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Abstract Effects of non-linear small-x evolution of the
gluon distribution given by the Balitsky–Kovchegov equa-
tion are analyzed within the collinear approximation frame-
work. We perform a twist decomposition of the proton
structure functions F2 and FL obtained from the Balitsky–
Kovchegov equation using the Mellin representation of the
scattering cross-sections at high energies. In both the struc-
ture functions we find strong corrections coming from the
non-linear effects in the gluon evolution at twist 2, and
strongly suppressed higher twist effects. This implies that
unitarization effects of high energy scattering amplitudes are
mostly the leading twist effect. Furthermore we consider the
double logarithmic limit of the Balitsky–Kovchegov equa-
tion for the collinear gluon distribution, and compare the
result to the Gribov–Levin–Ryskin equation. We find that
these two equations differ by two powers of the hard scale
logarithm for the large scales.

1 Introduction and conclusions

The electron–ion collider will probe deep inelastic scattering
(DIS) of electrons on large nuclei at high collision energies
[1,2] and this will allow to probe partons that carry a small
fraction x of the nucleus momentum. The parton distribution
functions grow steeply with decreasing values of x , and this
growth is driven mostly by gluons. Specifically, the gluon
distribution function g(x, Q2) at the scale Q2 enters the DIS
cross sections as xg(x, Q2), that grows at small x as x−λ with
λ > 0. For sufficiently small values of x and sufficiently low
scales Q2 this growth has to be slowed down and finally
tamed by unitarity corrections, see e.g. [3–7]. These correc-
tions enter into QCD evolution equations as non-linear terms,
that may be interpreted as effects of parton recombination at
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high parton density regime. At very high densities the gluon
production by parton splittings and the gluon recombination
are expected to balance, leading a phenomenon called gluon
saturation.

Non-linear corrections to linear evolution equation were
studied within the two main QCD frameworks. Within the
collinear Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) approach a non-linear evolution equation was
proposed by Gribov, Levin and Ryskin (GLR) [8], and by
Mueller and Qiu [9]. The unitarity effects, however, are more
pronounced when viewed from the perspective of small x
evolution as given by the Balitsky–Fadin–Kuraev–Lipatov
(BFKL) framework [10–13]. It is so because the BFKL
framework is more sensitive to lower momentum scales,
while in the DGLAP framework the unitarity effects can be
greatly reduced by choosing sufficiently large factorization
scale. The BFKL equation is linear. The non-linearity enters
to this equation in the form of triple BFKL ladder interac-
tion, called the triple pomeron vertex [3,4]. The evolution
equation equivalent to BFKL with the triple pomeron inter-
action was derived by Balitsky [14] and Kovchegov [5,6] –
the Balitsky–Kovchegov (BK) equation. In results of further
studies of gluon color correlations in the high density regime
at small x , the framework of Color Glass Condensate (CGC)
was developed [15–17], and JIMWLK equation was derived
for the target wave function [18–22].

Theoretical understanding of non-linear evolution equa-
tions in QCD is pretty good by now, and a large number of
phenomenological studies were perfomed to constrain these
effects. Probably the most successful analysis showing strong
arguments for gluon saturation was performed by Golec–
Biernat and Wüsthoff (GBW) [23,24]. It describes HERA
data from the inclusive DIS down to photoproduction limit,
and the diffractive DIS data in a simple unified framework,
called the GBW saturation model. This model allowed for
a simple and efficient extensions to include scale evolution
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effects [25] and to describe also other observables, in particu-
lar for exclusive diffractive processes [26,27]. In a more for-
mal approach predictions of non-linear evolution equations
were multiply tested against the data, mostly by fitting the
solutions of BK equations to data on proton structure func-
tions, see e.g. Refs. [28–32]. Thus, the small x non-linear
evolution equations are quite successful in phenomenologi-
cal applications. Besides this, however, theoretical questions
arise on their relation to the powerful collinear framework.
In particular, it is interesting to understand how the multiple
scattering and gluon recombination effects in the small x for-
mulation appear in the Operator Product Expansion (OPE)
framework – how they map onto the twist expansion of
hadron structure functions, and how they modify the DGLAP
evolution equation. The aim of the present paper is to address
and study these questions.

