
Eur. Phys. J. C (2023) 83:1074
https://doi.org/10.1140/epjc/s10052-023-12254-8

Regular Article - Theoretical Physics

Study on the possible molecular states composed of �c D̄∗, �c D̄∗,
�c D̄∗ and �′

c D̄
∗ in the Bethe–Salpeter frame based on the

pentaquark states Pc(4440), Pc(4457) and Pcs(4459)

Hong-Wei Ke1,a , Fang Lu1, Hai Pang1,b, Xiao-Hai Liu1,c, Xue-Qian Li2,d

1 School of Science, Tianjin University, Tianjin 300072, China
2 School of Physics, Nankai University, Tianjin 300071, China

Received: 13 October 2023 / Accepted: 10 November 2023 / Published online: 24 November 2023
© The Author(s) 2023

Abstract The measurements on a few pentaquarks states
Pc(4440), Pc(4457) and Pcs(4459) excite our new interests
about their structures. Since the masses of Pc(4440) and
Pc(4457) are close to the threshold of �c D̄∗, in the earlier
works, they were regarded as molecular states of �c D̄∗ with
quantum numbers I (J P ) = 1

2 ( 1
2
−
) and 1

2 ( 3
2
−
), respectively.

In a similar way Pcs(4459) is naturally considered as a �c D̄∗
bound state with I = 0. Within the Bethe-Salpeter (B-S)
framework we systematically study the possible bound states
of �c D̄∗, �c D̄∗, �c D̄∗ and �′

c D̄
∗. Our results indicate that

�c D̄∗ can form a bound state with I (J P ) = 1
2 ( 1

2
−
), which

corresponds to Pc(4440). However for the I (J P ) = 1
2 ( 3

2
−
)

system the attraction between �c and D̄∗ is too weak to con-
stitute a molecule, so Pc(4457) may not be a bound state of
�c D̄∗ with I (J P ) = 1

2 ( 3
2
−
). As �c D̄∗ and �′

c D̄
∗ systems

we take into account of the mixing between�c and �′
c and the

eigenstets should include two normal bound states �c D̄∗ and
�′

c D̄
∗ with I (J P ) = 1

2 ( 1
2
−
) and a loosely bound state �c D̄∗

with I (J P ) = 1
2 ( 3

2
−
). The conclusion that two �c D̄∗ bound

states exist, supports the suggestion that the observed peak
of Pcs(4459) may hide two states Pcs(4455) and Pcs(4468).
Based on the computations we predict a bound state �′

c D̄
∗

with I (J P ) = 1
2 ( 1

2
−
) but not that with I (J P ) = 1

2 ( 3
2
−
).

Further more accurate experiments will test our approach
and results.
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1 Introduction

In recent years several pentaquark states have been succes-
sively measured in experiment, which broaden our scope
of view on hadron physics. In 2019 the LHCb collabo-
ration [1] observed a pentaquark state Pc(4312) in J/ψp
invariant mass spectrum and found two narrow overlapping
peaks Pc(4440) and Pc(4457) which hid in the structure
of the former observed Pc(4450) [2]. In 2021 two simi-
lar states Pcs(4338) [3] and Pcs(4459) [4] were announced
in the J/ψ� channel by the LHCb collaboration and their
masses and widthes are collected in Table 1. According to
their masses and the channels where they were found, they
are regarded as pentaquark states rather than conventional
excited baryonic states. In fact in 2003 a baryon was mea-
sured at LEPS [5] which was conjectured as a pentaquark
state, however later the allegation was negated by further
more accurate experiments. On the theoretical aspect Gell-
Mann clearly indicated possible existence of pentaquark in
his first paper on the quark model [6]. Later some theoretical
works have been addressed to this topic [7–14]. For these
new states people have all reasons to doubt about their inner
structure because more constituents involved would bring up
more possible combinations, unlike the simplest qq̄ and qqq
for meson and baryon, respectively. In fact until now most
researchers do not agree with each other on the inner struc-
tures of those exotic states recently found in experiments
[15–19]. Those discoveries on pentaquarks have stimulated
vigorous discussions on their properties [20]. Indeed the the-
oretical exploration is crucial for getting a better understand-
ing on their structures in the quark model and obtaining valu-
able information about non-perturbative physics. Definitely,
more accurate data achieved from experiments would help
theorists to make progress on the route.
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Table 1 Pc and Pcs states observed by LHCb

State Mass (MeV) Width (MeV)

Pc(4312) 4311.9 ± 0.7+6.8
−0.6 9.8 ± 2.7+3.7

−4.5

Pc(4440) 4440.3 ± 1.3+4.1
−4.7 20.6 ± 4.9+8.7

−10.1

Pc(4457) 4457.3 ± 0.6+4.1
−1.7 6.4 ± 2.0+5.7

−1.9

Pcs(4338) 4338.2 ± 0.7 ± 0.4 7.0 ± 1.2 ± 1.3

Pcs(4459) 4458.8 ± 2.9+4.7
−1.1 17.3 ± 6.5+8.0

−5.7

Now let us turn to some concrete subjects where charm
physics is referred because relatively larger database is
collected nowadays. There have been many papers which
address to these hidden charm pentaquark states [21–40]. For
Pc(4318) most authors suggest that it is a �c and D̄ bound
state. As for Pc(4440) and Pc(4457) they were regarded as
the �c − D̄∗ molecular states with J = 1

2 and J = 3
2 ,

respectively in the concerned papers [33–39]. Certainly about
Pc(4457) there are still some different opinions about its
inner structure [32,41]. The authors [30,39] think Pcs(4338)

to be a �c D̄ bound state, while they suggest that the observed
Pcs(4459) should correspond to two states Pcs(4455) and
Pcs(4468) as �c D̄∗ bound state with I (J ) = 0( 1

2 ) and
0( 3

2 ), respectively. In that situation it requires further the-
oretical studies on the structures of Pc(4440), Pc(4457) and
Pcs(4459).

In Ref. [42] we studied two possible molecular states �c D̄
and �c D̄ within the Bethe-Salpeter (B-S) framework. Our
results indicate that the �c D̄ molecular state with I = 0 can
exist which corresponds to the pentaquark state Pc(4318). In
this paper we still employ the same framework (B-S equa-
tion) to study the possible bound state of a charmed baryon
(�c, �c, �c or �′

c) and D̄∗. The B-S equation is a relativistic
equation and established on the basis of quantum field the-
ory thus is adapted to deal with the bound states [43]. Some
authors have employed the B-S equation to study the bound
state of two fermions [44,45], the system of one-fermion-
one-boson [46–49] and two bosons [50–53]. In Ref. [33] the
authors studied possible bound states of �c and D̄∗ within
their B-S framework. In this work we follow the approach
adopted in [42] to study the possible bound states of �c D̄∗,
�c D̄∗, �c D̄∗ and �c D̄∗. Though our approach is a little
similar to that in [33] there is an evident difference between
them: we deduce the B-S equation and the corresponding
kernel from the Feynman diagrams directly with the effec-
tive interactions; instead, in [33] the authors directly wrote
down the potentials for exchanging different particles and
then insert the kernel into these B-S equations.

The pentaquark states Pc(4440) and Pc(4457) have been
measured in the invariant mass spectrum of J/ψp so their
isospins are confirmed as 1

2 because of isospin conserva-
tion. As for Pcs(4459) the isospin is 0 since it is observed in

J/ψ� production. Thus we conjecture that the two hadron
constituents reside in an isospin eigenstate. For the �c D̄∗
system its isospin must be 1

2 but the �c D̄∗ system may reside
in either isospin 1

2 or 3
2 . As for �c D̄∗ and �′

c D̄
∗ systems, the

total isospin is 0 or 1. Certainly, for a bound system composed
of a spin-parity 1

2
+

baryon and 1− meson the total spin-parity

is 1
2
−

or 3
2
−

if the two constituents are in the S−wave.
If two particles can mutually bind the interactions between

them needs to be sufficiently strong. According to the quan-
tum field theory two particles interact via exchanging certain
mediate particles. Since in our study two constituents are
color-singlet hadrons the exchanged particles are some light
hadrons such as π , η, σ , ρ or (and) ω etc.. The effective
interactions for the concerned heavy hadrons are deduced in
Refs. [54–57] and some of them we use are collected in the
appendix A. Using the effective interactions we obtain the
corresponding B-S equation by the Feynman diagrams.

