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Abstract This paper investigates rare flavor-changing
decays of the top quark in the Bestest Little Higgs Model
(BLHM). As a result, flavor-changing phenomena are intro-
duced in the BLHM for the first time. In this study, we incor-
porate new flavor mixing terms between the light quarks of
the Standard Model (SM) and the fermions and bosons of
the BLHM. We compute the one-loop contributions from the
heavy quark (B) and the heavy bosons (W ′±, φ±, η±, H±).
Our findings demonstrate that the branching ratios of decays
t → qV and t → qh0, where q = u, c and V = Z , γ, g,
can reach larger branching ratios compared to their coun-
terparts in the SM, except for the gluon case. Moreover,
we observe that the processes with the highest sensitivity
are Br(t → cZ) ∼ 10−5, Br(t → cγ ) ∼ 10−6 and
Br(t → ch0) ∼ 10−8 within the appropriate parameter
space.

1 Introduction

As the heaviest elementary particle in nature, the top quark
provides the best opportunity to discover evidence of new
physics Beyond the Standard Model (BSM). On the other
hand, Electroweak Symmetry Breaking (EWSB) is a mech-
anism adaptable to various extensions of the SM that yields
fields whose properties characterize the physics of these
models. These components represent the primary theoretical
foundations in different SM extensions for proposing new
physics [1–8]. The BLHM [9,10] is a type I Two Higgs Dou-
blets Model (2HDM) that offers an exciting solution to the
hierarchy problem without fine-tuning and is formulated to
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solve some issues present in the great majority of Little Higgs
models, such as the problem of dangerous singlets in the
scalar sector, a pathology where collective symmetry break-
ing does not suppress quadratically divergent corrections to
the Higgs mass; and strong constraints from electroweak
precision data. Instead, the BLHM generates a successful
quartic Higgs coupling where the real singlet field σ is no
longer a dangerous singlet, meaning that it no longer devel-
ops a divergent tadpole from radiative corrections [9,11].
On the other hand, it avoids the tight constraints from pre-
cision measurements through the implementation of a cus-
todial SU (2) symmetry [12] that protects the model from
developing large deviations to electroweak precision mea-
surements and dissociates the masses of the new quarks and
heavy gauge bosons. The latter is achieved by incorporat-
ing two separate symmetry-breaking scales, f and F with
F > f . This leads to top quark partners with masses pro-
portional only to the f scale, while the new heavy gauge
bosons develop large masses proportional to the combination
of f and F , which reduces their contribution to the preci-
sion electroweak observables. Some of the early Little Higgs
type models that precede the BLHM are the Littlest Higgs
Model [1], the Little Higgs Model [13], the Simplest Little
Higgs Model [14], and the Littlest Higgs Model with T-parity
[15]. These models were proposed between 2002 and 2005,
while the BLHM [9,10] was introduced by Schmaltz in 2010.
The recent creation of the BLHM makes it an underexplored
and under-recognized model. Additionally, not all Feynman
rules for the interaction vertices in the BLHM, which are
an essential element to study any process in particle physics,
are provided in the literature [16–19]. These particularities of
the BLHM and its quite promising features mentioned above
motivate our research in such a scenario. On the other hand,
it is worth mentioning that in the experimental aspect, it is
more difficult to produce the heavy particles predicted in the
BLHM than the light particles of the Simplest Little Higgs
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Model or Littlest Higgs Model with T-parity. At colliders,
the probability of generating heavier particles is tiny because
few collisions are sufficiently energetic to produce new heavy
particles. This is another reason the BLHM is less frequently
considered than other more popular Little Higgs models. Cur-
rently, research on the BLHM has been intensified by calcu-
lating its effects on some observables. The reported results
have yielded promising predictions, challenging experimen-
tal data in the chromomagnetic dipole moment of the top
quark (μ̂t ∼ −10−4) [16], the sensitivity of the weak dipole
moments of the top quark (aWt ∼ 10−4) [17], the electromag-
netic and weak dipole moments of the τ lepton (aτ ∼ 10−10,
aWτ ∼ 10−9) [18], and the electromagnetic and weak dipole
moments of the top quark (at ∼ 10−4, aWt ∼ 10−5) [19].

Regarding Flavor Changing Neutral Currents (FCNC),
there have been studies primarily in the Little Higgs Model
with T-parity (LHT). In Ref. [20], they calculate some observ-
ables involving particle-antiparticle mixing in the LHT for
the first time. In [21], the first study on rare decays of the
top quark is presented, yielding significant results such as
Br(t → cg) ∼ 10−2, Br(t → cZ) ∼ 10−5, and Br(t →
cγ ) ∼ 10−7. Thorough examinations of the decays of K ,
B, and D mesons are conducted in [22–24], utilizing vari-
ous parametrizations of the Cabibbo–Kobayashi–Maskawa
(CKM) [25] extended matrices within the LHT.

In the article [26], rare decays of the Higgs boson and the
Z boson are investigated, yielding interesting results such as
Br(Z → bs̄) ∼ 10−7. In Ref. [27], the authors calculate the
branching ratios of the decays t → cX and t → cX X , where
(X = Z , γ, g, h), with results of Br(t → cX) ∼ 10−2 −
10−5 and Br(t → cX X) ∼ 10−3 − 10−8. These results
represent significant improvements over their counterparts
in the SM, often by several orders of magnitude.

Our research focuses on the rare decays t → qV and
t → qh0, where q = u, c and V = g, γ, Z , within the
theoretical framework of BLHM. We calculate their respec-
tive branching ratios to quantify the contributions of heavy
quarks and heavy bosons in flavor-violating processes within
a model that represents an improvement over the previous
LHM. Additionally, our study allows us to constrain new
parameters in BLHM, such as angles and phases of proposed
CKM-like matrices, and explore their potential applications
in other flavor and CP-violation studies.

The article is structured as follows: Sect. 2 introduces the
BLHM, covering both the gauge boson and fermionic sec-
tors. Section 3 considers the flavor mixing in the BLHM.
Section 4 is dedicated to constructing the parameter space
utilized in our study. Moving on to Sect. 5, we delve into
the phenomenology of flavor-changing rare decays of the
top quark within the BLHM framework, employing various
extended CKM matrices. Lastly, we present our conclusions
in Sect. 6. Appendix 1 contains the graphs of the individual
contributions of each field (W ′±, φ±, η±, H±) to the total

branching ratio and Appendix 1 includes the Feynman rules
for flavor mixing in the BLHM.

