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Abstract In this paper, the existence of a massive dark
photon, associated with a new gauge group is considered.
The dark photon can be kinetically mixed with the pho-
ton. To study some applications, the thermo field dynam-
ics formalism is used. Exploring the topological structure of
this approach, the influence of dark photons on the Stefan–
Boltzmann law and the Casimir effect at zero and finite tem-
perature is calculated.

1 Introduction

The standard model of particle physics is a gauge theory
whose gauge group is SU (3) × SU (2) × U (1). It success-
fully describes three fundamental interactions, namely elec-
tromagnetic, strong and weak. Although the standard model
predictions have been verified with great accuracy, it is not a
fundamental theory, as it contains no gravitational interaction
and does not explain the dark components of the universe,
dark energy and dark matter. In the search for a solution to
these problems, a physics beyond standard model emerges.
In this paper, an extension of the standard model, which intro-
duces a dark matter candidate, is considered.

Looking specifically at Maxwell electrodynamics, an
interesting extension is to include an extra Abelian boson
associated with an extra U (1)X gauge group. This novel
boson is called a dark or hidden photon [1–5]. It is impor-
tant to note that the visible or standard photon is taken to
be the boson of the U (1) gauge group of electromagnetism,
while the dark photon is the boson of an extra U (1)X group.
Dark photons do not directly interact with the standard model
particles. However, the photon and dark photon can interact
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through kinetic mixing. This kinetic mixing gives a connec-
tion between the dark and visible sectors. This is a direct
way to new physics beyond the standard model. In addition,
it allows to detect dark photons in experiments. While this
kinetic mixing leads to possible detection, a natural question
is: why haven’t dark matter or dark photons been observed
yet? There are two possibilities: (i) the new particles may
be very heavy and then a lot of energy is needed to create
them. (ii) The interactions between the dark photon and those
of the standard model are extremely weak, then their effects
would be too weak to have been observed so far. The search
for the new boson consists of astrophysical and cosmological
observations, as well as laboratory experiments [6,7]. Some
studies on dark photons have been developed. For a review of
the main theoretical and experimental results see [8–12]. An
interesting study carried out in the dark sector has been the
calculation of the influence of a dark photon on the Casimir
effect [13]. In this paper, let’s use the topological structure
of the thermo field dynamics (TFD) formalism to investigate
the influence of dark photons on the Stefan–Boltzmann law,
as well as on the Casimir effect at zero and finite tempera-
ture. The results presented here reinforce the results for the
Casimir effect at zero temperature discussed in [13].

TFD formalism is a thermal quantum field theory clas-
sified as a real-time approach. In this formalism, the tem-
poral evolution can be considered together with the thermal
effects. The main idea is to consider that the statistical aver-
age of an arbitrary operator is equal to its vacuum expecta-
tion value in a thermal vacuum [14–18]. In order to construct
this thermal vacuum, the Hilbert space is doubled and the
Bogoliubov transformation is used. The main feature of this
approach is its topological structure, as it allows considering
different phenomena such as the Stefan–Boltzmann law and
the Casimir effect on an equal footing. In this context, any
set of dimensions of the manifold can be compactified, for
example, if the time dimension is compactified, temperature
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effects arise, while size effects emerge when a spatial dimen-
sion is compactified. Here, different topologies are consid-
ered. Then, the influence of the dark photons on the Stefan–
Boltzmann law and the Casimir effect at zero and finite tem-
perature for the electromagnetic field is investigated.

This paper is organized as follows. In Sect. 2, the dark
photon theory is introduced. The energy–momentum tensor
for the standard photon with influence due to dark photon is
obtained. From the vacuum expectation value of the energy–
momentum tensor, the propagators for both bosons, usual
photon and massive dark photon, are discussed. In Sect. 3, the
TFD approach is introduced and the energy–momentum ten-
sor is written in terms of the compactification parameter. In
order to obtain a finite quantity, a renormalization procedure
is developed. In Sect. 4, two applications are investigated.
First, the time dimension is compactified and the Stefan–
Boltzmann law with dark photons influence is calculated.
Second, a spatial dimension is compactified and, as a conse-
quence, the Casimir effect or a size effect at zero temperature
is obtained. In Sect. 5, a topology that implies a combined
effect of temperature and size is considered. In this case, the
Casimir effect at finite temperature for the Maxwell theory
with dark photons is determined. In Sect. 6, some concluding
remarks are discussed.