Inputting the corresponding parameters, one can solve the
B-S equation numerically. For a spin-isospin eigenstate, if the
equation possesses a solution with these reasonable parame-
ters, then we would conclude that the corresponding bound
state could exist in the nature, by contraries, no solution of
the B-S equation implies the supposed bound state cannot
form.

This paper is organized as follows: after this introduction
we will derive the B-S equations related to possible bound
states composed of a charmed baryon and D̄∗. Then in Sect.
3 we will solve the B-S equation numerically and present our
results by figures and tables. Section 4 is devoted to a brief
summary.

2 The bound states of �c D̄∗, �c D̄∗, �c D̄∗ and �′
c D̄

∗

Since the pentaquark states Pc(4440), Pc(4457) and Pcs(4459)

contain hidden charms and their masses are close respectively
to the sums of the masses of single charmed baryons �c, �c,
�c or �′

c and a charmed meson D̄∗, it is obviously tempted to
attribute those pentaquark states to molecules of a charmed
baryon and a charmed meson. Below we will focus on the
molecular structures composed of a single charmed baryon
and D̄∗. Concretely, in this paper we study �c D̄∗. �c D̄∗,
�c D̄∗ and �′

c D̄
∗ systems where the spatial wave function

between two constituents is in S−wave i.e. its spin-parity
(J P ) is 1

2
−

or 3
2
−

.

2.1 The isospin states of �c D̄∗ and �c D̄∗

Since the isospins of �c and D̄∗ are 0 and 1
2 , the isospin

structure of the possible bound state �c D̄∗ is
∣
∣
∣
∣

1

2
,

1

2

〉

= |�c D̄
∗0〉. (1)
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Fig. 1 The bound states of
BD̄∗ formed by exchanging
light pseudoscalar meson (a) or
vector meson (b)

There also exists another state | 1
2 ,− 1

2 〉 = |�cD∗−〉 belong-
ing to the doublet of I = 1

2 .
However the isospins of �c is 1, so the possible bound

states of �c D̄∗ could be in one of three isospin assignments
i.e. |I, I3〉 are | 1

2 , 1
2 〉 | 3

2 , 1
2 〉 and | 3

2 , 3
2 〉. The explicit isospin

states are
∣
∣
∣
∣

1

2
,

1

2

〉

=
√

2

3
|�++

c D∗−〉 −
√

1

3
|�+

c D̄∗0〉, (2)

∣
∣
∣
∣

3

2
,

1

2

〉

=
√

1

3
|�++

c D∗−〉 +
√

2

3
|�+

c D̄∗0〉, (3)

and
∣
∣
∣
∣

3

2
,

3

2

〉

= |�++
c D̄∗0〉. (4)

Similarly there are also three isospin adjoint states | 1
2 ,− 1

2 〉,
| 3

2 ,− 1
2 〉 and | 3

2 ,− 3
2 〉.

2.2 The isospin states of �c D̄∗ and �′
c D̄

∗

Since the isospins of �c (�′
c) and D̄∗ are both 1/2, the total

isospin of the possible bound state of �c D̄∗ (�′
c D̄

∗) is 0 or
1. For the �c D̄∗ system the explicit isospin states are

|0, 0〉 = 1√
2
|�+

c D
∗−〉 − 1√

2
|�0

c D
∗0〉 , (5)

|1, 0〉 = 1√
2
|�+

c D
∗−〉 + 1√

2
|�0

c D
∗0〉, (6)

|1, 1〉 = |�+
c D

∗0〉〉, (7)

and

|1,−1〉 = |�0
c D

∗−〉. (8)

For the �′
c D̄

∗ system one can replace �c by �′
c to obtain

the isospin states.

2.3 The Bethe–Salpeter (B-S) equation for J P = 1
2
−

and
3
2
−

molecular states

In the effective theory two hadrons interact via exchanging
light hadrons. For our concerned structures the Feynman dia-
grams at the leading order are depicted in Fig. 1 where B, P
and V denote the charmed baryon, light pseudoscalar and
vector mesons, respectively. For exchanging a light scalar

meson (such as σ ) the Feynman diagram is the same as
Fig. 1a, so we omit it. The total and relative momenta of
the bound state are read as

P = p1 + p2 = q1 + q2, p = η2 p1 − η1 p2,

q = η2q1 − η1q2, (9)

where P is the total momentum of the bound state,q1 (q2) and
p1 (p2) are those momenta of the constituents, q and p are the
relative momenta at the two sides of the effective vertex, k is
the momentum of the exchanged meson, ηi = mi/(m1+m2)

and mi (i = 1, 2) is the mass of the i-th constituent meson.
The bound state composed of a baryon and a vector meson

is written as

χ
μ
P (x1, x2) = 〈0|TB(x1)Mμ(x2)|P〉. (10)

The B-S wave function is a Fourier transformation of that
into the momentum space

χ
μ
P (x1, x2) = e−i P X

∫
d4 p

(2π)4 χ
μ
P (p)e−i px . (11)

By the so-called ladder approximation the corresponding
B-S equation is deduced as

χ
μ
P (p) = SB(p1)

∫
d4q

(2π)4 Kτν(P, p, q)χν
P
(q)Sμτ

M (p2),

(12)

where SB(p1) is the propagator of the baryon (�c, �c, �c or
�′

c), S
ντ
M (p2) is that of the meson (D̄∗) and Kτμ(P, p, q) is

the kernel which is obtained by calculating the Feynman dia-
gram in Fig. 1. For the later convenience the relative momen-
tum p is decomposed into the longitudinal pl (≡ p · v) and
transverse projection pμ

t (≡ pμ − plvμ)=(0, pT ) according
to the momentum of the bound state P (v = P

M ). The two
propagators are

SB(η1P + p) = i[(η1M + pl)v/ + pt/ + m1]
[(η1M + pl)2 − ω2

1 + iε] , (13)

Sμτ
M (η2P − p) = i(−gτμ + pτ

2 p
μ
2 /m2

2)

[(η2M − pl)2 − ω2
2 + iε)] , (14)

where M is the total energy of the bound state, ωi =
√

m2
i − pt 2 and m1 (m2) are the energy and the mass of the

baryon (meson). Apparently the contribution of the tensor
term in Sντ

M is much smaller than that of the first term for
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Table 2 The isospin factors for �c D̄∗ systems

C 1
2 π C 1

2 η C 1
2 σ C 1

2 ρ C 1
2 ω C 3

2 π C 3
2 η C 3

2 σ C 3
2 ρ C 3

2 ω

–2 1 1 –2 1 1 1 1 1 1

Table 3 The isospin factors for �′
c D̄

∗ and (or) �c D̄∗ systems

C0π C0η C0σ C0ρ C0ω C1π C1η C1σ C1ρ C1ω

− 3 1 1 − 3 1 1 1 1 1 1

heavy meson, thus it can be ignored in numerical computa-
tions.

