
Eur. Phys. J. C (2023) 83:1072
https://doi.org/10.1140/epjc/s10052-023-12246-8

Regular Article - Theoretical Physics

Thermodynamics and tachyon condensation of the
dressed-dynamical unstable D p-branes

Hamidreza Danialia

Department of Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box: 15875-4413, Tehran, Iran

Received: 28 June 2023 / Accepted: 11 November 2023 / Published online: 23 November 2023
© The Author(s) 2023

Abstract Using the boundary state formalism and thermo
field dynamics approach, we study a Dp-brane at finite tem-
perature in which the background Kalb–Ramond field, a
U (1)gauge potential, and tachyon field are turned on together
with a general tangential dynamics. The thermal entropy
of the brane will be studied. In addition, the behavior of
the entropy after the tachyon condensation process will be
investigated and some thermodynamic interpretations will
be extracted.

1 Introduction

Dp-branes are absolutely necessary to comprehend string
theory and its relationship to field theories and gravity [1].
Since the introduction of Dp-branes, some of the most fun-
damental physical results in string theory have been discov-
ered by examining their properties [2,3]. In addition, they
have significantly contributed to our grasp of dualities [1,3].
Furthermore, by adding dynamics, various backgrounds, and
internal fields to the brane, several intriguing features of the
Dp-branes can be revealed through so-called boundary state
formalism [4–40].

Among various configurations, thermalizing Dp-branes
have been a considerable focus of research. On the one hand,
the relationship between Dp-branes and field theory at finite
temperature is an intriguing subject in and of itself that might
aid in our comprehension of the physical features of Dp-
branes. In the low energy limit of string theory, where Dp-
branes are solitonic solutions to supergravity, some investi-
gation has been made in this area. In this limit, the thermo-
dynamics of Dp-branes have been stated within the context
of path-integral field theory formulation at finite temperature
[41–48]. On the other hand, they have been utilized to under-
stand the statistical features of different systems, such as the
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Hawking temperature, energy-entropy relation and Hagedorn
transition of extreme, near-extreme, and Schwarzschild black
holes [49–62]. Despite the relative understanding of strings
at finite temperature and the promising discoveries from Dp-
brane ensembles, little is known about the statistical features
of Dp-branes.

To implement temperature to the structure of Dp-branes,
one must be able to modify, at the Fock space level, an adap-
tion from zero temperature to finite temperature. Since in
the boundary state language, the Dp-brane is expressed in
terms of string operators acting on the vacuum, a convenient
way is to employ the thermo field dynamics (TFD) formal-
ism [63,64]. Uniting such an approach with the D-branes
boundary state formalism and generalizing it to include more
extending configurations has been accomplished in remark-
able Refs. [65–83]. Previously, TFD was used to examine
the renormalization of open bosonic strings at finite temper-
ature. Also, the compatibility of the renormalization with the
thermal Veneziano amplitude has been demonstrated [84–
88]. In Ref. [89], the global phase structure of the thermal
bosonic string ensemble and its connection to the thermal
string amplitude are explained.

In addition to thermalizing Dp-branes, the existence of
an open string tachyon on it inherently renders it unstable,
which is another fascinating topic in string theory. Sen con-
jectured that the open string tachyon condensation repre-
sents the decay of unstable Dp-branes into the closed string
vacuum [90–95]. In other words, Through the process of
tachyon condensation, An unstable Dp-brane subsequently
either decays to a stable D(p − 1)-brane or collapses to the
closed string vacuum. This indicates that Dp-branes may be
established as a source of closed string [96–100]. Using the
boundary state and tachyon condensation, it is possible to
determine the time evolution of the source for each mode of
a closed string [101,102]. Also, it has been claimed that the
boundary state description of the rolling tachyon is valid for
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a finite duration dictated by string coupling, after which we
may encounter energy dissipation into the bulk [103]. Such
physical phenomena, which are involved with the decay of
an object, resulted in the development of the background-
independent string theory formulation.