2 The theory: dark photons

In this section, Maxwell electrodynamics is extended to
include an extra Abelian boson that belongs to a new gauge
group U (1)X beyond the standard model. This new boson
(X ) is electrically neutral and does not interact directly with
the matter sector. The novel boson kinetically interacts with
the standard model photon. Apart from mixing with the stan-
dard photon, the gauge boson remains invisible and is known
as a dark or hidden photon. Therefore, it is assumed that the
dark photon is a mediating particle for dark matter.

The main objective of this section is to calculate the
energy–momentum tensor associated with the new particle
and then to investigate some applications using the topologi-
cal structure of the TFD formalism. The Lagrangian describ-
ing the usual photon and the dark photon is given as

L=−1

4
Fμν Fμν−1

4
Xμν Xμν−χ

2
Fμν Xμν+m2

γ

2
Xμ Xμ,

(1)

where Fμν(x) = ∂μ Aν(x) − ∂ν Aμ(x) is the standard field-
strength tensor, Xμν(x) = ∂μ Xν(x) − ∂ν Xμ(x) is the field-
strength tensor of the dark photon, with Xμ denoting the dark
U (1)X field, χ is the dimensionless kinetic mixing parameter
which in some scenarios is restricted to 10−12 � χ � 10−3

[19] and mγ is the mass of the dark photon.

It is important to point out that the kinetic mixing term
given by χ

2 Fμν Xμν can be removed from the Lagrangian (1)
by field re-definition. There are two ways to re-define the
field and then remove the kinetic mixing term: (i) Aμ →
Aμ −χ Xμ and (ii) Xμ → Xμ −χ Aμ. Although these trans-
formations are equivalent, the resulting physics is different.
In the first case the dark photon becomes an uncharged mas-
sive vector particle, while in the second case, the mixture
is transferred to mass terms, which implies a photon-dark
photon oscillation [8,10]. Here the first case is considered.
Applying this re-definition, the Lagrangian (1) becomes

L = −1

4
Fμν Fμν − 1

4
Xμν Xμν + m2

γ Xμ Xμ. (2)

From the Lagrangian (2), the focus is to derive the expres-
sion of the energy–momentum tensor associated with this
theory. Since the Lagrangian is a function of the fields Aμ

and Xμ and their derivatives, the energy–momentum tensor
is defined as

T μ
ν = ∂L

∂(∂μ Aρ)
∂ν Aρ + ∂L

∂(∂μ Xρ)
∂ν Xρ − δμ

ν L. (3)

Applying the gauge Lagrangian (2), the energy–momentum
tensor is given as

T μ
ν = −Fμρ∂ν Aρ − Xμρ∂ν Xρ − ημ

ν

[
−1

4

(
Fσρ Fσρ + Xσρ Xσρ

)

+1

2
m2

γ Xρ Xρ

]
. (4)

Note that this energy–momentum tensor is antisymmetric. To
symmetrize it, the Belinfante–Rosenfeld method [20–22] is
used. Then a symmetric energy–momentum tensor describ-
ing the standard photon and the dark photon is obtained as

Θμ
ν = −ημλ

(
Fλρ Fρ

ν + Xλρ Xρ
ν

)
+1

4
ημ

ν

(
Fσρ Fσρ + Xσρ Xσρ

) − 1

2
ημ

ν m2
γ Xρ Xρ. (5)

For convenience, this tensor is written as

Θμλ(x) = −Fμν(x)Fλ
ν(x) − Xμν(x)Xλ

ν(x)

+1

4
ημλ

[
Fσρ(x)Fσρ(x) + Xσρ(x)Xσρ(x)

]

−1

2
ημλησρm2

γ Xρ(x)Xσ (x). (6)

In order to make some applications with this symmetric
energy–momentum tensor one must calculate the vacuum
expectation value of this quantity. However, this calculation
is not feasible due to the presence of a product of field oper-
ators at the same point in space-time. To avoid this problem,
the energy–momentum tensor is written at different points in
space-time. Then
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Θμλ(x) = lim
x ′→x