By the Feynman diagram the kernel Kτν(P, p, q) is writ-
ten as

Kτν(P, p, q) =
∑

P
KP

τν(P, p, q) +
∑

S
KS

τν(P, p, q)

+
∑

V
KV

τν(P, p, q), (15)

with

KP
τν(P, p, q) = CIPg1P g2P εαβμλγ

αγ βkμ(p1 + q2)
λεθτνκ

×(p2 + q2)
θkκ�(k,mP )F2(k,mP ),

KS
τν(P, p, q) = CISg1S g2S gτν�(k,mS)F2(k,mS),

KV
τν(P, p, q) = CIV [g1V (p1 + q1)

α

−g′
1Vγμγν(k

μgνα − kνgμα)]
×[−g2V gτν(p2 + q2)

β

+g′
2V gτθgνδ(k

θgδβ − kδgθβ)]
×�αβ(k,mV )F2(k,mV ),

where mP or mV is the mass of the exchanged meson,
g1P , g2P , g1S , g2S , g1V , g′

1V , g2V and g′
2V are the con-

cerned coupling constants, CIM (M represent P where S
or V) are the isospin coefficients. We collect the isospin
coefficients in Tables 2 and 3 and one can refer to the
appendix B of our early paper [42] about how to obtain the
isospin coefficients. The propagator of the exchanging mes-
nons are �(k,mM) = i/(k2 − m2

M) and �αβ(k,mM) =
i(−gαβ +kαkβ/m2

M)/(k2−m2
M). In our study the exchang-

ing particles are limited to only a few light mesons. Of course,
exchanging two light mesons between two hadrons may also
induce a correction to the potential, but it undergoes a loop
suppression, therefore, we do not consider that contribution.
It is noted for �c D̄∗ system only ω and σ can be exchanged,
however for �c D̄∗ system η, π , σ , ρ and ω can be medi-
ators. Simiary for �c D̄∗ system only ρ, ω and σ can be
exchanged, but for �′

c D̄
∗ system η, π , σ , ρ and ω can be

mediators. When we write down the B-S equation (similar
for the transition matrix element) in terms of the Feynman
diagrams we need to pay attention to the direction of the

fermion line flow, following the Feynman rules we put the
B-S wave function of the final state in the left side of the
equation and the BS wave function of the initial state at the
right side of the equation. The treatment is contrary to the
common convention adopted for B-S equation.

Since the constituents of the molecule (meson and baryon)
are not point particles, a form factor at each effective vertex
should be introduced. The form factor is suggested by many
researchers as in the form:

F(k,mM) = �2 − m2
M

�2 − k2 , k = q − p, (16)

where � is a cutoff parameter which usually is taken as about
1 GeV.

The three-dimension B-S wave function is obtained after
integrating over pl

χ
μ
P (pt ) =

∫
dpl
2π

χ
μ
P (p). (17)

For the S-wave system, the completely spatial wave func-
tion can be found in Refs. [47–49]. However for the heavy
hadrons case a simple version can be used

χ
μ
P (pt ) = [ f1(|pT |) + f2(|pT |)pt/]uμ(v, s), (18)

where f1(|pT |) and f2(|pT |) are the radial wave functions,
uμ(v, s), v and s are the spinors, velocity and total spin of the
bound state respectively. uμ(v, s) = 1√

2
(γ μ + vμ)γ5u(v, s)

when the spin of the state is 1
2 and uμ(v, s) is Rarita-

Schwinger vector spinor for a J = 3
2 state.

In the following, let us substitute Eq. (15) into Eq. (12) and
employ the so-called covariant instantaneous approximation
where ql = pl i.e. pl takes the place of ql in the kernel
K (P, p, q), and then K (P, p, q) no longer depends on ql .
Then we are performing a series of manipulations: integrate
over ql on the right side of Eq. (12); multiply

∫ dpl
(2π)

on the
both sides of Eq. (12), and integrate over pl on the left side
in the Eq. (12). Finally, substituting Eq. (18) we obtain

[ f1(|pT |) + f2(|pT |)pt/]uμ(v, s)

=
∫

dpl
(2π)

∫
d3qT
(2π)3

[(η1M + pl)v/ + pt/ + m1](gμτ )

PBM

×
{

∑

P
KP

τν(P, p, qt ) +
∑

S
KS

τν(P, p, qt )

+
∑

V
KV

τν(P, p, qt )

}

×[ f1(|qT |) + f2(|qT |)qt/]uν(v, s), (19)

with

PBM = [(η1M + pl )
2 − ω2

l + iε][(η2M − pl )
2

−ω2
2 + iε)],

123
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KS
τν(P, p, qt ) = CISg1S g2S

igτνF2(k)

−(pT − qT )2 − m2
S

,

KP
τν(P, p, qt ) = CIP g1P g2P εδθφωγ δγ φ(pθ

t − qθ
t )

×[(2η1P + 2pl )v
ω + pω

t + qω
t ]

×[(2η2P − 2pl )v
β − pβ

t − qβ
t ]

× (pα
t − qα

t )εατνβ i F
2(k)

−(pT − qT )2 − m2
P

,

KV
τν(P, p, qt ) = CIV {[g1V (2η1P + 2pl )v

α + pα
t + qα

t ]
+g′

1V γωγφ[(pω
t − qω

t )gφα − (pφ
t − qφ

t )gωα]}
×{−g2V gτν [(2η2P − 2pl )v

β − pβ
t − qβ

t ]
−g′

2V (gτθ gνδ)[(pθ
t − qθ

t )gδβ − (pδ
t − qδ

t )gθβ ]}

×F2(k)
i[−gαβ + (ptα − qtα)(ptβ − qtβ)/m2

V ]
−(pT − qT )2 − m2

V
.

Now let us finally extract the expressions of f1(|pT |) and
f2(|pT |). Multiplying ūμ(v, s) on both sides of Eq.(19), then
by taking a trace, we get an expression which only contains f1
on the left side whereas multiplying ūμ(v, s)pt/ to the expres-
sion, f2 is obtained on the left side, the resultant formulaes
are

f1(|pT |) =
∫

dpl
(2π)

∫
d3qT
(2π)3

i

PBM

[
∑

P

CIPg1P g2P F2(k,mP )KP
1

−(pT − qT )2 − m2
P

+ CISg1S g2S F
2(k,mS)KS

1

−(pT − qT )2 − m2
S

+
∑

V
CIV

F2(k,mV )(−g1V g2V K
V,a
1 − g1V g

′
2V K

V,b
1 − g′

1V g2V K
V,c
1 − g′

1V g
′
2V K

V,d
1 )

−(pT − qT )2 − m2
V

]

, (20)

f2(|pT |) =
∫

dpl
(2π)

∫
dqT
(2π)3

i

PBM

[
∑

P

CIPg1P g2P F2(k,mP )KP
2

−(pT − qT )2 − m2
P

+ CISg1S g2S F
2(k,mS)KS

2

−(pT − qT )2 − m2
S

+
∑

V
CIV

F2(k,mV )(−g1V g2V K
V,a
2 − g1V g

′
2V K

V,b
2 − g′

1V g2V K
V,c
2 − g′

1V g
′
2V K

V,d
2 )

−(pT − qT )2 − m2
V

]

, (21)

with

KS
1 = CJS [ f1(η1M + pl + m1) − f2pT · qT ],

KS
2 = CJS [ f1 + f2(η1M + pl − m1)pT · qT /p2

T ],
KP

1 = 16CJP
3

f1(pl − η2M)

×[(η1M + pl)(η1M + pl + m1)(pT − qT )2

+pT · qT 2 − p2
Tq

2
T ]

+16CJP
3

f2(pl − η2M)[(pT · qT − p2
T )

×(pT · qT − q2
T )(η1M + pl) + m1

×(pT · qT 2 − p2
Tq

2
T )],

KP
2 = 16CJP

3p2
T

f1(pl − η2M)

×[(pT · qT − p2
T )2(η1M + pl)

+m1(p2
Tq

2
T − pT · qT 2)]

−16CJP
3p2

T

f2(pl − η2M){(η1M + pl)

×(η1M + pl − m1)

×[pT · qT (p2
T + q2

T ) − 2p2
Tq

2
T ]

+p2
T [p2

Tq
2
T − pT · qT 2]},

KV,a
1 = f1CJa

mV 2 (η1M + m1 + pl){mV 2

×[−4η1η2M
2 + 4M pl(η1 − η2) + 4pl

2 − (pT
+qT )2] − (p2

T − q2
T )2}

+ f2CJapT · qT [4η1η2M
2 + 4M pl(η2 − η1)

+ (p2
T − q2

T )2

mV 2 − 4pl
2 + (pT + qT )2],

KV,b
1 = −4CJb

3
f2

(

pT · qT 2 − p2
Tq

2
T

)

