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Abstract We study the finite time response of an Unruh–
DeWitt particle detector described by a qubit (two-level sys-
tem) moving with uniform constant acceleration in maxi-
mally symmetric spacetimes. The D dimensional massless
fermionic response function in de Sitter (dS) background is
found to be identical to that of a detector linearly coupled
to a massless scalar field in 2D dimensional dS background.
Furthermore, we visit the status of Huygen’s principle in the
Unruh radiation observed by the detector.

1 Introduction

A uniformly accelerating observer of constant acceleration
a moving in Minkowski or maximally symmetric spacetime
sees the vacuum for an inertial observer as a thermal state of
temperature T = ω

2π
. Here, ω is given by [1–6],

ω =
⎧
⎨

⎩

√
a2 + k2, dS,� > 0√
a2 − k2 AdS,� < 0

a Minkowski,� = 0
(1)

Here the cosmological constant � is related to D dimension
spacetime curvature, k through |�| = k2

2 (D− 2)(D− 3). In
recent times, Unruh radiation and its close analogue Hawk-
ing radiation has been extensively studied with the tool of the
Unruh–Dewitt (UDW) particle detector. The UDW detector
has applications connecting other branches of physics includ-
ing but not limited to understanding harvesting entanglement
[7–10], QCD [11], complexity [12], cosmology [13–15],
as well as in application-oriented research directions such

a e-mail: mir.faruk@mail.mcgill.ca (corresponding author)

as condensed matter systems [16,17] like anyons [18] and
constructing heat engines [19,20] using UDW detector. The
accelerated UDW detector shows a response when coupled
to matter field. In one of the pioneering work on the topics
related to detector physics was by Takagi [21] where interest-
ing features of detector response function were elaborated. A
complete story on fermionic response function to accelerated
detectors in flat spacetime was developed recently in [22]. It
was noted in that [22] in D-dimensional Minkowski space-
time, the response of the accelerated UDW detector coupled
to massless Dirac field proportional to that of a detector lin-
early coupled to a massless scalar field in 2D dimension.
This observation was quite interesting as it helped us mea-
sure the Unruh radiation observed by the detector when cou-
pled to the fermionic matter field. But it is a natural question
to ask if a similar conclusion also arises when the fermionic
field is coupled to curved spacetime. In our previous article
[23] we explained how the same mechanism works in AdS
background instead. Another significant observation made
by several authors [24,25] is the apparent statistics inversion
in the Unruh radiation in odd dimensional spacetime. In odd-
dimensional spacetime, we notice that the thermal radiation
measured by a linear UDW particle detector coming from
scalar field can maintain an anti periodic relation. Our previ-
ous article explained how non-linearity affects the statistics
inversion in AdS spacetime. Of course, when the curvature
of the spacetime was approaching zero, we reproduced the
known results of detector response in flat spacetime [6,23]
but the similar setup in the dS background still needs to be dis-
cussed. In this article, we analyze the effects of non-linearity
and develop the calculation of the fermionic response func-
tion in the dS background. In our earlier work and many
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other studies relating to the UDW detector, we investigated
the response function where the detector is “turned on” for
an infinite amount of time [6,21,23]. In practice it is impos-
sible to turn on the detector for infinite time [20]; therefore,
the finite time response has been rigorously investigated in
the context of flat space time [26]. We start our manuscript
by analysing the finite time response of accelerated an UDW
detector in AdS spacetime coupled to real scalar fields in a
non-linear way. In Sect. 2, we first elaborate on the dS case
for the real scalar fields and then finish the calculation for
fermionic fields. We prove here the response function of the
uniformly accelerated UDW detector coupled to a massless
Dirac field in dS spacetime of dimension is equivalent to the
response function of the detector linearly coupled to a mass-
less scalar field in 2D dimensional dS spacetime. We have
generalised the result in the case of non trivial gravitational
background AdS spacetime in part-1 [23] and dS spacetime
in this article. Finally, we summarise the cases when the
Huygens principle is maintained or violated by the Unruh
radiation observed by the accelerated detectors in maximally
symmetric spacetime. We point out that fermionic Unruh
radiation respects the Huygens principle in any dimension,
unlike scalar theory. We explain here the reason behind.1

Throughout the whole article, we chose h̄ = 1, c = 1 and
Boltzmann constant kB = 1 in our calculation.

2 Finite time response of UDW detector: scalar field

We first consider a real scalar field � in D dimensional
(A)dS spacetime which is conformally coupled to gravita-
tional background. We are are considering the AdS metric in
Poincare coordinates but we can ofcourse choose any other
coordinates system such as global coordinates. Similarly we
will follow the flat slicing for de Sitter background. The AdS
metric in Poincare coordinate,

ds2 = 1

k2z2 (dt2 − dx2
1 − dx2

2 − ... − dx2
D−2 − dz2). (2)

The dS metric in flat slicing is written as

ds2 = 1

k2η2 (dη2 − dx2
1 − dx2

2 − ... − dx2
D−2 − dx2

D−1).

(3)

Depending upon what we would like to have as our our grav-
itational background we pick AdS or dS we choose Eqs. (2)
or (3). The total action of our system of interest is,

S = S0 + Sint + Sdetector , (4)

1 In previous study, (see Ref. [25]), it was claimed that the Huygens
principle is violated (satisfied) in even (odd) dimensions for fermionic
Unruh radiation. We show here that it is not the case.

The matter field action is simply-

S0 = 1

2

∫

dDx
√|g|

(
gμν�μ��ν� + ζ R�2

)
. (5)

When scalars are conformally coupled to gravity one can
specify [27],

ζ = D − 2

4(D − 1)
. (6)

The interaction part of the Hamiltonian is simply,

HI (τ ) = λχT (σ̂−(τ ) + σ̂+(τ ))�(z(τ )), (7)

where, λ is the strength of coupling, χT is a switching func-
tion which controls the time of interaction with the field, and
n is any positive integer. T represents how long the detector
is on. We are going to refer it as switching time. It is well
known that any sudden jump in the switching function may
cause divergence [20] for finite time interaction. Therefore
we choose a Lorentzian switching function (a smooth func-
tion),

χT (τ ) = (T /2)2

τ 2 + (T /2)2 (8)

One can simply set T → ∞, or χT = 1 in order to obtain the
usual detector response (where it is assumed that the detec-
tor can interact with the matter fields for infinite time). The
detector is thought as a two-level quantum system defined
along a worldline x(τ ). The detector Hamiltonian is,

ĤD = 

2

(
σ̂+σ̂− − σ̂−σ̂+)

, (9)

We are thinking the UDW detector as two level system. There
are two states |g〉 and |e〉 and  is the energy gap between
these two states. The σ̂+ and σ̂− are the well known SU (2)

ladder operators.

|e〉 = σ̂+|g〉, (10)

σ̂−|g〉 = 0 (11)

From this Hamiltonian we can easily see the ground and
excited states of the detector are |g〉 and |e〉, respectively.

