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Abstract I re-examined the notion of the thermodynamic
force constructed from the first law of black hole thermody-
namics. In general relativity, the value of the charge (or angu-
lar momentum) at which the thermodynamic force equals
the conjectured maximum force F = 1/4 is found to corre-
spond to Q2/M2 = 8/9 (respectively,a2/M2 = 8/9), which
is known in the literature to exhibit some special properties.
This provides a possible characterization of near-extremality.
In addition, taking the maximum force conjecture seriously
amounts to introducing a pressure term in the first law of
black hole thermodynamics. This resolves the factor of two
problem between the proposed maximum value F = 1/4
and the thermodynamic force of Schwarzschild spacetime
F = 1/2. Surprisingly it also provides another indication
for the instability of the inner horizon. For a Schwarzschild
black hole, under some reasonable assumptions, this pres-
sure can be interpreted as being induced by the quantum
fluctuation of the horizon position, effectively giving rise to
a diffused “shell” of characteristic width

√
M . The maxi-

mum force can therefore, in some contexts, be associated
with inherently quantum phenomena, despite the fact that it
is free of h̄. Some implications are discussed as more ques-
tions are raised.

1 Introduction: maximum force and the mystery of a
factor of two

In [1], I noted that the first law of thermodynamics for a
Schwarzschild black hole dM = T dS, where M , T and
S are the black hole mass, Hawking temperature and the
Bekenstein–Hawking entropy respectively, can be expressed

a e-mail: ycong@yzu.edu.cn (corresponding author)

as a “thermodynamic force”1

Ftherm := dM

dr+
= T

dS

dr+
= c4

2G
, (1)

where r+ denotes the horizon. On the other hand, in general
relativity (GR), the “maximum force conjecture” states that
there exists an upper bound for forces acting between two
bodies [2–5]: F � Fmax = 1/4. This conjecture has attracted
quite some attentions and controversies recently, see, e.g.,
[6–13].

In this work, I will only discuss the thermodynamic force
of (asymptotically flat 4-dimensional) black holes in GR; I
am less concerned about the validity of the conjectures in
more general contexts. It is worth emphasizing that while we
often do not make use of “forces” in GR, there is no issue
in defining2 Eq. (1). Since Ftherm > Fmax, I proposed in [1]
the “weak maximum force conjecture” (WMFC), in which
Fmax = O(1), to distinguish it from the original strong form
of the conjecture (SMFC). For Schwarzschild black holes,
Ftherm = 1/2 = 2Fmax, which I will refer herein as the
“factor of two problem”.

In [9], Schiller (see also [14]) objected that previous works
[1,15,16] with the maximum force value being 1/2 instead of
1/4 failed to take into account either the difference between
radius and diameter, or the factor of 2 in the Smarr relation for
black holes (M = 2T S). However, it can readily be checked
that Eq. (1) is correct and in my opinion cannot be explained
by either of these reasons (The Smarr relation is definitely

1 In the following I will mostly set c = G = h̄ = kB = 1, but will
restore them when emphasis is needed.
2 One objection is that this definition seems to depend on the coordinate
choice. We defer this to the Discussion.
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correct as Eq. (1) is just the first law of black hole thermo-
dynamics; for the issue of diameter vs radius, we defer to
the Discussion section). In fact, the argument in [9] itself
amounts to the incorrect relation M = T S, not M = 2T S.
To see this,3 we note that Eq. (10) in Ref. [9] gives

E = κ

8π
A = κ

2π
S = 1

8πM
S = T S. (2)

This result was obtained by heuristically considering, assum-
ing F = 1/4 holds, the equalities

F

A
= 1/4

4πr2+
= E/L

A
, (3)

where E = M is the energy of the system, and the size of
the system L � r+ = 1/2κ . Putting aside the issue whether
r+ can be taken as a measure of the system “size”,4 it would
seem that the SMFC value F = 1/4 is inconsistent with
M = 2T S. This is another manifestation of the factor of
two problem. M = 2T S can be obtained if we use F = 1/2
instead. However, as we shall see the issue is deeper than this.
To this end, we need to consider more general black holes,
namely how F changes if rotation is included, for example.

In this note, I would like to point out – even if black holes
only conform to WMFC, this does not mean that the value
F = 1/4 has no significance in this context. To this end, I
shall first discuss near-extremal black holes and how they led
to the consideration of SMFC in Sect. 2. In doing so we will
also see in Sect. 3 that as a bonus, SMFC is consistent with
the well-known instability of the inner horizon. In Sect. 4,
we will see that this may point towards the possibility that the
first law we considered is incomplete, and that SMFC may
in fact, hold, but for nontrivial reasons. This would resolve
the factor of two issue and reconcile both the WMFC and
SMFC, at least in the contexts of black hole thermodynamics.
More specifically, as we will see, WMFC holds if we treat
black holes “classically”, in the sense that the T dS term in
the first law is interpreted as (κ/8π) dA as it was originally
conceived [17]; i.e. h̄ cancels out from the numerator of T
and the denominator of S. On the other hand, SMFC holds if
we allow quantum fluctuation on the horizon position, which
induces a pressure term. In other words, SMFC in this context
is inherently quantum in nature. This is clarified in Sect. 5.
This may seem odd to readers who are familiar with the
maximum force conjecture since it is often emphasized that
F is a classical quantity independent of h̄ (see, e.g. [18]). I
will address this in the Discussion section (Sect. 6).