,

KV,c
1 = 4 f1CJc(pT · qT − p2

T )(pl − η2M)

+4 f2CJ {[−η2M(η1M + m1 + pl)

× + η1M pl + m1 pl + pl
2]

×(pT · qT − q2
T ) − pT · qT 2 + p2

Tq
2
T },

KV,d
1 = −8CJd

3
f1(pT − qT )2(η1M + m1 + pl)

+8CJ

3
f2(pT · qT − p2

T )(pT · qT − q2
T ),

KV,a
2 = − f1CJa

mV 2 {mV 2[4η1η2M
2 + 4M pl(η2 − η1)

−4pl
2 + (pT + qT )2] + (p2

T − q2
T )2}

− f2CJa

mV 2p2
T

pT · qT (−η1M + m1 − pl)

×{mV 2[4η1η2M
2 + 4M pl(η2 − η1) − 4pl

2

+(pT + qT )2] + (p2
T − q2

T )2},
KV,b

2 = f2CJb

3p2
T

4
(

pT · qT 2 − p2
Tq

2
T

)

(−η1M + m1 − pl),
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Table 4 The factors CJM
where M represents P , S, a, b,
c and d

C 1
2 P C 3

2 P C 1
2 S C 3

2 S C 1
2 a

C 3
2 a

C 1
2 b

C 3
2 b

C 1
2 c

C 3
2 c

C 1
2 d

C 3
2 d

1 − 1/2 1 1 1 1 1 − 1/2 1 1 1 − 1/2

Table 5 The coupling constants
of BBM

g1π g1η g′
1σ g1ρ g1ω g′

1ρ g′
1ω

�c�cM 0 0 2lB 0 βBgV
2m�c

0 0

�c�cM
g1

4
√

2m�c fπ

g1

4
√

6m�c fπ
−lS − βS gV

4m�c
− βS gV

4m�c
− λS gV

6 − λS gV
6

�c�cM 0 0 2lB
βBgV
4m�c

βBgV
4m�c

0 0

�′
c�

′
cM

g1

8
√

2m�′
c
fπ

- g1

8
√

6m�′
c
fπ

−lS − βS gV
8m�′

c
− βS gV

8m�′
c

− λS gV
12 − λS gV

12

KV,c
2 = −4 f1CJc

p2
T

(pT · qT − p2
T )

×(pl − η2M)(−η1M + m1 − pl)

−4 f2CJc

p2
T

{M[η1pT · qT 2 + η2

×pT · qTp2
T − p2

Tq
2
T (η1 + η2)]

+m1

(

p2
Tq

2
T − pT · qT 2

)

+plpT · qT (pT · qT − p2
T )},

KV,d
2 = −8 f1CJd

3
(pT − qT )2

−8 f2CJd

3p2
T

(pT · qT − p2
T )(pT · qT

−q2
T )(−η1M + m1 − pl)

where the factors CJP , CJS , CJa , CJb, CJc and CJd are
introduced to include the two cases of total spin: J =1/2 or
3/2, and their values are presented in Table 4.

Now we integrate over pl on the right side of Eqs. (20)
and (21) where four poles exist at −η1M−ω1 + iε, −η1M+
ω1 − iε, η2M + ω2 − iε and η2M − ω2 + iε. By choosing
an appropriate contours we calculate the residuals at pl =
−η1M − ω1 + iε and pl = η2M − ω2 + iε. The coupled
equations after performing contour integrations are obtained
and collected in appendix (Eqs. (B1) and (B2)). One can carry
out the azimuthal integration and reduce Eqs. (B1) and (B2)
to two one-dimensional integral equations

f1(|pT |) =
∫

d|qT |[A11(|qT |, |pT |) f1(|qT |)
+A12(|qT |, |pT |) f2(|qT |)], (22)

f2(|pT |) =
∫

d|qT |[A21(|qT |, |pT |) f1(|qT |)
+A22(|qT |, |pT |) f2(|qT |)], (23)

where A11, A12, A21 and A22 are presented in Appendix (see
Eqs. (B6), (B7), (B8) and (B9)).

3 Numerical results

In order to solve the B-S equation numerically some parame-
ters are needed to be pre-set. The mass m�c , m�c , m�c , m�′

c
,

mD∗ , mπ , mσ ,mω, mρ are taken from the particle databook
[58]. We follow Ref. [54] to determine the parameters for
the coupling constants of baryon-meson-baryon which are
presented in Tables 5 and 6. The coupling constants among
mesons are collected in Table 7 and Appendix A.

With these parameters, including the corresponding spin
factors and the isospin factors, the coupled equations for the
B-S wavefunction (Eqs. (22) and (23)) are established. Since
the coupled equations are complicated integral equations,
we shall solve them numerically. The standard way is to dis-
cretize them, thus one is able to convert them into algebraic
equations. Concretely, within a reasonable finite range (we
set it from 0 to 2 GeV), we let |pT| and |qT| take n discrete
values Q1, Q2,...Qn which distribute with equal gap from
Q1=0.001 GeV to Qn=2 GeV. The gap between two adja-
cent values is �Q = 1.999/(n − 1) GeV (we set n=129 in
our calculation). At this time the integral can be turned into
summing the right sides of Eqs. (24) and (25),

f1(Qi ) =
n

∑

j=1

�Q[A11(Q j , Qi ) f1(Q j )

+A12(Q j , Qi ) f2(Q j )], (24)

f2(Qi ) =
n

∑

j=1

�Q[A21(Q j , Qi ) f1(Q j )

+A22(Q j , Qi ) f2(Q j )]. (25)

123



Eur. Phys. J. C (2023) 83 :1074 Page 7 of 15 1074

Table 6 Some parameter in
coupling constants

g1 βBgV βSgV λSgV (GeV−1) lB lS

1.0 − 6.0 12 19.2 − 3.65 7.3

Table 7 The coupling constants
of D̄∗ D̄∗M g2π g2η g′

2σ g2ρ g2ω g′
2ρ g′

2ω

D∗D∗M gD̄∗ D̄∗P
2
√

2mD∗
gD̄∗ D̄∗P
2
√

6mD∗ gD̄∗ D̄∗P
gD̄∗ D̄∗V√

2

gD̄∗ D̄∗V√
2

g′
D̄∗ D̄∗V√

2

g′
D̄∗ D̄∗V√

2

Since Qi can take the sequential values Q1, Q2,...Qn , the
total number of the algebraic equations from Eqs. (24) and
(25) is 2n and they can be written as a matrix equation

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1(Q1)

...

f1(Qn)

f2(Q1)

...

f2(Qn)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= A(�E,�)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1(Q1)

...

f1(Qn)

f2(Q1)

...

f2(Qn)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where A(�E,�) is a 2n × 2n matrix whose elements are
the coefficients of f1(Q j ) and f2(Q j ) given in Eqs. (24) and
(25).

As a matter of fact, it is a homogeneous linear equation
group. As long as there exist non-trivial solutions, the neces-
sary and sufficient condition is that the coefficient determi-
nant should be zero. In our case, it is |A(�E,�) − I | = 0
where I is the unit matrix and �E = m1 + m2 − M is
the binding energy. �E and � are two variables in the
determinant. When we set the value of �E , by requiring
|A(�E,�) − I | = 0, we obtain a corresponding � if the
equation group possesses solution. Generally � should be
close to 1 GeV. If the obtained � is much beyond the value
or does not exist, we would conclude that the resonance can-
not exist. With this strategy, we investigate the molecular
structure of �c and D̄∗, �c and D̄∗, �c and D̄∗ as well as
that of �′

c and D̄∗.

3.1 The numerical results on �c D̄∗ and �c D̄∗

Now we begin discussng the phenomenological conse-
quences of the theoretical results. For �c and D̄∗ system,
the isospin of �c is 0 and it belongs to baryon anti-triplet
of flavor (B3̄), so only ω and σ can be exchanged between
�c and D̄∗. We cannot find a solution for the B-S equation
within a large range of � when we set some different bind-
ing energies �E , therefore we would conjecture that the total
interaction is repulsive between �c and D̄∗.