ĤD|e〉 = 

2
|e〉 (12)

ĤD|g〉 = −

2
|g〉 (13)

Point to note that ĤD generates time translations with
respect to the detector’s proper time τ . We are assuming
that the detector follows a timelike trajectory x(τ ) which
parametrized by proper time τ in D dimensional spacetime.
Any real scalar quantum field �(x) can be written as a mode
expansion,

�(x) =
∫

dlk
(
fk(x)b̂k + f ∗

k (x)b̂†
k

)
, (14)

123



Eur. Phys. J. C (2023) 83 :1087 Page 3 of 19 1087

where {uk(x)} is assumed to be a normalized basis of solu-
tions to the Klein–Gordon equation. The functional form
is fixed from the gravitational background. the annihila-
tion and creation operators maintaining the usual commu-
tation relations are b̂k, b̂

†
k , respectively. In principle the cre-

ation/annihilation operators help can be used construct a
Hilbert space representation for the quantum field, defined
in terms of the vacuum state |0〉. The most interesting quan-
tity to us is the probability amplitude related to the transition
from the initial state |g, 0〉 to a state |e, ϕ〉. Here |ϕ〉 denotes
an arbitrary final state of the field. The amplitude can be
found following [28],

Ag→e(ϕ) = 〈e, ϕ|UI |g, 0〉 =
∞∑

n=0

〈e, ϕ|U (n)
I |g, 0〉

=
∑

n odd

λn
(−i)n

n!

×
∫

dτ1 · · · dτnχ(τ1) · · · χ(τn)〈ϕ|T
(
φ̂(τ1) · · · φ̂(τn)

)
|0〉

× ei(τ1−τ2+···+τn), (15)

HereUI the time evolution operator is given in the usual way,

UI = T exp

(

−i
∫

dτHI (τ )

)

=
∞∑

n=0

(−i)n

n!
∫

dτ1 · · · dτnT
(
HI (τ1) · · · HI (τn)

)

︸ ︷︷ ︸

U (n)
I

=
∞∑

n=0

U (n)
I (16)

One can determine the transition probability to arbitrary order
by tracing over the field final states |ϕ〉,

Pg→e =
∫

Dϕ
∣
∣Ag→e(ϕ)

∣
∣2

=
∑

n,m odd

λn+m (−i)n−m

n!m!
∫

dτ ′
1 . . . dτ ′

mdτ1

· · · dτnχ(τ ′
1) · · · χ(τ ′

m)χ(τ1) · · · χ(τn)

× 〈0|T
(
�(τ ′

1) · · · �(τ ′
m)

)†
T

(
�(τ1) · �(τn)

)
|0〉

× e−i(τ ′
1−···+τ ′

m )ei(τ1−···+τn), (17)

In this series the lowest order term is of second order in the
coupling constant λ. It is expressed as,

P(2)
g→e

= λ2
∫

dτdτ ′χ(τ)χ(τ ′)〈0|�(τ)�(τ ′)|0〉ei(τ−τ ′)

= λ2
∫

dτdτ ′χ(τ)χ(τ ′)W (2)
D

(x(τ ), x ′(τ ′))ei(τ−τ ′). (18)

Here, W (2)
D

(x(τ ), x ′(τ ′)) is the D dimensional two point cor-
relator (Wightman function). The exact functional form of
the Wightman function again depends upon the background
gravity.

We can consider more general interaction Hamiltonian,

HI = λ χT (τ )m(τ ) O�[x(τ )] , (19)

Here, m(τ ) the monopole operator,

m(τ ) = eiτ |e〉〈g| + e−iτ |g〉〈e|
=

(
0 e+iτ

e−iτ 0

)

. (20)

This actually takes the ground state of the detector to the
excited state and vice versa. In other words we can physi-
cally describe the procedure as “a click” in response to the
presence of the field. Now the the operator O� outlines how
the matter field is coupled to the detector. Instead of usual
linear coupling we take a more general coupling [24,26],2

O�[x(τ )] = �n[x(τ )] (21)

If we use the interaction Hamiltonian (21) then we re-express
Eq. (18),

P(2)
g→e

= λ2
∫

dτdτ ′χ(τ)χ(τ ′)W (2n)
D

(x(τ ), x ′(τ ′))ei(τ−τ ′)

(22)

Here, W (2n)
D

(τ − τ ′) = 〈0| : �n(x(τ )) :: �n(x(τ ′)) : |0〉 is
the 2n-point correlator. The detector response function of the
UDW detector is directly proportional to the probability for
the detector to transition from ground state to excited state.
Using Lorentzian switching function Eq. (8) the response
function F (2n)(, T ) will be,

F (n)(, T ) = πT 3

4

∫ ∞

−∞
d(�τ)

W (n)
D (�τ)

�τ 2 + T 2 e
−i�τ (23)

The 2n-point function W (2n)
D

(
x, x ′) is related to the the

Wightman function in the following interesting but simple
way by Wick’s theorem [29],

W (2n)
D

(
x, x ′) = (n!)

(
W (2)

D

(
x, x ′))n . (24)

2.1 Finite time response of scalar fields: AdS spacetime

For conformally coupled scalars the Wightman function in
D > 2 dimensional AdS spcatime can be obtained in the
following form with suitable boundary condition [6],

2 Normal ordering is assumed.
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W (2)
AdSD

(x, x ′) = 〈0|�(x(τ ))�(x(τ ′))|0〉

= CD
(

1

(v − 1)D/2−1 − 1

(v + 1)D/2−1

)

.

(25)

Here, ν is the conformal invariant defined as,

v = z2 + z′2 + (x − x′)2 − (t − t ′ − iε)2

2zz′
. (26)

CD is a constant,

CD = kD−2�(D/2 − 1)

2(2π)D/2 , (27)

In this article we mainly focus on Unruh effect is a widely
studied phenomena which basically states an accelerating
observer (with constant linear acceleration a) will observe
a thermal bath with temperature T . If the observer were in
flat spacetime, the temperature is given by the following for-
mula T = h̄a

2πckB
. In the usual literature [30] (studies mostly

done in flat spacetime) the path which was chosen for the
accelerating observer had linear uniform acceleration a. The
accelerating observer (detector) can take a circular path with
constant velocity v, will end up having constant acceleration
a. Of course the resultant radiation (detector response) due to
this type of non-linear motion will not be quite thermal radia-
tion as the correlators will not obey the KMS relation [? ]. We
are interested in those accelerated paths which corresponds
to Wightman function maintaining valid KMS relation.

2.1.1 Super critical accelerated paths in AdS

We are considering the supercritical paths (a > k) as only
these paths results in non zero response function for the detec-
tors [6] in uniform linear acceleration. In our recent arti-
cle [23] we successfully showed that using GEMS (Global
Embedding Minkowski Spacetimes) approach that one can
construct a path with constant acceleration by considering
the path as an intersection between a flat plane of dimension
M and D dimensional AdS hypersurface embedded in D+1
dimensional flat spacetime. Here, M(M < D + 1). We also
proved that for any uniform linear supercritical trajectories
would have the same conformal invariant v as a function of
proper time.

v(τ, τ ′) = a2

ω2 − k2

ω2 cosh(ω(τ − τ ′) − iε). (28)

Here ω = √
a2 − k2. The example of super critical path

(with constant linear acceleration) in z − t plane is given in
Ref. [23],

t (τ ) = a

ω
eωτ , z(τ ) = eωτ ,

x1 = x2 = x3 = · · · = xD−2 = 0. (29)

Another supercritical path with constant acceleration a in the
x1 − t plane is given by the following manner [23],

z(τ ) = z0 , x1(τ ) = z0k

ω
cosh(ωτ), t (τ ) = z0k

ω

sinh(ωτ) x2 = x3 = · · · = xD−2 = 0. (30)

z0 is a constant and τ is the proper time. We could also define
the (30) path in the xi −t direction. However we have already
showed in Ref. [23] that how all uniform accelerating paths
with constant acceleration are related by AdS isometries. Any
supercritical path will result in Eq. (28). Therefore, following
Eq. (25), the two point function for uniform acceleration (in
any supercrtical path) becomes,

GAdSD(�τ) = ωD−2�( D
2 − 1)

(4π)
D
2

(
1

i D−2 sinhD−2( ω�τ
2 − iε)

− 1

(sinh(A + ( ω�τ
2 − iε)))

D
2 −1(sinh(A − ( ω�τ

2 − iε)))
D
2 −1

)

.