Multiple parton exchange in QCD induces higher twist
terms in the OPE. The canonical scaling of twist τ contribu-
tion to hadron structure function is (�/Q)τ−2, where � is a
low hadronic scale, and Q is the large DIS scale. Hence the
higher twist terms are power suppressed and for sufficiently
large Q2 they may be safely neglected. At small x , how-
ever, the evolution of higher twist terms is more rapid than of
the leading twist term. For instance, for the dominant small x
gluon exchange, the twist 4 contribution to the structure func-
tions at small x may be estimated as ∼ [xg(x, Q2)]2�2/Q2

see e.g. [8,9,33–35] to be compared with ∼ xg(x, Q2)

twist 2 behavior, where g(x, Q2) is the collinear gluon dis-
tribution. It follows that the strong growth of xg(x, Q2) at
small x may partially compensate the 1/Q2 suppression of
the twist 4 term, and the higher twist corrections may become
significant, which would affect the quality of twist 2 DGLAP
fits of the structure functions. In fact, DGLAP fits to proton
structure functions measured at HERA down to x ∼ 2 ·10−5

for Q2 > 1 GeV2 deteriorate for Q2 < 5 GeV2 both for
diffractive and inclusive structure functions [36–40], and
inclusion of higher twist corrections at small x was shown to
improve the quality of data description [37–40].

Theoretical analysis of higher twist corrections to the
structure functions is not easy. First, the number of relevant
operators grows quickly with increasing twist. So does the
complexity of evolution equations. Furthermore, in the stan-
dard DGLAP approach the initial conditions are fitted to data,
and with more operators at higher twist, more information
would be needed to constrain the initial conditions for their
evolution. Certainly, the currently available data do not pro-
vide such information. Hence, it is justified to use simplified
models of higher twist contributions, that incorporate cru-
cial features coming from QCD. A very useful guidelines for
such models comes from saturation models or from small x
non-linear evolution equations. In the present analysis we
use the approach developed in Refs. [37,41,42], at first for a
twist decomposition of the proton structure functions in the

saturation model, and later extended to the twist decomposi-
tion of the BFKL cross sections [43]. The method relies on
Mellin transforms of the scattering cross sections and relating
singularities in the complex Mellin moment plane to contri-
butions with definite twists. Here we apply this approach to
the Balitsky–Kovchegov equation and we perform the twist
decomposition of the non-linear correction.

In the analysis we use a solution of the BK equation in
the form of a series in non-linearity, proposed by Kovchegov
[6]. We aim to estimate the corrections from non-linearity to
the linear approximation in the region where they are mod-
erate, so we truncate the expansion to the first term, that is
from a single contribution of non-linearity. This is sufficient
to obtain the key conclusions: (1) large corrections to pro-
ton structure functions from the non-linearity, that enter at
twist 2, and (2) small higher twist corrections induced by the
non-linear term. These results lead to, perhaps surprising,
overall conclusion that non-linear BK corrections in the pro-
ton structure functions are basically the leading twist effect.
To be specific, we find that the twist 2 correction from BK
non-linearity to the BFKL result reaches −50% in proton
structure functions for Q2 = 5 GeV2 already at x = 10−3.
On the other hand, the higher twist corrections from both
BFKL and BK are found to be at 1% level for F2 and below
10% in FL. It should be kept in mind, however, that the mul-
tiple scattering effects resumed by the BK equation may be
probed in a different way in other processes, leading to a
possibly different picture of saturation effects.