τ

{
− Fμν(x)Fλ

ν(x ′) − Xμν(x)Xλ
ν(x ′)

+1

4
ημλ

[
Fσρ(x)Fσρ(x ′) + Xσρ(x)Xσρ(x ′)

]

−1

2
ημλησρm2

γ Xρ(x)Xσ (x ′)
}

, (7)

where τ is the ordering operator.
Assuming that both fields, i.e. Aμ and Xμ, satisfy

canonical quantization rules, the energy–momentum tensor
becomes

Θμλ(x) = − lim
x ′→x

{ [
Δμλ,σρ(x, x ′)

(
τ [Aσ (x)Aρ(x ′)]

+τ [Xσ (x)Xρ(x ′)])]
+4i(nμ

0 nλ
0 − 1

4
ημλ)δ(x − x ′)

−1

2
ημληρσ m2

γ τ [Xσ (x)Xρ(x ′)]
}

, (8)

where nμ
0 = (1, 0, 0, 0) is a time-like vector and

Δμλ,σρ = Γ μν,λ
ν
,σρ − 1

4
ημλΓ νρ,

νρ
,σρ (9)

with

Γ μν,λε,σρ(x, x ′) = (ηνσ ∂μ − ημσ ∂ν)(ηερ∂
′λ − ηλρ∂

′ε).

(10)

In order to investigate some applications using the TFD
formalism, it is important to calculate the vacuum expectation
value of Θμλ(x) which is given as

〈Θμλ(x)〉 = 〈0| Θμλ(x) |0〉
= − lim

x ′→x

{[
Δμλ,σρ(x, x ′)

(〈0| τ [Aσ (x)Aρ(x ′)] |0〉

+ 〈0| τ [Xσ (x)Xρ(x ′)] |0〉)]
+4i(nμ

0 nλ
0 − 1

4
ημλ)δ(x − x ′)

−1

2
ημληρσ m2

γ 〈0| τ [Xσ (x)Xρ(x ′)] |0〉
}
. (11)

Using the standard definition of the photon propagator, i.e.,

〈0| τ [Aσ (x)Aρ(x ′)] |0〉 = iησρG0(x − x ′), (12)

where

G0(x − x ′) = 1

4π2i

1

(x − x ′)2 − iε
(13)

is the massless scalar field propagator and the dark photon
propagator [23–25] given as

〈0| τ [Xσ (x)Xρ(x ′)] |0〉 = −i

(
ησρ + 1

m2
γ

∂σ ∂ρ

)
Δ(x − x ′)

(14)

with

Δ(x − x ′) =
(

− imγ

4π2

K1(mγ

√−(x − x ′)2)√−(x − x ′)2

)
. (15)

Then Eq. (11) becomes

〈Θμλ(x)〉 = −i lim
x ′→x

{
Γ μλG0(x − x ′) + ΣμλΔ(x − x ′)

+4(nμ
0 nλ

0 − 1

4
ημλ)δ(x − x ′)

+1

2
ημληρσ m2

γ MσρΔ(x − x ′)
}
, (16)

whereΣμλ=−Δμλ,σρ Mσρ with Mσρ =
(
ησρ + m−2

γ ∂σ ∂ρ

)
.

This is the vacuum expectation value of the energy–
momentum tensor that displays the contributions due to the
visible photons plus the corrections due to the presence of the
dark photons. It will be used to study some applications that
emerge from the topological structure of the TFD formalism.

3 TFD formalism

It is well known that there are two ways to introduce tempera-
ture effects into a quantum field theory: (i) the imaginary-time
or Matsubara formalism [26] and (ii) the real-time formal-
ism. The latter is divided into two approaches: closed path
formalism [27] and thermo field dynamics (TFD) formal-
ism [14–18]. Here, an introduction to the TFD formalism is
presented.