(31)

Here, sinh A = ω/k.
In our previous article we demonstrated the following rela-

tion about the two-point correlator [23],

G(2n)
AdSD

(

�τ + 2π i̇

ω

)

= (−1)nDG(2n)
AdSD

(�τ). (32)

Therefore ω = √
a2 − k2 is the temperature [23]. We

rewrite the 2n-point function G(n)
AdSD

in the following manner
[23],

G(n)
AdSD

(�τ) = (n!)CnD
(

ω√
2k

)n(D−2) n∑

α=0

(
n

α

)

× (−1)α

i p
GD,n,α(ρ) (33)

where,

GD,n,α(ρ) = (sinh(ρ − iε))−p

(sinh(A + (ρ − iε)))−q(sinh(A − (ρ − iε)))−q (34)

ρ = ω�τ/2 (35)

p = 2(n − α)(D/2 − 1) (36)

q = α(D/2 − 1). (37)

So, finally the expression for the finite time response function
in AdS spacetime for our interaction Hamiltonian becomes,

F (n)(, T ) = πn!T 3CnD
4

(
ω√
2k

)n(D−2) ∫ ∞

−∞
d(�τ)

× e−i�τ

�τ 2 + T 2

n∑

α=0

(
n

α

)
(−1)α

i p
GD,n,α(ρ) (38)

= πn!T 3CnD
4

(
ω√
2k

)n(D−2) n∑

α=0

(
n

α

)
(−1)α

i p

(ω

2

)
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Fig. 1 Contour for evaluating
ID,n,α

×
∫ ∞

−∞
dρ

e−i(2/ω)ρ

ρ2 + (ωT /2)2 GD,n,α(ρ)

︸ ︷︷ ︸
FD,n,α

(39)

= ωπn!T 3CnD
8

(
ω√
2k

)n(D−2) n∑

α=0

(
n

α

)
(−1)α

i p
FD,n,α

(41)

where,

FD,n,α =
∫ ∞

−∞
dρ

e−i(2/ω)ρ

ρ2 + (ωT /2)2 GD,n,α(ρ). (42)

Next, we evaluate FD,n,α by computing the contour inte-
gral using semi-circle contour containing the lower half of
complex ρ plane (shown in Fig. 1). Thus we obtain,

FD,n,α(T ) = −2π i ×
{

sum of the residues at ρ

= −iπr, ±A − iπr ( where r = 1, 2, ...)

and ρ = −iωT /2 of
GD,n,α(ρ)

ρ2 + (ωT /2)2

}

= −2π i ×
(

lim
ρ→−iωT /2

e−i(2/ω)ρ

sinhq (A + ρ) sinhq (A − ρ) sinhp

(ρ)
(
ρ −

(
iωT

2

))

+
∞∑

r=1

[

lim
ρ→−iπr−A

η(q − 1)

�(q)

(
1

cosh(ρ + A)

d

dρ

)q−1

× e−i(2/ω)ρ

cosh (A + ρ) sinhq (A − ρ) sinhp (ρ)

(

ρ2 +
(

ωT
2

)2
)

+ lim
ρ→−iπr+A

η(q − 1)

�(q)

( −1

cosh(A − ρ)

d

dρ

)q−1

× −e−i(2/ω)ρ

sinhq (A + ρ) cosh (A − ρ) sinhp (ρ)

(

ρ2 +
(

ωT
2

)2
)

+ lim
ρ→−iπr

η(p − 1)

�(p)

(
1

cosh ρ

d

dρ

)p−1

× e−i(2/ω)ρ

sinhq (A + ρ) sinhq (A − ρ) cosh (ρ)

(

ρ2 +
(

ωT
2

)2
)

])

(43)

Here, η(p) is Heaviside step function and �(p) is gamma
function. In our previous case we were able to analytically
solve the four dimensional response function in AdS when
we chose the infinite switching time, i.e. T = ∞. How-
ever it was not possible to calculate the detector response for
finite switching time. We have evaluated the response func-
tion numerically in finite switching time. Finally we have
plotted the response function in different ranges of parame-
ter space. In Fig. 2, we plot the detector response as a function
of energy gap of the two level UdW detector. In the three dif-
ferent columns of Fig. 2, we have chosen three values of n.
We can see that when the detector energy gap increases the
response goes to zero. In the first row we have fixed the cur-
vature and switching time while varying the energy. We can
clearly see the response weakens with greater value of n. But
if we increase the acceleration of the detector the tempera-
ture of the radiation also increases. Therefore the first row of
Fig. 2 manifests response function with respect to  takes
greater value when acceleration is increased. Similar trends
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Fig. 2 Plot of the finite-time response of the UDW particle detector in
AdS space-time against energy . (From left to right) 1st, 2nd and 3rd
columns show the plots for different values of n, with n = 1, n = 2

and n = 3. Each row (from top to bottom) shows the variation of the
response function with changing a (fixed k = 1, T = 3), changing k
(fixed a = 4, T = 3) and changing T (fixed a = 4, k = 1) respectively

are noticed when we look at the other two plots of Fig. 1. It
is very interesting to see as the curvature of AdS spacetime
goes to zero the detector response rises. Complete opposite
trends are noticed in dS spacetime. But in both cases we have
better response function if we can “turn on” the detector for
longer time.

As expected from previous discussion if we can acceler-
ate the detectors more and more, we should be able have best
response from the detector. We also see it in Fig. 3. In the
first row of Fig. 3 we can notice when energy gap rises the
response weakens. Even if the detector is accelerated with
higher value it will be difficult to excite the detector if the
energy gap is too much. This problem persists more if we have
non-linear coupling between the matter field and the detec-
tor. The trend of response function changing with curvature
is very interesting. As the curvature increases more and more
it becomes problematic to excite the detector. However, we
should point out AdS spacetime is a constant curvature space-
time. So when we plot for different values of k, we mean that

we are comparing the results the results of response function
for different AdS spacetime with different curvatures. We do
not mean that we are analysing the detector spectrum where
the gravitational background has varying curvature (Fig. 4).

2.2 Scalar field in dS space

We now we use the same setup of two level detector as before
but now we consider that the background spacetime is de
Sitter spacetime. The metric of de Sitter spacetime can be
expressed by so called flat slicing as below-

ds2 = 1

k2η2 (dη2 − dx2
1 − dx2

2 − · · · − dx2
D−1). (44)

Now, we are going to discuss about the real scalar field � that
is conformally coupled to dS gravitational background. We
have the same matter field action as well as the same inter-
action Hamiltonian as in previous section (Eq. (19)). Just
as before we need to know the two-point correlator (Wight-

123
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Fig. 3 Plot of the finite-time response of the UDW particle detector
in AdS space-time against acceleration a. (From left to right) 1st, 2nd
and 3rd columns show the plots for different values of n, with n = 1,
n = 2 and n = 3, respectively. Each row (from top to bottom) shows

the variation of the response function with changing  (fixed k = 2,
T = 3), changing k ( = 1, T = 3) and changing T ( = 1, k = 2)
respectively

man function) in order to evaluate the detector response. The
Wightman function for “Euclidean” vacuum |0〉 can easily
be obtained for conformally coupled real scalar field [31],

W (2)
dSD

(x, x ′) = 〈0|�(x(η))�(x(η′))|0〉 = KDv1−D/2 (45)

where,

KD = kD−2�(D/2 − 1)

2(2π)D/2 . (46)

Here ν is the conformal invariant.