3 Or note that Eq. (11) in Ref. [9] is the first law of black hole thermo-
dynamics dM = T dS, so its Eq. (10) is equivalent to M = T S.
4 One might object that in general relativity, due to spacetime curvature
the Schwarzschild r coordinate is only an areal radius, not a proper
length. Nevertheless, there is a good reason to take 2M as the size of
the black hole – see the Discussion section.

2 Interlude: how close to extremal is near-extremal?

The mass function M(Q, r+) := (Q2 + r2+)/2r+ for the
Reissner–Nordström black hole (analogously for the Kerr
case) leads to the definition of the thermodynamic force

Ftherm := ∂M

∂r+
=

√
1 − x2

1 + √
1 − x2

, (4)

where x := Q/M (or a/M for the Kerr case; without loss
of generality, let us assume Q, a > 0). This expression
is monotonically decreasing from 1/2 to 0 in the extremal
limit. Remarkably, the value of x at which F attains the
purported SMFC value, namely F = 1/4, corresponds to
x = √

8/9 ≈ 0.9428. This is a value that corresponds
to some interesting phenomena already noticed by various
authors in the literature.

For Reissner–Nordström black holes with x >
√

8/9, the
effective Hawking temperature at the horizon is negative, as
recently shown in [19] by McMaken and Hamilton. Unlike
the Hawking temperature T = κ/2π , which is observed by
an asymptotic observer, this effective temperature is obtained
from an effective “surface gravity” defined as

κ(u) := d

du
ln

(
dU

du

)
, (5)

whereu denotes the outgoing null coordinate of the observer’s
position andU denotes the position of an emitter that defines
the vacuum state. One can similarly define an effective tem-
perature for the inner horizon. As mentioned in [19], as
long as κ(u) is approximately constant over a small inter-
val around some u∗, the vacuum expectation value of the
particle number operator is consistent with that of a Planck-
ian spectrum with temperature κ(u∗)/2π . Operationally it is
often more convenient to work with

κ(u) := − d

dτob
ln

(
ωob

ωem

)
, (6)

where τob is the proper time of the observer, while ωob

and ωem are the frequencies measured in the frame of the
observer and emitter, respectively. The statement that the
effective Hawking temperature at the horizon is negative for
x >

√
8/9 specifically refers to the temperature as seen by

an observer in free fall from rest at infinity towards the black
hole, with the emitter located at the horizon.

In my earlier work with Good [20], we showed essentially
the same result heuristically using a gravitational analog of
Schwinger effect,5 which revealed that the frequency of a

5 Our argument was based on the radial tidal force,
which for the Reissner–Nordström spacetime, is given by ar =(
2M/r3 − 3Q2/r4

)
nr [21]. Let r∗ denotes the position at which ar

123



Eur. Phys. J. C (2023) 83 :1068 Page 3 of 13 1068

typical Hawking particle becomes negative near the horizon
for x >

√
8/9. Similarly, by utilizing an embedding method

Brynjolfsson and Thorlacius [22] argued that a freely falling
observer would not detect any radiation near the black hole
when x >

√
8/9. This peculiarity was also reflected in the

stress-energy tensor expectation in the (1 + 1)-dimensional
analysis of Loranz and Hiscock [23], for which 〈T t

t (r)〉
changes sign at x = √

8/9. Naturally one would ask what is
the physical interpretation for a negative temperature. In [19]
we see that the inner horizon has an infinite negative effective
temperature, which could be indicative of its unstable nature.
Whether a negative yet finite temperature is associated to any
peculiarity in the particle production or spectrum remains
to be further studied [24]. In some models, e.g., [25,26], a
negative energy flux is emitted during the Hawking process,
which causes the black hole to temporarily increase its mass
during evaporation. In [27], Good and I studied a moving
mirror model that reproduces a similar behavior but found
no sign of anything peculiar in the particle emission. Like-
wise, the effective negative temperature discussed here may
give no particle production, as also mentioned in [22]. How-
ever, the point is that, the result that Reissner–Nordström
black holes behave differently in the regime (Q/M)2 � 8/9
seems to be quite robust, having been obtained via quite var-
ied approaches. (We also note that the stability of Reissner–
Nordström black holes against charged scalar perturbations
were proved separately for the regime (Q/M)2 � 8/9 and
8/9 < (Q/M)2 < 1. See [28,29] respectively.)

For Kerr black holes,6 I am not aware of any change in
the effective Hawking temperature at x = √

8/9, though
recently Dai and Stojkovic found that Hawking emission
becomes sub-dominant compared to superradiant radiation
precisely near x ≈ 0.94 [33]. At the classical level, it is
well known that the equatorial innermost stable circular orbit
(ISCO) lies inside the ergosphere when x >

√
8/9, which

can be checked from the equations given in [34]; see also the
Appendix of [35]. Such rapidly spinning black holes play
important roles in astrophysics [36,37]. From the quantum
perspective, a rapidly spinning Kerr black hole does display
a distinctly different behavior compared to slowly rotating
one: its emission spectra would eventually become continu-
ous near extremality x � 0.9 [38], though the exact value of

Footnote 5 continued
changes sign. It can be shown that r∗ = r+ precisely when x = √

8/9.
6 There are other instances at which this value turns up, but they are most
probably irrelevant to our discussions. For example, in 5-dimensions the
entropy of a “large black ring” (with unbounded angular momentum)
exceeds that of the singly-rotating black hole of the same mass at x =√

8/9 (here x is the 5-dimensional version of the dimensionless rotation
parameter) [30]. The value also occurs in the context of gravitational
entropy of Kerr black holes [31]. Also, in astrophysics, the maximum
spin-equilibrium accretion efficiency occurs at x ≈ 0.94 for the thin
disk model considered in [32].

the discrete/continuous transition characterized by the ratio
τ/γ T (where τ is the characteristic black hole lifetime under
Hawking evaporation and γ is a dimensionless constant of
order unity that specifies the discrete spectrum of the quan-
tized horizon) depends on the exact choice of γ . It might be
interesting to check if setting τ/γ T = 1 at x = √

8/9 would
give us a reasonable value of γ that is supported by other
arguments.