On the top of this, by taking the double logarithmic limit
of the BK equation we obtain a non-linear evolution equation
for the collinear gluon distribution xg(x, Q2). This equation
resembles the GLR equation, but we find that it takes a differ-
ent form of the non-linear part. For a meaningful comparison
it is necessary to consider the double logarithmic limit. The
two classes od logarithms that are resummed correspond to
powers of t = log(Q2) and powers of y = log(x0/x). For
the hierarchy t � ᾱsy � 1 we find that the non-linear
term we obtain from the BK equation is weaker by two
powers of log(Q2) than the corresponding contribution in
the GLR equation. This feature may be traced back to van-
ishing of the triple BFKL ladder vertex when the collinear
ordering is imposed, as found in Ref. [44]. This is in full
consistency with the collinear evolution equation for quasi-
partonic higher twist operators [33], in which the gluonic
ladder merging vertex is absent. Hence, we conclude that
at high Q2 effects of the BK non-linearity are smaller than
expected, both in the gluon evolution and in the higher twist
contributions. In the region where t ∼ ᾱsy � 1, however,
the powers of logarithms agree in the GLR equation and in
the double logarithmic limit of the BK equation.

Furthermore, we investigate the origin of the strong effects
of non-linearity at twist 2. We get the most clear answer
by performing an analysis of the unitegrated gluon distri-
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bution f (x, k2) � k2(∂/∂k2)xg(x, k2), that depends on the
gluon transverse momentum squared k2. In f (x, k2) emerg-
ing from the BK equation unitarity effects are very strong for
k2 < Q2

s (x), where the characteristic x-dependent momen-
tum scale, that is naturally interpreted as the saturation scale.
In the region k2 < Q2

s (x), the distribution f (x, k2) is
strongly suppressed. Hence, Q2

s (x) plays the rôle of a lower

cut-off in the integral xg(x, Q2) � ∫ Q2 dk2

k2 f (x, k2), con-
necting the collinear gluon distribution with its unintegrated
form. This is a sizable correction that enters at twist 2. This
implies, that the non-linear effects are concentrated at low
momentum scales and it is possible to factor them out and
absorb in the input value of the gluon distribution xg(x, μ2

F),
provided that the factorization scale μ2

F is reasonably larger
than the saturation scale Q2

s (x). Hence, in order to clearly
see non-linear BK effects one should probe the region of
μ2

F < Q2
s . This region is not accessible for DIS on the pro-

ton, but may be probed in DIS on large nuclei, e.g. at the
electron–ion collider.

2 Proton structure functions from Balitsky–Kovchegov
equation

The total inclusive cross-section σγ ∗A of the virtual photon
γ ∗ scattering on large nucleus A, in the high energy limit,
can be described in terms of the structure functions FL, F2

FT,L(x, Q2) = Q2

4π2αem
σ

γ ∗A
T,L ,

F2(x, Q
2) = FT(x, Q2) + FL(x, Q2) (1)

where

σ
γ ∗A
T,L (x, Q2)

=
∫

d2r
4π

∫ 1

0
dz|ψT,L(z, r, Q2)|2σqq̄(x, r). (2)

The transverse (T ) and longitudinal (L) photon wavefunc-
tions ψT,L(z, r, Q2) describe probability amplitudes of the
fluctuation of the virtual photon into a quark–antiquark dipole
of the transverse size r = |r| and a fraction z of the longitu-
dianal light-cone momentum carried by the quark [45]. The
color dipole scatter over a nucleus with the cross section σqq̄
given by an imaginary part of the forward dipole–nucleon
scattering amplitude N (x, r,b)

σqq̄(x, r) = 2
∫

d2b N (x, r,b) ≡ σ0N (y, r), (3)

where y = log(xin/x) is a rapidity variable developed with
respect to some initial value xin [5]. The cross section param-
eter σ0 is related to the effective nucleus radius σ0 = 2πR2

A
via integration over the impact parameter b. In the above
equations it is already assumed that the main contribution to

scattering comes from perturbative dipoles located far from
the edges of the nucleus, namely that a size of the dipole
r in the transverse space is much smaller then the nucleus
radius RA. In this way one neglects a non-trivial dependence
of the amplitude on the impact parameter b, limiting only to
a simple cylindrical geometry of the high energy nucleus.