In TFD, the system is placed in contact with a thermal
reservoir, reaching thermal equilibrium. As a result, the sys-
tem is described by two quantum fields: the physical field
at zero temperature and the thermal field. In this approach,
the Hilbert space S is duplicated, forming a thermal Hilbert
space ST that is defined as ST = S ⊗ S̃, where S̃ is the dual
Hilbert space. As a consequence, a new algebra, which map
tilde and non-tilde operators, is introduced, i.e.,

(Ai A j )
∼ = Ãi Ã j ,

(cAi + A j )
∼ = c∗ Ãi + Ã j ,

(A†
i )

∼ = Ã†
i ,

( Ãi )
∼ = −ξ Ai ,

[Ai , Ã j ] = 0,

(17)

with c being an arbitrary constant, ξ = +1(−1) for fermions
(bosons) and A being the standard operator for double nota-
tion. In a matrix representation, the operator is written as

Aa =
(

A1

A2

)
=

(
A
Ã†

)
, (18)
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where a = 1, 2. In addition to tilde operators, another ele-
ment is needed in the TFD formalism, the Bogoliubov trans-
formation, which imposes a rotation between tilde and non-
tilde operators. As an example, let’s consider an arbitrary
operator. Then the Bogoliubov transformation leads to

(
A(α, k)

Ã†(α, k)

)
= U (α)

(
A(k)

Ã†(k)

)
, (19)

where

U (α) =
(

u(α) −v(α)

ξv(α) u(α)

)
, (20)

is the Bogoliubov transformation with u2(α) + ξv2(α) = 1.
Here, α is the compactification parameter defined by α =
(α0, α1, · · · αD−1), where D are the space-time dimensions.

Now let’s apply the doubled notation, TFD formalism, to
the energy–momentum tensor, or more specifically to its vac-
uum expectation value, which describes the Maxwell elec-
tromagnetism with corrections due to dark photons. Then Eq.
(16) dependents on the α parameter becomes

〈Θμλ(ab)(x;α)〉 = −i lim
x ′→x

{
Γ μλG(ab)

0 (x − x ′;α)

+ΣμλΔ(ab)(x − x ′;α)

+4(nμ
0 nλ

0 − 1

4
ημλ)δ(x − x ′)δ(ab)

+1

2
ημληρσ m2

γ MσρΔ(ab)(x − x ′;α)

}
,

(21)

where the Bogoliubov transformation has been used to intro-
duce the compactification parameter in the propagator, i.e.,

G(ab)
0 (x − x ′;α) = U−1(α)G(ab)

0 (x − x ′)U (α), (22)

and similar results for the dark photon propagator. It is inter-
esting to note that the TFD formalism allows constructing a
thermal vacuum, |0(α)〉 = U (α)|0, 0̃〉. Using this definition
and the Fourier transform, the propagator can be written as

G(ab)
0 (x − x ′;α) = i〈0(α)|τ [φa(x)φb(x ′)]|0(α)〉,

= i
∫

d4k

(2π)4 e−ik(x−x ′)G(ab)
0 (k;α), (23)

with φa(x) being the scalar field. Among components, phys-
ical quantities are described by the non-tilde variables. Thus,
the physical quantity is described by the Green function

G(11)
0 (k;α) = G0(k) + ξw2(k;α)[G∗

0(k) − G0(k)], (24)

where G0(k) is the scalar field propagator in the momentum
space and w2(k;α) is the generalized Bogoliubov transfor-

mation [28] which is defined by

w2(k;α) =
d∑

s=1

∑
{σs }

2s−1
∞∑

lσ1 ,...,lσs =1

(−ξ)s+∑s
r=1 lσr

× exp

⎡
⎣−

s∑
j=1

ασ j lσ j k
σ j

⎤
⎦ , (25)

with d being the number of compactified dimensions and
{σs} denotes the set of all combinations with s elements.

Now a renormalization procedure is fundamental, as it
allows obtaining a finite expression that describes measurable
physical quantities. In order to obtain a finite expression, the
procedure used here consists of

Υ μλ(ab)(x;α) ≡ 〈Θμλ(ab)(x;α)〉 − 〈Θμλ(ab)(x)〉, (26)

which leads to

Υ μλ(ab)(x;α) = −i lim
x ′→x

{
Γ μλG

(ab)

0 (x − x ′;α)

+ΣμλΔ
(ab)

(x − x ′;α)

+1

2
ημληρσ m2

γ MσρΔ
(ab)

(x − x ′;α)
}
,

(27)

where

G
(ab)

0 (x − x ′;α) = G(ab)(x − x ′;α) − G(ab)
0 (x − x ′),

(28)

Δ
(ab)

(x − x ′;α) = Δ(ab)(x − x ′;α) − Δ(ab)(x − x ′).
(29)

In the next section, the topological structure of the TFD
formalism and Eq. (27) are used. Then some applications are
investigated.

