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Abstract We carry out a comprehensive study of the quark-
to-meson fragmentation function in the ’t Hooft model, i.e.,
the two-dimensional quantum chromodynamics (QCD) in
Nc → ∞ limit, following the operator definition pioneered
by Collins and Soper. We apply the Hamiltonian approach
as well as the diagrammatic approach to construct the func-
tional form of the quark-to-meson fragmentation function in
terms of the meson’s light-cone wave function. For the sake
of comparison, we also investigate the heavy quark fragmen-
tation into quarkonium in two-dimensional QCD within the
framework of the nonrelativistic QCD (NRQCD) factoriza-
tion, at the lowest order in quark velocity. In the heavy quark
limit, the quark fragmentation function obtained from the ab
initio method agrees well, both analytically and numerically,
with that obtained from the NRQCD approach. This agree-
ment might be regarded as a nontrivial justification for the
validity of both field-theoretical approaches to compute the
heavy quark fragmentation function.

1 Introduction

Quantum chromodynamics (QCD) is the fundamental quan-
tum field theory describing the strong interaction. Although
tremendous progress in understanding all aspects of strong
interaction has been made over the past half century, some
extraordinary features of QCD still remain as a mystery, such
as the color confinement mechanism, and how the colored
quarks and gluons transition into the color-singlet hadrons.
Fragmentation functions (FF) are universal nonperturbative

a e-mail: xnxiong@csu.edu.cn (corresponding author)

functions that characterize the probability for a high-energy
parton hadronizing into an identified hadron carrying a def-
inite momentum fraction, which are closely related to the
aforementioned profound myths in QCD.

According to the celebrated QCD factorization theorem,
the FFs are essential theoretical input to describe the identi-
fied hadron production at large pT in high energy collision
experiments. Being universal nonperturbative functions, the
FFs have been directly extracted from the e+e− and semi-
inclusive deep inelastic scattering experiments, or parame-
terized by some phenomenological models [1–4]. Needless
to say, it is highly desirable to deduce the FFs from a rigorous
field-theoretical perspective.

So far lattice QCD proves to be the only systematic and
reliable nonperturbative approach to unravel the hadron inter-
nal structure. Thanks to the advent of large momentum effec-
tive theory (LaMET) [5–7], we have witnessed tremendous
progress in the last decade in computing a hadron’s par-
ton distribution functions (PDFs) and light-cone distribution
amplitudes (LCDA) directly in the x space through the lattice
Monte Carlo simulation (for a recent review, see [8]). Unfor-
tunately, it is impossible for lattice QCD to compute the FFs,
even in the framework of LaMET, because the summation
over the colored out-state which emerges from the definition
of fragmentation functions poses a insurmountable obstruc-
tion for lattice simulation.

Since the first-principle determination of the FFs in QCD
looks impractical in the foreseeable future, we may seek to
learn some useful lessons from the toy models of QCD. The
’t Hooft model, i.e., the 1+1 dimensional QCD (QCD2) in
the Nc → ∞ limit, is a solvable model, which resembles
the realistic QCD4 in several aspects, such as color confine-
ment, Regge trajectory, quark condensate and even (naive)
asymptotic freedom. In the past, the meson’s PDFs, gener-
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alized PDFs, as well as the quasi-PDFs [9–12] have been
comprehensively studied within the ’t Hooft model. It is the
goal of this work to investigate the fragmentation function
in this toy model of QCD. Due to the lack of the transverse
degrees of freedom in, the gluon cannot be a dynamical par-
ton, therefore we restrict ourselves in considering only the
quark-to-meson fragmentation function.

In the late 70s, Einhorn [13] and Ellis [14] have already
discussed how to extract the quark fragmentation function
through the fictitious high-energy process e−e+ → H + X
in QCD2. Nevertheless, there are some serious shortcomings
in this “experimental” approach. Firstly, whether the factor-
ization theorem in two spacetime dimension is valid or not
in QCD2 is unclear. Secondly, their expressions are rather
complicated, which involve three mesonic light-cone wave
functions, two of which are affiliated with the infinitely high
excited mesonic states. The exceedingly oscillatory behav-
ior of these wave functions obstruct the numerical study of
the FFs. Therefore, in this work we start from the oper-
ator definition of the FF pioneered by Collins and Soper,
and we are able to express the quark-to-meson FF in terms
of a single light-cone wave functions (LCWFs) associated
with the identified meson. The virtue of our approach is that
our expression is quite compact, and amenable to numerical
studies.

Of special interest is the heavy quark fragmentation func-
tion. Thanks to the asymptotic freedom, the NRQCD factor-
ization approach allows one to further refactorize the heavy
quark fragmentation into the heavy quarkonium into the
product of the short-distance coefficients and universal long-
distance NRQCD matrix element. In this work, we also com-
pute the quark-to-quarkonium fragmentation function using
NRQCD approach in ’t Hooft model.

It is reassuring that, in the heavy quark limit, the quark
fragmentation function obtained from the ab initio method is
well consistent with the NRQCD prediction. This agreement
can be considered as strong evidence that our understanding
of fragmentation functions is correct, at least in the two-
dimensional QCD.

The rest of the paper is organized as follows: In Sect. 2,
we write down the Collins-Soper’s definition of quark frag-
mentation function, which can be readily carried over to 1+1
spacetime dimension. In Sect. 3 we briefly review the essen-
tial ingredients of the ’t Hooft model. In Sect. 4 we discuss
how to deduce the analytical expression for the quark frag-
mentation function using the operator approach. In Sect. 5
we present the derivation of the heavy quark fragmentation
function using NRQCD factorization approach, accurate at
lowest order in velocity expansion. In Sect. 6, we analytically
prove that, in the heavy quark limit, the heavy quark frag-
mentation function obtained from the ab initio approach and
NRQCD approach are compatible with each other. In Sect. 7,
we present numerical results of the FFs in ’t Hooft model,

and also compare the ab initio and NRQCD results. Finally in
Sect. 8 we present a summary and outlook. In Appendix we
also present an alternative derivation of the quark fragmen-
tation function using Feynman diagrammatical approach.