The thermal feature of the Dp-brane, conjointly with the
turned-on tachyonic field on it, motivated and stimulated us to
study the entropy of the brane. However, to construct the most
general thermal boundary state, some other extensions have
been also implemented. Precisely, in this paper, we calculate
the entropy of the bosonic Dp-brane dressed with a U (1)

gauge potential and a tachyonic profile in the presence of
the background B-field which is thermalized in the context
of the TFD approach. We also considered general tangential
dynamics to the brane. In addition, the entropy of the brane is
also computed after tachyon condensation. As will be shown,
since the tachyon condensation leads to a change in value of
the entropy, the second law of thermodynamics will also be
examined for our system.

This paper is organized as follows. In Sect. 2, the bound-
ary state corresponding to a dressed-dynamical unstable Dp-
branes at zero temperature is reviewed. In Sect. 3, we shall
construct the general thermal boundary state when all fields
in our configuration are turned on together with general tan-
gential dynamics. We calculate the entropy of the Dp-brane.
In Sect. 4, at first, the tachyon condensation is briefly intro-
duced, and, after that, the effect of the tachyon condensation
on the entropy is studied. Besides, some thermodynamical
interpretations will be provided. Section 5 is devoted to the
conclusions.

2 Review of the boundary state

In this section, the boundary state corresponds to an unstable-
dressed Dp-brane with tangential dynamics in the zero tem-
perature, T = 0, is introduced. Consequently, we start with
the following sigma-model action for closed string

S = − 1

4πα′

∫
�

d2σ
(√−GGabGμν + εabBμν

)
∂a X

μ∂bX
ν

+ 1

2πα′

∫
∂�

dσ
(
Aα∂σ X

α + ωαβ J
αβ
τ + T (Xα)

)
, (1)

where � is the closed string worldsheet, while ∂� indicates
its boundary. To avoid dealing with ghosts, we choose to
work in the light-cone gauge X0 ± Xd−1. Hence, μ, ν ∈
{1, . . . , d−2}, α, β ∈ {1, . . . , p} and i, j ∈ {p+1, . . . , d−
2} are spacetime indices, worldvolume directions of the Dp-
brane, and its perpendicular directions in light-cone coor-
dinates, respectively. Additionally, the metrics of the target
spacetime are denoted by ημν = diag(−1,+1, . . . ,+1),
whereas Gab with a, b ∈ {τ, σ } signifies the metrics of the
string worldsheet. The background fields are the constant

Kalb–Ramond field Bμν , the U (1) internal gauge field Aα

and the open string tachyon field T (Xα). In order to preserve
the quadratic structure of the action to become path integrally
solvable, we employ the Landau gauge Aα = − 1

2 FαβXβ

with the constant field strength Fαβ , and the tachyon profile
T = 1

2UαβXαXβ whereUαβ is a constant symmetric matrix.
The constant antisymmetric tensor ωαβ with the explicit form

ωαβ J
αβ
τ = 2ωαβXα∂τ Xβ designates the angular velocity

which expresses the tangential dynamics of the brane. Due
to the presence of background fields on the worldvolume of
the brane, the Lorentz symmetry has been manifestly broken.
Thus, the tangential dynamics of the brane in the directions
of its worldvolume is sensible.

By setting the variation of the action to zero we receive the
equation of motion and the following boundary state equa-
tions
[
(ηαβ +4ωαβ)∂τ X

β +Fαβ∂σ X
β +UαβX

β
]
τ=0 |B〉=0,

δXi |τ=0|B〉 = 0, (2)

where the total field strength is Fαβ = Fαβ − Bαβ .
The well-known closed string mode expansion simply

allows us to rewrite Eq. (2), in terms of the zero modes and
oscillators. The coherent state method enables us to obtain
the solution of the oscillatory portion of the boundary state
equations

|B〉(osc) =
∞∏
n=1

[det Q(n)]−1

× exp

[
−

∞∑
m=1

A†μ
m �(m)μνB

†ν
m

]
|0〉α ⊗ |0〉β, (3)

where we have used α
μ
n and β

μ
n as left- and right-moving

oscillators, respectively. Furthermore, the subsequent nota-
tions were used

Aμ
n = α

μ
n√
n
, A†μ

n = α
μ
−n√
n

,

Bμ
n = β

μ
n√
n
, B†μ

n = β
μ
−n√
n

, (4)

for n > 0 with the algebras

[Aμ
n , A†ν

m ] = [Bμ
n , B†ν

m ] = δn,mημν,

[Bμ
n , A†ν

m ] = [Aμ
n , B†ν

m ] = all other commutators = 0. (5)