ν = (	x − 	x ′)2 − (η − η′ − iε)2

2ηη′ . (47)

In order to examine Unruh radiation through the detectors
need to move through a constant accelerated path in dS back-
ground. An example of accelerating path in dS spacetime
with constant linear acceleration (see Appendix 5), we can
choose the following,

η(τ) = τ0e
ωτ , x1(τ ) = a

ω
τ0e

ωτ

x2 = x3 = · · · = xD−1 = 0, (48)

where ω = √
a2 + k2. Plugging η and xi from Eqs. (47) to

(48), the conformal invariant ν takes the following form in
this case,

ν = ( a
ω
τ0eωτ − a

ω
τ0eωτ ′

)2 − (τ0eωτ − τ0eωτ ′
)2

2τ 2
0 e

ωτ eωτ ′

= 1

2

(
a2

ω2 − 1

) (
eωτ − eωτ ′

eω(τ+τ ′)/2

)2

= − H2

2ω2

(
eω�τ/2 − e−ω�τ/2

)2

= −2H2

ω2 sinh2(ω�τ/2) (49)

Following Eq. (45), the two point function for uniformly
accelerating paths becomes,

GdSD(�τ) = ωD−2�( D2 − 1)

(4π)
D
2

1

i D−2 sinhD−2(ω�τ/2 − iε)
.

(50)
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Fig. 4 Plot of the finite-time response of the UDW particle detector
in AdS space-time against the curvature of AdS (k) for massless scalar
fields. (From left to right) 1st, 2nd and 3rd columns show the plots for
the n = 1, n = 2 and n = 3 coupling to the scalar field. Each row

(from top to bottom) shows the variation of the response function with
changing a (T = 3,  = 1), changing  (a = 4, T = 3) and changing
T (a = 4,  = 1) respectively

We can define the transition probability rate or detector’s
response function (per unit time)3 for interaction Lagrangian
(7) of scalars [27],

F (n)
dSD

=
∫ ∞

−∞
d�τe−i E�τW (2n)

dSD
(�τ). (51)

Here, W (2n)
dSD

(τ − τ ′) = 〈0| : �n(x(τ )) :: �n(x(τ ′)) : |0〉 is

the 2n correlator. The 2n-point function W (2n)
dSD

is related to
the the Wightman function in the following way by Wick’s
theorem [29],

W (2n)
dSD

(
x, x ′) = (n!)

(
W (2)

dSD

(
x, x ′))n . (52)

So, the 2n correlator becomes,

W (2n)
dSD

(�τ) = (n!)Kn
D

(
ω√
2H

)n(D−2)

3 In this scenario, we are considering the detector can be switched on
for infinite time.

×
(

1

i D−2 sinhD−2(ω�τ
2 − iε)

)n

. (53)

Now the KMS condition can be easily checked using the
Eq. (53).

W (2n)
dSD

(�τ + 2π i

ω
) = (n!)Kn

D

(
ω√
2H

)n(D−2)

×
(

1

i D−2 sinhD−2(ω
2

(
�τ + 2π i

ω

) − iε)

)n

= (−1)nDW (2n)
dSD

(�τ). (54)

This behavior is similar to the AdS space for nonlinear cou-
pling [33] with a major difference with radiation temperature
being ω = √

a2 + k2 [3]. We can obtain the Unruh–Dewitt
detector response function by taking α → 0 in equation (37)
in [33].

F (n)
dSD

=
(

n! Kn
D

(
ω√
2H

)n(D−2)
(−1)n(D−2)+1

in(D−2)

2

ω
ID,n

)
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Fig. 5 Plot of the finite-time response of the UDW particle detector in
dS space-time against energy . (From left to right) 1st, 2nd and 3rd
columns show the plots for different values of n, with n = 1, n = 2

and n = 3. Each row (from top to bottom) shows the variation of the
response function with changing a (fixed k = 3, T = 3), changing k
(fixed a = 3, T = 3) and changing T (fixed a = 3, k = 3) respectively

× 1

e2πE/ω − (−1)n(D−2)
. (55)

where,

ID,n = 2π i × 1

�(n(D − 2))
lim
ρ→0

×
((

1

cosh ρ

d

dρ

)n(D−2)−1 e−i 2E
ω

ρ

cosh (ρ)

)

. (56)

Finally, to calculate the finite-time Unruh–DeWitt detector
response function for dS spacetime, we plug in the 2n-point
correlator G(n)

dSD
from Eqs. (53) to (51) which gives,

F (n)
dSD

(,T ) = πT 3

4

∫ ∞

−∞
d(�τ)

G(n)
dSD

(�τ)

�τ 2 + T 2 e
−i�τ

= πT 3n!
4

(
�(D/2 − 1)

(4π)D/2

)n (ω

i

)n(D−2)

×
∫ ∞

−∞
d(�τ)

e−i�τ

�τ 2 + T 2

1

sinhn(D−2)( ω�τ
2 − iε)

= πT 3n!
4

(
�(D/2 − 1)

(4π)D/2

)n (ω

i

)n(D−2) (ω

2

)

×
∫ ∞

−∞
dρ

e−2iρ/ω

ρ2 + (ωT /2)2

1

sinhn(D−2)(ρ − iε)
︸ ︷︷ ︸

FD,n

= πT 3n!
4

(
�(D/2 − 1)

(4π)D/2

)n (ω

i

)n(D−2) (ω

2

)
· FD,n

(57)

where,

FD,n =
∫ ∞

−∞
dρ

e−2iρ/ω

ρ2 + (ωT /2)2

1

sinhn(D−2)(ρ − iε)
(58)

Finally, we evaluate the finite time response function F (n)
dSD

numerically from (57) and plot it with respect to energy gap,
acceleration, and curvature as before. Just like the case of
AdS, we can also see that as the energy gap increases the
response function decreases (Fig. 5). In the first row of Fig. 5
we can see if the value of acceleration is higher the response
function (Figs. 6, 7).
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Fig. 6 Plot of the finite-time response of the UDW particle detector in
dS space-time against acceleration a. (From left to right) 1st, 2nd and
3rd columns show the plots for different values of n, with n = 1, n = 2

and n = 3. Each row (from top to bottom) shows the variation of the
response function with changing  (fixed k = 3, T = 3), changing k
( = 1, T = 3) and changing T ( = 1, k = 3) respectively

3 Finite time response of UDW detector: Dirac fields

3.1 Dirac fields in AdS

In the similar fashion we can analyse the response function
for fermions in AdS spacetime minimally coupled to back-
ground gravity. The fermionic matter field action is-

S0 =
∫

dDx
√|g|�̄i /D�. (59)

We can consider usual interaction Hamiltonian [20],

HInt = λ χT (τ )m(τ ) O� [x(τ )], (60)

Here, the operator O� [x(τ )] is the normal ordered bispinor,

O� [x(τ )] =: �̄[x(τ )]�[x(τ )] : (61)