2 Definition of quark-to-meson fragmentation function

Fragmentation functions are opposite to the PDFs, which
encapsulate the probability of finding an identified hadron
with a certain fractional light-cone momentum with respect
to the parent parton. The FFs are important to describe the
inclusive production of an identified hadron. For instance, to
describe the inclusive production of the the B− meson from
Z0 boson decay, the QCD factorization theorem indicates the
leading contribution to be

dΓ (Z0 → B−(E) + X)

=
∫

dz Γ̂ (Z0 → b(E/z)b̄)) Db→B−(z) + · · · , (1)

where E denotes the energy of the B− meson, and z denotes
the light-cone momentum fraction carried by B− with respect
to the b quark. Db→B−(z) denotes the b-to-B− fragmentation
function, and Γ̂ denotes the partonic decay rate for Z0 → bb̄.

The quark fragmentation function also admits a rigorous
operator definition, first introduced by Collins and Soper in
1981 [15]

Dq→H (z) =
∑

X

zd−3

4π

∫
dξ−e−i z−1 P+ξ− 1

Nc
TrcolorTrDirac

× γ + 〈0
∣∣∣T̃W [∞, 0] ψ(0)

∣∣∣ H + X
〉

× 〈
X + H

∣∣T ψ̄
(
ξ−)W [

ξ−,∞]∣∣ 0〉 , (2)

where the light-cone coordinates x± = (x0 ± xz)/
√

2 are
used. d signifies the spacetime dimension (In our case, d will
be put to 2). H represents the identified color-singlet hadron,
while X denotes the unobserved soft hadrons (however, here
X has to be an colored object due to color conservation).
T and T̃ represent the time-ordering and anti time-ordering.
W[ξ−, η−] is the path-ordered exponential along the light-
cone “−” direction:

W[ξ−, η−] = P
{

exp

[
−i
∫ η−

ξ−
dζ− A+(ζ−)

]}
, (3)

whose role is to ensure the gauge invariance of the FF. If the
light-cone gauge A+,a = 0 is imposed, this gauge link can
be simply dropped.
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3 A brief review of ’t Hooft model: Hamiltonian
organized in 1/Nc expansion

In this section, we recap some necessary ingredients of ’t
Hooft model. We will mainly concentrate on the Hamiltonian
approach and bosonization program, which will be used to
derive the quark fragmentation function in the next section.
For more comprehensive discussions, we refer the interested
readers to Refs. [10,16,17].

For simplicity, we will consider the QCD2 with a single
quark flavor:

LQCD2 = −1

4
Fμν,a Fa

μν + ψ
(
i /D − m

)
ψ, (4)

where ψ denotes the 2-component Dirac field for quark,
and m signifies the current quark mass. The color covari-
ant derivative Dμ is defined as Dμ = ∂μ − igs Aa

μT a ,
with T a denoting the SU (Nc) generators in the fundamental
representation. gs signifies the dimensionful coupling con-
stant in QCD2. The gluon field strength tensor is given by
Fa

μν ≡ ∂μ Aa
ν − ∂ν Aa

μ + gs f abc Ab
μ Ac

ν . The ’t Hooft model
also needs taking the limit Nc → ∞ while keeping the ’t

Hooft coupling λ ≡ g2
s Nc
4π

fixed.
√

2λ can be regarded as the
characteristic mass scale in the ’t Hooft model£¬ similar to
ΛQCD in the realistic QCD.

Adopting the chiral-Weyl representation for the Dirac γ

matrices:

γ 0 = σ1, γ 1 = −iσ2, γ5 ≡ γ 0γ 1 = σ3, (5)

we can express the Dirac spinor field as

ψ = 2− 1
4

(
ψR

ψL

)
, (6)

where R, L denote the right-handed and left-handed compo-
nents.

Substituting (6) into (4), and imposing the light-cone
gauge A+,a = 0, one obtains [18]

LQCD2 = 1

2

(
∂− A−,a)2 + gsψ

†
R A−,a T aψR

+ ψ
†
Ri∂+ψR + ψ

†
L i∂−ψL − m√

2

(
ψ

†
LψR + ψ

†
RψL

)
.

(7)

One immediately solve the equations of motion for A−,a

and ψL :

∂2− A−,a − gsψ
†
R T aψR = 0, (8a)

i∂−ψL − m√
2
ψR = 0. (8b)

Since the derivative is with respect to the light-cone position
x− rather than light-cone time x+, the fields A−,a and ψL

are no longer propagating degrees of freedom, yet simply

regarded as the constraints. Both of them can be expressed
as the canonical variable ψR (the “good” component)

ψL (x+, x−) = −i
m√

2

∫
dy−G(1)(x− − y−)ψR(x+, y−),

(9a)

A−,a(x+, x−) = gs

∫
dy−G(2)(x−−y−)ψ

†
R(y−)T aψR(x+, y−),

(9b)

where G(1) and G(2) are the Green functions of the differen-
tial operators ∂− and ∂2−:

G(1)(x− − y−) = i
∫

dk+

2π
Θ(|k+| − ρ)

e−ik+(x−−y−)

k+ ,

(10a)

G(2)(x− − y−) = −
∫

dk+

2π
Θ(|k+| − ρ)

e−ik+(x−−y−)

(k+)2 .

(10b)

Θ denotes the Heaviside step function. ρ is an artificial IR
cutoff introduced to regularize the IR divergence caused by
exchanging an instantaneous gluon, which must disappear in
any physical quantity after taking ρ → 0S+ limit.

After Legendre transformation, one arrives at the light-
front (LF) Hamiltonian [18]

HLF =
∫

x+=const.
dx−

[
m2

2i
ψ

†
R(x−)

∫
dy−G(1)(x−−y−)ψR(y−)

− g2
s

2

∑
a

ψ
†
R(x−)T aψR(x−)

∫
dy−G(2)(x− − y−)

×ψ
†
R(y−)T aψR(y−)

]
. (11)

At x+ = 0, the right-handed quark field can be Fourier-
expanded as follows:

ψ i
R(x−) =

∫ ∞

0

dk+

2π

[
bi (k+)e−ik+x− + di†(k+)eik+x−]

,

(12)

with i = 1, . . . , Nc indicating the color index. The quark
(antiquark) annihilation/creation operator b/b† (d/d†) obeys
the standard anti-commutation relations:

{bi†(k+), b j (p+)} = 2πδi jδ(k+ − p+), (13a)

{di†(k+), d j (p+)} = 2πδi jδ(k+ − p+), (13b)

and all other unspecified anticommutators simply vanish.
Substituting into the light-front Hamiltonian (11), one

faces various bilinear terms composed of quark/antiquark
annihilation and creation operators. It is convenient to adopt
the bosonization technique to expedite the diagonalization
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of Hamiltonian [17,19–25] by introducing the following
bosonic compound operators:1