2 Brief review of the BLHM

The BLHM [9] originates from a symmetry group SO(6)A×
SO(6)B , which breaks at the scale f towards SO(6)V when
the non-linear sigma field � acquires a vacuum expectation
value (VEV), denoted as 〈�〉 = 1. This leads to the emer-
gence of 15 pseudo-Nambu Goldstone bosons, parameter-
ized by the electroweak triplet φa with zero hypercharges
(a = 1, 2, 3) and the triplet ηa , where (η1, η2) form a com-
plex singlet with hypercharge, and η3 is a real singlet,

� = ei�/ f e2i�h/ f ei�/ f , (1)

� =
⎛
⎝

φaT a
L + ηaT a

R 0 0
0 0 iσ/

√
2

0 −iσ/
√

2 0

⎞
⎠ , (2)

�h =
⎛
⎝

04×4 h1 h2

−hT1 0 0
−hT2 0 0

⎞
⎠ , (3)

where hTi = (hi1, hi2, hi3, hi4), (i = 1, 2), represent Higgs
quadruplets of SO(4). The scalar field σ 1 is required to gen-
erate a collective quartic coupling [9]. T a

L ,R denote the gen-
erators of SU (2)L and SU (2)R .

2.1 Scalar sector

In the BLHM, two operators are required to generate the
quartic coupling of the Higgs through collective symmetry
breaking; none of these operators alone allows the Higgs to
acquire a potential:

P5 = diag(0, 0, 0, 0, 1, 0),

P6 = diag(0, 0, 0, 0, 0, 1). (4)

In this way, we can write the quartic potential as [9]

Vq = 1

4
λ65 f

4Tr(P6�P5�
T ) + 1

4
λ56 f

4Tr(P5�P6�
T )

= 1

4
λ65 f

4(�65)
2 + 1

4
λ56 f

4(�56)
2, (5)

where λ56 and λ65 are coefficients that must be nonzero
to achieve collective symmetry breaking and generate a
Higgs quartic coupling. The first part of Eq. (5) breaks
SO(6)A × SO(6)B → SO(5)A5 × SO(5)B6, with SO(5)A5

preventing h1 from acquiring a potential and SO(5)B6

doing the same for h2. The second part of Eq. (5) breaks
SO(6)A × SO(6)B → SO(5)A6 × SO(5)B5. If we expand

1 It is not a dangerous singlet.
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Eq. (1) in powers of 1/ f and substitute it into Eq. (5), we
obtain

Vq = λ65

2

(
f σ − 1√

2
hT1 h2 + · · ·

)2

+λ56

2

(
f σ + 1√

2
hT1 h2 + · · ·

)2

. (6)

From Eq. (6), each term alone seems to generate a quartic
coupling for the Higgses, this can be eliminated by a redef-

inition of the field σ → ± hT1 h2√
2 f

, where the upper and lower

signs of this transformation correspond to the first and sec-
ond operators in Eq. (6), respectively. Collectively, though,
the two terms in Eq. (6) produce a tree-level quartic Higgs;
this occurs after integrating out σ [9,11,28]:

Vq = λ56λ65

λ56 + λ65

(
hT1 h2

)2 = 1

2
λ0

(
hT1 h2

)2
. (7)

The expression obtained has the desired form of a collec-
tive quartic potential [9,11].
In this way, we obtain the form of a quartic collective potential
proportional to two different couplings [9]. We can observe
that λ0 will be zero if λ56, λ65, or both are zero. This illustrates
the principle of collective symmetry breaking.

If we exclude gauge interactions, not all scalars gain mass,
and therefore, we need to introduce the potential,

Vs = − f 2

4
m2

4Tr
(

†M26�M†

26 + 
M26�
†M†

26

)

− f 2

4

(
m2

5�55 + m2
6�66

)
, (8)

where m4, m5, and m6 are mass parameters, and (�55, �66)

are matrix elements of Eq. (1). Here, M26 is a matrix that
contracts the SU (2) indices of 
 with the SO(6) indices of
�,

M26 = 1√
2

(
0 0 1 i 0 0
1 −i 0 0 0 0

)
. (9)

The 
 operator arises from a global symmetry SU (2)C ×
SU (2)D that is broken to a diagonal SU (2) at the scale F >

f when it develops a VEV, 〈
〉 = 1. We can parameterize it
in the form


 = e2i�d/F , �d = χa
τa

2
(a = 1, 2, 3), (10)

where the matrix �d contains the scalars of the triplet χa that
mix with the triplet φa , and τa represents the Pauli matrices.

 is connected to � in such a way that the diagonal subgroup
of SU (2)A × SU (2)B ⊂ SO(6)A × SO(6)B is identified as
the SM SU (2)L group. If we expand the operator 
 in powers

of 1/F and substitute it into Eq. (8), we obtain

Vs = 1

2

(
m2

φφ2
a + m2

ηη
2
a + m2

1h
T
1 h1 + m2

2h
T
2 h2

)
, (11)

where

m2
φ = m2

η = m2
4,

m2
1 = 1

2
(m2

4 + m2
5),

m2
2 = 1

2
(m2

4 + m2
6). (12)

To trigger EWSB, the next potential term is introduced [9]:

VBμ = m2
56 f

2�56 + m2
65 f

2�65, (13)

where the mass terms m56 and m65 correspond to the matrix
elements �56 and �65, respectively. Finally, we have the
complete scalar potential,

V = Vq + Vs + VBμ. (14)

We need a potential for the Higgs doublets; therefore, we
minimize Eq. (14) concerning σ and substitute the result
back into Eq. (14), obtaining the expression:

VH = 1

2

[
m2

1h
T
1 h1 + m2

2h
T
2 h2 − 2Bμh

T
1 h2 + λ0(h

T
1 h2)

2
]
,

(15)

where

Bμ = 2
λ56m2

65 + λ65m2
56

λ56 + λ65
. (16)

The potential (15) has a minimum when m1m2 > 0, and
EWSB requires that Bμ > m1m2. Here, we can observe that
the term Bμ disappears if λ56 = 0 or λ65 = 0 or both are
zero in Eq. (16). After EWSB, Higgs doublets acquire VEVs
given by

〈h1〉 = v1, 〈h2〉 = v2. (17)

