with the hydrostatric equilibrium one, allowed
us to show equivalence to a modified Lane–Emden equa-
tion which is used to determine properties of convective
stars. Considering the toy-model assumptions, one obtains
that generally negative values of the parameter ε make the
star bigger and more massive, however with lower central
densities and temperatures, making the stellar material more
incompressible, as discussed in our previous work [18]. On
the other hand, positive values enhance the compressibility
of the stellar material, at the same time increasing the central
parameters with decrease in stellar radius and mass. We have
also pointed out that such modifications of the Lane–Emden
equation occur also, and are indistinguishable from theoret-
ical point of view, in modified Einstein gravity. Therefore,
it can be treated as a Lane–Emden equation resulting from
some quantum gravitational proposal which is related to the
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modified Poisson equation of the following form

∇2φ = 4πGρ − ε̃∇2ρ
4
3 . (47)

This study shows that, for example NC geometry or modi-
fied Einstein gravity, both providing quantum gravitational
corrections to classical solutions, can serve as an effective
description of the theory without full knowledge of quan-
tum gravity itself and can guide us in a search of observable
and measurable effects related to quantum gravity whatever
it may be.

Nevertheless, Lane–Emden formalism is also useful when
one wants to incorporate more realistic physics and to obtain
predictions of a particular processes from a given model. One
of those, which we have studied in the present manuscript, is
the energy generation rate resulting from the thermonuclear
reactions which happen in the stellar cores. Here, we have
focused on the hydrogen ignition which is a crucial phenom-
ena in the stellar evolution – when this light element starts
burning, the so-far contracting object becomes “a true” star,
that is, it enters the main sequence phase. At the same time,
the contraction stops as the gravitational pull us balanced by
the pressure which is a result of the energy transport from
the stellar core to its surface.

The mentioned process depends on any modifications
introduced to the equation of state or/and quantum gravity. It
is so because the energy generation rates strongly depend on
core’s properties which are sensitive to the quantum and grav-
itational interactions. Because of that fact, we deal with an
opportunity to constrain the parameters of the Snyder model
with astrophysical observations. As shown, the NC correc-
tions also alter the so-called Minimum Main Sequence Mass
which is a critical mass which a star needs to have in order
to be considered as a true star (a star burning hydrogen in a
stable way). The lowest mass of a true star is known to be
M = 0.0930±0.0008M, so any value of the minimal length
parameter, arising from the Snyder model, making the mini-
mum mass bigger than this, should be ruled out. This allows
to put the bound

β0 ≤ 4.5 × 1047

for Snyder model realizations with χ < 0.375, in the case of
a typical stellar object studied in this paper. Definitively, our
bound is better than the ones obtained in astrophysical frame-
works studied in other papers (see the Table 2 in [33]), but
poor when compared to the tabletop experiments not related
to gravity (Table 1 therein). However, our bound could be
still improved when more sophisticated description of mat-
ter inside a stellar object would be taken into account. Note
that our modelling should still be treated as a toy-model. We
have simplified a lot the photosphere description (ideal gas,
no phase transition between the interior and photospheric
regions, no ionization processes, poor model for the opac-

ity and no modification to the gravitational counterpart of
photospheric properties) as well as the interior region – the
main improvement would be to take into account the time-
dependence of the electron degeneracy which was shown to
have a non-trivial effect on the MMSM and evolution of this
class of objects [45,57,58]. Secondly, we have used only one
object to constrain the model while the proper statistical and
uncertainties analysis should be also carried out, providing
the confidence level. Additionally, in our approach, consider-
ing the most general realization of the Snyder model and the
deformed phase-space associated with it, leading to the GUP,
we have a freedom provided by the choice of representations
of Snyder model (parameter χ ) and this allows us to obtain
even better bounds.