M(k+, p+) = 1√
Nc

∑
i

di (k+)bi (p+), (14a)

B(k+, p+) =
∑

i

bi†(k+)bi (p+), (14b)

D(k+, p+) =
∑

i

di†(k+)di (p+), (14c)

The commutation relations between M, B, D and b, b† are

[M(k+, p+), bi†(q+)] = 2π√
Nc

δ(p+ − q+)di (k+), (15a)

[M†(k+, p+), bi (q+)] = − 2π√
Nc

δ(p+−q+)di†(k+), (15b)

[B(k+, p+), bi (q+)] = −2πbi (p+)δ(q+ − k+), (15c)

[B(k+, p+), b†(q+)] = 2πb†i (k+)δ(p+ − q+), (15d)

and all the other commutators are zero.
The LF Hamiltonian can be organized in powers of 1/Nc:

HLF = HLF,vac + H(0)
LF + V. (16)

The leading O(Nc) term corresponds the vacuum energy:

HLF,vac = Nc

∫
dx−

2π

(
λ

2
+ λ − m2

2

∫ ∞

ρ

dk+

k+

)
, (17)

which is badly UV and IR divergent [16]. However, since
it is proportional to the unit operator and does not have any
impact on the FFs, so we will simply drop HLF,vac henceforth.

The O(N 0
c ) piece in (16) reads

H(0)
LF =

∫ +∞

ρ

dk+

2π

(
m2 − 2λ

2

1

k+ + λ

ρ

) [
B(k+, k+)

+D(k+, k+)
]− λ

8π2

∫ ∞

0
dk+

1 dk+
2 dk+

3 dk+
4 Θ(|k+

1 −k+
2 |−ρ)

× δ(k+
1 −k+

2 −k+
3 +k+

4 )

(k+
1 − k+

2 )2
M†(k+

1 , k+
4 )M(k+

2 , k+
3 ). (18)

The last operator V in the LF Hamiltonian in (16) scales as
O(1/

√
Nc). For our purpose of computing quark fragmenta-

tion function, it is sufficient to know

V = − λ

4π2
√

Nc

∫ ∞

0
dk+

1 dk+
2 dk+

3 dk+
4

δ
(
k+

1 + k+
2 + k+

3 −k+
4

)
(
k+

1 + k+
3

)2
× M†(k+

1 , k+
2 )B(k+

3 , k+
4 ) + h.c. + · · · . (19)

1 Note the normalization of the compound operators B, D here differs
from what is given in our previous work [26]. The purpose of making
this change is to make the 1/Nc expansion of the Hamiltonian manifest.

These operators induces a process where a quark transitions
into a meson and a quark. We have suppressed all other irrel-
evant operators in V, such as M† D, DM , which instead con-
tribute to the antiquark fragmentation function.

The complete expression of the bosonized LF Hamiltonian
can be found in Ref. [10].

Those bosonic compound operators in (14) are not inde-
pendent. Actually B, D can be expressed as the convolution
between M and M†:

B(k+, p+) =
∫ ∞

0

dq+

2π
M†(q+, k+)M(q+, p+), (20a)

D(k+, p+) =
∫ ∞

0

dq+

2π
M†(k+, q+)M(p+, q+). (20b)

The underlying reason is that, in a confining theory like
QCD2, an isolated quark or antiquark can not be created or
annihilated from vacuum, rather only color-singlet quark-
antiquark pair can be created or annihilated [27]. Note that
the operator identity in Eq. (20) is valid only when acting on
the color-singlet sector of Hilbert space.

Substituting (20) into (16), the LF Hamiltonian can be
expressed solely in terms of M and M†. To facilitate the
diagonalization of H(0)

LF , it is convenient to introduce a new

set of mesonic annihilation/creation operators mn/m†
n , which

are related to M and M† through

mn(P+) =
√

P+
2π

∫ 1

0
dxφn(x)M((1 − x)P+, x P+),

(21a)

M((1 − x)P+, x P+) =
√

2π

P+
∞∑

n=0

φn(x)mn(P+), (21b)

where the coefficient functions φn(x) later will be identi-
fied with the ’t Hooft light-cone wave function (LCWF) of
the n-th excited mesonic state, with x ∈ (0, 1) denote the
light-cone momentum fraction carried by the quark inside
the meson.

If the mesonic annihilation and creation operators are
required to obey the standard commutation relation:
[
mn(P+

1 ), m†
r (P+

2 )
]

= 2πδnrδ(P+
1 − P+

2 ), (22)

the ’t Hooft wave functions must obey the following orthog-
onality and completeness conditions:

∫ 1

0
dxφn(x)φr (x) = δnr , (23a)

∑
n

φn(x)φn(y) = δ(x − y). (23b)
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Substituting Eqs. (20), (21) into the LF Hamiltonian
Eq. (18), our goal is to have a simple diagonalized form of
H(0)

LF , which describe an infinite towers of non-interacting
mesons:

H(0)
LF =

∑
n

∫ ∞

0

d P+

2π
P−

n m†
n(P+)mn(P+), (24)

where P−
n = M2

n /(2P+) denotes the light-cone energy of
the n-th excited state meson with light-cone momentum P+.

To achieve this simple form, one must enforce all the off-
diagonal terms in H(0)

LF cancel, which result in the following
constraints on the coefficient functions φn(x):

(
m2−2λ

x
+ m2−2λ

1 − x
−M2

n

)
φn(x) = 2λ−

∫ 1

0

dy

(x − y)2 φn(y).

(25)

This is nothing but the celebrated ’t Hooft equation in QCD2,
the bound-state equation for the nth excited mesonic state on
the light-cone in the ’t Hooft model. Note that the dashed
integral

∫ − in (25) indicates a standard principle-value pre-
scription, which originates from taking the ρ → 0+ limit,
whose role is to tame the IR divergence as y → x .

The single mesonic state can be constructed as

∣∣P+, P−
n

〉 = √
2P+m†

n(P+) |0〉 . (26)

To compute the fragmentation function, we must include
the color-suppressed operator V in the LF Hamiltonian (16).
It will be treated as a perturbation in the context of the 1/Nc

expansion.

4 Rigorous derivation of the quark fragmentation
function in the leading order in 1/Nc

With all the necessary ingredients at hand, we are ready to
conduct an ab initio derivation of the quark-to-meson frag-
mentation function in the ’t Hooft model, accurate to the
lowest order in 1/Nc.