The two terms in (17) must minimize Eq. (15), resulting in
the following relationships

v2
1 = 1

λ0

m2

m1
(Bμ − m1m2), (18)

v2
2 = 1

λ0

m1

m2
(Bμ − m1m2), (19)

and it is defined the β angle between v1 and v2 [9], such that,

tan β = 〈h11〉
〈h21〉 = v1

v2
= m2

m1
, (20)
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in this way, we have

v2 = v2
1 + v2

2

= 1

λ0

(
m2

1 + m2
2

m1m2

)
(Bμ − m1m2)

	 (246 GeV )2. (21)

After the EWSB, the scalar sector [9,28] produces massive
states of h0 (SM Higgs), A0, H± and H0 with masses

m2
G0 = m2

G± = 0, (22)

m2
A0 = m2

H± = m2
1 + m2

2, (23)

m2
H0 = Bμ

sin 2β

+
√

B2
μ

sin2 2β
− 2λ0βμv2 sin 2β + λ2

0v
4 sin2 2β, (24)

where G0 and G± are Goldstone bosons that are eaten to give
masses to the W±, Z bosons of the SM.

2.2 Gauge boson sector

The gauge kinetic terms are given by the Lagrangian [9,28]

L = f 2

8
Tr

(
Dμ�†Dμ�

)
+ F2

4
Tr

(
Dμ
†Dμ


)
, (25)

where Dμ� and Dμ
 are covariant derivatives,

Dμ� = i
∑
a

(
gAA

a
1μT

a
L � − gB A

a
2μ�T a

L

)

+ig′B3

(
T 3
R� − �T 3

R

)
, (26)

Dμ
 = i

2

∑
a

(
gAA

a
1μτa
 − gB A

a
2μ
τa

)
, (27)

while (Aa
1μ, Aa

2μ) are gauge boson eigenstates, g′ is the cou-
pling of U (1)Y , and g is the coupling of the SU (2)L . They
are related to SU (2)A × SU (2)B couplings gA and gB in the
following way

g = gAgB√
g2
A + g2

B

, (28)

sg = sin θg = gA√
g2
A + g2

B

, (29)

cg = cos θg = gB√
g2
A + g2

B

, (30)

here, θg is the mixing angle, and if gA = gB , then tan θg = 1.
In the BLHM, both the masses of the heavy gauge bosons

W ′±, Z ′ and those of the SM bosons are also generated [9,
28].

2.3 Fermion sector

The fermion sector of the BLHM is governed by the
Lagrangian [9]

Lt = y1 f Q
T S � SUc + y2 f Q

′T
a �Uc

+y3 f Q
T�U ′c

5 + yb f q
T
3 (−2iT 3

R�)Uc
b + h.c., (31)

where (Q, Q′) and (U,U ′) are multiplets of SO(6)A and
SO(6)B , respectively, given by:

QT = 1√
2

[
− (Qa1 + Qb2), i(Qa1 − Qb2),

(Qa2 − Qb1), i(Qa2 + Qb1), Q5, Q6

]
, (32)

where (Qa1, Qa2) and (Qb1, Qb2) are SU (2)L doublets.
(Q5, Q6) are singlets under SU (2)L × SU (2)R = SO(4).
While

(Uc)T = 1√
2

[
− (Uc

b1 +Uc
a2), i(U

c
b1 −Uc

a2),

(Uc
b2 −Uc

a1), i(U
c
b2 +Uc

a1),U
c
5 ,Uc

6

]
, (33)

where (Uc
a2,−Uc

a1) and (−Uc
b2,U

c
b1) are doublets of SU (2)L

along with the singlets (U5,U6). And

Q′T
a = 1√

2

(−Q′
a1, i Q

′
a1, Q

′
a2, i Q

′
a2, 0, 0

)
(34)

U ′cT
5 = (0, 0, 0, 0,U ′c

5 , 0), (35)

are a doublet of SU (2)A and a singlet of SU (2)A,B , respec-
tively. S = diag(1, 1, 1, 1,−1,−1) is a symmetry opera-
tor, (y1, y2, y3) represent Yukawa couplings, and the term
(q3,Uc

b ) in Eq. (31) contains information about the bottom
quark. The BLHM implements new physics in the gauge,
fermion, and Higgs sectors, which implies the existence of
partner particles for most SM particles. Since top quark loops
provide the most significant divergent quantum corrections
to the Higgs mass in the SM, the new heavy quarks, in the
BLHM scenario, will be crucial for solving the hierarchy
problem. Those heavy quarks are: T , T 5, T 6, T 2/3, T 5/3,
and B, all of which have associated masses [9]:

m2
T = (y2

1 + y2
2 ) f 2 + 9v2

1 y
2
1 y

2
2 y

2
3

(y2
1 + y2

2 )(y2
2 − y2

3 )
, (36)

m2
T 5 = (y2

1 + y2
3 ) f 2 − 9v2

1 y
2
1 y

2
2 y

2
3

(y2
1 + y2

3 )(y2
2 − y2

3 )
, (37)

m2
T 6 = m2

T 2/3 = m2
T 5/3 = y2

1 f 2, (38)

m2
B = y2

B f 2 = (y2
1 + y2

2 ) f 2. (39)

In the quark sector Lagrangian [9], the Yukawa couplings
must satisfy 0 < yi < 1. The masses of t and b are also
generated by the Yukawa couplings yt and yb [28].
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Table 1 A measure of the
fine-tuning in the BLHM for
different values of the f scale

f [TeV] �

1.0 0.54

1.5 1.22

2.0 2.17

2.5 3.39

3.0 4.88

m2
t = y2

t v
2
1, (40)

m2
b = y2

bv
2
1 − 2y2

b

3 sin2 β

v4
1

f 2 . (41)

The coupling yt ,

y2
t = 9y2

1 y
2
2 y

2
3

(y2
1 + y2

2 )(y2
1 + y2

3 )
, (42)

is part of the measure of fine-tuning in the BLHM, �, defined
by [28]

� = 27 f 2

8π2v2λ0 cos2 β

|y1|2|y2|2|y3|2
|y2|2 − |y3|2 log

|y1|2 + |y2|2
|y1|2 + |y3|2 .