With the same procedure, we study a molecule composed
of �c and D̄∗. Since the isospin could be either 1

2 or 3
2 and

the total spin could be either 1
2 or 3

2 , there are four possible

states whose I (J P ) are 1
2 ( 1

2
−
), 1

2 ( 3
2
−
), 3

2 ( 1
2
−
) and 3

2 ( 3
2
−
).

Table 8 The cutoff parameter � and the corresponding binding energy
�E for the bound state �c D̄∗ with I = 1

2

�E MeV 1 5 10 20 30

�(J = 1
2 ) 1.040 1.112 1.166 1.244 1.306

�(J = 3
2 ) 1.927 2.592 3.617 – –

In this case π , η, σ , ω and ρ exchanges between the two
ingredients are allowed. For different binding energies the
values of � are presented in Table 8 where the symbol “–”
means the value is larger than that for small �E . We find
for I (J P ) = 1

2 ( 1
2
−
) state when the binding energy is below

30 MeV the value of � is close to 1, so a I (J P ) = 1
2 ( 1

2
−
)

state should exist. The wavefunction for different binding
energy are plotted in Fig. 2. However for I (J P ) = 1

2 ( 3
2
−
)

state even the binding energy is 1 MeV, the value of � is
much larger than 1, the fact means the abstractive interaction
between �c and D̄∗ with I (J P ) = 1

2 ( 3
2
−
) is too weak to

form a bound state. For I (J P ) = 3
2 ( 1

2
−
) and 3

2 ( 3
2
−
) systems

the B-S equations have no solution.
We study the interactions coming from different meson

exchange I (J P ) = 1
2 ( 1

2
−
) for �c D̄∗ state. When we ignore

the interaction from π in our calculation the value of � will
increase to about 1.339 GeV with �E = 1 MeV. That means
the interaction from π exchange is attractive in this case.
There is the same situation for ρ exchange, i.e. the interaction
from ρ exchange also is attractive. Since the isospin factor is
opposite between ρ exchange and ω exchange, but the inter-
action forms are same, the ω exchange contributes a repulsive
interaction. For �c D̄∗ molecule with I (J P ) = 1

2 ( 1
2
−
), the

total interaction can be attractive due to a larger contribution
from the ρ and π exchange.

Apparently when �E is very small the obtained � is
close to 1, so �c and D̄∗ should form a bound state with
I (J P ) = 1

2 ( 1
2
−
). At present the pentaquark Pc(4440) has

been experimentally observed in �b → J/ψpK channel,
which peaks at the invariant mass spectrum of J/ψp and
has the invariant mass of about 4440.3 MeV. Apparently its
isospin is 1

2 , and the majority of authors [33–39] regarded this
pentaquark as a bound state of �c and D̄∗. We agree with
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Fig. 2 The unnormalized wave function f1(|pT |) and f2(|pT |) for �c D̄∗ system with I (J P ) = 1
2 ( 1

2
−
)

it. In experiment there is another state Pc(4457) in company
with Pc(4440). Some authors suggest that Pc(4457) should
be a bound state �c and D̄∗ with I (J P ) = 1

2 ( 3
2
−
). Our calcu-

lation indicates even for �E = 1 the value of � is 1.927 GeV
which deviates 1 GeV too much. The value of � means the
attractive interaction is very weak between two constituents
so the system of �c D̄∗ with I (J P ) = 1

2 ( 3
2
−
) should not a

resonance unless there is a special mechanism to enhance the
attractive interaction.

By our observation given above, for the state with I = 3
2

the isospin factor is 1 for exchanging either ω or ρ, therefore
the total interaction is repulsive, it means that �c and D̄∗
cannot form a bound state with I = 3

2 .

3.2 The numerical results on �c D̄∗ and �′
c D̄

∗

For the �c D̄∗ system, if the other effects are not included
the corresponding �-values are presented in Table 9. One
can find that even for a small binding energy the value of
� is a bit too large. It seems �c and D̄∗ only may form
two very loose bound states. In our calculation the two states
I (J P ) = 0( 1

2
−
) and 0( 3

2
−
) are also degenerated which is

consistent with those in Ref. [30]. Since only σ , ρ and ω can
be exchanged, the interactions are different only from the
tensor item in the LD̄∗D̄∗V (see the values of C 1

2 b
and C 3

2 b
in

Table 4), which indicates that the tensor coupling has little
contribution to the interaction between �c and D̄∗.

For the �′
c D̄

∗ system in terms of the original value of �

in Table 10 one can find that the I (J P ) = 0( 1
2
−
) system can

be a bound state but I (J P ) = 0( 3
2
−
) system is not.

In Ref. [30] with the coupled channel effect being taken
into account for their initial results, the values of � appar-
ently changed and the degeneration between the two states
I (J P ) = 0( 1

2
−
) and 0( 3

2
−
) disappeared. In this article

we employ another mechanism to achieve the same effect.
We consider the effect of the mixing between �c and �′

c

Table 9 The cutoff parameter � and the corresponding binding energy
�E for the bound state �c D̄∗ with I = 0

�E MeV 1 5 10 20 30

�(J = 1
2 ) 1.327 1.470 1.586 1.768 1.924

�(J = 3
2 ) 1.327 1.469 1.585 1.766 1.923

Table 10 The cutoff parameter� and the corresponding binding energy
�E for the bound state �′

c D̄
∗ with I = 0

�E MeV 1 5 10 20 30

�(J = 1
2 ) 1.070 1.141 1.195 1.271 1.332

�(J = 3
2 ) 1.800 2.341 3.095 – –

which has been discussed in some recent papers [59–62].
Since the flavor symmetry of SU (3) is broken the physical
states �c and �′

c should be the mixing of �3̄
c and �6

c where
the superscripts 3̄ and 6 correspond to SU (3)F anti-triple
and sextet. Under the picture of mixing �3̄

c and �6
c should

replace the �c and �′
c in the representations B3̄ and B6 in

Appendix A. By introducing a mixing angle θ the physi-
cal states �c and �′

c can be expressed by �3̄
c and �6

c i.e.

�c = cosθ �3̄
c + sinθ �6

c and �′
c = −sinθ �3̄

c + cosθ �6
c . In

Ref. [59] we fix the value of θ to be 16.27◦ using the data
of �(�cc → �c)/�(�cc → �′

c). The results including the
mixing effect are presented in Tables 11 and 12. One can find

1. for the �c D̄∗ system the values of � drop but those for
�′

c D̄
∗ system raise;

2. for the �c D̄∗ system the degeneration of the two states
I (J P ) = 0( 1

2
−
) and 0( 3

2
−
) disappear;

3. �c D̄∗ should be form two states I (J P ) = 0( 1
2
−
) and

0( 3
2
−
) but �′

c D̄
∗ only can form a I (J P ) = 0( 1

2
−
) bound

state.
At present Pcs(4459) was measured in experiment which

is close to the threshold of �c D̄∗, so it seems Pcs(4459) is one
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Table 11 The cutoff parameter� and the corresponding binding energy
�E for the bound state �c D̄∗ with I = 0 when the effect of the mixing
between �c and �′

c is included

�E MeV 1 5 10 20 30

�(J = 1
2 ) 1.144 1.235 1.306 1.411 1.496

�(J = 3
2 ) 1.252 1.381 1.488 1.657 1.807

Table 12 The cutoff parameter� and the corresponding binding energy
�E for the bound state �′

c D̄
∗ with I = 0 when the effect of the mixing

between �c and �′
c is included

�E MeV 1 5 10 20 30

�(J = 1
2 ) 1.191 1.273 1.336 1.427 1.545

�(J = 3
2 ) 8.638 – – – –

bound state of �c D̄∗ with I = 0. If the structure includes two
states: Pcs(4455) and Pcs(4468) they are just corresponding
to two states of �c D̄∗ with I (J P ) = 0( 1

2
−
) and 0( 3

2
−
),

it seems the suggestion in Refs. [30,39] is reasonable. For
I = 1 systems there are no solutions can be obtained, so
these states cannot exist.