The normalization factor
∏∞

n=1 [det Q(n)]−1 in Eq. (3)
comes from the disk partition function [35,36]. The mode-
dependent matrices possess the following definitions

Q(m)αβ = ηαβ + 4ωαβ − Fαβ + i

2m
Uαβ, (6)

�(m)μν = (�(m)αβ , −δi j ), (7)

�(m)αβ = (Q−1
(m)N(m))αβ, (8)
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N(m)αβ = ηαβ + 4ωαβ + Fαβ − i

2m
Uαβ. (9)

For the zero-mode part of the boundary state, by using
higher dimensional Gaussian integral, we receive the fol-
lowing expression

|B〉(0) =
√

(2π)p

det R

p∏
α=1

|pα〉
∏
i

δ(xi−yi )|pi 〉, (10)

where Rαβ possesses the definition

Rαβ = −2iα′[U +U−1(η + 4ω) + (η + 4ω)TU−1]
αβ

,

U =
⎛
⎜⎝

(
U−1(η + 4ω)

)
11 · · · 0

...
. . .

...

0 · · · (
U−1(η + 4ω)

)
pp

⎞
⎟⎠ .

In the light-cone gauge, one can construct the total boundary
state as

|B〉(tot) = Tp

2
|B〉(osc) ⊗ |B〉(0), (11)

where Tp is the Dp-brane tension.

3 The entropy

In this section, at first, the boundary states corresponding to a
dressed-dynamical unstable Dp-branes at finite temperatures
are constructed. Given that the Eqs. (2)–(11) are represented
in terms of bosonic string operators and states, these enti-
ties must be merely mapped at T �= 0. An intriguing way
to do that is by utilizing TFD approach. To ensure that the
content of this paper may be understood without being side-
tracked by excessive computations, all fields of the brane are
independent of temperature.

According to the TFD approach, the thermodynamics of
the system is given in an extended Fock space consisting of
the original Fock space and an identical copy of it (this is
indeed true for the path-integral approach). The total thermic
system is comprised of the original string and its duplicate
indicated as ‘tilde’ strings. These two copies are independent
and the total Fock space is Htotal = H ⊗ H̃. To execute this
construction in the context of the bosonic string theory, we
use Ãμ

n , B̃μ
n and... as identical operators belonging to the copy

of the system with independent algebras.
From now on we use the usual notation in the literature

to compute the entropy. According to the Refs. [63–80],
| 〉〉 signifies a state from Htotal. The vacuum state is given
by |0〉〉(osc) ≡ |0〉〉(osc)

α ⊗ |0〉〉(osc)
β . Owing to the fact that

two Fock spaces are independent, we may write vacuums as

|0〉〉(osc)
(α,β) = |0〉(osc)

(α,β) ⊗ |̃0〉(osc)
(α,β). One should note that to have

a total vacuum state, the enlarging procedure must be also
applied to the zero-modes.