Note that in the mass function, Q and a are treated as the
black hole parameters independent of r+. Therefore Ftherm

for Reissner–Nordström black holes is equal to

Ftherm = T
∂S

∂r+
+ �+

∂Q

∂r+︸︷︷︸
=0

= T
∂S

∂r+
= 2πTr+, (7)

where �+ := Q/r+ is the electric potential at the horizon.
For the Kerr case, on the other hand,

Ftherm = T
∂S

∂r+
+ 	+

∂ J

∂r+
. (8)

Unlike the charged case, the second term on the right hand
side contributes since the angular momentum is J = aM
and M is given by M = (a2 + r2+)/2r+. However, note
that conveniently, Ftherm can be computed directly from the
differentiation of the mass with respect to the horizon radius,
without working through the first law.

I should emphasize that up until now these are just stan-
dard black hole thermodynamics, re-expressed in terms of
the thermodynamic force. We thus see that the SMFC value
for the thermodynamic force Ftherm = 1/4 picks up quite
special value of the charge-to-mass or rotation parameter-to-
mass ratio of the black holes.

As already mentioned, McMaken and Hamilton [19]
showed that the inner horizon of a Reissner–Nordström black
hole is associated with a negative temperature (see also [39–
43]). They further proposed that when Q2/M2 > 8/9, the
fact that the effective Hawking temperature near the event
horizon becomes negative is due to the inner horizon being
“close enough” to the event horizon that the negative temper-
ature can be detected outside the black hole. If this picture
is correct, x2 = 8/9 could mark the transition for when
some properties of the interior become prominent. This is
extremely interesting in view of recent arguments that quan-
tum effects become important at the horizon of near-extremal
black holes [44,45] (see also [46] and some earlier works
[47,48]). The criterion x2 � 8/9 can thus be taken as a
characterization for what it means to be “near-extremal” or
“quantum dominated”, for a 4-dimensional asymptotically
flat Reissner–Nordström spacetime. While

√
8/9 ≈ 0.943

might seem – at first impression – to be still far away from
extremality, it is comparable to the charge-to-mass ratio that
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asymptotically locally anti-de Sitter black holes whose hori-
zon has a torus topology becomes unstable against brane pair
production due to stringy effects (said ratio is 0.916 in AdS4

and 0.958 in AdS5) [49] – i.e., classical GR solution ceases
to be a good description of the bulk physics. At least in spirit,
this holographic result is similar to the preceding claim that
black holes with x �

√
8/9 should be characterized as “quan-

tum dominated”. Granted that the results in [19] do not apply
to Kerr black holes, near-extremal Kerr black holes are also
highly quantum [45], so it is not too far-fetched to suggest
that if one takes the maximum force conjecture as a guide,
the same criterion should hold.

3 Maximum force and the inner horizon instability

If SMFC is indeed correct, then requiring that it holds may
reveal some interesting physics. (In fact, if SMFC does not
hold, it would be a remarkable coincidence that Ftherm = 1/4
corresponds exactly to the near-extremal transition with the
aforementioned behaviors found in the literature.) In spirit,
this is similar to imposing cosmic censorship in [50], which
led to the correct nontrivial production rate of charged par-
ticles in a dilaton black hole background (which can be
derived using QFT independently without any mention of
cosmic censorship). In view of this prospect, I shall pro-
pose that it might be insightful to define a shifted quantity
f := Ftherm + F̃ , where F̃ is the shifted amount, such that
| f | � 1/4 satisfies the SMFC. (Other form of f = f (Ftherm)

may be possible, but let us keep to the simplest option in this
work.)

One obvious choice is to set F̃ ≡ −1/4. Then, in terms
of f , a Schwarzschild black hole would saturate the original
maximum force f = 1/4, but so would an extremal black
hole with f = −1/4 though with an opposite sign. In other
words, a Schwarzschild black hole and an extremal black
hole sit on the boundary of the SMFC bound, while non-
extremal holes can take any value | f | < 1/4. With this choice
of F̃ , classical black holes satisfy f > 0 whereas f < 0
corresponds to quantum dominated black holes. Though not
quite in the same context, it is interesting to note that in
the massless limit (for fixed a), the Kerr geometry can be
interpreted as a cosmic string with a negative tension T =
−1/4 [51–53]; see also [54]. (Incidentally, Hiscock showed
that cosmic strings with tension magnitude greater than 1/4
would result in the collapse of the exterior geometry [55],
which is also in accordance with SMFC. The relation between
the maximum force and cosmic strings was also noticed in
[2,3]).