The rapidity evolution of the amplitude N (y, r) is descri-
bed by the Balitsky–Kovchegov equation [5,14], which in
momentum space reads

∂φ(y, k2⊥)

∂y

= ᾱs

∫ ∞

0

dq2⊥
q2⊥

⎧
⎨

⎩
q2⊥φ(y, q2⊥) − k2⊥φ(y, k2⊥)

|q2⊥ − k2⊥|

+ k2⊥φ(y, k2⊥)
√

4q4⊥ + k2⊥

⎫
⎬

⎭
− ᾱsφ

2(y, k2⊥) (4)

where ᾱs = αsNc/π and φ(y, k2⊥) is the Fourier transform
of the amplitude

φ(y, k2⊥) =
∫

d2r

2π
e−ik⊥·r N (y, r)

r2 . (5)

The first term in the BK equation is given by the BFKL kernel
that can be solved exactly using its eigenfunctions [12]

φ0(y, k
2⊥) =

∞∑

n=−∞

∫ c+i∞

c−i∞
dγ

2π i

(
k2⊥
Q2

0

)−γ

×Cn(γ ) exp{ᾱsχ(n, γ )y + inϕ} (6)

where χ(n, γ ) are eigenvalues of the BK equation and coef-
ficients Cn(γ ) are determined by the initial condition. Note
that we use the convention in which the standard Mellin
moment corresponds to −γ , and the reference scale in the
Mellin transform is Q2

0. The fundamental Mellin strip is
located in the interval c ∈ (0, 1). At large rapidity y, which
is of main interest in this article, the dominant contribution
is given by n = 0 eigenvalue

χ(γ ) ≡ χ(0, γ ) = 2ψ(1) − ψ(1 − γ ) − ψ(γ ) (7)

and we adopt this approximation throughout the whole paper.
The non-linear BK equation can be solved using iterative
procedure [6]. In the Mellin space one can write

φ̃(y, γ ) = 1

Q2
0

∫ ∞

0
dk2⊥

(
k2⊥
Q2

0

)γ−1

φ(y, k2⊥)

φ̃(y, γ ) =
∞∑

i=0

φ̃i (y, γ ), (8)
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and the functions φ̃i satisfy the infinite set of the coupled
equations:

∂φ̃0(y, γ )

∂y
= ᾱsχ(γ )φ̃0(y, γ ), (9)

∂φ̃1(y, γ )

∂y
= ᾱsχ(γ )φ̃1(y, γ )

−2π i ᾱs

∫ c1+i∞

c1−i∞
dγ1

2π i

∫ c2+i∞

c2−i∞
dγ2

2π i

×δ(γ − γ1 − γ2)φ̃0(y, γ1)φ̃0(y, γ2),

∂φ̃2(y, γ )

∂y
= ᾱsχ(γ )φ̃2(y, γ ) − 2π i ᾱs

∫ c1+i∞

c1−i∞

× dγ1

2π i

∫ c2+i∞

c2−i∞
dγ2

2π i
δ(γ − γ1 − γ2)

×(φ̃0(y, γ1)φ̃1(y, γ2)

+φ̃1(y, γ1)φ̃0(y, γ2)),

.....

and 0 < Re(c1, c2) < 1. From the structure of the equations
one can infer that φ̃i ∼ φ̃i+1

0 , where the term φ̃0 ∼ exp(αχy).
Therefore the amplitude φ̃i describes the process with i + 1
pomeron exchanges included in the DIS diagram. The series
(8) is convergent if φ̃0(y, k2⊥) 
 1 which locates the quark
transverse momenta within the perturbative domain. The
thorough analysis in [6] shows that the series is conver-
gent for values of quark momenta above the saturation scale
with possible extension using analytical continuation. Such
requirement is consistent with the twist decomposition which
assumes that the virtuality of the quark–antiquark pair is large
with respect to the typical hadronic scale. The procedure is
not applicable below the saturation scale. However, our main
goal in this paper is to estimate the influence of the non-linear
corrections from the BK equation on the lowest twists of the
structure functions. Therefore, we limit our calculation to
the first order correction. It is a simple exercise to solve the
second equation of (9) with the result