Using Lorentzian switching function Eq. (8) the response
function for interaction Hamiltonian (60) takes the following
form,

F (n)(, T ) = πT 3

4

∫ ∞

−∞
d(�τ)

S(4)
D (�τ)

�τ 2 + T 2 e
−i�τ . (62)

Here, the four point function S(4)
D ,

S(4)
D (x(τ ), x(τ ′)) = 〈0| : (

�a(x(τ )))�a(x(τ ))
) ::

(
�b(x(τ

′)))�b(x(τ
′))

) : |0〉
= Tr[S+(x, x ′)S−(x ′, x)]. (63)

As discussed in [23] for fermions in AdS spacetime,

S(2)
D (�τ) = N

(�(D/2))2

�(D − 1)
GAdS2D (�τ) (64)

From Eq. (100) we can then conclude that detector response
function for fermions can be related to response function for
the scalars,

JAdSD (�τ) = N
(�(D/2))2

�(D − 1)
F (1)

AdS2D
(�τ). (65)

In the next section we work on fermions in dS spacetime
and we work out relations similar to Eq. (64). Therefore,
we further demonstrate that Eq. (65) holds for maximally
symmetric spacetime. The proof is similar to the case of AdS
but we explicitly demonstrate it for the sake of completeness.
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Fig. 7 Plot of the finite-time response of the UDW particle detector
in dS space-time against the curvature of space-time (k) for massless
scalar fields. (From left to right) 1st, 2nd and 3rd columns show the
plots for different values of n, with n = 1, n = 2 and n = 3. Each

row (from top to bottom) shows the variation of the response function
with changing  (a = 3, T = 3), changing a (T = 3,  = 1), and
changing T (a = 3,  = 1) respectively

3.2 Dirac fields in dS

In order to study Dirac field in de Sitter spacetime we
choose a local Lorentz frame (vielbein) which is defined
as, eaμ = δaμ/(Hτ) such that gμν = eaμe

b
νηab mimics the

de-Sitter metric. Here Latin letters a, b corresponds to local
orthonormal flat coordinates and Greek letters μ, ν signifies
the de Sitter coordinates. Both of them takes value from 0
to D − 1. Also ηab = diag(+1,−1, . . . ,−1) is the local
flat metric. The vielbeins follow the usual orthonormal rela-
tions. Now, the curved space � matrices and the covariant
derivatives are defined as,

�μ = eμ
a γ a,

Dμ = ∂μ + 1

2
ωbc

μ bc, (66)

where γa are gamma matrices in flat spacetime. And com-
mutator between γ matrices are identified as bc.

bc = 1

4
[γ b, γ c] (67)

and the spin connections ωbc
μ are noted as,

ωab
μ = eaλ

(

∂μe
b
λ −

{
α

μ λ

}

ebα

)

(68)

and

{
α

μ λ

}

are the Christoffel symbols related to dS space-

time metric Eq. (1). Here �μ and γ a maintain the well-known
Clifford algebra,

{�μ, �ν} = 2gμν
IN×N

{γ b, γ c} = 2ηbcIN×N . (69)

with,

N =
{

2
D
2 D is even

2
D−1

2 D is odd .
(70)

In dS spacetime, the Dirac operator takes the form,

/D = �μDμ ≡ eμ
a γ a(∂μ + 1

2
ωbc

μ bc
)

= kη

(

γ a∂a − D − 1

2η
γ 0

)

. (71)
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To derive this relation we used
{

α

μ λ

}

= 1

η

(
gα0gμλ − δα

λ δ0
μ − δα

μδ0
λ

)
, (72)

ωab
μ = gβ0

η

(
ebμe

a
β − eaμe

b
β

)
. (73)

In dS spacetime minimally coupled Dirac fermions with mass
m to background gravity will have the action,

S0 =
∫

dDx
√|g|(�i /D� − m��). (74)

We can split the � field in two parts, namely positive and
negative frequency modes.

�(x) = �+(x) + �−(x). (75)

These are the solution of massive Dirac equation derived
from Eq. (74)

i /D� − m� = 0. (76)

We will first look into the positive energy mode solutions
ψ(+) of (76). These solutions are proportional to eipx, where
x = (x1, . . . , xD−1) and p = (p1, . . . , pD−1), px = pl xl ,
and the summation runs over l = 1, . . . , D − 1. We now
decompose the positive energy modes into upper and lower
components,

ψ(+) =
[

ψ+(η)

ψ−(η)

]

eipx. (77)

This can be done by using the following explicit definition
Gamma matrix representation,

γ 0 =
[
I(N/2)×(N/2) 0(N/2)×(N/2)

0(N/2)×(N/2) −I(N/2)×(N/2)

]

,

γ a =
[
0(N/2)×(N/2) σ a

−σ a 0(N/2)×(N/2)

]

, (78)

with a = 1, . . . , D − 1. The definitions of I(N/2)×(N/2) and
0(N/2)×(N/2) can be found in [23].

σ aσ b + σ bσ a = 2δabI(N/2)×(N/2),

σ a† = σ a .

The Dirac equation is then reduced to subsequent form for
positive energy modes,
(

∂0 − D − 1

2η
± im

kη
ψ±

)

− i plσ
lψ∓ = 0. (79)

Using Eq. (79) we can deduce two different second order
differential equations for the upper and lower components:
(
η2∂2

0 − (D − 1)η∂0 + p2η2

+ (D − 1)2

4
+ D − 1

2
+ m2

H2 ∓ im

k

)

ψ± = 0. (80)

Making the following substitution,

ψ±(η) = ηD/2χ±(η), (81)

Equation (80) is reduced to the following form,
(

η2∂2
0 + η∂0 + (pη)2 −

(
im

k
± 1

2

)2
)

χ± = 0. (82)

Now we write the solutions of (82) as

χ±(η) = C±H (2)
im
k ± 1

2
(pη) (83)

where H (2)
ν (x) are Hankel function of second kind of order

ν. We only considered Hankel function of second kind as the
solution for Eq. (82) because for positive energy solution in
Bunch–Davies vacuum we demand ψ(+) ∝ e−i pη [32]. The
coefficientsC+ andC− are not independent of each other. We
can find the relationship C− = −i pbσ bC+/p by inserting
the solution matrices (83) and (81) into the Eq. (79). More-
over, we require additional quantum numbers apart from p
to specify all the solutions. In order to do that we need to fix
the spinor C+. Here we take orthonormal basis for spinors
by choosing C+ = C (+)

β w(σ), where C (+)
β is a normalization

constant and w(σ), σ = 1, . . . , N/2, are one-column matri-
ces of N/2 rows, with elements w

(σ)
l = δlσ . Combining with

the negative energy solutions this set β = (p, σ ) will form a
complete set of quantum numbers. As a result, the positive-
energy mode functions for Bunch–Davies vacuum takes the
following form,

ψ
(+)
β = C (+)

β ηD/2eipx

⎡

⎣
w(σ)k(2)

im
k + 1

2
(pη)

− i pbσ b

p w(σ)k(2)
im
k − 1

2
(pη)

⎤

⎦ . (84)

The coefficient C (+)
β in (87) is set on from the normal-

ization condition (using inner product defined over constant
time hypersurface) [33]

〈ψ(+)
β , ψ

(+)

β ′ 〉 =
∫

dD−1x

√
|g|
g00 ψ

(+)†
β ψ

(+)

β ′

= δ(p − p′)δσσ ′ . (85)

After evaluating the inner product we find the normalization
constant

C (+)
β =

√
pk

D−1
2 e−iφ/2

√
8(2π)D−2

e
mπ
2k . (86)

where φ represents an arbitrary phase. The negative-energy
mode functions φ(−) can be imposing the condition that
φ(−) ∝ e−ipx+i pη. By following the same procedure illus-
trated above we obtain the negative energy solution:

ψ
(−)
β =

√
pk

D−1
2 eiφ/2

√
8(2π)D−2

e−mπ
2k ηD/2e−ipx

123



Eur. Phys. J. C (2023) 83 :1087 Page 13 of 19 1087

×
⎡

⎣
w(σ)H (1)

im
k + 1

2
(pη)

i pbσ b

p w(σ)H (1)
im
k − 1

2
(pη)

⎤

⎦ . (87)

In the above equation H (1)
ν (x) are Hankel function of first

kind of order ν. Therefore we have successfully evaluated the
complete set of solutions for the Dirac equation (76). Now
we can write artibitary spinor solution �(x) in the operator
form.