For definiteness, we identify the daughter hadron H in
the fragmentation function with the n-th excited meson in
the ’t Hooft model. The asymptotic out state in the far future,
|H + X〉, which arises in the definition of the fragmentation
function in (2), needs some careful treatment since it is a
colored object.

As shown in (26), the identified color-singlet mesonic state
|H〉 is certainly the eigen-state of the leading-color LF Hami-
tonian:

H(0)
LF

∣∣H(P+)
〉 = M2

H

2P+ |H(P+)〉, (27)

with MH signifying the mass of the meson H .

But how to treat |X〉? Color confinement implies that only
color-singlet states are allowed to emerge in the physical
spectrum. Clearly X is colored object. Due to color conser-
vation, it must furnish the fundamental representation of the
SU (Nc) group. For simplicity, let us approximate X to be a
single dressed quark, which is indeed true at the leading order
in 1/Nc expansion. Curiously, inspecting (18) and using the
commutation relations (16), we have

H(0)
LF b†(k+)|0〉 =

(
m2 − 2λ

2

1

k+ + λ

ρ

)
b†(k+)|0〉, (28a)

〈0|b(k+)H(0)
LF = 〈0|b(k+)

(
m2 − 2λ

2

1

k+ + λ

ρ

)
, (28b)

and one can show that a colored quark is still the eigenstate
of the LF Hamiltonian H(0)

LF :

H(0)
LF

∣∣X (p+)
〉 = H(0)

LF

√
2p+bi† (p+) |0〉

=
(

m2 − 2λ

2

1

p+ + λ

ρ

)
|X (p+)〉, (29)

though the corresponding eigen-energy is gauge-dependent
and badly diverges in the limit ρ → 0+. Recall all our dis-
cussion is confined in the physical light-cone gauge. This
strange feature does not contradict the color confinement,
since it needs cost an infinite amount of energy to excite a
single quark state, which is beyond the scope of physical
spectrum.

Therefore, |H + X〉 is also the eigenstate of H(0)
LF :

H(0)
LF |H(P+)+X (p+)〉
= H(0)

LF

√
2p+bi†(p+)|H(P+)〉

= P−
H+X |H(P+)+X (p+)〉

=
(

M2
H

2P+ + m2−2λ

2

1

p+ + λ

ρ

)
|H(P+)+X (p+)〉, (30)

Using (26), the state |H + X〉 can be reexpressed in terms
of meson creation operator acting on the colored soft spec-
tator:

|H(P+)+X (p+)〉 = √
2P+m†

n

(
P+) |X (p+)〉, (31)

With resort to the completeness relation
∑ |X〉〈X | = 1,

one finds that the summation of the out state over soft colored
spectators in (2) simply reduces to

∑
X

|H(P+)+X (p+)〉 〈X (p+)+H(P+)|

= 2P+m†
n

(
P+)mn

(
P+) . (32)

Here the principal quantum number n needs not to be
summed.

Substituting (32) into the Collins-Soper definition of FF
in (2), we encounter the vacuum matrix element

123
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〈0|b m†
n
(
P+)mn

(
P+) b†|0〉, which turns out to simply van-

ish. Therefore the quark fragmentation function vanishes at
order-N 0

c .
In fact, the out state |H + X〉 in (2) should be the eigen-

state of the full LF Hamiltonian in (16), instead of the leading-
color piece H(0)

LF . To get a nonvanishing result, we need incor-
porating the quantum mechanical correction into the state
|H + X〉, treating V in eq. (19) as a first-order correction:

|H(P+) + X (p+)〉′ = |H(P+) + X (p+)〉
+ 1

P−
H+X − H(0)

LF + iε
V|H(P+)

+ X (p+)〉 + · · · , (33)

with |H + X〉′ denoting the eigenstate of the full LF Hamil-
tonian.

Note the second piece in (19) is suppressed by a factor
of 1/

√
Nc with the leading Fock state. This corresponds to

a process where a gluon is emitted from the initial quark
and the virtual gluon then splits into quark-antiquark pair,
q → qg → qqq̄ . One quark will combine with the antiquark
to form the identified meson state |H〉, while the orphan quark
transition into the spectator state |X〉.

Applying (33) for both ket and bra of the asymptotic out
states in (2), we find that the the leading non-vanishing con-
tribution to the quark FF is of O(1/Nc) reads

Dq→H (z) = zd−3

4π

∫
dξ−eiz−1 P+ξ− 1

Nc
TrcolorTrDirac

× 〈0| ψR(0)
1

P−
H+X −H(0)

LF +iε
V(2P+)m†

n(P+)

× mn(P+)V
1

P−
H+X − H(0)

LF −iε
ψ R(ξ−) |0〉 , (34)

where we have employed (32) to eliminate the sum over the
soft spectator states |X〉.

With the aid of the relation (28), and using the fact that
the dressed quark state is the eigenstate of free Hamiltonian
H(0)

LF , we make the following simplification in (34):

1

P−
H+X − H(0)

LF − iε
ψ

i†
R

(
ξ−) |0〉

=
∫ ∞

0

dk+

2π
eik+ξ− 1

P−
H+X −

(
m2−2λ

2k+ + λ
ρ

)
− iε

bi†(k+)|0〉,

(35a)

〈0|ψ i
R (0)

1

P−
H+X − H(0)

LF + iε

=
∫ ∞

0

dq+

2π
〈0|bi (q+)

1

P−
H+X −

(
m2−2λ

2q+ + λ
ρ

)
+ iε

, (35b)

where i denotes the color index. It is worth noting that, heart-
eningly, the dangerous λ/ρ term in the energy denominator
in (35) cancels between the dressed parent quark light-front
energy and P−

H+X (recall (30)).
Plugging (30) and (35) into (34), we arrive at

D(z) = zd−3

4π

∫
dξ−eiz−1 P+ξ− 1

Nc
TrcolorTrDirac

×
∫ ∞

0

dq+

2π

∫ ∞

0

dk+

2π
e−ik+ξ−

8P+

× 1[
(m2 − 2λ)

(
1

q+ + 1
P+−q+

)
− M2

H
P+ + iε

]

× 1[
(m2 − 2λ)

(
1

k+ + 1
P+−k+

)
− M2

H
P+ − iε

]

×〈0| bi (q+) V m†
n(P+)mn(P+) V bi† (k+) |0〉 ,

(36)

The vacuum matrix element in (36) can be worked out by
plugging the explicit definition of the color-suppressed oper-
ator V in (19), and making use of the following commutation
relations among b, B, D, M , m

[
bi (p+) , B

(
q+, k+)] = 2πδ

(
p+ − q+) bi (k+) , (37a)[

M
(

p+, q+) , m†
n

(
P+)]

=
√

2π

P+ φn

(
q+

P+

)
2πδ

(
P+ − p+ − q+)+ O(N−1

c ).