4 Applications

In this section some applications are calculated and the con-
tribution of dark photons or dark matter is discussed. From
the topological structure of the TFD formalism, three differ-
ent cases are considered that imply three different topologies.
The first case is the topology Γ 1

4 = S
1 × R

3, where α =
(β, 0, 0, 0). This topology brings temperature effects to the
system. The second topology is Γ 1

4 with α = (0, 0, 0, i2d).
This leads to size effects. And the last case consists of the
topology Γ 2

4 = S
1 ×S

1 ×R
2 with α = (β, 0, 0, i2d). In this

situation, the effects of temperature and size are investigated
together.
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4.1 Temperature effects with dark matter contribution

In order to obtain the effects of temperature and the contri-
butions due to dark photons, let’s consider α = (β, 0, 0, 0, ).
In this case, the time-axis is compactified into S

1, with cir-
cumference β. For this topology the generalized Bogoliubov
transformation is given as

w2(β) =
∞∑

l0=1

e−βk0l0 . (30)

Using this transformation, the Green functions become

G0(x − x ′;β) = 2
∞∑

l0=1

G0(x − x ′ − iβl0n0), (31)

Δ(x − x ′;β) = 2
∞∑

l0=1

Δ(x − x ′ − iβl0n0), (32)

where G0(x−x ′;β) = G
(11)

0 (x−x ′;β) and n0 = (1, 0, 0, 0)

is a unit time vector. With these ingredients, the energy–
momentum tensor given in Eq. (27) is written as

Υ μλ(ab)(x;β) = −2i lim
x ′→x

∞∑
l0=1

{
Γ μλG0(x − x ′ − iβl0n0)

+ΣμλΔ(x − x ′ − iβl0n0)

+1

2
ημληρσ m2

γ MσρΔ(x − x ′ − iβl0n0)

}
.

(33)

Taking μ = λ = 0 and performing the derivatives, the energy
density is given as

Υ 00(11)(β) = π2

15β4 +
∞∑

l0=1

mγ

l2
0π2β2

(
3mγ K0

(
l0mγ β

)

+
2

(
3 + l2

0m2
γ β2

)
l0β

K1
(
l0mγ β

) )
. (34)

The first term refers to the standard Stefan–Boltzmann law,
while the second term refers to the dark matter term found
by considering the presence of dark photons in our universe.
Dark photons have a different dependence on temperature.
Considering that the mass of the dark photon is small [10,
29,30], Eq. (34) can be expanded and becomes

Υ 00(11)(T ) = π2

15
T 4 +

(
π2

15
T 4 + m2

γ

12
T 2

)
. (35)

Note that the first term is the standard Stefan–Boltzmann law
associated with the massless photon and the second term is
the contribution due to the massive dark photon. It is impor-
tant to emphasize that at such a low mass limit, a massive
dark photon contributes to a radiance with T 4 that follows

from the Planck law and receives a T 2 correction. In addi-
tion, the energy density obtained for the dark photon in Eq.
(34) recovers the results for the massive photon calculated in
references [31,32] in both limits, very low and high tempera-
tures. At very high temperatures the contribution is given by
Eq. (35), while at very low temperatures the energy density
goes to zero exponentially.

4.2 Size effects at zero temperature with dark matter
contribution

In the topological structure of the TFD formalism, to obtain
the size effects, also known as the Casimir effect at zero
temperature, the compactification parameter is considered
as α = (0, 0, 0, i2d). With this choice the Bogoliubov trans-
formation is given as

w2(d) =
∞∑

l3=1

e−i2dk3l3 (36)

and the Green functions are written as

G0(x − x ′; d) = 2
∞∑

l3=1

G0(x − x ′ − 2dl3n3) (37)

Δ(x − x ′; d) = 2
∞∑

l3=1

Δ(x − x ′ − 2dl3n3) (38)

with n3 = (0, 0, 0, 1). Then the energy–momentum tensor
becomes

Υ μλ(ab)(x; d) = −2i lim
x ′→x

∞∑
l3=1

{
Γ μλG0(x − x ′ − 2dl3n3)

+ΣμλΔ(x − x ′ − 2dl3n3)

+1

2
ημληρσ m2

γ MσρΔ(x − x ′ − 2dl3n3)

}
.