Another remarkable implication analogous to the cosmic
string collapse follows: the instability of the inner horizon is
indicated by a simple computation that its associated shifted
force satisfies f < −1/4; i.e., f violates SMFC. To see

Fig. 1 The shifted thermodynamic force f , as a function of x (x equals
Q/M or x = a/M for Reissner–Nordström and Kerr black holes,
respectively), for the outer horizon is always bounded between −1/4
and 1/4 ( f = 0 corresponds to x = √

8/9), which are indicated by the
dotted lines. On the other hand, the inner horizon satisfies f < −1/4,
which violates the SMFC. In fact, f is not bounded from below for the
inner horizon – it tends to −∞ in the x → 0 limit

this, we note that from the mass function M(r−, x) = (x2 +
r2−)/2r−, we can differentiate with respect to r− to obtain
the thermodynamic force of the inner horizon. The obtained
expression is

Ftherm[r−] = 1 − x2 − √
1 − x2

(1 − √
1 − x2)2

. (9)

The shifted quantity f := Ftherm[r−] − 1/4 is then a mono-
tonic function that goes to −1/4 in the extremal limit,
and diverges to −∞ in the x → 0 limit. In other words
finner horizon ∈ (−∞,−1/4], see Fig. 1. Just like Hiscock’s
result about the collapse of cosmic strings once its tension
exceeds the maximum force bound, this is in agreement
with the instability of the inner horizon due to mass infla-
tion (blueshift instability) [56–64]. Furthermore, as argued
in [19] in the context of Reissner-Nordström spacetime, there
is most likely a runaway particle creation at the inner horizon,
as the result of which the inner horizon must collapse into
a singularity (or the geometry may evolve dynamically into
something else entirely). One may wonder why f violates
the maximum force the most in the x → 0 limit. However,
this is again consistent with [19], which showed that the par-
ticle spectrum diverges at all frequencies as Q/M → 0,
whereas the blueshift is relatively less severe for large Q/M .
The physical reason for this is that in the x → 0 limit, the
distance of the inner horizon to the spacelike singularity is
closer [19].

This finding regarding the inner horizon thermodynamic
force is also consistent with previous arguments in the litera-
ture that the maximum force is related to the cosmic censor-
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ship conjecture [3,65]. However here it is more relevant to
the strong cosmic censorship, which requires the inner hori-
zon to be unstable. (Thus to be more specific, it is not that
forces cannot exceed 1/4, but rather that such a violation
would lead to instabilities or other pathologies).

4 Maximum force gives rise to pressure in the first law

The definition of f := Ftherm + F̃ means that in addition to
the horizon thermodynamics that gives rise to Ftherm, there
is also an extra force contribution. One possibility is that F̃
corresponds to the black hole interior, but need not necessar-
ily be related to the inner horizon r−, which is in any case,
unstable, as mentioned above. Or it could be related to the
near-horizon region of the exterior spacetime. In any case,
quite naturally, we may interpret this extra force term as the
result of a pressure term in the first law. That is, if we focus on
the Schwarzschild case for simplicity, dE = T dS − P dV .

Now, the question is the following: what is the volume V ?
We need to fix V in order to find P . I suggest that a sensible
choice is

V = 4πr2+ε, (10)

which corresponds to a “shell” of some thickness ε. As we
will see, this choice leads to some nice properties consistent
with other known results in the literature. This choice also
allows us to reconcile with the result in [9], given in Eqs. (2)
and (3).

Indeed, if the total thermodynamic force is f := ∂E/∂r+ =
Ftherm − 1/4, this suggests that a horizon pressure can be
defined via

−1

4
= −P

∂V

∂r+
�⇒ P ≡ P|r+ = 1

32πr+ε
. (11)

For a Schwarzschild black hole, the first law with pressure
term now leads to

dE = T dS − P dV (12)

=
(

1

4πr+

)
2πr+ dr+ −

(
1

32πr+ε

)
8πr+ε dr+ (13)

= 1

2
dr+ − 1

4
dr+ = 1

4
dr+ = 1

2
dM. (14)

We note that ε drops out in the first law; though it might have
a nice physical interpretation which we will return to in the
next section. For now, we note from the previous calculation
that the thermodynamic mass is half of the ADM mass: E =
M/2. The Smarr relation is readily verified to be

E = 2T S − 2PV . (15)

We can also check that PV = M/4, thus it follows that

2T S = E + 2PV = 2E, (16)

or simply E = T S. Therefore the result of [9] (despite its
heuristic derivation) can be recovered, once we realized that
E 
= M but instead E = M/2 as the result of the maximum
force induced pressure term.

One seemingly peculiar property is that while V = 0
in the limit ε → 0, P → ∞ in the same limit, though their
product is a constant. What happens in the ε → 0 limit? In the
following we will argue that ε → 0 is equivalent to h̄ → 0,
thus we are requiring that in the classical limit black holes
obey the original laws found by Bardeen, Carter and Hawking
[17]. For now, note that in the usual thermodynamics of a
box of gas, the PV term describes by the Boyle’s law also
satisfies P ∝ V−1, and so P diverges in the V → 0 limit.
However, when V = 0 there is no box and so the system
no longer exists and E ≡ 0. In our case, in the classical
limit V = 0 and the PV term is identically zero for the
same reason. However, by virtue of the area law of black
hole entropy, the T S term remains, unlike the box of gas,
and we recover the usual results: E = M = 2T S. Note that
the limit for the Smarr relation ε → 0 is smooth although
the limit of the product PV is not. Even if one is ignorant of
the presence of the pressure term, the thermodynamics is still
effectively described by E = T S or equivalently M = 2T S,
which would be the same as if there is indeed no pressure. If
indeed ε → 0 is equivalent to h̄ → 0, then this is actually
not as surprising as it sounds – for the Smarr relation to
hold classically (if one treats M as classical), h̄ must cancel
out in the expression. That is to say, the value of M must
be independent of ε. The only difference is that in the case
ε 
= 0, the ADM mass M is distinct from the thermodynamic
mass E .