(37b)

Integrating over ξ− and q+ and k+ in (36), we are able to
deduce the functional form of the quark-to-meson FF:

Dq→H (z) = 4λ2

Nc

(1 − z)2

z
[(

z2(m2 − 2λ) + (1 − z)M2
H

)2 + ε2
]

×
[∫ 1

0
dy

φn(y)

(y − 1/z)2

]2

, (38)

which does scale as O(1/Nc). Note only a single ’t Hooft
wave function φn(y) associated with the daughter meson is
invoked in (38), which looks much simpler than the expres-
sion of the FF given by Ellis [14]. Not surprisingly, the func-
tional form the fragmentation function is considerably more
involved than the quark PDF of a meson in ’t Hooft model,
which is simply |φn(x)|2.

Equation (38) is the main result of this work. For a con-
sistency check, we also provide an alternative derivation of
this result from diagrammatic approach in Appendix.
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Inspecting (38), one observes that, irrespective of the
quark mass, the quark FF Dq→H (z) always vanishes at end
points z = 0, 1.

In the heavy quark case (m >
√

2λ), the terms inside
the parenthesis in the denominator in (38) are all positive
definite in entire regime of z, therefore it is safe to drop the
infinitesimal ε factor.

Unfortunately, some pathetic behavior emerges in the light
quark case (m <

√
2λ). Because the denominator in (38)

may vanish in some specific values of z, the light quark FF
simply blows up. This symptom might originate from the
fact that the light quark becomes tachyonic (the renormalized
quark mass squared becomes negative) in the ’t Hooft model,
whose light-front energy becomes negative [28,29]. This is
in conflict with the probability interpretation of the quark FF,
which characterizes the probability density of a single quark
fragmenting into an identified hadron accompanied with soft
spectators. We hope that the future study can shed some light
on how to ameliorate the divergent behavior of the light quark
FF.

In the next section, we will use an alternative first-principle
method (NRQCD approach) to test the correctness of (38).
Therefore, in the rest of the paper, we will solely focus on
the heavy quark sector, where (38) gives an unambiguous and
well-behaved description of the heavy quark fragmentation
function.

5 Heavy quark fragmentation function from NRQCD
factorization

One may naturally wonder how to test the correctness of (38)?
Needless to say, one cannot resort to experimental input. It
would be highly desirable if there exists some alternative
nonperturbative method to compute the quark fragmentation
function, which can be used to test against (38).

Fortunately, in the realistic world, there exists a robust
field-theoretical approach to describe the fragmentation func-
tion for heavy quarkonium, i.e., the NRQCD factorization
approach. Unlike the parton fragmentation into light hadrons,
the fragmentation functions for heavy quarkonium needs
not to be a genuinely nonperturbative object. Owing to
m 
 ΛQCD, one can invoke the asymptotic freedom to fur-
ther factorize the heavy quark to quarkonium fragmentation
function into the sum of products of short-distance coeffi-
cients (SDCs) and long-distance NRQCD matrix elements
(LDMEs) [30]. At the lowest order in velocity expansion, the
heavy quark fragmentation function can be expressed as 2

DQ→H (z) = d(0)(z)
〈
0|OH

1

∣∣∣ 0〉 + O
(
v2
)

, (39)

2 In this section, we use the symbol Q to denote the heavy quark.

where d(0) denotes the leading-order SDC. The leading-order
NRQCD production operator OH

1 is defined by

OH
1 =

∑
X

χ†ψ |H + X〉 〈X + H | ψ†χ, (40)

where ψ /χ are Pauli spinor fields that annihilate/create heavy
quark/antiquark. X represents the additional soft spectator
hadrons. Since χ†ψ is a color-singlet operator, hence X must
be color-singlet state.

Since ’t Hooft model also exhibits “naive” asymptotic
freedom, we will take the validity of NRQCD factorization
for granted when applied to 1+1 dimensional QCD. Con-
cretely speaking, the theme of this section is to recalculate the
heavy quark fragmentation function using (39) in QCD2 .3

For simplicity, we will concentrate on the heavy quark frag-
mentation into the ground state quarkonium with n = 0.

5.1 Determination of the SDC through perturbative
matching

We use the standard perturbative matching approach to deter-
mine d(0). Since the SDC is insensitive to long-distance
physics, one replaces the physical quarkonium |H〉 by a fic-
titious quarkonium, i.e., the free quark-antiquark pair |qq̄〉,
where each of the constitutes share equal momentum P/2.
One then has P2 = 4E2 ≈ 4m2. For a heavy quark fragment-
ing into a fictitious quarkonium, the NRQCD factorization
formula (39) can be recast into

DQ→Q Q(z) = d(0)(z)
〈
OQ Q

1

〉
+ O

(
v2
)

. (41)

By calculating the left-hand side using perturbative QCD, and
calculating the right-hand side using perturbative NRQCD,
one can readily solve d(0)(z).

Again we start from the Collins–Soper definition (2) to
compute DQ→Q Q(z). It is convenient to work in light-cone
gauge A+ = 0, so that the gauge link W in (2) can be dis-
carded. The tree-level Feynman diagram for Q → Q Q is
shown in Fig. 1.

Following the Feynman rules of the cut diagram in Fig. 1,
we have

DQ→Q Q̄(z) = g4
s C2

F

π Nc

z−1 E

2(k+ − P+)

×TrDirac

[
γ +A† (k/ − P/ + m)A

]∣∣∣
P+=zk+ ,

(42)

3 Note that in NRQCD factorization approach, one does not need
assuming the Nc → ∞ limit.
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k

P/2 P/2

k−Pk−P/2

Fig. 1 Tree-level diagram for the quark-level fragmentation function
for Q → Q Q̄ in light-cone gauge. The shaded bubble represents the
quarkonium and the vertical dashed line represents imposing a cut

where the amplitude A reads

A = γ μv
( P

2

)
ū
( P

2

)
γ ν (k/ + m)

(k2 − m2)
(
k − P

2

)2
[

gμν −
(
kμ − Pμ

2

)
nν

k+ − P+
2

−
(
kν − Pν

2

)
nμ

k+ − P+
2

]
. (43)

The auxiliary 2-vector nμ = (1,−1)/
√

2 denotes the null
vector along the “-” direction, which satisfies n2 = 0 and
k · n = k+.