4 Conclusion and discussion

With more and more exotic states (tetraquarks and pen-
taquarks) being experimentally discovered, the new hadron
“zoo” gradually emerges, do we face the same situation Gell-
Mann did half century ago? Even though the whole picture is
still vague, the shape might be encouraging that the time of
establishing a unique theory on the exotic states which would
be an extension of the Gell-Manns SU(2) quark model, is
coming. Nowadays, the task of high energy physicists is to
carefully study every newly discovered exotic state, namely
find out its inner structure and production/decay characteris-
tics. The procedure will definitely enrich our understanding.
Our present work is just along the route forward.

Within the B-S framework we explore the possible bound
states which are composed of a baryon (�c, �c, �c or �′

c)
and D̄∗. In our work the orbital angular momentum between
two constituents is 0 (S-wave) so the total spin and parity
is 1

2
−

or 3
2
−

. By solving the corresponding B-S equations
of �c D̄∗, �c D̄∗, �c D̄∗ and �′

c D̄
∗ we get possible infor-

mation of bound states. If the B-S equation for a supposed
molecular structure has a solution and the parameters are rea-
sonable, we would conclude that the concerned pentaquark
could exist in the nature, oppositely, no-solution or the unrea-
sonable parameter(s) means the supposed pentaquark cannot
appear as a resonance or the molecular state is not an appro-
priate postulate. The solution can apply as a criterion for the

structures of the pentaquark states which have already been
or will be experimentally measured. In this work, the two
constituents interact by exchanging some light mesons. For
the �c D̄∗ system only ω and σ are the exchanged mediate
mesons, while for the �c D̄∗ system π , η σ , ρ and ω con-
tribute. Similarly, for �c D̄∗ system only ρ, ω and σ can
be exchanged, however for �′

c D̄
∗ system π , η, σ , ρ and ω

can be mediators. The chiral interaction determines if those
molecular states can be formed.

The key strategy we adopt in this work is that since
two constituents are heavy hadrons, the B-S wave function
contains two scalar functions f1(|pT|) and f2(|pT|) which
should be solved numerically. After some manipulations
the B-S equation turn into two coupled integral equations.
Discretizing the two coupled integral equations, we sim-
plify them into two algebraic equations about f1(Qi ) and
f2(Qi ) (i = 1, 2, ..., n). As |pT| can take n discrete val-
ues the two coupled equations are converted into 2n alge-
braic equations which constitute a homogeneous linear equa-
tion group and can be easily solved numerically in terms of
available softwares. When all known parameters are input
there still is one undetermined parameter �. Our strategy
is inputting binding energies within a range and then fixing
� by solving the matrix equation. If � is located in a rea-
sonable range one can expect the bound state to exist. We
find the B-S equation of the state �c D̄∗ system has no solu-
tion for � when the binding energy takes experimentally
allowed values. For the �c D̄∗ system there are four states
with I (J P ) = 1

2 ( 1
2
−
), 1

2 ( 3
2
−
), 3

2 ( 1
2
−
) and 3

2 ( 3
2
−
). We find

the equation for I (J P ) = 1
2 ( 1

2
−
) has a solution for � falling

into the reasonable range. The result supports that Pc(4440)

maybe is a molecular state of �c D̄∗ with I (J P ) = 1
2 ( 1

2
−
).

Some authors suggest that Pc(4457) should be a bound state
�c and D̄∗ with I (J P ) = 1

2 ( 3
2
−
). Our calculation indicates

even for �E = 1 the value of � is 1.927 GeV which deviates
1 GeV too much so the systme of �c D̄∗ with I (J P ) = 1

2 ( 3
2
−
)

should not a resonant.
We also study the possible �c D̄∗ and �′

c D̄
∗ bound states.

When no other effect is included the system �′
c D̄

∗ with

I (J P ) = 0( 1
2
−
) can be a typical bound state, �c D̄∗ with

I (J P ) = 0( 1
2
−
) and 0( 3

2
−
) may be two very weak bound

states at most but �′
c D̄

∗ with I (J P ) = 0( 3
2
−
) shouldn’t

exist. However after the effect of the mixing of �c and �′
c

is included the situation changed apparently. �c D̄∗ with
I (J P ) = 0( 1

2
−
) and �′

c D̄
∗ with I (J P ) = 0( 1

2
−
) may be

two typical bound states but �c D̄∗ with I (J P ) = 0( 3
2
−
)

may be a weak bound state.
It is noted, we ignore the coupled channel effects in the

Bethe–Salpeter. If the coupled channel interaction is taken
into account, just as the authors of Refs. [30,63] did, the
value of � may change a little bit.
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Within the B-S framework, we investigate the bound state
of a charmed baryon and D̄∗. We pay a special attention to
the systems �c D̄∗, �c D̄∗, �c D̄∗ and �′

c D̄
∗ because experi-

mentally well measured Pc(4440), Pc(4457) and Pcs(4459)

may be related to them. From that study, we have accumu-
lated valuable knowledge on probable molecular structure
of pentaquarks which can be applied to the future research.
Definitely, the discovery of pentaquarks opens a window for
understanding the quark model established by Gell-Mann
and several other predecessors. Deeper study on their struc-
tures and concerned effective interaction which binds the
ingredients to form a molecule would greatly enrich our the-
oretical aspect.
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Appendix A: The effective interactions

The effective interactions BBM can be found in [64–66]

LB3̄B3̄σ
= lB〈B̄3̄σB3̄〉 (A1)

LB3̄B3̄V = βBgV√
2

〈B̄3̄v · VB3̄〉, (A2)

LB6B6σ = −lS〈B̄6σB6〉, (A3)

LB6B6P = i
g1

2 fπ
εμναβvβlS〈B̄6γμγα∂νPB6〉, (A4)

LB6B6V = −βSgV√
2

〈B̄6v · VB6〉 − i
λSgV
3
√

2

×〈B̄6γμγν(∂
μVν − ∂νVμ)B6〉 (A5)

where B ¯̄3 =
⎛

⎝

0 �+
c �+

c
−�+

c 0 �0
c

−�+
c �0

c 0

⎞

⎠, B6 =

⎛

⎜
⎜
⎜
⎝

�+
c

�+
c√
2

�
′+
c√
2

�+
c√
2

�0
c

�
′0
c√
2

�
′+
c√
2

�
′0
c√
2

�0
c

⎞

⎟
⎟
⎟
⎠

,

P =

⎛

⎜
⎜
⎝

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K 0

K− K̄ 0 −
√

2
3η

⎞

⎟
⎟
⎠

and

V =

⎛

⎜
⎜
⎝

ρ0√
2

+ ω√
2

ρ+ K ∗+

ρ− − ρ0√
2

+ ω√
2
K ∗0

K ∗− ¯K ∗0 φ

⎞

⎟
⎟
⎠

, respectively.

The effective interactions D̄ D̄M can be found in [55–57]

L
D̄∗ D̄∗σ

= g
D̄∗ D̄∗σ

(D̄∗μ
b D̄∗†

aμσ), (A6)

L
D̄∗ D̄∗P = g

D̄∗ D̄∗P (D̄∗μ
b

↔
∂

β

D̄∗α†
a )(∂νP)abενμαβ, (A7)

L
D̄∗ D̄∗V = ig

D̄∗ D̄∗V (D̄∗ν
b

↔
∂ μ D̄∗†

aν)(V)
μ
ab

+ig′
D̄∗ D̄∗V D̄

∗μ
b D̄∗ν†

a (∂μVν − ∂νVμ)ab (A8)

where a and b represent index of SU(3) flavor group for three
light quarks. In the flavor SU (3) symmetry and heavy quark
limit, the above coupling constants are given bygD∗D∗σ

=
2gσ MD∗ , gD∗D∗P = 2g

fπ
, g

D̄∗ D̄∗V = βgV /
√

2, g′
D̄∗ D̄∗V =

2
√

2λgV MD∗ with gσ = −0.76 [67], fπ = 132 MeV [56],
β = 0.9, gV = 5.9 [68] and λ = 0.56 GeV−1 [37].