Another remark is in order: note that P > 0. In the lit-
erature, one finds various proposals that black hole (or hori-
zonless compact object) interiors are filled with some kind of
negative pressure fluid or other fields, e.g., [66–72]. It should
be emphasized that the value F̃ = −1/4 is only for the hori-
zon; so the interior can in principle still have a core with a
negative pressure, which would be similar to the model in
[73]. In [74], one finds a different approach that also yields
an effective pressure – which can be either positive or nega-
tive – from quantum gravitational correction. A pressure can
also arise from regularizing the black hole singularity [75].

We also remark on another natural guess for the vol-
ume, namely V = (4/3)πr3+ the “thermodynamic volume”
[70,76]. This would lead to P = (16πr2+)−1. However, the
Smarr relation would lead to E = 2 M/3, which cannot be
reconciled with [9]. Note, however, that in [70,76] the pres-
sure is obtained from the stress-energy tensor, which van-
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ishes for Schwarzschild, in which case E = M , which is
quite unlike our situation.

5 Interpreting the Schwarzschild pressure

We have come to the most speculative part of this work:
an attempt to give a physical interpretation for the horizon
pressure in the simplest case of Schwarzschild spacetime.
This part is quite independent of the preceding sections in
the sense that even if this interpretation turns out to be wrong
it does not invalidate the prior results.

As we have seen, the physical picture we have in mind is of
a thin shell around the black hole horizon, which is similar to
the membrane paradigm. For the Schwarzschild case, we note
that if we apply the 2-dimensional surface tension following
the membrane paradigm [77–79],

σ := κ

8π
= 1

32πM
, (17)

then the pressure is related to the surface tension by

P = 1

32πr+ε
= σ

2ε
. (18)

The question is whether we can determine the scale ε.
This would require at least another equation that relates P
with ε. To this end, inspired by the Laplace’s law of pressure
for spherical membranes,7 let us conjecture that the horizon
pressure is also related to the thickness of the membrane ε

via

P = K σ̃ ε

r+
, (19)

where σ̃ is some quantity akin to a “wall stress” (wall tension
divided by wall thickness for the actual Laplace’s law), and K
is a proportional (dimensionless) constant.8 On dimensional
ground, σ̃ is σ divided by a length scale L . All we are arguing
with Eq. (19) is that the horizon pressure is proportional to
the surface tension and inversely proportional to the radius.
However, unlike the usual Laplace’s law where L = ε, this
cannot be so for our case, for otherwise P is entirely indepen-
dent of ε, contradicting Eq. (11). Thus we choose the only

7 A different notion of pressure was previously prescribed to the “prin-
cipal eigenvalue” of the stability operator of marginally outer trapped
surfaces [80].
8 Here we treat the fluid membrane to be close to the black hole of
radius r+. The correction due to using proper radius will also affect
the prefactor, which can be absorbed into K . However, the distinction
between proper distance and areal radius is not important to obtain the
characteristic scale of the fluctuation; c.f. Footnote 4.

natural length scale left in the system: L = �P, the Planck
length.

Equating Eqs. (18) and (19) yields the characteristic thick-
ness (we keep �P explicit here for clarity)

ε ∼ √
r+�P, (20)

the geometric mean of the Schwarzschild radius and the
Planck length �P. We can check that Eq. (19) has the behav-
ior that it diverges in the limit h̄ → 0, which is the same
as Eq. (11). Our chain of arguments, from the maximum
force induced pressure to conjecturing that a Laplace-like law
holds finally led us to the length scale ε ∼ √

r+�P. Remark-
ably, this scale has appeared a few times in the literature.

Notably, this is the scale of the quantum fluctuation of
the horizon position, as previously shown by Marolf in [81]
by examining how perturbation in quantum degrees of free-
dom at the temperature T ∼ 1/r+ could affect the hori-
zon position (improving on Sorkin’s result [82]; refer also to
[83]). See also [84,85]. In [86], Zurek provided a random-
walk argument for this result. In fact, the

√
M behavior is

a characteristic of dissipative phenomena typically seen in
hydrodynamics [87] (in fact one can argue that a hydrody-
namic behavior emerged from coarse-graining of the quan-
tum physics). It is also the decoherence scale of nested causal
diamonds,9 each of which has S degrees of freedom (iden-
tified as entanglement entropy) [87,93]. Note that the hori-
zon fluctuation scale is much larger than the Planck length,
though still small. For example, for a solar mass black hole
whose Schwarzschild radius is about 103 m, the horizon fluc-
tuation scale is about ε ∼ 10−16 m, which is subatomic.
This scale also appears in the work of Anastopoulos and
Savvidou [94], in which they showed that the horizon of a
black hole in thermal equilibrium with its Hawking radia-
tion (“black hole in a box”) is surrounded by a thin shell
of size O(

√
M) where they argued the Einstein equations

break down. They suggested that this result should hold even
when the box is removed and the system evolves slowly out
of equilibrium, i.e., for an evaporating black hole. In [95],
Brustein and Medved also argued that spacetime ceases to
be semi-classical at this scale away from the classical hori-
zon. Incidentally, this scale is associated with the wavelength
of thermal radiation from a ball close to forming a black hole;
see Appendix A of [20].

The shell is thus not a classical fixed surface, but rather
is consistent with the outer boundary of a “quantum horizon
region” (QHR), the fluctuation of which induces a pressure
on the effective classical horizon. Indeed, since black holes

9 Indeed it has been argued that such a fluctuation exists not only for
black hole horizons but also for causal diamonds, which may have
observational consequences using interferometer arms, much like in
the set-up for gravitational wave detection [86,88–92].
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display special properties at x = √
8/9, it is more natural to

suspect that ε is a quantity that has x dependence, which ε ∼√
r+�P provides (though we have not yet generalized to the

charged/rotating case here), but another seemingly plausible
choice ε = �P does not.