(43)

According to the numerical values listed in Table 1, we
find that the size of the fine-tuning when the energy scale
f = 1.5 TeV is � 	 1.2 indicates that there is no fine-
tuning in the BLHM. The absence of the fine-tuning prevails
up to � 	 2.2 [9], i.e., for values of the scale f close to
2 TeV. Even though fine-tuning starts to become significant
above f = 2 TeV, our best results for the branching ratios
are found within 1 ≤ f ≤ 2 TeV, giving enough margin for
the possible detection of the rare decays of the top quark. On
the other hand, if the new particles surpass the f = 2 TeV
limit, this would only affect the exotic quark sector but not
the scalar bosons or the gauge bosons that can be adjusted
with the second scale F .

3 Flavor mixing in the BLHM

In the SM, FCNCs are highly suppressed due to the GIM
mechanism, leading to rare decays. In the original devel-
opment of the BLHM, the authors [9] avoided introducing
interactions between the heavy quarks and the two lighter
generations of SM quarks. This omission prevents the con-
struction of extended CKM matrices and the calculation of
rare decays.

Our goal is to maintain the intrinsic properties of the
BLHM. To achieve this, we will detail a specific procedure.
We restrict our focus to interactions involving the light quarks
of the SM with both vector and scalar-charged gauge bosons,

Fig. 1 Feynman diagrams for the flavor-changing top quark rare
decays in the BLHM considered in this paper: t → qV and t → qho

vertices, with V = Z , γ, g, and q = u, c

Fig. 2 Feynman diagrams for the flavor-changing top quark rare
decays in the BLHM considered in this paper: t → qV and t → qho

vertices, with V = Z , γ, g, and q = u, c

as well as the heavy B quark. In the BLHM, the couplings
qdW ′±qu and qd S±qu do not exist, where qd = (d, s, b),
qu = (u, c), and S± = (H±, φ±, η±). This limitation holds
even with the extension proposed in this work. As a result,
there is no avenue to introduce additional Feynman diagrams.

If we were to introduce couplings between the heavy part-
ners of the top quark and the light SM quarks, it would
necessitate modifications to the fundamental multiplets of
SO(6)A,B . This could drastically change the current cou-
plings due to new contributions that emerge from combi-
nations of the SM and BLHM fields. However, with the B
quark, this issue is circumvented since its original multiplet
is straightforward and provides the required interactions for
the Feynman diagrams shown in Figs. 1 and 2.

Within the BLHM framework for (Z , Z ′), there are no
couplings like QZq or QZ ′q, where Q = (T, T 5, T 6, T 2/3,

T 5/3) and q = (u, c). Such couplings are vital for the decays
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t → qZ . Altering the multiplets associated with the heavy
partners of the top quark would lead to implications similar
to the rationale we provided for our exclusive focus on the B
quark.

Therefore, we introduce the necessary terms to these inter-
actions by adding the following terms to the Lagrangian (31)

yB f q1(−2iT 2
R�)dcB, yB f q2(−2iT 2

R�)dcB, (44)

where y2
B = y2

1 + y2
2 is the Yukawa coupling of heavy B

quark, q1 and q2 are multiplets of light SM quarks

qT1 = 1√
2
(−u, iu, d, id, 0, 0),

qT2 = 1√
2
(−c, ic, s, is, 0, 0), (45)

and dcB is the new multiplet that we have introduced

dcTB = (0, 0, 0, 0, B, 0). (46)

This inclusion facilitates the mixing between scalar fields
(H±, φ±, η±) and the B quark with the (u, c, d, s) quarks,
which significantly enriches the phenomenology associated
with the BLHM. The Lagrangian (31) retains its gauge invari-
ance, ensuring that the new terms do not intermingle with the
heavy partners of the top quark. To delineate the interactions
of the quarks (u, c, d, s) with the (W±,W ′±) bosons and the
B quark, we introduce the following terms:

QT
3 = 1√

2
(0, 0, B, i B, 0, 0), (47)

and

q ′T
i = (0, 0, 0, 0, qci , 0), (48)

where qci represents the quarks (u, c, d, s), in the part of the
Lagrangian for gauge–fermion interactions that involve the
fields W± and W ′± [28]

L =
2∑

i=1

i σ̄μq
†
i D

μqi + i σ̄μQ
†DμQ

+i σ̄μQ
′†DμQ′ + i σ̄μU

c†DμUc, (49)

such that we have the extended Lagrangian

L =
2∑

i=1

i σ̄μq
†
i D

μqi + i σ̄μQ
†DμQ

+i σ̄μQ
′†DμQ′ + i σ̄μU

c†DμUc

+
2∑

i=1

i σ̄μQ
†
3D

μqi +
4∑

i=1

i σ̄μq
′†
i DμUc, (50)

where (q1, q2) are defined as in Eq. (45). The σ̄ μ is given by
−σμ, representing the Pauli matrices, and Dμ encapsulates

information regarding (W±,W ′±). The extended Lagrangian
(50) maintains gauge invariance and avoids mixing with the
top quark’s heavy partners. Expressing the Lagrangian (50)
in Dirac notation, we have:

L = i
2∑

i=1

�̄qiγμPL D
μ�qi + i�̄QγμPLD

μ�Q

+i�̄Q′γμPL D
μ�Q′ + i�̄UcγμPR�Uc

+i
2∑

i=1

�̄Q3γμPL D
μ�qi + i

4∑
i=1

�̄q ′iγμPRD
μ�Uc .

(51)

From Lagrangian (51), any of its covariant derivatives in the
mass eigenstate basis takes the form [28]:

Dμ = ∂μ + i
2∑

a=1

gAA
aμ
1 T a

L

= ∂μ

+ igA√
2

[
ρ11(W

+μ + W−μ) + δ11(W
′+μ + W ′−μ)

]

+ igA√
2

[
ρ12(W

+μ − W−μ) + δ12(W
′+μ − W ′−μ)

]
,

(52)

where (ρ11, ρ12) and (δ11, δ12) encompass model constants
and a dependency on O(v2/( f 2 + F2)). To elucidate the
generation of the elements of the extended CKM matrix VHu

within the charged currents of the BLHM, we focus on the
fifth term of the Lagrangian (51) and examine the W ′− B̄qi
interaction:

igA√
2

�̄BVBuγμPLW
′−�qi , (53)

where

VBu = δ11 − δ12 ≈ k

(
v2

f 2 + F2

)
, (54)

where k depends on the model constants in such a way that
it can be constrained by the values of the extended CKM
matrix.