The physical results should not depend on the convention
adopted for Dirac γ matrices. However, to deal with nonrel-
ativistic fermion-antifermion system, it is advantageous in
this section to temporarily switch to the Dirac-Pauli basis:

γ 0 = σ3, γ 1 = iσ2, γ5 ≡ γ 0γ 1 = σ1, (44)

In the Dirac–Pauli basis, the Dirac spinor wave functions
become

u (p) = 1√
2E

(√
E + m

√
E − m

)
, v (p) = 1√

2E

(−√
E − m

√
E + m

)
.

(45)

Note that the Dirac spinors are chosen to be normalized non-
relativistically, i.e., ū (p) u (p) = −v̄ (p) v (p) = m/E .

After some straightforward algebra, we obtain the result-
ing perturbative quark-level fragmentation function:

DQ→Q Q̄(z) = 64πλ2
(
N 2

c − 1
)2

m5
Q N 5

c

z3(1 − z)2

(2 − z)8 + · · · . (46)

We then compute the production matrix element
〈
OQ Q̄

1

〉
in (41) in perturbative NRQCD. At lowest order in velocity, it
is legitimate to drop the soft spectator X by invoking vacuum
saturation approximation:

〈
OQ Q̄

1

〉
=
〈
0|χ†ψ |Q Q̄

〉 〈
Q̄ Q|ψ†χ |0

〉
, (47)

The NRQCD fields can be Fourier-expanded as

ψ i (x) =
∫

dk

2π
eikx b̃i

k, χ i (x) =
∫

dk

2π
e−ikx d̃i†

k . (48)

We are working in the rest frame of the fictitious quarko-
nium state. At lowest order in velocity, both heavy quark and
heavy antiquark inside this fictitious quarkonium are at rest:

∣∣Q Q
〉 = 1√

Nc
b̃i†

0 d̃i†
0 |0〉. (49)

Combining (48) and (49), we immediately obtain〈
0
∣∣χ†ψ

∣∣ Q Q̄
〉 = √

Nc, so that the desired NRQCD produc-
tion matrix element becomes 4

〈
OQ Q̄

1

〉
= Nc. (50)

Substituting (46) and (50) into (41), one can readily solve
the desired SDC:

d(0)(z) = 64πλ2

m5 N 2
c

z3(1 − z)2

(2 − z)8 + O(1/N 4
c ). (51)

In order to compare with (38), we have retained the leading
color piece in the SDC.

Therefore, the quark-to-quarkonium FF in NRQCD fac-
torization reads

DQ→H (z) = 64πλ2

m5 N 2
c

z3(1 − z)2

(2 − z)8

〈
OH

1

〉
+ O

(
v2
)

. (52)

As we will show in next subsection, the nonperturbative
NRQCD production matrix element

〈OH
1

〉
scales as O(Nc),

so the heavy quark fragmentation function exhibits an overall
1/Nc scaling, compatible with what is found in the ab initio
derivation, (38).

5.2 Determination of NRQCD LDME

To make concrete prediction from (52), we need know the
actual value of the leading-order NRQCD production matrix
element. Obviously one needs some nonperturbative means

4 Note the counterpart of this NRQCD matrix element in QCD4 has an
extra factor of 2, stemming from the sum over spin degrees of freedom,
which is absent in QCD2.
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to determine its value. First we note that, at the lowest order
in v, it is legitimate to invoke the vacuum saturation approx-
imation to reexpress the vacuum expectation value of (40)
as

〈OH
1 〉 ≈

∣∣∣
〈
0|χ†ψ |H

〉∣∣∣2 . (53)

In the following, we use two different approaches to esti-
mate the value of the vacuum-to-quarkonium matrix element
〈0|χ†ψ |H〉.

5.2.1 Estimation from the decay constant

First define the decay constant of the ground-state (n = 0)
quarkonium through

〈
0
∣∣∣Ψ γ μγ 5Ψ

∣∣∣ H(P)
〉
≡ 1√

2P0
fH Pμ, (54)

where Ψ denotes the Dirac field for heavy quark Q.
The decay constant fH is related to the first moment of

the ’t Hooft wave function through [31]

fH =
√

Nc

π

∫ 1

0
dxφ0(x), (55)

which scales as
√

Nc.
Since the decay constant is a Lorentz scalar, we can

compute it in any reference frame, e.g., the rest frame
of the quarkonium. One can match the QCD axial vector
current Ψ γ μγ 5Ψ onto NRQCD bilinear χ†ψ by integrat-
ing out relativistic fluctuation. A shortcut to carry out the
tree-level matching is through the Foldy-Wouthuysen-Tani
(FWT) transformation:

Ψ = exp

(
− i

2m Q
γ 1 D1

)(
ψ

χ

)
, (56)

where D1 signifies the spatial component of the covariant
derivative.

Performing FWT transformation to the QCD axial vector
current in (54) (taking μ = 0 component), we find

fH =
√

2

MH

(
1 + O

(
g2

s /m2
))

〈0|χ†ψ |H(P = 0)〉

+O(v2), (57)

at the lowest order in relative velocity. We caution that we
have not considered the radiative corrections to the SDC,
which may induce the correction of the relative order g2

s /m2
Q .

Piecing together (53), (55) and (57), we are able to express
the desired NRQCD LDME in terms of the first momentum

of the ’t Hooft wave function:

〈OH
1 〉 = MH

2
f 2
H = Nc

2π
MH

[∫ 1

0
dx φ0(x)

]2

. (58)

5.2.2 Estimation from Schrödinger wave function at the
origin

In realistic QCD4, the vacuum-to-quarkonium NRQCD
matrix element is often approximated by the wave function
at the origin in phenomenological potential model such as
Cornell model. For instance, the color-singlet NRQCD pro-
duction matrix element for ηc(

1S0) can be approximated by
〈Oηc

1 〉 ≈ 2
4π

Nc|R(0)|2, where the R(0) denotes the radial
wave function at origin for ηc. The factor 1/(4π) is the spher-
ical harmonic Y00(r̂) and the factor 2 originates from the sum
over spin degree of freedom [30].