To recap, when quantum effects are not considered (hence
also no Hawking temperature), the first law of black hole
thermodynamics is the usual one with no pressure term, and
WMFC holds – black holes satisfy Ftherm � 1/2 with equal-
ity attained for the Schwarzschild case; and Ftherm = 1/4
characterizes the transition to near-extremality.10

If quantum effects are included so that the horizon loca-
tion is uncertain, then a pressure term is introduced into the
first law, with an associated force F̃ = −1/4 and the total
force f = Ftherm + F̃ satisfies SMFC f � 1/4, and near-
extremality is characterized by f = 0. The claim that horizon
fluctuation can be treated thermodynamically has been pre-
viously discussed in [96]. Intuitively, a radially fluctuating
horizon corresponds to a varying boundary condition for the
quantum fields in the black hole vicinity. This is analogous to
the dynamical Casimir effect,11 which can cause additional
particle production in addition to the standard thermal one.
The fluctuation thus leads to a Casimir-like force or pres-
sure. Indeed, horizon fluctuation is expected to only affect
the spectrum of the radiation, not its temperature [100]; see
also [101–103].

We remark that the horizon pressure Eq. (11) is still much
smaller than the Planck pressure, but it is huge by ordinary
standard – in SI units, for a solar mass black hole we have
P ∼ 1054 Pa, which is larger than the pressure in a neutron
star core, at O(1035) Pa. Like Hawking radiation we should
expect the value of the pressure to be observer dependent,
and it is not clear at this point if a freely falling observer
can detect it. Nevertheless, this pressure term hints at the
possibility that once quantum effects are taken into account,
black hole horizon is not uneventful (though not a divergent
energy density as in a firewall [104–106]) and the pressure
might back-react on the spacetime. This is consistent with,
e.g., [107].

10 Though this is itself mostly motivated by peculiar behaviors in the
– quantum – particle creation phenomena. But we can define near-
extremality using f first, fully incorporating quantum effects, and then
translates that back into the condition on Ftherm.
11 DeWitt showed that moving boundaries induce particle creation [97].
The case of an oscillating sphere was studied in [98]. Black hole hori-
zons have quite different boundary conditions so the analogy is not per-
fect. Nevertheless, perhaps we can learn some lessons from non-black
hole systems [99].

6 Discussion, questions, and future prospects

To conclude, the fact that Ftherm = ∂M/∂r+ = 1/4 cor-
responds to black hole parameters at which the spacetime
displays some special properties can be used to character-
ize near-extremality, when some properties of the Hawking
emission changes. However, these special properties are quite
different for Reissner–Nordström and Kerr spacetimes, so we
must proceed with caution. Future studies should clarify if
various properties that occur at the value Q/M = √

8/9 or
a/M = √

8/9 are somehow related and might have deeper
connections, or simply coincidences.

We have also seen that imposing SMFC as a physical prin-
ciple naturally implies that black hole horizon has a pressure,
and the thermodynamic mass is half that of ADM mass,
which resolves the factor of two mystery between SMFC
and WMFC. Interestingly the Smarr relation is equivalent
to E = T S, since PV = M/4 = E/2, which makes
black holes more similar to a typical thermodynamical sys-
tem. There are of course many questions that still need to be
addressed. At the same time the maximum force viewpoint
of horizon thermodynamics may also lead to new avenues
for future research.

Firstly, although for the Schwarzschild case our pressure
can be interpreted as the result of quantum fluctuation of the
horizon position at the scale

√
M , the more general cases of

Reissner-Nordström and Kerr black holes still require further
works. It may turn out that this interpretation is not the cor-
rect one, though it seems hopeful. Marolf’s argument for the
thickness of the quantum horizon region is ε ∼ (r+/T )1/4,
whereas the argument presented in Sect. 5, by equating Eqs.
(18) and (19), would give ε ∼ 1/

√
T , thus quantitatively

these would not agree when there is an inner horizon. They
agree qualitatively in the sense that ε is larger when the black
holes carry a charge or angular momentum. One has to be
careful about what happens in the extremal limit (though a
divergent ε is not inconsistent with the location of where a
typical Hawking particle is emitted, which extends to infinity
in the extremal limit [20]). Marolf pointed out that in his argu-
ment, the divergence in the extremal limit signals a break-
down of the near-horizon approximation used. In our argu-
ment, the conjectured “Laplace’s law” would require correc-
tion due to electrical charges in the Reissner–Nordström case
and non-spherical surface in the Kerr case. Indeed, whether
Eq. (19) can be derived more rigorously would be an impor-
tant task for future research. Presently, we can only justify it
a posteriori by the fact that it gives a physically interesting
scale that corresponds to horizon fluctuation. That is, we can
turn the logic the other way around: if we accept horizon
fluctuation can induce an effective pressure term, this leads
in turn to Eq. (19). Note that a fluctuating horizon could also
give rise to echoes in gravitational waves [108], which is
potentially testable in future observations.
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Let us also address the quantum nature of thermodynamic
force that corresponds to this pressure. It is true that h̄ is
absent in the maximum force conjecture, since the physical
dimension of a force is simply c4/G. This does not mean
that a force cannot be caused by quantum effects. A good –
and relevant – example is the Casimir force (per unit area A)
for an electromagnetic field, which in 4-dimensions, reads

F4d
Casimir

A
= − π2

240a4 h̄c, (21)

where a is the separation between the parallel plates. One
notices that h̄ is present. However, area and distance can
be expressed as multiples of Planck area and Planck length,
and all the powers of h̄ will cancel out so that the physical
dimension of the Casimir force is [F4d

Casimir] = c4/G. Never-
theless no one would seriously claim that the Casimir force
is a classical phenomenon, as it is the result of the fluctua-
tion of the quantum field in between and around the plates.
Even if one takes the view that Casimir effect is just Van der
Waals’ [109], the latter is still not classical; it is a many-body
quantum effect.12 For similar reasons, quantum fluctuation
of the horizon location can give rise to a force. In fact, horizon
fluctuation is more akin to the dynamical Casimir effect.