φ̃1(y, γ )

=
∫

dγ1

2π i

dγ2

2π i
2π iδ(γ − γ1 − γ2)C0(γ1)C0(γ2)

×exp (ᾱs yχ(γ )) − exp (ᾱs yχ(γ1) + ᾱs yχ(γ2))

χ(γ1) + χ(γ2) − χ(γ )
,

(10)

whereas the first equation gives the BFKL solution for n = 0
eigenvalue. For further analysis we adopt the exponential
form of the initial conditions

N (y = 0, r) = 1 − exp
(
−r2Q2

0

)
(11)

which gives

C0(γ ) = −22γ−1�(γ )

�(1 − γ )
�(−γ ) (12)

and the BFKL solution takes the form

φ̃0(y, γ ) = −22γ−1�(γ )

�(1 − γ )
�(−γ )eᾱsχ(γ )y, (13)

whereas the Mellin strip is limited to 0 < Re(c) < 3/4. Note
that we changed convention for the Q0 parameter of the input
fuction N (y = 0, r) w.r.t. Ref. [43]: the present Q0 equals
1/2 of Q0 used in [43].

3 Twist decomposition of the DIS cross section

The twist structure of the photon–nucleus scattering can be
obtained from the Mellin transform of the cross section with
respect to the virtuality scale. The twist decomposition is
performed by isolating contributions of singularities in the
complex Mellin moment plane.

The starting point of our analysis is the iterative solution
of the BK equation with respect to the non-linear interaction
term, as described in the previous section. In this framework
the cross section can be described as a series

σ
γ ∗A
T,L =

∞∑

i=0

σ
(i) γ ∗A
T,L ,

where

σ
(i) γ ∗A
T,L (x, Q2) = σ0

∫ c+i∞

c−i∞
dγ

2π i

(
4Q2

0

Q2

)−γ

×H̃T,L(−γ )
�(1 + γ )

2−2γ−1�(−γ )
φ̃i (y,−γ ).

(14)

The Mellin fundamental strip is located in −3/4 < Re(c) <

0 and φ̃i are solutions of the Eq. (9). The functions H̃T,L are
Mellin transforms of the photon wave functions that can be
found in [41,42]. The leading BFKL contribution is given by
the formula

σ
(0) γ ∗A
T,L (x, Q2)

= −σ0

∫ −1/2+i∞

−1/2−i∞
dγ

2π i

(
4Q2

0

Q2

)−γ

×H̃T,L(−γ )�(γ )eᾱs yχ(−γ ), (15)

and was described in [43]. The lowest order correction
σ

(1) γ ∗A
T,L to the BFKL cross section follows from the solu-

tion (10) and decomposition (14)

σ
(1) γ ∗A
T,L = σ0

∫ c+i∞
c−i∞

dγ

2π i

(
4Q2

0
Q2

)γ
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Fig. 1 Location of singularities in a complex Mellin space of γ vari-
able. Blue points (on the horizontal axis) correspond to singularities
located at integer values, whereas the red ones (above the axis) to inte-
ger γ −γ1. The integration over the large contour is equal to the infinite
sum of integrals over small contours encircling singular points with a
minus sign. One such contour is depicted around point γ = 2

×H̃T,L(γ )
�(1 − γ )

�(γ )

∫ c1+∞
c1−∞

dγ1

2π i

�(γ1)�(γ − γ1)

2γ1(γ − γ1)

× e(ᾱs yχ(γ )) − e(ᾱs yχ(γ1)+ᾱs yχ(γ−γ1))