Nevertheless, the most important result of this paper is
demonstrating that taking into account more realistic descrip-
tion of matter than usually undertaken by the GUP commu-
nity in regards to the astrophysical objects, allowed us to
obtain much more stringent astrophysical bound.
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Appendix: Details on the measure

To obtain the deformed phase space measure (3) based on the
Liouville theorem we have relied on the results obtained in
[13] with the following identification: β → β

(
χ − 1

2

)
and

β ′ → 2χβ. Therefore the deformation of the phase space
corresponding to (1) and using Eq. (9) from [13] in D = 3
gives:

d3xd3 p
(
1 + β

(
χ − 1

2

)
p2

)2 (
1 + β

(
3χ − 1

2

)
p2

)σ
, (48)
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where σ = 4χ−1
6χ−1 . Since we are interested in the results up to

the first order in the non-commutativity parameter β, as the
phase space (1) is described to that order only, we note that
the above expression reduces to:

d3xd3 p
[
1 − Ωp2 + O(p4)

]
(49)

where the Ω coefficient appearing in this expansion, linear
in β, is:

Ω = 2β

(
χ − 1

2

)
+ β

4χ − 1

6χ − 1

(
3χ − 1

2

)

= β

(
4χ − 3

2

)
. (50)

On the other hand, up to the linear order in β, we have the
following equality:

1

1 + Ωp2 = 1 − Ωp2 + O(p4) (51)

Therefore, (48) can be simply rewritten as 1
1+Ωp2 , if consid-

ered up to linear order in β.
Now we recall the next steps [18], the partition function

in the grand-canonical ensemble is given as

lnZ =
∑
i

ln
[
1 + aze−Ei /kBT

]
(52)

where T is the temperature, kB Boltzmann constant, z =
eμ/kBT while μ is the chemical potential and a = 1 (a = −1)
if the particles are fermions (bosons).

If we consider a large volume, the summation in the above
partition function (52) should be replaced by

∑
i

→ 1

(2π h̄)3

∫
d3xd3 p

(1 + Ωp2)
(53)

and in the spherical symmetric case we obtain

lnZ = 4πV

(2π h̄)3

g

a

∫
ln

[
1 + aze−E/kBT

] p2dp

1 + Ωp2 (54)

where we took V = ∫
d3x . Considering pressure given by

P = kBT
∂

∂V
lnZ (55)

and integrating by parts9 the above expression we obtain a
special case of the hypergeometric function (see [65] and

9 We take
∫
u(p)v′(p)dp = uv − ∫

u′(p)v(p) with u(E(p)) =
ln(h(E(p))), where h(E(p)) = 1 + aze−E/kBT and E =√
p2c2 + m2c4, and v′(p) = p2

1+Ωp2 . We calculate u′ = h′(E)
h(E)

d
dp E(p)

and v = ∫ p2

1+Ωp2 dp = 1
3 p

3
2F1

(
3
2 , 1, 5

2 ,−p2Ω
)

= p
Ω

−
ArcTan[p√Ω

Ω3/2 .

take α = 1, compare it also to [20]):

P = 1

π2h̄3

∫
1

3
p3

2F1

(
3

2
, 1,

5

2
,−p2Ω

)
f (E)

c2 p

E
dp

= 1

π2h̄3

∫ (
p

Ω
− ArcTan[p√Ω]

Ω
3
2

)
f (E)

c2 p

E
dp.

(56)

For the case when |Ωp2| << 1 for the hypergeometric
function,10 we can write the pressure as

P = 1

π2h̄3

∫
p3

3

⎛
⎜⎝

∞∑
k=0

( 3
2

)
k (−Ωp2)k(

5
2

)
k
k!

⎞
⎟⎠ f (E)

c2 p

E
dp.

(57)

Taking into account the terms up to the first order in β (i.e.
Ω), as we consider the NC deformation only up to linear
terms in β cf. (1), then the first two terms of the series we
have

P = 1

π2h̄3

∫ (
p3

3
− Ωp5

5

)
f (E)

c2 p

E
dp. (58)
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