Interestingly, in 2-dimensions, in which the Casimir force
between two parallel plates is strongest, it is (for electromag-
netic field)

F2d
Casimir = − π

12a2 h̄c. (22)

Clearly Casimir force becomes stronger if the distance
between the plates decreases. If we naively take a → �P,
then in Planck units we see that |F2d

Casimir| = π/12 ∼ 1/4.
This is most probably just a coincidence, and the result is not
exact anyway due to higher order terms and possibly new
physics at the Planck scale (such as effect from the minimal
length [111]). This is not to say that Casimir forces in general
cannot ever exceed the maximum force bound – the point is
that we should ask whether the maximum force conjecture
applies more widely in other contexts that involve quantum
forces beyond the black hole scenario, not just in classical
systems.

It is worth mentioning that classical quantities free of
h̄ arising from quantum phenomena are nothing new. For
example, the Maxwell-Boltzmann distribution function that
describes the statistical thermodynamics of ideal gas is free of
h̄ since the powers of h̄ in the density of states canceled with

12 In other words, the distinctions here being: any force is eo ipso a
classical entity; whereas the fact that Casimir force in particular only
arises from quantum effects means it ipso facto has a quantum nature.
Whether a physical quantity itself is more fundamental than its cause
is a philosophy problem best left for the relevant experts. See [110] for
a related debate on what counts as “fundamental constants”.

that in the partition function. In fact, one notes that h̄ can be
absent in a quantum context, and can be present in a classical
context. One sees this in the quantum partition functions of
both the Bose-Einstein and Fermi-Dirac statistics, which do
not explicitly contain h̄, but the classical partition function
of a gas of N identical classical particles in 3 dimensions is
an integral that contains a factor of h̄3N in its denominator,
namely:

Z = 1

N !(2π h̄)3N

∫
d3q1d

3q2 · · · d3qN

×
∫

d3 p1d
3 p2 · · · d3 pN

× exp

[
−β

N∑
i=1

H(qi , pi )

]
. (23)

In terms of the trace, the quantum partition function is

Z = tr(e−β Ĥ ), which has no h̄ since the argument of the
exponential function is of course dimensionless. Passing to
continuous integral for the classical form, however,

Z =
∫

〈x, p
∣∣∣e−β Ĥ

∣∣∣ x, p〉dxdp
2π h̄

, (24)

in which h̄ appears due to the minimum cell size in the phase
space. For another example, consider the “classical” massive
Klein-Gordon equation

(
� + m2c2

h̄2

)
φ(x) = 0. (25)

Although it is sometimes argued that h̄ is just there for dimen-
sional reason in these classical contexts, the deeper reason
is that our world is inherently quantum. Since we are dis-
cussing thermodynamics and statistical mechanics, we also
note that the SI units of temperature, the Kelvin, is defined
in terms of the Boltzmann constant, which has units JK−1,
which in turn requires h̄ to define, though temperature as
we learned in high schools can be discussed without quan-
tum mechanics. In fact, as we have previously seen, since
Planck units are comprised of G, c, h̄, quantities like length
and mass are necessarily multiples of the Planck length and
Planck mass, respectively. The point I wish to emphasize is
this: the fact that the purported maximum force is c4/G in
no way excludes the possibility that it has a quantum origin,
and over-emphasizing that it is “classical” just because of an
absent of h̄ could be misleading.

Returning to the discussion on the maximum force, let us
also note that, in our analysis on the thermodynamic force,
SMFC was imposed by adding a constant force F̃ = −1/4
to the thermodynamic force. This is not the only possibility.
We can contemplate other choices of F̃ , e.g., a non-constant
function F̃ that satisfies F̃(x = 0) = −1/4 and F̃(x = 1) =
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1/4. An explicit example would be to demand that f ≡ 1/4
always holds for black holes (though we will lose the nice
correspondence between the violation of maximum force and
inner horizon instability), i.e.,

F̃ = 1

4
− Ftherm = 1

4
−

√
1 − x2

1 + √
1 − x2

, (26)

which yields a pressure of the form

P = − 1

8πr+ε

[
1

4
−

√
1 − x2

1 + √
1 − x2

]
. (27)

This choice of F̃ therefore yields a negative pressure at the
horizon for near-extremal black holes, i.e., for x >

√
8/9.

Whether this or other choices of F̃ is better (e.g., lead to more
interesting physics) remains to be seen.

The thermodynamic force formulation of black hole ther-
modynamics and the constraints from the maximum force
conjecture could yield further insights into the properties of
black hole spacetimes. For example, can we use it to con-
strain the interior fluid models of black holes? Furthermore,
the maximum force conjecture has been argued to hold in
some other modified gravity theories [18,112,113] (though
the values of the maximum force could differ). It would
be interesting to check if the saturation of thermodynamic
force Ftherm = Fmax coincides with special properties such
as effective negative temperature of the horizon for charged
black holes, and ISCO coinciding with the ergosphere for
the rotating case. If not, this may give a strong evidence for
4-dimensional general relativity being unique from the max-
imum force perspective, though for a different reason than
those advocated in [14]. Incidentally, even in GR, it would
be interesting to check if in the Kerr–Newman case one can
find any peculiarity when the black hole parameters satisfy
Ftherm = 1/4.