Appendix B: The coupled equation of f1(|pT |) and
f2(|pT |) after integrating over pl and some formulas for
azimuthal integration

The coupled equation of f1(|pT |) and f2(|pT |) after inte-
grating over pl are

123
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f1(|pT |) =
∫

d3qT
(2π)3

1

PR1

{[
∑

P

CIPg1P g2P F2(k,mP )KP
1

−(pT − qT )2 − m2
P

+ CISg1S g2S F
2(k,mS)KS

1

−(pT − qT )2 − m2
S

+
∑

V

−CIV F2(k,mV )(g1V g2V K
V,a
1 + g1V g

′
2V K

V,b
1 + g′

1V g2V K
V,c
1 + g′

1V g
′
2V K

V,d
1 )

−(pT − qT )2 − m2
V

]

pl=−η1M−ω1

}

+
∫

d3qT
(2π)3

1

PR2

{[
∑

P

CIPg1P g2P F2(k,mP )KP
1

−(pT − qT )2 − m2
P

+ CISg1S g2S F
2(k,mS)KS

1

−(pT − qT )2 − m2
S

−
∑

V

CIV F2(k,mV )(g1V g2V K
V,a
1 + g1V g

′
2V K

V,b
1 + g′

1V g2V K
V,c
1 + g′

1V g
′
2V K

V,d
1 )

−(pT − qT )2 − m2
V

]

pl=η2M−ω2

}

. (B1)

f2(|pT |) =
∫

d3qT
(2π)3

1

PR1

{[
∑

P

CIPg1P g2P F2(k,mP )KP
2

−(pT − qT )2 − m2
P

+ CISg1S g2S F
2(k,mS)KS

2

−(pT − qT )2 − m2
S

+
∑

V

−CIV F2(k,mV )(g1V g2V K
V,a
2 + g1V g

′
2V K

V,b
2 + g′

1V g2V K
V,c
2 + g′

1V g
′
2V K

V,d
2 )

−(pT − qT )2 − m2
V

]

pl=−η1M−ω1

}

+
∫

d3qT
(2π)3

1

PR2

{[
∑

P

CIPg1P g2P F2(k,mP )KP
2

−(pT − qT )2 − m2
P

+ CISg1S g2S F
2(k,mS)KS

2

−(pT − qT )2 − m2
S

−
∑

V

CIV F2(k,mV )(g1V g2V K
V,a
2 + g1V g

′
2V K

V,b
2 + g′

1V g2V K
V,c
2 + g′

1V g
′
2V K

V,d
2 )

−(pT − qT )2 − m2
V

]

pl=η2M−ω2

}

, (B2)

with PR1 = 2ω1(M + ω1 + ω2)(M + ω1 − ω2) and PR2 =
2ω2(M + ω1 − ω2)(M − ω1 − ω2).

Since d3qT = q2
T sin(θ)d|qT |dθdφ and pT · qT =

|pT ||qT |cos(θ) one can carry out the azimuthal integration
for Eqs. (B1) and (B2) analytically. Some useful integrations
are defined as follow

J0 ≡
∫ π

0
sin(θ)dθ

1

−(pT − qT )2 − m2
M

[

�2 − m2
M

�2 − (pT − qT )2

]2

=
∫ π

0

sin(θ)dθ

−[p2
T + q2

T − 2|pT ||qT |cos(θ)] − m2
M

×
{

�2 − m2
M

�2 − [p2
T + q2

T − 2|pT ||qT |cos(θ)]

}2

= − 2(m2
M − �2)

[(|pT | − |qT |)2 + �2][(|pT | + |qT |)2 + �2]

+ 1

2|pT ||qT |

{

Ln

[
(|pT | + |qT |)2 + �2

(|pT | − |qT |)2 + �2

]

−Ln

[

(|pT | + |qT |)2 + m2
M

(|pT | − |qT |)2 + m2
M

]}

, (B3)

J1 ≡
∫ π

0
sin(θ)dθ

pT · qT
−(pT − qT )2 − m2

M

[

�2 − m2
M

�2 − (pT − qT )2

]2

=
∫ π

0

|pT ||qT |cos(θ)sin(θ)dθ

−[p2
T + q2

T − 2|pT ||qT |cos(θ)] − m2
M

×
{

�2 − m2
M

�2 − [p2
T + q2

T − 2|pT ||qT |cos(θ)]

}2

= − (m2
M − �2)(|pT |2 + |qT |2 + �2)

[(|pT | − |qT |)2 + �2][(|pT | + |qT |)2 + �2]

+ (|pT |2 + |qT |2 + m2
M)

4|pT ||qT |

{

Ln

[
(|pT | + |qT |)2 + �2

(|pT | − |qT |)2 + �2

]

−Ln

[

(|pT | + |qT |)2 + m2
M

(|pT | − |qT |)2 + m2
M

]}

, (B4)

J2 ≡
∫ π

0
sin(θ)dθ

(pT · qT )2

−(pT − qT )2 − m2
M

[

�2 − m2
M

�2 − (pT − qT )2

]2

=
∫ π

0

|pT |2|qT |2cos2(θ)sin(θ)dθ

−[p2
T + q2

T − 2|pT ||qT |cos(θ)] − m2
M

×
{

�2 − m2
M

�2 − [p2
T + q2

T − 2|pT ||qT |cos(θ)]

}2

= − (m2
M − �2)(|pT |2 + |qT |2 + �2)2

2[(|pT | − |qT |)2 + �2][(|pT | + |qT |)2 + �2]
+ 1

8|pT ||qT |
{

(|pT |2 + |qT |2 + 2m2
M − �2)

×(|pT |2 + |qT |2 + �2)Ln

[
(|pT | + |qT |)2 + �2

(|pT | − |qT |)2 + �2

]

−(|pT |2 + |qT |2 + m2
M)2Ln

[
(|pT | + |qT |)2 + m2

M
(|pT | − |qT |)2 + m2

M

]}

.

(B5)

The detail expressions of A11(pT,qT), A12(pT,qT), A21(pT,

123
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qT) and A22(pT,qT) are

A11(pT,qT) = q2
T

(2π)2

1

PR1

[
∑

P
CIPCJPg1P g2P AP

11

+CISCJSg1S g2S A
S
11

−
∑

V
CIV (CJag1V g2V AV,a

11 + CJbg1V g
′
2V AV,b

11

+CJcg
′
1V g2V AV,c

11 + CJdg
′
1V g

′
2V AV,d

11 )

]

+ q2
T

(2π)2

1

PR2

[
∑

P
CIPCJPg1P g2P A

′P
11

+CISCJSg1S g2S A
′S
11

−
∑

V
CIV (CJag1V g2V A

′V,a
11

+CJbg1V g
′
2V A

′V,b
11 + CJcg

′
1V g2V A

′V,c
11

+CJdg
′
1V g

′
2V A

′V,d
11 )

]

, (B6)

A12(pT,qT) = q2
T

(2π)2

1

PR1

[
∑

P
CIPCJPg1P g2P AP

12

+CISCJSg1S g2S A
S
12

−
∑

V
CIV (CJag1V g2V AV,a

12 + CJbg1V g
′
2V AV,b

12

+CJcg
′
1V g2V AV,c

12 + CJdg
′
1V g

′
2V AV,d

12 )

]

+ q2
T

(2π)2

1

PR2

[
∑

P
CIPCJPg1P g2P A

′P
12

+CJSg1S g2S A
′S
12

−
∑

V
CIV (CJag1V g2V A

′V,a
12 + CJbg1V g

′
2V A

′V,b
12

+CJcg
′
1V g2V A

′V,c
12 + CJdg

′
1V g

′
2V A

′V,d
12 )

]

, (B7)

A21(pT,qT) = q2
T

(2π)2

1

PR1

[
∑

P
CIPCJPg1P g2P AP

21

+CISCJSg1S g2S A
S
21

−
∑

V
CIV (CJag1V g2V AV,a

21 + CJbg1V g
′
2V AV,b

21

+CJcg
′
1V g2V AV,c

21 + CJdg
′
1V g

′
2V AV,d

21 )