In 1+1 dimensional QCD, the instantaneous gluon exchange
naturally leads to a linear Coulomb potential. Analogous to
the QCD4, we may also approximate the NRQCD matrix ele-
ment of the ground-state quarkonium by the wave function
at the origin:

〈
OH

1

〉
≈ Nc |ψH (0)|2 . (59)

The difference of this expression from its four-dimensional
counterpart originates from the fact there is no concept of
angular momentum (orbital or spin) in 1+1 dimensional
spacetime.

In contrast to the light-front quantization, there is also
possible to use the equal-time quantization (together with
imposing the axial gauge) to solve the ’t Hooft model [32].
The resulting field-theoretical bound-state equations, the so-
called Bars–Green equations, are considerably more involved
than the ’t Hooft equation, and are suitable for describing
bound state carrying any finite momentum. In the m Q →
∞ limit, the heavy quarkonium becomes a nonrelativistic
system. One can rigorously proves that, in the heavy quark
limit, the Bars–Green function in the quarkonium rest frame
reduces to the following form [26]

p2

2μ
ϕn+(p) − λ−

∫ ∞

−∞
dk

(p − k)2 ϕn+(k) = Enϕn+(p), (60)

where μ = m Q/2 signifies the reduced mass. En denotes the
binding energy En = MH − 2m Q , while n is the principal
quantum number of quarkonium. After Fourier transforma-
tion, this equation is nothing but the familiar

Schrödinger equation with a linear potential in position
space:

− 1

2μ

d2

dr2 ψH (r) + λπ |r |ψH (r) = EnψH (r). (61)

123



1169 Page 10 of 13 Eur. Phys. J. C (2023) 83 :1169

We stress again, in contrast to the 3+1 dimension, this
Schrödinger equation arises from a rigorous field-theoretical
bound-state equation rather from a phenomenological model.
We refer interested readers to [26] for detailed discussions.

This Schrödinger equation can be readily solved. The
ground-state eigenenergy can be determined by the condi-

tion Ai′
(
−E0(2μ)1/3

(πλ)2/3

)
= 0, with with Ai denoting the Airy

function. The Schrödinger wave function of the ground-state
quarkoniunm is [26]

ψH (r) = N0Ai

(
μ1/3 (−2πλ|r | − 2E0)

(2πλ)2/3

)
, (62)

where the normalization constant N0 is determined by the
requirement

∫
dr ψ2

H (r) = 1. Clearly the ground-state
quarkonium carry even parity, i.e., ψ(r) = ψ(−r), there-
fore its wave function at the origin does not vanish.

Substituting (62) into (59), we obtain another estimation
of the NRQCD production matrix element:

〈
OH

1

〉
≈ Nc N 2

0

[
Ai

(−2E0μ
1/3

(2πλ)2/3

)]2

. (63)

6 Compatibility test between NRQCD factorization and
rigorous results in heavy quark limit

We now try to examine whether the ab initio result for the
heavy quark fragmentation function, (38), is compatible with
the NRQCD prediction, (52). To make such a comparison
meaningful, we need to take the heavy quark limit m 
 √

2λ.
In such a limit, MH ≈ 2m is a very decent approximation.
Intuitively speaking, as the quark mass increases, the bound
state becomes more and more non-relativistic, so that the
heavy quark and heavy anti-quark almost equally partition
the heavy meson’s momentum for a fast-moving quarkonium.
In the so-called impulse approximation, the LCWF of the
ground-state quarkonium H can be approximated by

φ0(x) ≈
√

π

Nc
fH δ

(
x − 1

2

)
. (64)

The shrinking tendency of the profile of the LCWF with
increasing quark mass has been numerically exhibited [33].
The normalization factor is chosen such that (55) is fulfilled.

Substituting the idealized LCWF of the ground-state
quarkonium in (64) into our ab initio formula, (38), we obtain

DQ→H (z) ≈4λ2

Nc

(1 − z)2

z
[
z2m2 + (1 − z)M2

H

]2

×
[

1

(1/2 − 1/z)2

]2
π

Nc
f 2
H . (65)

Table 1 The numerical values of the heavy quark masses (m), lowest-
lying quarkonia masses (MH ), binding energies (E0), the normalization
constant of the lowest-lying quarkonum’s wave function (N0), and the
corresponding NRQCD LDMEs estimated by two methods

c b b′

m/
√

2λ 4.19 13.66 27.32

MH /
√

2λ 9.03 27.82 55.06

E0/
√

2λ 0.854 0.576 0.457

N 2
0 /

√
2λ 3.21 4.75 5.99〈OH

1

〉
/(Nc

√
2λ), Eq. (63) 0.920 1.36 1.72〈OH

1

〉
/(Nc

√
2λ), Eq. (58) 0.817 1.32 1.70

Hearteningly, with the aid of the relation (58), we find
(65) is in exact agreement with the lowest-order NRQCD
prediction (52).

In our opinion, this agreement is by no means acciden-
tal, since both methods have completely different origins.
We believe our field-theoretical expression for heavy quark
fragmentation function in ’t Hooft model, (38), is robust and
correct.

7 Numerical results

In this section, we present our numerical results of the frag-
mentation functions for three characteristic heavy quarko-
nia: cc̄, bb̄ and a fictitious heavier quarkonium b′b̄′ with
m′

b = 2mb. The value of ’t Hooft coupling constant λ is
chosen as

√
2λ = 340 MeV, compatible with the empiri-

cal value of the string tension in the QCD4 [9]. The quark
masses are tuned so that the masses of the ground state char-
monium and bottomonium coincide with those of J/ψ and Υ

in realistic world. For more details about quark mass setting,
we refer the interested readers to Ref. [33]. The masses of
three heavy quarks, c, b, b′, and the respective ground-state
quarkonia, together with the respective binding energies, are
tabulated in Table 1. All the energy and mass are given in
units of

√
2λ.

In Fig. 2, we plot the NRQCD production matrix element
as a function of quark mass, obtained from two different
ways, i.e., the estimation from the wave function at the ori-
gin and estimation from the decay constant. The discrep-
ancy for the moderate quark mass might be attributed to the
neglected QCD radiative correction of O(g2

s /m2), as well
as the neglected relativistic correction upon matching the
decay constant fH onto NRQCD matrix element (see (57)).
Nevertheless, it is clear in Fig. 2 these two estimations start
to coincide in the heavy quark limit. We also observe that
the values of the NRQCD LDMEs and the normalization
constant of the wave function increase with the increasing
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Fig. 2 The NRQCD production matrix element
〈OH

1

〉
as function of

heavy quark mass. Three benchmark quarkonia cc̄, bb̄ and bb̄′ are
marked with heavy dots

quark mass. This tendency simply reflects the fact that the
non-relativistic quark-antiquark bound state becomes more
spatially concentrated as quark mass increases.