In this work, it is also noted that the inner horizon instabil-
ity seems to be reflected by the fact that its associated force
has a magnitude of | f | > 1/4. This property is automati-
cally satisfied once the shift forced f that satisfies SMFC is
defined and applied to the inner horizon, which lends cre-
dence to the definition. It would be interesting to study how
this changes in the dynamical cases [63,114,115]. As previ-
ously mentioned, instability was also established in the case
of cosmic string with tension whose magnitude exceeds the
conjectured bound – the exterior spacetime would collapse
onto the string. How much can we say about the possible con-
nection between maximum force conjecture and instability of
the spacetime? Let us also note that it is not difficult to violate
| f | > 1/4 even in general relativity. For example, consider
the Taub-NUT spacetime, with horizon r+ = m+√

m2 + n2,

where n is the NUT charge and m its mass. We have

FTaub-NUT
therm = ∂m

∂r+
= 1 + 1

2

n2 − r2+
r2+

, (28)

and consequently the shifted force can be computed to be

f Taub-NUT = ∂m

∂r+
− 1

4
= 1

4

[
2n2 + (1 + √

1 + n2)2

(1 + √
1 + n2)2

]
,

(29)

which is clearly larger than 1/4 for any n 
= 0. This is con-
sistent with the previous result that Taub-NUT spacetime is
unstable [116]. Since Taub-NUT spacetime is infested with
closed timelike curves, could the maximum force bound play
the role of chronology protection agent [117]? Here we must
be cautious that Taub-NUT is not asymptotically flat. It would
be important to study in the future whether the shifted force
f should be defined by subtracting a different constant that
depends on the asymptotic behavior, in a similar spirit to
“background subtraction”. In particular, it is interesting to
investigate whether this notion can be generalized to asymp-
totically locally anti-de Sitter spacetimes, which are impor-
tant for holography. If f can be understood in general, and
if | f | > c for some c does indicate some sort of instabil-
ity, then this would provide us a relatively simple method to
determine stability.

Another important question is to understand whether the
thermodynamic force can be given a more rigorous founda-
tion. As it is, as noted in Footnote 2, ∂M/∂r+ is clearly coor-
dinate dependent, so changing to another coordinate system
with radial coordinate R = R(r), say, then ∂M/∂R would
not give the same value. One possible explanation is as fol-
lows: recall that in the well-known Buchdahl bound [118],
the statement M � 4r/9 for a static fluid sphere (a “star”)
of radius r is also coordinate dependent, but an invariant
version can be formulated by replacing r with the physical
(proper) radius of the star r∗, thereupon the bound becomes
M � 0.3404r∗. Therefore, the thermodynamic force can be
interpreted invariantly in the same manner if one takes 2M
to be the proper size of a black hole radius. Indeed, in the
Schwarzschild spacetime, a “proper distance coordinate” R∗
can be defined as [79]:

R∗ := 2M+√
r(r − 2M)+ln

[√
r

2M
− 1 +

√
r

2M

]
, (30)

so that d(R∗) := R∗ − 2M measures the proper radial dis-
tance away from the horizon. From the exterior perspective,
it makes sense to take the black hole to have a proper size of
radius 2M . Then R∗ = r+ = 2M for the horizon would give
the same thermodynamic force value. It would be interest-
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ing to explore other ways to make the concept of thermody-
namic force more rigorously defined. Related to the issue of
coordinate dependence is whether we should define the ther-
modynamic force by taking derivative with respect to the
Schwarzschild or the Schwarzschild diameter (it is a special
case of choosing a coordinate R = 2r ). In [14], the maximum
force is attributed to the energy of a black hole distributed
along the diameter (note that this only makes sense from
an exterior observer’s point of view, who treats the interior
blindly as an ordinary sphere instead of a dynamical space-
time). While intuitive, it is hard to make this rigorous. For
example, what happens in the Kerr case when the horizon
is not spherical? In some sense this is similar to the well-
known Hoop conjecture, whose exact formulation (what the
appropriate notion of “mass” and “size” should be) is highly
nontrivial [119].

On the other hand, the examples discussed in [7,12]
demonstrated that one should be careful about what kind
of forces are relevant for the conjecture (see also the local
vs. quasi-local notions in [11]). Let us note that for both the
cosmic string and the black hole inner horizon, the system
under consideration is “non-classical” in the sense that they
both violate the classical energy conditions (and for the latter,
even exhibit negative effective temperature); even Taub-NUT
spacetime contains negative energy between the horizon at
r+ and infinity [116]. It would not be surprising that energy
conditions and how matter fields are coupled to gravity will
play a crucial role in the final understanding of the maxi-
mum force conjecture and its possible relation to spacetime
instability, and perhaps to cosmic censorship and chronology
protection.

Of course, it might be interesting to investigate whether
the pressure term proposed above gives rise to any new effect
in the context of maximum force applied to cosmological
horizons.

Despite the speculative nature in some parts of this work,
my hope is that it will provide some new ways to think about
black hole thermodynamics, and also demonstrates that tak-
ing thermodynamic pressure and its associated volume into
account provides a novel perspective to look at the maximum
force conjecture in the contexts of black holes.
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