]

+ q2
T

(2π)2

1

PR2

[
∑

P
CIPCJPg1P g2P A

′P
21

+CISCJSg1S g2S A
′S
21

−
∑

V
CIV (CJag1V g2V A

′V,a
21 + CJbg1V g

′
2V A

′V,b
21

+CJcg
′
1V g2V A

′V,c
21 + CJdg

′
1V g

′
2V A

′V,d
21 )

]

, (B8)

A22(pT,qT) = q2
T

(2π)2

1

PR1

[
∑

P
CIPCJPg1P g2P AP

22

+CISCJSg1S g2S A
S
22

−
∑

V
CIV (CJag1V g2V AV,a

22 + CJbg1V g
′
2V AV,b

22

+CJcg
′
1V g2V AV,c

22 + CJdg
′
1V g

′
2V AV,d

22 )

]

+ q2
T

(2π)2

1

PR2

[
∑

P
CIPCJPg1P g2P A

′P
22

+CISCJSg1S g2S A
′S
22

−
∑

V
CIV (CJag1V g2V A

′V,a
22 + CJbg1V g

′
2V A

′V,b
22

+CJcg
′
1V g2V A

′V,c
22 + CJdg

′
1V g

′
2V A

′V,d
22 )

]

. (B9)

with

AS11 = (m1 − ω1)J0,

A
′S
11 = (M + m1 − ω2)J0,

AP11 = 16

3
J0(M + ω1)

×
{

pT
2[ω1(m1 − ω1) + qT

2] + qT
2ω1(m1 − ω1)

}

+32

3
J1ω1(M + ω1)(ω1 − m1) − 16

3
J2(M + ω1),

A
′P
11 = 16

3
J0ω2

{

−[(M − ω2)2 + (M − ω2)m1](pT 2 + qT
2)

+pT
2qT

2
}

+32

3
J1ω2[M2 + M(m1 − ω2) + 2ω2(ω2 − m1)]

−16

3
J2ω2,

AV,a
11 = −J0(m1 − ω1)[−4mV 2ω1(M + ω1) + mV 2pT

2

+mV 2qT
2 + (pT

2 − qT
2)2]/mV 2

−2J1(m1 − ω1),

A
′V,a
11 = −J0(M + m1 − ω2)[4mV 2ω2(M − ω2) + mV 2pT

2

+mV 2qT
2 + (pT

2 − qT
2)2]/mV 2

−2J1(M + m1 − ω2),

AV,b
11 = A

′V,b
11 = 0,

AV,c
11 = 4J0pT

2(M + ω1) − 4J1(M + ω1),

A
′V,c
11 = 4J0pT

2ω2 − 4J1ω2,

AV,d
11 = 8

3
J0(m1 − ω1)(−pT

2 − qT
2)

123
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+16

3
J1(m1 − ω1),

A
′V,d
11 = 8

3
J0(−pT

2 − qT
2)(M + m1 − ω2)

+16

3
J1(M + m1 − ω2), (B10)

AS12 = −J1,

A
′S
12 = −J1,

AP12 = 16

3
[J0(M + ω1)(m1 + ω1)pT

2qT
2

−J1(M + ω1)(pT
2 + qT

2)ω1 + J2(M + ω1)(ω1 − m1)],
A

′P
12 = −16

3
[J0ω2(M − ω2 − m1)pT

2qT
2

−J1ω2(pT
2 + qT

2)(M − ω2) + J2ω2(M + m1 − ω2)],
AV,a

12 = J1[−4mV 2ω1(M + ω1) + mV 2pT
2

+mV 2qT
2 + (pT

2 − qT
2)2]/mV 2 + 2J2,

A
′V,a
12 = J1[4mV 2ω2(M − ω2) + mV 2pT

2

+mV 2qT
2 + (pT

2 − qT
2)2]/mV 2 + 2J2,

AV,b
12 = A

′V,b
12 = 4

3
[J0pT

2qT
2 − J2],

AV,c
12 = 4[J0qT

2[(M + ω1)(m1 − ω1) + pT
2]

−J1(M + ω1)(m1 − ω1) − J2],
A

′V,c
12 = 4[J0qT

2[ω2(M + m1 − ω2) + pT
2]

−J1ω2(M + m1 − ω2) − J2],
AV,d

12 = A
′V,d
12 = 8

3
[J0pT

2qT
2

+J1 − (pT
2 + qT

2) + J2], (B11)

AS21 = J0,

AS21 = J0,

AP21 = 16

3
J0(M + ω1)[pT 2ω1 − m1qT

2]

−32

3
J1ω1(M + ω1) + 16

3pT 2 J2(M + ω1)(m1 + ω1),

A
′P
21 = 16

3
J0ω2[pT 2(ω2 − M) − m1qT

2]

−32

3
J1ω2(ω2 − M) + 16

3pT

2
J2ω2(−M + m1 + ω2),

AV,a
21 = −J0[−4mV 2ω1(M + ω1) + mV 2pT

2

+mV 2qT
2 + (pT

2 − qT
2)2]/mV 2 − 2J1,

A
′V,a
21 = −J0[4mV 2ω2(M − ω2) + mV 2pT

2

+mV 2qT
2 + (pT

2 − qT
2)2]/mV 2 − 2J1,

AV,b
21 = A

′V,b
21 = 0,

AV,c
21 = −4J0(M + ω1)(m1 + ω1)

+ 4

pT 2 J1(M + ω1)(m1 + ω1),

A
′V,c
21 = −4J0ω2(−M + m1 + ω2)

+ 4

pT 2 J1ω2(−M + m1 + ω2),

AV,d
21 = A

′V,d
21 = −8

3
J0

(

pT
2 + qT

2
)

+ 16

3
J1, (B12)

AS22 = (m1 + ω1)J1/p2
T ,

A
′S
22 = (m1 + ω2 − M)J1/p2

T ,

AP22 = 16

3
{J0qT

2(M + ω1)[pT 2 − 2ω1(m1 + ω1)]
×J1ω1(M + ω1)(m1 + ω1)(1 + qT

2/pT
2)

−J2(M + ω1)},
A

′P
22 = 16

3
{J0ω2qT

2[−2M2 + 2M(m1 + 2ω2)

+pT
2 − 2ω2(m1 + ω2)]

+J1ω2(1 + qT
2/pT

2)

[M2 − M(m1 + 2ω2) + ω2(m1 + ω2)] − J2ω2},
AV,a

22 = −J1(m1 + ω1)[−4mV 2ω1(M + ω1) + mV 2pT
2

+mV 2qT
2 +

(

pT
2 − qT

2
)2]/(mV 2pT

2)

− 2

pT 2 J2(m1 + ω1),

A
′V,a
22 = J1(M − m1 − ω2)[4mV 2ω2(M − ω2) + mV 2pT

2

+mV 2qT
2 +

(

pT
2 − qT

2
)2]/(mV 2pT

2)

+ 2

pT 2 J2(M − m1 − ω2),

AV,b
22 = −4

3
[J0qT

2(m1 + ω1) − J2(m1 + ω1)/pT
2],

A
′V,b
22 = −4

3
[J0qT

2(−M + m1 + ω2)

−J2(−M + m1 + ω2)/pT
2],

AV,c
22 = −4[J0qT

2(m1 − M) + J1(M + ω1)

+J2(−m1 − ω1)/pT
2],

A
′V,c
22 = 4[J0qT

2(M − m1) − J1ω2

−J2(M − m1 − ω2)/pT
2],

AV,d
22 = −8

3
[J0qT

2(m1 + ω1)

−J1(m1 + ω1)(1 + qT
2/pT

2) + J2(m1 + ω1)/pT
2],

A
′V,d
22 = −8

3
[J0qT

2(−M + m1 + ω2)

−J1(1 + qT
2/pT

2)(−M + m1 + ω2)

+J2(−M + m1 + ω2)/pT
2]. (B13)
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