Thermal features of the system in H space are accom-
plished by introducing a set of Bogoliubov unitary operators,
i.e,

|0(βT )〉〉(α,β) =
∏
n>0

e−iG(α,β)
n |0〉〉(α,β), (12)

in which

Gα
n = −iθ(βT )

(
An . Ãn − A†

n . Ã
†
n

)
, (13)

Gβ
n = −iθ(βT )

(
Bn .B̃n − B†

n .B̃
†
n

)
, (14)

acting on the states and on the operators of the enlarged space.
In Eqs. (13) and (14), βT = (kBT )−1 where kB the Boltz-
mann’s constant and θ(βT ) is a temperature parameter whose
value depends on the mode statistics. Since we merely deal
with the bosonic string theory, the value of θ(βT ) is

cosh θn(βT ) = un(βT ) = 1√
1 − e−βT wn

,

sinh θn(βT ) = vn(βT ) =
√

e−βT wn

1 − e−βT wn
. (15)

Given the fact that the Bogoliubov operators do not com-
bine the left- and right-moving states, it also is possible
to produce a direct product of the states as |0(βT )〉〉 =
|0(βT )〉〉α ⊗ |0(βT )〉〉β . The action of Bogoliubov trans-
formations on oscillator operators translates them to new
temperature-dependent operators through the Heisenberg
picture,

{Aμ
n (βT ), Ãμ

n (βT ), Bμ
n (βT ), B̃μ

n (βT )}
= e−iGα

n {Aμ
n , Ãμ

n , Bμ
n , B̃μ

n }eiGα
n , (16)

in which the following results can be received

Aμ
n (βT ) = un(βT )Aμ

n − vn(βT ) Ã†μ
n ,

Ãμ
n (βT ) = un(βT ) Ãμ

n − vn(βT )A†μ
n , (17)

Bμ
n (βT ) = un(βT )Bμ

n − vn(βT )B̃†μ
n ,

B̃μ
n (βT ) = un(βT )B̃μ

n − vn(βT )B†μ
n . (18)

At finite temperature, there are three possible formulations
for Dp-brane. One of them, which follows in this paper, is
to map all associated operators and states to their thermal
counterparts (for other possibilities and relations between
them, see Refs. [69–76]). Therefore, the boundary state of
dressed dynamical unstable Dp-branes at T �= 0 is

|B(βT )〉〉(tot) = T 2
p

4

(2π)p

det R

{ ∞∏
n=1

[det Q(n)]−2

}

×
p∏

α=1

|pα〉˜|pα〉
d−2∏

i=p+1

δ(xi−yi ) ˜δ(xi−yi )|pi 〉˜|pi 〉

×exp

[
−

∞∑
m=1

A†
m(βT ).�(m).B

†
m(βT )

]
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×exp

[
−

∞∑
k=1

Ã†
k(βT ).�(k).B̃

†
k (βT )

]
|0(βT )〉. (19)

Now we study thermal properties of this system. This can
be done by introducing the entropy operator in the context of
TFD and sandwiching it between the established boundary
states (19), i.e,

S = kB
(tot)〈〈B(βT )|K(A, B; θ(βT )|B(βT ))〉〉(tot). (20)

Since we are dealing with a closed string, the operator K
takes the feature

K(A, B; θ(βT )) =
∞∑
n=1

[
(A†

n .An + B†
n .Bn) ln sinh2 θn(βT )

−(An .A
†
n + Bn .B

†
n ) ln cosh2 θn(βT )

]
.

(21)

Equations (20) and (21) can be rewritten to include tilde
strings. However, given the postulation of Refs. [63,64], to
achieve the physical properties of the system, the compu-
tation of S̃ = kB (tot)〈〈B(βT )|K̃(A, B; θ(βT )|B(βT ))〉〉(tot)

must be dropped out.
By plugging Eqs. (19) and (21) into Eq. (20), The entropy

of the dressed-dynamical unstable Dp-brane is

S = T 2
p kB

(d − 2)Vd−2Ṽd−2

(2π)2(d−2p−2)
det−1

p×p(R†R)

×
[ ∞∏
s=1

[det p×pQ(s)]−4

]

×
∞∑
n=1

ξn(θn(βT ))

∞∏
m=1

[
det

(
I − �

†
(m)�(m)

)]−2
, (22)

where Vd−2 and Ṽd−2 are the volume of the H-space and
H̃-space in light-cone gauge, respectively, and

ξn(θn(βT )) ≡ ln sinh2 θn(βT )

+(1 + 3 sinh2 θn(βT )) ln tanh2 θn(βT ), (23)

is the thermal function associated with the entropy. In the
T → 0 limit, the contribution of the oscillators diverges. In
contrast, in T → ∞ limit, the oscillator’s contribution is
proportional to ln(−1). This may indicate that the concept
of temperature breaks down at arbitrarily high temperatures
owing to similar phenomena that happen at Hagedorn tem-
perature in string theory. Some plausible explanations are
provided in Refs. [65–76] in order to comprehend these val-
ues of entropy.