4 Parameter space of the BLHM

The initial parameter spaces for the BLHM were constructed
based on the decays of heavy quarks into final states within
the SM, adopting an intertwined parametrization of the
Yukawa couplings (y1, y2, y3) [28,29]. The same parame-
ter space is employed in the work of [30], but constraints are
solely applied to the heavy quarks following experimental
limits. The study in [10] suggests a comparable parameter
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Table 2 ATLAS experiment
searches set 95% C.L. upper
exclusion limits for heavy quark
searches [31]

Quark Mass [TeV]

T 1.37

B 1.34

T 5/3 1.64

space for the BLHM, imposing the constraint mh0 = 125.25
GeV and permitting both A0 and H0 to span across all the
production modes and decay channels examined by ATLAS
and CMS at that juncture. This eliminates potential degener-
acy between these fields.

In subsequent studies [16–19], a parameter space devoid
of degeneracy is articulated for the neutral Higgs states. The
Yukawa couplings remain unchanged, yet the model con-
stants retain their values as in preceding works. This compli-
ance aligns with the prevailing experimental constraints on
heavy quarks and bosons.

Notably, the BLHM posits five heavy partners for the
top quark and merely one for the bottom quark. Empirical
research has ruled out masses for these entities below the
thresholds outlined in Table 2.

In this study, we manipulate the angle corresponding to the
ratio of the VEVs of the two Higgs doublets, tan β, to dictate
all non-fixed parameters while satisfying the experimental
bounds.

We initiate by confining the Yukawa couplings within the
domain 0 < yi < 1 [9]. This ensures conformity with both
Eq. (40) and Eq. (42), such that mt = 172.13 GeV [32].
Concurrently, we resolve Eqs. (23) and (24), ensuring that
the parameters λ0, mH0 , mA0 , and β uphold mh0 = 125.25
GeV [33], alongside the conditions λ0 < 4π , tan β � 1, as
informed by the findings in [10].

(tan β)2 < −1 +
2 + 2

(
1 − m2

h0

m2
A0

) 1
2
(

1 − m2
h0

4πv2

) 1
2

m2
h0

m2
A0

(
1 + m2

A0 − m2
h0

4πv2

) . (55)

The BLHM designates the parameter m4 as a free variable,
ensuring that both mφ0 and mη0 remain unconstrained, espe-
cially given that their one-loop corrections are insignificant
[9]. Accordingly, we delineate the range 30 < m4 < 800
GeV, leading to the masses tabulated in Table 2. Further-
more, the BLHM incorporates the mixing angle α between
h0 and H0.

tan α = 1

Bμ − λ0v2 sin 2β

⎛
⎝Bμ cot 2β

+
√

B2
μ

sin2 2β
− 2λ0Bμv2 sin 2β + λ2

0v
4 sin2 2β

⎞
⎠ ,

(56)

Table 3 BLHM parameters

Parameter Interval Units

β (1.35, 1.49) rad

α (−0.42,−0.26) rad

� (0.54, 4.88) –

y3 (0.32, 0.33) –

mA0 (0.31, 2.21) TeV

mH0 (0.91, 2.38) TeV

mφ0 0.50 TeV

mη0 0.50 TeV

Table 4 Masses of the heavy quarks in the BLHM

Quark Mass (1 < f < 2) [TeV]

T (1.15, 2.28)

T 5 (0.74, 1.53)

T 6, T 2/3, T 5/3 (0.70, 1.40)

B (1.14, 2.28)

in a manner such that the condition sin(β − α) ≈ 1 is met.
In Table 3, we showcase the initial parameters with y1 = 0.7
and y2 = 0.9 kept constant.

With the calculated Yukawa couplings and satisfying all
the conditions that led us to the results in Table 3, we present
the masses of the heavy quarks in Table 4 according to Eqs.
(36)–(39).

The most recent reports [34] with the same dataset from
the period 2015–2018 from the ATLAS detector for the T →
Ht and T → Zt processes exclude masses below 1.6 and
2.3 TeV at 95% C.L., respectively, for the production of the
singlet T , according to the chosen parameters, and 1.7 and
1 TeV for the production of the doublet T under the same
considerations. In [35], masses of the B quark below 1.33
TeV at 95% C.L. are excluded according to the B → Wt
process. In both cases, the masses of the top and bottom
quark partners in the BLHM are within the limits.

There have been recent and compelling experimental
results and simulations regarding the neutral bosons H0 and
A0. In the study conducted by ATLAS [36], the process
A0 → Zh0 is analyzed, ruling out the mass of A0 below
1 TeV at 95% C.L. for all types of 2HDM. The CMS study
[37] also excludes the boson’s mass A0 below 1 TeV.

In [38], type I 2HDMs are studied by simulating the pro-
cess e−e+ → A0 H0 → ZH0 H0 → j jbb̄bb̄ for the SiD
detector at the ILC with an integrated luminosity of 500
fb−1. This gives ranges of 200 < mA0 < 250 GeV and
150 < mH0 < 250 GeV. The experimental evidence and
simulations in the realm of neutral scalar bosons support our
usage of the discovered ranges for the masses of A0 and H0.
The neutral scalar bosons φ0 and η0 in the BLHM were intro-
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Table 5 Masses of the heavy bosons in the BLHM

Boson Mass (1 < f < 3, F = 5) [TeV]

mW ′ (3.32, 3.80)

mZ ′ (3.32, 3.80)

mH± (0.30, 1.69)

mφ± (1.58, 1.70)

mη± (0.50, 0.97)

duced with anticipated masses below 100 GeV [9]. However,
even though these types of light scalar mediators are more
prevalent in dark matter models [39], we have also opted
to use the range 30 < m4 < 800 GeV and specifically
m4 = 500 GeV [17], which has minimal influence on the
masses mφ± and mη± [10].

We have adopted values for f in the range [1, 3] TeV and
set F = 5 TeV. These choices align with the current experi-
mental constraints, as illustrated in Tables 3 and 4. However,
it is worth noting that adjusting these values to accommo-
date future experimental results would be feasible, ensuring
the model’s requisite condition f < F is maintained. Both
F and f have a pronounced impact on the masses of the
vector bosons W ′± and Z ′, as well as on the masses of the
scalar bosons (φ±, η±). Using the parameters we derived,
the masses of these vector and scalar bosons are enumerated
in Table 5.

Where the mass of the bosons φ± and η± are dominated
by one-loop corrections [10].