(39)

For μ = λ = 0, the Casimir energy at zero temperature is

Υ 00(11)(d) = − π2

720d4 +
∞∑

l3=1

mγ

4d2l2
3π2

×
(

−mγ K0(2dl3mγ ) + (−1 + 2d2l2
3m2

γ )K1(2dl3mγ )

dl3

)
.

(40)

And taking μ = λ = 3, the Casimir pressure at zero temper-
ature is found as

Υ 33(11)(d) = − π2

240d4 +
∞∑

l3=1

mγ

4d2l2
3π2

(
− 3mγ K0(2dlmγ )

− (3 + 5d2l2m2
γ )K1(2dlmγ )

dl

)
. (41)
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In both results, the first term represents the standard result for
Casimir energy (40) and Casimir pressure (41), respectively.
While the second term is the contribution due to dark pho-
tons. The Casimir force associated with the electromagnetic
field, standard photons, is attractive. In order to investigate
whether the effect associated with dark matter is attractive
or repulsive, let’s assume that the mass of the dark photon is
very small. Then the Casimir energy and pressure become

Υ 00(11)(d) = − π2

720d4 +
(

− π2

720d4 + m2
γ

16d2

)
, (42)

Υ 33(11)(d) = − π2

240d4 −
(

π2

240d4 + m2
γ

24d2

)
. (43)

In these expressions, the first term refer to the standard
Casimir effect, while the second terms are contributions due
to dark photons. Furthermore, the Casimir force associated
with dark photons is attractive, which implies that it behaves
like the standard photon. In addition, our results show that
dark photons can alter the Casimir effect, at least this effect
is doubled at small mass limits. Therefore, this phenomenon
could be a way to investigate the real presence of dark photons
in the universe. In addition to this discussion, another impor-
tant point that must be discussed is whether the presence of
dark photons can significantly affect the Casimir force. Our
result in Eq. (42) is a consequence of the theory that has
been considered, i.e. the Lagrangian (2). In this case, two
free fields, photon field and dark photon field, are consid-
ered, then the Casimir effect is naively doubled. An analog
result has been shown for two mixed scalar fields in [33].
However, as discussed in [13], for a real situation the pres-
ence of dark photons cannot significantly affect the Casimir
force. This happens because dark photons have an huge pen-
etration value. Therefore, measurement obtained from usual
boundary conditions is not possible.

5 Size and temperature effects with dark matter
contribution

Here let’s consider the effects of size and temperature at the
same time. For this the compactification parameter must be
chosen asα = (β, 0, 0, i2d). In this case the double compact-
ification consists in one being the time and the other along
the coordinate z. This leads to the Casimir effect at finite tem-
perature. For this α parameter, the generalized Bogoliubov
transformation is given as

w2(β, d) =
∞∑

l0=1

e−βk0l0 +
∞∑

l3=1

e−i2dk3l3

+2
∞∑

l0,l3=1

e−βk0l0−i2dk3l3 . (44)

Note that the first term is associated with the Stefan–
Boltzmann law, while the second term is associated with the
Casimir effect at zero temperature. Here let’s focus in the
third term, since it corresponds to a mixture of both effects,
size and temperature. The Green functions related to the third
term are

G0(x − x ′;β, d) = 4
∞∑

l0,l3=1

G0
(
x − x ′ − iβl0n0 − 2dl3n3

)
,

(45)

Δ(x − x ′;β, d) = 4
∞∑

l0,l3=1

Δ
(
x − x ′ − iβl0n0 − 2dl3n3

)
.

(46)

With these quantities, the expression for the energy–momen
tum tensor is

Υ μλ(ab)(x; d) = −4i lim
x ′→x

×
∞∑

l0,l3=1

{
Γ μλG0(x − x ′ − iβl0n0 − 2dl3n3)

+ΣμλΔ(x − x ′ − iβl0n0 − 2dl3n3)

+1

2
ημληρσ m2

γ MσρΔ(x − x ′ − iβl0n0 − 2dl3n3)

}
.