Another interesting result is that if we simply turn on the
tachyon profile and off all background and internal fields,
together with the tangential dynamics of the Dp-brane, the
resulted entropy will be zero. This may demonstrate the dif-
ference between the tachyonic instability and the thermal
instability of the D-brane.

Due to the presence of the tachyon field and the gen-
eral tangential dynamics of the branes, our results are more
general than those presented in Refs. [65–76]. However,
by quenching the tachyonic field, the matrix �(n) becomes
mode-independent, and the results in mentioned reference
are obtained when ωαβ → 0 is also applied. With the
attainment of entropy, it becomes feasible to deduce vari-
ous other thermodynamic properties. Given the renormaliza-
tion problem of the string tension from a finite-temperature
renormalization-group approach, however, calculating the
free energy, which helps us better comprehend phase tran-
sition and thermodynamic stability of the system, is quite
difficult in the context of TFD [84–88,104,105]. This may
indicate future research that must be conducted within the
context of Dp-branes.

4 The effects of the tachyon condensation on the entropy

When Dp-branes are studied in the presence of open string
tachyonic fields, instability of it, whose investigation is cru-
cial to our understanding of the vacuum of string theory, will
take place. Through so-called tachyon condensation, a phase
transition follows. During this process, the Dp-brane col-
lapses drastically, and we are left with a collection of closed
strings.

From a mathematical standpoint, at least one element
of the tachyon matrix Uαβ must be infinite to form the
tachyon condensation. For simplicity, we impose the con-
densation of the tachyon field just in the x p-direction, that
is, Upp → ∞. There are three matrices involving the tachy-
onic field in Eq. (22); R, Q(n) and �(n), in which the limit
must be considered. By implementing Upp → ∞, we have
limUpp→∞(U−1)pα = limUpp→∞(U−1)αp = 0. Conse-
quently, the matrix R loses its final row and column. Let
us denote it as R̄. Similarly, the effect of tachyon condensa-
tion on the component

∏∞
n=1 [det p×p Q(n)]−4, with the use

of zeta function regularization, becomes

lim
Upp→∞

∞∏
n=1

[det p×pQ(n)]−4

= π2U 2
pp

∞∏
n=1

[
det(p−1)×(p−1)Q

[p−1]
(n)

]−4
, (24)

where the matrix Q[p−1]
(n) can be obtained by removing the

final row and column of matrix Q(n), resulting in a (p−1)×
(p−1) matrix. The limit of the matrix �(n), since it is not the
product of the limits of Q−1

(m) and N(m), must be determined

after the executing the product Q−1
(m)N(m). It gives rise to

lim
Upp→∞ �(m) =

((
�(m)

)
(p−1)×(p−1)

0(p−1)×1

01×(p−1) −1

)
, (25)
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where

(
�(m)

)
(p−1)×(p−1)

=
(
Q[p−1]

(m)

)−1
N [p−1]

(m) . (26)

Now it is evident that a Neumann direction (x p-direction) has
been altered into a Dirichlet direction. Hence, the tachyon
condensation phenomenon deforms an unstable Dp-brane
into a stable D(p − 1)-brane.