�(x) =
N/2∑

σ=1

∫

dp
(

bσ (p)ψ(+)
σ (p, x) + d†

σ (p)ψ(−)
σ (p, x)

)

(88)

�(x) =
N/2∑

σ=1

∫

dp
(

b†
σ (p, λ)ψ

(+)
σ (p, x) + dσ (p)ψ

(−)
σ (p, x)

)

,

(89)

where

bσ (p)|0〉 = dσ (p)|0〉 = 0, (90)

ψ = ψ†γ 0, (91)

{bσ (p), b†
σ ′(p′)} = δ(p − p′)δσσ ′ , (92)

{dσ (p), d†
σ ′(p′)} = δ(p − p′)δσσ ′ . (93)

Now we can have an explicit form of the Wightman functions
of the fermionic field,

S+(x, x ′) = 〈0|�(x)�(x ′)|0〉
=

∑

σ

∫

dp ψ(+)
σ (p, x)ψ(+)

σ (p, x ′)

=
√

η′
η

(

i

(

/D + �0

2η

)

+ m

)

×
(

P+GdSD

(

x, x ′, im
k

− 1

2

)

+P−GdSD (x, x ′, im
k

+ 1

2
)

)

, (94)

S−(x, x ′) = 〈0|�(x ′)�(x)|0〉
=

∑

σ

∫

dp ψ(−)
σ (p, x)ψ(−)

σ (p, x ′)

= −
√

η′
η

(

i

(

/D + �0

2η

)

+ m

)

×
(

P+GdSD

(

x ′, x, im
k

− 1

2

)

+P−GdSD

(

x ′, x, im
k

+ 1

2

) )

(95)

where P± = (IN×N ± γ 0)/2 and

GdSD (x, x ′, im
k

± 1

2
) =

∫

dp

× (ηη′)
D−1

2 HD−2

8(2π)D−2 eip(x−x′)H (2)
im
k ± 1

2
(pη) H (1)

m
k ± 1

2
(pη′).

(96)

Now the Wightman function for massless fermions in dS
background,

S±(x, x ′) = ±i

√
η′
η

(

/D + �0

2η

)

GdSD (x, x ′) (97)

and GdSD is as usual from Eqs. (45–47),

GdSD (x, x ′) = GdSD (x ′, x, 1

2
) = GdSD (x, x ′,−1

2
)

= HD−2�(D/2 − 1)

2(2π)D/2 v1−D/2. (98)

From Eq. (97) we can further deduce that

S±(x, x ′) = ±i
Hηab(xa − x ′a)γ b

√
ηη′v

(
D − 2

2

)

GdSD (x, x ′)

(99)

The detector is moving in with constant linear acceleration a
following (48) as before. In that case we know the detector
response function of fermions (per unit time) for interaction
Lagrangian is given by [27],

JdSD =
∫ ∞

−∞
d�τe−i E�τ S(2)

D (�τ) (100)

where,

S(2)
D (x(τ ), x(τ ′))
= 〈0| : (

�a(x(τ )))�a(x(τ ))
) ::

(
�b(x(τ

′)))�b(x(τ
′))

) : |0〉
= Tr[S+(x, x ′)S−(x ′, x)] (101)

= k2 ηab(xa − x ′a)ηcd(xc − x ′c)
ηη′ν2

×Tr[γ bγ d ]
(
D − 2

2

)2

GdSD (x, x ′)GdSD (x ′, x)

= Nk2 (D/2 − 1)2 ηabηcdη
bd(xa − x ′a)(x ′c − xc)

ηη′ν2

×H2D−4�(D/2 − 1)2

4(2π)D
ν2−D

= N
[(D/2 − 1)�(D/2 − 1)]2

�(D − 1)

(
k2D−2�(D − 1)

2(2π)D

)

ν−D

×
(

ηac(xa − x ′a)(x ′c − xc)

2ηη′

)

= N
�(D/2)2

�(D − 1)

(
k2D−2�(D − 1)

2(2π)D

)

ν1−D

= N
(�(D/2))2

�(D − 1)
GdS2D (x(τ ), x(τ ′)). (102)
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Fig. 8 Plot of the finite-time response of the UDW particle detec-
tor in AdS space-time coupled to a fermionic field. Each row (from
top to bottom) shows the plot of the response function against 

(varying a[T = 3, k = 1], varying k[T = 3, a = 4] and varying

T [a = 4, k = 1]), against k (varying a[ = 1, T = 3], varying
[a = 4, T = 3] and varying T [a = 4,  = 1]), and against a
(varying [k = 2, T = 3], varying k[ = 1, T = 3] and varying
T [k = 2,  = 1]) respectively

is 4-points correlator of fermionic field. Here we are tak-
ing the trace over spinor index a, b, and, we have used the
identity,

Tr[γ bγ d ] = Nηbd (103)

So the Eq. (102) dictates that in any of the path S(2)
D (�τ)

takes the following form,

S(2)
D (�τ) = N

(�(D/2))2

�(D − 1)
GdS2D (�τ) (104)

From Eq. (100) we can then conclude that detector response
function for fermions can be related to response function for
the scalars,

JdSD = N
(�(D/2))2

�(D − 1)
F (1)

dS2D
. (105)

Thus we have proved the following statement.

The response function of an UDW detector (with uni-
form linear acceleration) quadratically coupled to a
massless Dirac field in (A)dS vacuum in D ≥ 2 space-
time dimensions exactly equals to the response func-
tion of a UDW detector which is linearly coupled to
a massless scalar field in 2D dimensional (A)dS vac-
uum times dimensional dependent numeric factor. Here,
the fermionic field is minimally coupled to background
while the scalar field is conformally coupled to the back-
ground.