In the eν channel, both the ATLAS and CMS collabora-
tions have constrained the mass ofmW ′ to be below the 7 TeV
at 95% C.L., based on data collected at

√
s = 13 TeV with an

integrated luminosity of 139 fb−1 [40,41]. These experimen-
tal constraints on the W ′± boson mass maintain the BLHM
in a favorable position, as the mass of W ′± has the potential
to increase with F .

Searches by ATLAS and CMS collaborations for Z ′
decays into e+e− and μ+μ− have set a lower bound of
4.9 TeV on the Z ′ mass [42,43]. On a different note, the
Z ′ → τ+τ− decay process sets a constraint wheremZ ′ > 2.4
TeV [44] at 95% C.L. In the decay channel Z ′ → bb̄, CMS
has analyzed a mass value of 1.8 < mZ ′ < 8 TeV [45],
while ATLAS has covered values between 1.3 < mZ ′ < 5
TeV [46]. Across all the mentioned channels, our calculated
results for the Z ′ mass are consistent and fit comfortably
within these bounds.

The mass of the charged scalar boson H± also emerges
naturally through the variation of the β angle. The range
we obtained encompasses experimental studies, particularly
in processes like H± → h0W±. The outcomes from these
studies fall within the values 0.3 TeV ≤ mH± ≤ 0.7 TeV
[47].

5 Phenomenology of flavor-changing top quark rare
decays

The permissible Feynman diagrams for the decays t → qV
and t → qh0, where q = (u, c) and V = (Z , γ, g), are
illustrated in Figs. 1 and 2. For both Case II and Case III,
we computed fifty-two amplitudes utilizing the Mathematica
packages FeynCalc [48] and Package X [49].

Each amplitude for the decay t → qV adopts the follow-
ing structure:

Mμ = ū(p j )
(
F1 p

μ
i 1 + F2 p

μ
i γ 5 + F3γ

μ + F4γ
μγ 5

)
u(pi ).

(57)

The form factors F1, F2, F3, and F4 encapsulate the masses
and momenta of the external and internal quarks and gauge
bosons in both the BLHM and the SM. These are incorporated
within the Passarino–Veltman scalar functions. For the decay
t → qh0, each amplitude displays a unique structure

Mμ = ū(p j )
(
f1 + f2γ

5
)
u(pi ), (58)

f1,2 contains terms from the BLHM and SM with Passarino–
Veltman scalar functions.

5.1 Cases for the CKM matrix in the BLHM

In various BSM theories, the mass eigenstates do not neces-
sarily align with those of the SM. This misalignment intro-
duces new contributions from both vector and scalar fields to
processes involving FCNCs. A salient advantage of these
models is that they circumvent suppression via the GIM
mechanism [50]. Within the BLHM framework, one must
consider radiative corrections to capture the essence of fla-
vor violation, as the model inherently lacks it at the tree level.
Our analysis uses the methodology delineated in [20,22,23]
to craft the extended CKM matrices.

We need two CKM-like unitary matrices

VHu, VHd (59)

such that

VCKM = V †
HuVHd . (60)

Actually, we are familiar with VCKM ; hence, the relation
VHd = VHuVCKM holds true. The matrices presented in
Eq. (59) characterize flavor-violating interactions between
SM fermions (u, c) and bosons (Z , γ, g, h0). In the context
of this paper, the interactions also involve the BLHM fermion
B mediated by bosons (W ′±, φ±, H±). We can generalize
the CKM extended matrix as the product of three rotation
matrices, as documented in [22,51].
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VHd =
⎛
⎜⎝

1 0 0

0 cd23 s23e−iδd23

0 −sd23e
iδd23 cd23

⎞
⎟⎠

×
⎛
⎜⎝

cd13 0 sd13e
−iδd13

0 1 0

−s13eiδ
d
13 0 cd13

⎞
⎟⎠

×
⎛
⎜⎝

cd12 sd12e
−iδd12 0

−sd12e
iδd12 cd12 0

0 0 1

⎞
⎟⎠ . (61)

where the cdi j and sdi j are in terms of the angles (θ12, θ23, θ13)

and the phases (δ12, δ23, δ13). We choose the following cases:
Case I. VHu = 1, this implies VHd = VCKM .

In this case, the condition VHu = 1 does not allow for
the contribution of the extended matrix or the CKM matrix
since there are no quarks or bosons from the SM within the
calculated loops. Only the model constants and the masses
of the charged scalar bosons will be present.
Case II. VHd = 1, this implies VHu = V †

CKM .
In this case, the contribution comes from the CKM matrix,

in which we will have suppression due to more minor terms
such as Vub and Vcb.
Case III. sd23 = 1/

√
2, sd12 = sd13 = 0, δd12 = δd23 = δd13 = 0.

Substituting the values of case III into the matrix VHd in Eq.
(61), we obtain the matrix:

VHd =
⎛
⎝

1 0 0
0 1 1/

√
2

0 −1/
√

2 1

⎞
⎠ , (62)

and through the product VHdV
†
CKM , we obtain the matrix:

VHu =
⎛
⎝

1.08 −0.25 0.00
−0.25 1.05 0.66
0.17 −0.81 1.03

⎞
⎠ . (63)

In case III, we follow the parametrization made in [20,22]. Of
all the matrix elements, the only one suppressed is |VBu | =
0.006; however, the branching ratios of the decays turned out
to be much larger than their counterparts in the SM. We have
not considered other scenarios for the extended CKM matrix
because one of the objectives of this study was to broaden the
flavor structure in the BLHM. Future studies on CP violation
will consider other cases.

5.2 Branching ratios for the reactions t → qV and
t → qh0 in the BLHM

Using the parameter space detailed in Sect. 5 and the matrix
VHu from the second and third cases in Sect. 5.1, we have
calculated the branching ratios of the processes t → qV and

Table 6 Case II. The branching ratios for the top-quark decay via flavor-
changing neutral current couplings at the BLHM

Decay BrBLH BrBLH
f = 1 TeV f = 3 TeV

t → uZ 5.8 × 10−10 5.0 × 10−11

t → uγ 4.0 × 10−11 3.6 × 10−12

t → ug 6.7 × 10−17 7.2 × 10−20

t → uh0 1.3 × 10−12 9.8 × 10−15

t → cZ 1.2 × 10−8 1.0 × 10−9

t → cγ 8.8 × 10−10 7.9 × 10−11

t → cg 1.4 × 10−15 1.5 × 10−18

t → ch0 2.9 × 10−11 2.1 × 10−13

Table 7 Case III. The branching ratios for the top-quark decay via
flavor-changing neutral current couplings at the BLHM

Decay BrBLH BrBLH
f = 1 TeV f = 3 TeV

t → uZ 3.5 × 10−10 3.0 × 10−11

t → uγ 2.5 × 10−11 2.2 × 10−12

t → ug 4.0 × 10−17 4.2 × 10−20

t → uh0 8.2 × 10−13 5.9 × 10−15

t → cZ 3.7 × 10−5 3.1 × 10−6

t → cγ 2.6 × 10−6 2.3 × 10−8

t → cg 4.2 × 10−13 4.5 × 10−16

t → ch0 8.5 × 10−9 6.2 × 10−11

t → qh0, where q = u, c and V = Z , γ, g. Our results are
shown in Tables 6 and 7.