Adding all these together, the effect of the tachyon con-
densation on the entropy, Eq. (22), takes the feature

S ′ = (d − 2)kB
(UppTp)

2Vd−2Ṽd−2

4(2π)2(d−2p−3)
det−1

(p−1)×(p−1)(R̄
†R̄)

×
[ ∞∏
s=1

[det p×pQ
[p−1]
(s) ]−4

]

×
∞∑
n=1

ξn(θn(βT ))

∞∏
m=1

[
det

(
I − �

†
(m)�(m)

)]−2
, (27)

where �(m)μν ≡
{[(

Q[p−1]
(m)

)−1
N [p−1]

(m)

]
α′β ′

, −δi ′ j ′

}
in

which α′, β ′ ∈ {1, . . . , p − 1} and i ′, j ′ ∈ {p, . . . d − 2}.
From Eq. (27), one can deduce that portions that consist
of the thermal factor remain the same. However, due to
the tachyon condensation, the terms corresponding to the
fields and dynamics are drastically changed which results in
a new value for entropy. Nevertheless, Eq. (27) is not just the
entropy of a stable brane. It comprises both the entropy of
D(p − 1)-brane and the entropy associated with the closed
strings that were produced during the collapse of the orig-
inal brane. As can be seen, entropy (27) is a complicated
function in terms of temperature, fields and dynamics of the
configuration, making their separation rather impossible.

4.1 The second law of the thermodynamics

In this part, we explored some thermodynamic aspects of the
process of tachyon condensation. Since the system evolves
from its initial state, i.e, the original Dp-brane, to its final
state, which is the D(p − 1)-brane and the released closed
strings, studying the second law of thermodynamics must
be interesting. Hence, we must examine the validity of the
inequality �S ≡ S ′ − S > 0. Given that in Eqs. (27) and
(22), the determinant factors are always positive, in the limit
of Upp → ∞, the inequality is valid if and only if ξ(θn(βT ))

is positive which signals the positivity of the entropy. This
implies that

ln(eβT ωn − 1) + βTωn
eβT + 2

eβT − 1
< 0. (28)

In the other words, the second law of thermodynamics holds
true when the frequency value of the nth oscillator, denoted as

ωn , are within the range ofnkBT ln X where X ≈ (1,
√

π/3).
This condition significantly limits the frequency levels of it.

It should be noted that, in the context of TFD approach,
the attainment of a physically admissible configuration that
adheres to the principles of the second law of thermodynam-
ics necessitates a positive entropy. Consequently, the insta-
bility of the brane, due to the presence of an open string
tachyonic field on it, should not cause a negative value in
entropy.

5 Conclusions

We presented a boundary state, corresponding to a thermal-
dynamical Dp-brane in the presence of an internal U (1)

gauge potential, an open string tachyon field and a non-zero
constant Kalb–Ramond field. For implementing the thermal
aspect to the setup, the temperature has been encoded in the
operators using the TFD approach. This enabled us to map
all operators in T = 0 to T �= 0. Then, the thermal entropy
of such branes was computed. By assessing the resulting
entropy at T → 0, we observed that the entropy diverges.
Besides, in the limit T → ∞, the oscillator contribution to
the entropy is proportional to ln(−1). Owing to the similar
phenomena in the string theory at the Hagedorn temperature,
this may imply that the concept of temperature breaks down
at arbitrary high temperatures.

Note that in simpler setups similar conclusions have been
also provided in the Refs. [65–80]. This clarifies that, in the
context of the TFD approach, the resultant entropy in the
limits T → 0 and T → ∞ is independent of any field and
dynamics.

We examined the effect of the tachyon condensation in our
setup and in the thermal entropy. Since the thermal factors,
associated with the entropy are unaffected by the tachyon
condensation, the study of the entropy in the limits of low-
and high-temperatures yields the same results as the setup
before the tachyon condensation. Despite this, as it can be
seen in Eq. (27), the effect of this phenomenon profoundly
manifests in the fields and dynamic contributors of entropy.

Finally, we examined the existence of the second law of
thermodynamics for our setup during the tachyon condensa-
tion process. We observed that if Dp-brane is in a thermal
non-equilibrium state, the second law of thermodynamics
will be violated after tachyon condensation. Therefore, to
maintain a physical system, as long as one considers tachyon
condensation, the Dp-brane must not possess negentropy.
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