We started our computation to understand the fermionic
response from uniformly accelerated detectors in maximally
symmetric spacetime. We have chosen the most appropri-
ate interaction Hamiltonian (Hermitian) characterised by a
Lorentz scalar (60). We can definitely choose a hamiltonian
involving multiple powers of O� defined in (61). However,
once we choose the interaction Hamiltonian (60), we have to
analyse the four point fermionic correlator which is exactly
identified with (conformally coupled) scalar Wightman func-
tion. We have not assumed anything to come to this conclu-
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Fig. 9 Plot of the finite-time response of the UDW particle detector
in dS space-time coupled to a fermionic Field. Each row (from top to
bottom) shows the plot of the response function against  (varying
a[T = 3, k = 3], k[T = 3, a = 3], T [a = 3, k = 3]), against a (vary-

ing [k = 3, T = 3], k[ = 1, T = 3],T [k = 3,  = 1]), and against
k (varying a[ = 1, T = 3], [a = 3, T = 3], T [a = 3,  = 1])
respectively

sion but this is not so surprising because minimally coupled
massless fermionic theory is conformal by nature whereas the
minimally coupled scalars are not conformal. A straightfor-
ward computation helps us to reach the conclusion in (105).
The most elegant feature of this expression is it enables us
to compute any feature of fermionic response in any max-
imally symmetric spacetime without going into the details
of gamma matrices. Upon establishing the relation in max-
imally symmetric spacetime we plot the response function
in Figs. 8 and 9 with respect to different variables such as
energy gap , acceleration a and curvature k. We can also
see the similar pattern in (A)dS fermionic response function
that the response increases with increasing acceleration a
but decreases as with increasing energy gap . The response
decreases with the increment curvature k in AdS and the
opposite pattern is noticed in dS background. Also because
of the fact four dimensional fermionic response function is
related to higher (eight) dimensional scalar response func-
tion we find out, accelerated UDW detectors respond better
when coupled to fermionic fields compared to bosonic fields.

4 Huygen’s principle, detector and Unruh radiation

Huygen’s principle is a well studied phenomenon specially
in quantum field theory. It is a natural question to ponder
whether the accelerated detectors observing the thermal radi-
ation maintains the Huygen’s principle [25]. The observed
radiation from massless scalars by UDW detectors do not
maintain the Huygen’s principle in flat spacetime in three
(odd) dimensions [25]. However this statement is well under-
stood for accelerated UDW detectors in flat spacetime with
linear coupling. But in this section we discuss the status
of Huygen’s principle for scalar theories where accelerated
UDW detectors moving in the maximally symmetric curved
spacetime with non linear interaction coupling (21) [24]. Our
discussion now focuses for scalars in dimensions D > 2.
The Huygen’s principle has several different equivalent def-
initions but we can work on with the following one [34–36]-
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Fig. 10 A Support of the propagators of a massless scalar in even
dimensions for odd or even coupling associated with (21). This also
depicts support of the propagators of a massless scalar in odd dimensions
with even coupling. B Support of the propagators of a massless scalar
in odd dimensions for odd coupling associated with (21)

(i) The theory maintains the Huygen’s principle if the
causal propagator Gc has support only on the lightcone.

(ii) The theory violates the Huygen’s principle if they are
non vanishing elsewhere. To understand better the state
of Huygen’s principle for the detected Unruh radiation we
need to first fix the coupling between the detector and the
matter field (23). For the usual linearly coupled (n = 1)
detector, the response function simple depends upon the
Wightman function. Concentrating on linear coupling,
the causal propagator for conformally coupled scalar the-
ory can defined as,

Gc(x, x ′) = W (2)
D (x, x ′) − W (2)

D (x ′, x)
= 〈0|[�(x),�(x ′)]|0〉 (106)

In flat spacetime, the origin of obeying (or violating) the
Huygen’s principle can be explained for linearly coupled
detector. In case of the linear coupling the detector response
function is nothing but the Fourier transform of the Wight-

man function W (2)
D (x, x ′), which is proportional to L1− d

2 for
a bosonic field. Here L is the square distance between the
two points x and x ′. Now when the two point function is
analytically continued to complex τ there is a branch cut
for timelike distance when we are in odd dimensions. This
branch cut becomes a simple pole in even dimensions. There-
fore when we compute the response function in odd dimen-
sions using (22) the linear detector finds a branch cut in the
integral expression and therefore reports a Fermi-Dirac dis-
tribution. The support of the propagator of scalar fields for
linear detector [25] can be exactly (23) analysed with Fig.
10A. For even dimensions, the support of Gc is only on the
lightcone while in odd dimension the support of Gc is on the
entire timelike region. In the case of conformally coupled
scalar fields over (A)dS spacetime, we can follow the same
argument as before. For example, the two point correlator of
conformally coupled scalars in dS can be simply related to

flat space correlator W (2)
M (x, x ′) using the followings relation

[33,37],

W (2)
dS (x, x ′) = (k2η2)

d−2
4 W (2)

M (x, x ′)(k2η′2)
d−2

4 (107)

Therefore the pole structure for conformally coupled theo-
ries are similar to those of flat spacetime. In even (D > 2)

dimensional flat spacetime the causal correlator is given by
[36],

Gc = [�(t, 	x),�(t + �t, 	x + �	x)]
= i

4π�	x [δ(�	t + �	x) − δ(�	t − �	x)] (108)

In similar fashion with odd dimensional spacetime D = d +
1,4 it is given by

Gc = [�(t, 	x),�(t + �t, 	x + �	x)] = �( d−1
2 )

4π
d+1

2

1

L
d−1

2

(109)

We can see from Eq. (108) that in even dimensional
Minkowski spacetime the support of Gc is exactly on the
lightcone while in odd dimensional spacetime the support of
Gc is also inside the lightcone. Exactly similar result will
hold for conformally coupled scalar theory living on (A)dS
background through (107). We now go ahead and generalize
the results with coupling n ≥ 1. The causal propagator can
be written for any coupling n in this fashion,

Gc(x, x ′) = W (2n)(x, x ′) − W (2n)(x ′, x) (110)

The 2n point correlators are related to two point correlators
using (52). And thus the pole structure of 2n point correlator
can be easily understood using this relation. In odd dimension
the branch cut in Wightman function results a branch cut in
2n point correlator for any odd coupling n. However when we
choose the even coupling the branch cut turns into simple pole
for the 2n point correlator. In odd dimensions (D > 2) with
the even coupling, the Unruh detector detects no statistics
inversion, and Huygen’s principle holds true for scalar fields.
On the contrary the Huygen’s principle is violated in odd
dimensions with odd coupling and statistics inversion also
happens.

In case of even coupling, the pole structure of the 2n-
point correlator function are also quite interesting. Through
(52) focusing in even dimensions, the Wightman function
has no branch cut in even dimensions. Therefore for any even
coupling the 2n-point correlators will not have any surprise
branch cut in even dimensions. So, the Huygen’s principle
is going to be satisfied trivially. However, in odd dimensions
there is a branch cut in Wightman function. But in the 2n-
point correlator, when we use (52) it immediately suggests
the branch cut turns to a simple pole for any even n. As a

4 Even dimensional space d ≥ 2.
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Fig. 11 Support of the four point propagators of a massless fermions
in any dimensions for interaction Hamiltonian (60). This is the clear
indication that Huygen’s principle is always maintained for fermions

result for even n, the Unruh radiation of scalars in flat space as
well as in conformally coupled maximally symmetric scalar
solutions the Huygen’s principle is always maintained in any
dimensions (D > 2). It is not possible to violate Huygen’s
principle if we choose coupling with even n. The support
of the scalar solutions are surprisingly always on the light-
cone for even coupling. Figure 10A accurately depicts the
status Huygen’s Principle in scalar Unruh radiation with odd
coupling and odd dimesnions, where the support is just on
the light cone. Interesting to see this is the exact situation
when the statistics inversion happens through (54). In odd
dimensions scalar theory propagator under consideration is
anti-periodic in β = 2π

ω
when we choose odd coupling. In

any other scenario the 2n point propagator is periodic in β

where the Hugen’s principle is perfectly maintained in Unruh
radiation in D > 2 (Fig. 11).