Most importantly, in Fig. 3 we also show the profiles of
heavy quark fragmentation functions for cc̄, bb̄ and b′b̄′,
obtained both from the ab initio and NRQCD approaches. For
the latter, we adopt the value of the LDME estimated form
the wave function at the origin. For charm quark fragmenta-
tion, we observe some discrepancy between two approaches,
which can be attributed to the fact the charm quark is not very
heavy. Featherless, as can be clearly visualized from Fig. 3,
as the quark mass continues to increase, the convergence
between two predictions becomes perfect. This numerical
verification supports the analytical proof of the compatibility
between two approaches in the heavy quark limit in Sect. 6.

8 Summary and outlook

Fragmentation functions are important theoretical ingredi-
ents to describe the identified hadron production in high
energy collision experiments. A better understanding of
fragmentation function will deepen our knowledge about
hadronization mechanism and color confinement. Unfortu-
nately, in the forseeable future, there seems no reliable first-
principle method to compute the fragmentation function in
realistic QCD4. In this work, within the framework of the
’t Hooft model, a famous toy model of QCD, we attempt
to compute the quark-to-meson fragmentation function in a
rigorous way, with the hope that some useful lessons will be
gleaned from this study.

Following Collins–Soper definition, we are able to estab-
lish the functional form of the quark-to-meson fragmenta-
tion function in terms of the identified meson’s light-cone
wave function, using both Hamiltonian approach and dia-
grammatic approach. Its functional form is much simpler
than what is given by Ellis about half a century ago. For com-
parison, we also employ the NRQCD factorization approach
to compute the heavy quark fragmentation into the ground-
state quarkonium, at the lowest order in velocity and strong
coupling constant expansion. We show that, both analyti-
cally and numerically, as the quark mass increases, the heavy
quark fragmentation functions obtained from the Hamilto-
nian approach and NRQCD approach converge to each other.
Therefore, we believe that both approaches give reliable
account of the heavy quark fragmentation in 1+1 dimensional
QCD.

We also find some pathetic symptom for the light quark
fragmentation in our ab intio approach, while the quark-
to-meson fragmentation function becomes singular at some
value of z. This phenomenon might be intimately linked with
the fact that the light quark becomes tachyonic, with negative
light-front energy. Hence the probabilistic interpretation of
the quark FF might break down. It is definitely worth making
further efforts to resolve this dilemma, which will deepen our

Fig. 3 Comparison between heavy quark fragmenation functions obtained by the rigorous approach (labeled as ab initio) and NRQCD factorization
approach, for three benchmark quarkonia
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understanding toward the ’t Hooft model and even fragmen-
tation mechanism.
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Appendix: Rederiving quark fragmentation function
using diagrammatic approach

In this appendix, we present an alternative approach, namely
the Feynman diagram approach to derive the quark FF in ’t
Hooft model. We show that the quark FFs obtained from the
diagrammatic approach and the Hamiltonian approach are
identical.

The Feynman diagram of a quark fragments into a meson
is depicted in Fig. 4, in which S represents a dressed quark
propagator and Γ represents the quark-antiquark-meson ver-
tex function. We work in the light-cone gauge. In the frame-
work of LF quantization, the dressed quark propagator S is
defined as the time-ordered correlation function of the “good”
component of the quark field

H

P

H

S

Γ
S

Γ

Sk p

Fig. 4 The Feynman diagram for quark fragmentation function

〈0|TψR (x) ψ
†
R (y) |0〉 =

∫
d2 p

(2π)2 e−i p·(x−y)S (p) × 1color

(66)

where 1color denotes a unit operator in color space. The
explicit form of S(p) is given by [18]

S(p) = 2i p+

p2 − m2 + 2λ − 2
∣∣p+∣∣ λ

ρ
+ iε

, (67)

The vertex function Γ was introduced in Ref. [13,31],
whose form is given by

Γ
(
x P+; P+) =

√
4π

Nc

iλ∣∣P+∣∣
∫ 1

0
dy Θ

(
|x − y| − ρ∣∣P+∣∣

)

× φn (y)

(x − y)2 , (68)

where P+ is the light-cone momentum of the meson H and x
denotes the ratio between the light-cone momentum carried
by the quark q and meson H .

In accordance with Collins-Soper definition of the quark
FF, as depicted in Fig. 4, we write down

Dq→H (z) = 1

4π z

∫ ∞

0

d2 p

(2π)2

d2k

(2π)2

∣∣Γ (k+; P
)

S (k)
∣∣2

× (2π)2 δ(2) (k − P − p) (2π)δ
(
k+ − P+/z

)

× Θ(p+)(2p+) (2π) δ

(
p2−m2+2λ− 2p+λ

ρ

)
.

(69)

The last δ-function in (69) comes from the cut of the quark
propagator in Fig. 4. To understand this, we start from the
identity:

S(p) = 2i p+

p2 − m2 + 2λ − 2
∣∣p+∣∣ λ

ρ
− isgn(p+)ε

+ Θ(p+)
(
2p+) (2π) δ

(
p2−m2+2λ− 2p+λ

ρ

)
.

(70)

The first term signifies the advanced propagator, which does
not contribute to the cut, while the second term contributes
to the cut.

From (70), we can derive the dispersion relation of an
on-shell quark

p− = m2 − 2λ

2p+ + λ

ρ
, (71)

which agrees with (29) derived from the Hamiltonian
approach.
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The LF energy of the on-shell quark depends on ρ, which
can be related to an x−-independent gauge transformation.
However, if we consider gauge-invariant quantities such as
the fragmentation function, the dependence of ρ must be
eliminated in the final result.

Substituting the Feynman rules (67) and (68) into (69),
and integrating out the δ-functions, we obtain

Dq→H (z) = 4λ2

Ncz

⎡
⎣ 1

M2
H + m2−2λ

1/z−1 − m2−2λ
1/z

∫ 1

0
dy

φn (y)

(y − 1/z)2

⎤
⎦

2

,

(72)

which exactly reproduces our master formula (38) earlier
derived from Hamiltonian approach. Hearteningly, the ρ

dependence arising from the initial and the final quark lines
cancels out, as expected.
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