5.2.1 Case II

In this section, we present the branching ratios calculated
using the extended matrix VHu = V †

CKM . The numerical
results for the top quark decay branching ratios are listed in
Table 6, where we observe that the smallest ratios involve
the up quark. The decays involving the charm quark are also
small compared to those obtained through the matrix of Case
III. Thus, it is evident that the contribution of the extended
matrix and the model itself increase the branchings.

In Fig. 3, we plot B(t → cV, ch0) against the breaking
scale f , with lower intensities compared to the equivalent
branchings in Fig. 5. In Fig. 4, we observe a different situation
as the B(t → uV, uh0) have similar magnitudes to their
counterparts in Fig. 6, indicating that the form of the extended
matrix for Case III practically did not increase the sensitivity
in the up quark branching ratios.

This difference in contributions from the extended matri-
ces will allow us to study more cases where obtaining larger
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Fig. 3 Case II. Total contributions to Br(t → cZ , cγ, cg, ch0) as a
function of the scale of energy f , with mB = (1.14) f and F = 5 TeV

Fig. 4 Case II. Total contributions to Br(t → uZ , uγ, ug, uh0) as a
function of the scale of energy f , with mB = (1.14) f and F = 5 TeV

magnitudes in these same decays relative to experimental
limits is possible.

5.2.2 Case III

In this section, we present the branching ratios for the
extended matrix of Case III, along with the corresponding
graphs. We consider it necessary to showcase the individual
contributions of the fields (W ′±, φ±, η±, H±) in the BLHM
to the branching of each field (Z , γ, g, h0) and the quarks
u, c, B in Appendix 1. We can observe that the scalar field
φ± was the most significant contribution to the branching
ratios for both decay processes t → cV and t → ch0. This
highlights the significance of the scalar field contributions in
the BLHM in conjunction with the extended CKM matrix.

The best sensitivity on the branching ratios might reach
up to the order of magnitude of O(10−8 − 10−5). As can be
seen from Table 7, the decay channels t → cZ , t → cγ , and
t → ch0 exhibit good sensitivities compared to the branching
ratios reported in the literature [21,27]. Experimentally, the
data provided by ATLAS and CMS place the latest searches
for t → qZ with a limit of 10−4 [52]. In [53], for the decay
of the top quark to a photon accompanied by a charm quark
or an up quark, they report Br(t → qγ ) ∼ 10−5. For the

Fig. 5 Case III. Total contributions to Br(t → cZ , cγ, cg, ch0) as a
function of the scale of energy f , with mB = (1.14) f and F = 5 TeV

Fig. 6 Case III. Total contributions to Br(t → uZ , uγ, ug, uh0) as a
function of the scale of energy f , with mB = (1.14) f and F = 5 TeV

process t → qg, the branching ratio is around 10−4 [54]. In
[55], the estimation Br(t → qh0) ∼ 10−3 is published.

Figure 5 shows the branching ratio of the decays t → cV
and t → ch0, where V = (Z , γ, g), as a function of the
breaking scale energy f in the range [1, 3] TeV. Since the
masses of the bosons (W ′±, φ±, η±, H±) and the quark B
depend on the scale f , they also vary their contribution for
each point of the branching ratio in the plot of Fig. 5. It is
important to emphasize that for the parameters (β, α, λ0, y3),
their lower limits given in Table 3 were used. In general, we
could calculate the branchings for any value of β within the
range [1.35, 149], but even though the masses of A0 and H0

would be more significant, this would not significantly alter
the scenario in the plot of Fig. 5 since the masses of W ′± and
Z ′ reach much higher values as a function of f and F .

In the case of the decays t → uV and t → uh0, under
the same parameters, the branching ratios were found to be
more suppressed, as shown in Fig. 6. Given the records men-
tioned in the literature, it was expected that the BLHM would
produce similar ranges for these decays. On the other hand,
we can compare our results with those calculated in the SM,
Table 8. We also summarize the current experimental limits
for the investigated branching ratios in Table 9.
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Table 8 SM Branching ratios
for t → qV and t → qh0 where
q = (u, c) and V = (Z , γ, g)
[56]

Decay BrSM

t → uZ 8.0 × 10−17

t → uγ 3.7 × 10−16

t → ug 3.7 × 10−14

t → uh0 2.0 × 10−17

t → cZ 1.0 × 10−14

t → cγ 4.6 × 10−14

t → cg 4.6 × 10−12

t → ch0 3.0 × 10−15

Table 9 Experimental upper
limits on the Br(t → qV ) and
Br(t → qh0) [54,57]

Decay BrExp

t → qZ 5.0 × 10−4

t → qγ 1.8 × 10−4

t → ug 0.6 × 10−4

t → cg 3.7 × 10−4

t → uh0 1.2 × 10−3

t → ch0 1.1 × 10−3

6 Conclusions

In this paper, we investigate the impact of one-loop contribu-
tions from heavy gauge bosons W ′±, the heavy quark B, and
the new scalars (φ±, η±, H±) predicted by the BLHM on the
top quark rare decay processes t → qV and t → qh0. We
summarize our results for Br(t → qV ) and Br(t → qh0)

in Tables 6 and 7 and illustrate them in Figs. 3, 4, 5, 6, 7,
8, 9 and 10. Our analysis reveals that the dominant contri-
butions to the branching ratios are observed in the channels
Br(t → cZ) = 3.7×10−5, Br(t → cγ ) = 2.6×10−6, and
Br(t → ch0) = 8.5 × 10−8, assuming symmetry-breaking
scales f = [1, 3] TeV and F = 5 TeV within the BLHM.