Let us now focus our discussion on the Huygen’s principle
for fermionic theory with interaction Hamiltonian (61). This
is the most commonly used interaction Hamiltonian between
fermionic theory and detector [22]. Here, the result is valid
for fermions in dimension D ≥ 2. Now the definition of
Huygen principle (written before Eq. (106)) remains the same
for fermionic theory as well but the definition of Gc is given
by anti-commuatator instead of commuatator algebra as in
(106),5

Gc(x, x ′) = 〈0|{χ(x), χ(x ′)}|0〉 (111)

where,

χ(x) =: �a(x)�a(x) : (112)

The study of support for fermionic correlator on lightcone is a
bit troublesome specially in the curved spacetime because of
the gamma matrices. For the interaction Hamiltonian given
by (61), the detector response function is dependent upon the
four point fermionic correlator as seen explicitly from (62).
In Ref. [25], the author focused on the two point function of

5 Where the trace over spin index is assumed.

fermionic fields to understand the status of Huygen’s prin-
ciple of the Unruh radiation detected by the Unruh–DeWitt
detectors instead of the four point function. As a result, it
was concluded in Ref. [25] that the Unruh radiation detected
for fermions maintain Huygen’s principle in odd dimensions
while violate it in even dimensions. Because the pole and
branch cut structure of four point fermionic correlator is quite
different to the two point correlator. In case of flat space [22],
AdS [23] as well as in dS ((105)), one can easily see that
four point fermionic correlators in D dimensions is explicitly
given by the two point scalar correlators in 2D dimensions.
Therefore to understand the status of Huygen’s principle for
Unruh radiation of the fermionic theory (60) in odd or even
D dimension, we can instead think of the massless scalars
in 2D dimensions. The scalar Wightman function when con-
formally coupled to the background (A)dS gravity solutions
has no branch cut in even dimensions. As a consequence,
the 4-point fermionic propagator, to which the detector is
sensitive always have support only on the light cone. It is
quite surprising to see that scalar theory fails to maintain the
Huygen principle in odd dimensions with usual linear cou-
pling while the fermionic theory always maintains the Huy-
gen principle with the usual interaction Hamiltonian (60).
This result is true for matter fields in flat spacetime as well as
conformally coupled to maximally symmetric spacetimes.
The reason behind the conclusion being different to Huy-
gen’s principle of fermionic Unruh radiation in Ref. [25] is
because they performed their analysis with two point func-
tion. But for the interaction Hamiltonian (60),6 one should
actually analyse the four point fermionic correlator. Because
the detector response is dependent on four point fermionic
correlator rather than the fermionic Wightman function (see
(62)), the correlator maintains a periodic condition with peri-
odicity β = 2π

ω
and the Huygen’s principle is always main-

tained the irrespective of dimensionality of spacetime. If we
had selected a Hamiltonian that did not consist of bispinors,
this conclusion would no longer hold true.

5 Discussion and future works

In this article we have completed the computation of finite
time response of accelerated UDW detectors in maximally
symmetric spacetime. The behaviour of the response func-
tion with different parameters are systemtically analysed in
Figs. 2, 3, 4, 5, 6, 7, 8, 9. We also concluded the analysis for
fermionic response function in maximally symmetric back-
ground (see the boxed statement after (105)). A common
occurrence in the interaction Lagrangian (61) is the presence
of bilinear terms. However, it is also possible to include arbi-

6 See 2.15b no eq. of [25], where they use the same interaction Hamil-
tonian.
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trary powers of O� [x(τ )] as part of the Lagrangian. Our
future objective is to establish a relationship similar to (105)
under these circumstances. The result is quite powerful which
also allows us to determine the status of Huygen’s principle
of the fermionic Unruh radiation detected by UDW detec-
tor moving in maximally symmetric spacetime. It is quite
intriguing to note that when bilinear fermionic coupling is
considered the Huygen’s principle is always maintained in
fermionic Unruh radiation which is minimally coupled to
background as opposed to minimally coupled scalar [15]. We
speculate it will also be satisfied when higher order fermionic
bilinear is considered in the interaction Lagrangian. As an
application of finite time response we would also like to
construct Unruh Otto engines [20] with the help of UDW
detectors moving in maximally symmetric backgrounds. The
variation of response function in dS and AdS space with
respect to curvature makes the situation quite interesting and
we are focusing on explicit conditions to extract required
conditions for completing Otto cycle to have positive work
output. The recent claim that with entangled qubits one can
build up more efficient [38,39] Otto engine is quite excit-
ing and we are exploring the possibility to generalise it with
maximally symemtric spacetimes. In our current manuscript,
we have worked with scalar theory which is conformally
coupled to background gravity but we are in a process of
computing the finite time response function of UDW detec-
tors for minimally coupled scalar theory. In four dimensions
the minimally coupled massless scalar exhibits an infrared
divergence in the propagator [31,37,40] resulting oscillatory
contributions to the response function of Unruh’s detector.
Although these oscillatory effects are known to become less
significant at later times, it is of particular interest to delve
into the physics of late-time behavior [41], especially when
statistics inversion takes place. We are working on to see
if such results of fermionic response holds when the UDW
detectors are moving in other interesting curved spacetime
solutions such as blackholes. In blackhole geometry with
multiple horizons such as de Sitter-Schwarzschild blackhole
solving the two-point function is still an open problem even
for scalar theory. We are in a process [42] to compute the
two point function using the geodesic approximation [41] in
geometry with multiple horizons. This will allow us to com-
pute response of the UdW detector for the first time in such
geometry.
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Appendix: Constant acceleration path in dS spacetime

Here, we show that the path considered in Eq. (48) is a con-
stant acceleration path. The components of the acceleration
can be written as,

aμ = d2xμ

dτ
+ 2�

μ
αβ

(
dxα

dτ

)(
dxβ

dτ

)

(113)

where, �μ
αβ are Christoffel symbols of the first kind. Writing

the components out explicitly for the path in Eq. (48), we
have,

a(0) = d2η

dτ
+ 2�0

αβ

(
dxα

dτ

) (
dxβ

dτ

)

= d2η

dτ
− 1

τ

(
dη

dτ

)2

− 1

τ

(
dx1

dτ

)2

= τ0ω
2eωτ − 1

τ0eωτ

(
τ0ωe

ωτ
)2 − 1

τ0eωτ

(aτ0

ω
ωeωτ

)2

= −a2τ0e
ωτ (114)

a(1) = d2x1

dτ
+ 2�1

αβ

(
dxα

dτ

)(
dxβ

dτ

)

= d2x1

dτ
− 2

τ

dx1

dτ

dη

dτ

= aτ0

ω
ω2eωτ − 2

τ0eωτ

(aτ0

ω
ωeωτ

) (
τ0ωe

ωτ
)

= −aτ0ωe
ωτ (115)

a(2) = a(3) = · · · = a(D−1) = 0 (116)

So, the magnitude of the acceleration a becomes,

|a|2 = −aμa
μ

= −g00(a
0)2 − g11(a

1)2

= − 1

H2τ 2 a
4τ 2

0 e
2ωτ + 1

H2τ 2 a
2τ 2

0 ω2e2ωτ

= − 1

H2τ 2
0 e

2ωτ
a2τ 2

0 e
2ωτ (a2 − ω2)

= a2 (117)
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Hence, |a| = a and the acceleration along this path is uni-
form.
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