(47)

After some calculations, this equation leads to the Casimir
energy at finite temperature

E(β, d) =
∞∑

l0,l3=1

{
8(−4d2l2

3 + 3l2
0β2)

π2(4d2l2
3 + l2

0β2)3

+ 2mγ

π2(4d2l2
3 + l2

0β2)5/2

(
mγ

√
4d2l2

3 + l2
0β2

(−4d2l2
3 + 3l2

0β2)K0

(
mγ

√
4d2l2

3 + l2
0β2

)

+(2(−4d2l2
3 + 8d4l4

3m2
γ ) + 3l2

0

(
1 + 2d2l2

3m2
γ

)
β2

+l4
0m2

γ β4)K1

(
mγ

√
4d2l2

3 + l2
0β2

))}
, (48)

where E(β, d) ≡ Υ 00(11)(β; d), and for the Casimir pres-
sure at finite temperature

P(β, d) =
∞∑

l0,l3=1

{
8(β2l2

0 − 12d2l2
3)

π2(β2l2
0 + 4d2l2

3)3

+ mγ

π2(4d2l2
3 + l2

0β2)5/2

(
2mγ (−12d2l2

3 + l2
0β2)

×
√

4d2l2
3 + l2

0β2 K0(mγ

√
4d2l2

3 + l2
0β2)

−(80d4l4
3m2

γ − 4l2
0β2 + 3l4

0m2
γ β4

+16d2l2
3(3 + 2l2

0m2
γ β2))K1(mγ

√
4d2l2

3 + l2
0β2)

)}

(49)

123
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with P(β, d) ≡ Υ 33(11)(β; d). The first term corresponds
to the Casimir effect at finite temperature for the usual pho-
ton. The other terms are contributions due to a massive dark
photon. The influence of the dark photons does not change
the nature of the Casimir effect, even at high temperatures.

6 Conclusion

An extension of the standard model consisting of a new gauge
group described by SU (3)× SU (2)×U (1)×U (1)X is con-
sidered. The mediator of this new force is the dark photon that
can kinetically mix with the ordinary photon. Considering
the extended Maxwell Lagrangian, the energy–momentum
tensor is constructed. In order to analyze some applications
and calculate the dark photons influence, the TFD formalism
is used. This is a thermal approach known as real-time for-
malism, where the time evolution of a system can be studied
along with temperature effects. Temperature effects are intro-
duced due to its topological structure. In addition to the tem-
perature effect, it is possible to choose a different topology
and, as a consequence, a size effect can be investigated. Then,
the TFD formalism allows the analysis of different effects on
an equal footing, such as Stefan–Boltzmann law and Casimir
effect. Here the Stefan–Boltzmann law with corrections due
to dark photons is calculated. Assuming that the new gauge
boson has a small mass, it is shown that its contribution to
the energy density has the form aT 4 + bT 2, where a and
b are constants, while the energy density for the usual pho-
ton is aT 4. The second application was obtained considering
a spatial compactification that provides size effects. Then,
the influence of dark photons on the Casimir effect is ana-
lyzed. In the limit of small-mass, the Casimir pressure asso-
ciated with dark photons is attractive. Therefore, it has the
same behavior exhibited by the standard photon. For the last
investigation, a double compactification is considered. As a
consequence, the temperature and size effects are calculated.
These results show that, even at high temperatures, contri-
butions from dark photons do not change the nature of the
Casimir effect. It is important to highlight that, although the
theme is the same, the procedures developed in this work are
very different from the study carried out in [13]. Furthermore,
as discussed in [34], the Stefan–Boltzmann law describes the
radiation spectrum in thermal equilibrium. Then it is difficult
to measure the effect of dark photons on this phenomenon,
since dark photons (massive photons) will have a very long
equilibrium time, and thus they will have little effect on the
thermodynamics of a blackbody. Another important point is
related to the measurement of corrections for the Casimir
effect. Due to the enormous value of the penetration depth
of dark photons, it will prevent ideal boundary conditions
assumed in the Casimir effect.
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