We establish a relationship between the scale f and fine-
tuning, as shown in Table 3, which guides our choice of the
f range. However, the scale F is only required to satisfy
the condition F > f to adhere to the model’s properties. It
can also be adjusted to match experimental requirements for
the masses of heavy gauge bosons. The rare decay modes
t → cZ and t → cγ studied in this article could be probed
with high sensitivity in the High Luminosity (HL) and High
Energy (HE) phases at the LHC [58]. These processes may
also be accessible in the Future Circular Hadron-Hadron Col-
lider (FCC-hh). Lepton colliders such as the Compact Linear
Collider (CLIC) [59,60] and the muon Collider with HL and
HE [61] have also included top quark physics in their research
agendas.

In summary, this study explores the potential to con-
strain the branching ratios Br(t → uZ , uγ, ug, uh0) and
Br(t → cZ , cγ, cg, ch0) within the BLHM framework.

Furthermore, we provide the first estimates for constraining
these couplings. Considering the solid theoretical basis and
convincing phenomenological characteristics that the model
presents, it is desirable that the BLHM could be a good
motivation for possible future experimental initiatives. In
addition, our results complement other studies on the flavor-
changing top quark rare decays in the context of the LHMs
and other extensions on the SM.

Acknowledgements TC-P thanks a CONAHCYT postdoctoral fellow-
ship. MAH-R, AG-R and EC-A thank SNII (México).

Data Availibility Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Individual contributions from
W ′±, φ±, η±, H±

In this appendix, we present the graphs corresponding to the
individual contributions of the fields (W ′±, φ±, η±, H±) in
the BLHM to each field (Z , γ, g, h0) in the SM, where the
quarks (u, c) and B are also involved.

In Fig. 7, the contributions of φ±
c dominate. In Fig. 8, H±

c
and φ±

c are the largest contributors. In Fig. 9, φ±
c is the dom-

Fig. 7 Individual contributions from W ′±, φ±, η±, H± to t → qZ
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Fig. 8 Individual contributions from W ′±, φ±, η±, H± to t → qγ

Fig. 9 Individual contributions from W ′±, φ±, η±, H± to t → qg

Fig. 10 Individual contributions from W ′±, φ±, η±, H± to t → qh0

inant contributor. Finally, in Fig. 10, φ±
c has the highest con-

tribution to the branching ratio.

Appendix B: Feynman rules in the BLHM

In this appendix, we derive and present the Feynman rules
for the BLHM necessary to calculate the flavor-changing top
quark rare decays.

Tables 10, 11 and 12 summarize the Feynman rules
for the 3-point interactions: fermion-fermion-scalar (FFS),
fermion-fermion-gauge (FFV), gauge-gauge-gauge (VVV),
and scalar-gauge-gauge (SVV) interactions.

Table 10 Essential Feynman rules in the BLHM for studying the
flavor-changing top quark rare decays are the 3-point interactions
fermion-fermion-scalar (FFS), fermion-fermion-gauge (FFV), gauge-
gauge-gauge (VVV), and scalar-gauge-gauge (SVV) interactions

Vertex Rule (factors in Tables 11 and 12)

W ′− B̄t
−igsβv

4
√

2 f
Ayγ

μPL (VHu)

W ′− B̄u
iggA

2
√

2gB
γ μPL (VHu)

W ′− B̄c
iggA

2
√

2gB
γ μPL (VHu)

η− B̄t
4im2

W

f 2g2
√
y2

1 + y2
2 (y2

1 + y2
3 )

(Y1PL + Y2PR)(VHu)

η− B̄u − imBs2
β

2 f
√

2
PL (VHu)

η− B̄c − mBs2
β

2 f
√

2
PL (VHu)

φ− B̄t Fa Fb(X1PL + X2PR)(VHu)

φ− B̄u
i Fs2

β

[
mu + mB + (mu − mB)γ 5

]

2 f
√

2
√

f 2 + F2
(VHu)

φ− B̄c
i Fs2

β

[
mc + mB + (mc − mB)γ 5

]

2 f
√

2
√

f 2 + F2
(VHu)

H− B̄t
−3

√
2mWcβsβ y1y2y2

3

f g
√
y2

1 + y2
2 (y2

1 + y2
3 )

L

(VHu)

H− B̄u
gmBs2β

4
√

2mW
PL (VHu)

H− B̄c
gmBs2β

4
√

2mW
PL (VHu)

Z B̄B − ig

6cW
(3c2

W − 7s2
W )γ μ

γ B̄ B −1

3
igsW γ μ

Zq,μW
′−
k,αW

′+
p,β igcW

[
δβμ
1 + δαμ
2 + δαβ
3

]

h0W ′−W ′+ 2gmW sα+β

Table 11 Factors from Table 10

Factor Expression

Ay y3(2y2
1 − y2

2 )(y2
1 + y2

2 )2(y2
1 + y2

3 )

Y1 B1 + B2

Y2 B3 + B4

Fa
y3(2y2

1 − y2
2 )

(y2
1 + y2

3 )

√
y2

1 + y2
2

Fb
Fsβ

2 f
√

2( f 2 + F2)

X1 A1 + A3 + A6

X2 A2 + A4 + A5
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Table 12 Factors from Table 11

B1 y1y2(y2
1 + y2

3 )c2
β

B2 y3
1 y2sβ − 1

2
y1y2y2

3 sβ

B3
f g

4mW
y3(2y2

1 + 5y2
2 )

√
y2

1 + y2
3 sβ

B4 −y3
1 y3sβ − 1

2
y1(y2

2 + y2
3 )sβ

A1
−4mWc2

β y1y2(y2
1 + y2

3 )

sβ y3(2y2
1 − y2

2 )

A2 f g − y8
1 − mWsβ y3y6

2 − 3y2y4
1 (2y2

1 − y2
2 )

−y6
1 (3y2

2 + y2
3 ) − y2

1 y
4
2 (y2

2 + 3y2
3 )

A3
−4mW y3

1 y2y3

2y2
1 − y2

2

A4
8mW y3

1 (y2
2 + y2

3 )

2y2
1 − y2

2

A5
−4mW y3

1

2y2
1 − y2

2

A6
4mW y3

1 y2

y3(2y2
1 − y2

2 )


1 pα − qα


2 qβ − kβ


3 kμ − pμ
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