χ(γ1) + χ(γ − γ1) − χ(γ )
(16)

where 0 < Re(c), Re(c1) < 3/4. It is important to note that
in the above expression both exponent factors are important
to maintain correct analytical structure. Indeed, the multiples
zeros of the denominator in the complex plain are exactly can-
celed by the contribution from the exponents in the numera-
tor. The essential singularities are located at integer values of
γ, γ1 and γ − γ1 (see Fig. 1), therefore the integration over
γ variable can be decompose into two sums

σ
(1) γ ∗A
T,L ≈

N∑

n=1

∫ c+i∞

c−i∞
dγ1

2π i

∫

Cn

dγ

2π i
Ĩ (γ, γ1)

+
∞∑

n=1

∫ c+i∞

c−i∞
dγ1

2π i

∫

Cn+γ1

dγ

2π i
Ĩ (γ, γ1),

I (γ, γ1) = σ0

(
4Q2

0

Q2

)γ

H̃T,L(γ )
�(1 − γ )

�(γ )

×�(γ1)�(γ − γ1)

2γ1(γ − γ1)

e(ᾱs yχ(γ )) − e(ᾱs yχ(γ1)+ᾱs yχ(γ−γ1))

χ(γ1) + χ(γ − γ1) − χ(γ )
,

(17)

where Cw is a small clockwise contour located around point
w in the complex γ plane. The Cauchy theorem that bridges
equations (16, 17) is satisfied due to the exponential suppres-
sion of the large imaginary values Imγ brought by the photon
wavefunctions HT,L. The asymptotics of χ(γ ) does not spoil
that in any way, as it consists of two pieces: the − log(γ ) term
that improves the convergence and the −π cot(πγ ) that con-

tributes to the (only) poles of χ(γ ) at the integer values of
γ , but is subleading in the other regions. The series (17) is
asymptotic [41,42] and the optimal number N depends on
the values of (x, Q). In particular, one can check numerically
that for both the transverse and longitudinal cross sections
the first two poles provide the agreement with the full result
(16) at the level better than one per mile at Q2 = 5 GeV2 and
x = 10−3. Additionally, inclusion of the second pole on the
top of the first improve the result by more than the order of
magnitude, which shows the convergence of the expansion
for the first two twists.

The integral dγ over Cn from the first term in (17) gives a
direct contribution to twist τ = 2n after integration over dγ1

along the line parallel to imaginary axis within the Mellin
strip. A similar integration over Cn+γ1 from the second term
gives contributions to all twists of order τ ≥ 2n starting
with the lowest value τ = 4. This fact follows from the
integration over dγ1 variable. However, the twists higher then
τ = 4 are strongly suppressed, therefore one can assign the
contribution of the second integral to twist τ = 4 only, with
a small error of order 1 per cent or less. Summarising, in
numerical calculations, the BK correction to the leading twist
was calculated using the first term of (17) with n = 1 only,
whereas the correction to twist τ = 4 by the first term with
n = 2 and the second term with n = 1.

4 Results

4.1 Numerical results

With the framework described above we calculate higher
twist corrections to the unpolorized proton structure func-
tions F2 and FL at small x . The primary goal is to esti-
mate deviations from linear evolution (BFKL) regime due
to non-linearity introduced by the triple Pomeron interac-
tion. We compute the first correction in non-linearity in the
iterative solution of Balitsky–Kovchegov equation – which
we shall call the BK correction. Moreover, we perform an
explicit twist decomposition of the structure functions for
BFKL result with the BK correction and compare it to the
known results computed earlier in the BFKL approach.

As the reference we take the structure functions obtained
from a solution of the leading logarithmic BFKL equation
with parameters obtained in Ref. [43]. Let us remind that
the input for the BFKL evolution in the dipole represen-
tation at xin = 0.1 is assumed to take the GBW form:
σ(xin, r) = σ0[1 − exp(−r2Q2

0)], with σ0 = 17.04 mb and
Q0 = 0.255 GeV. The value of the strong coupling con-
stant ᾱs in the BFKL kernel is set to 0.087. This should be
understood as an effective value of ᾱs that partially absorbs
the higher order corrections to the BFKL kernel, known to
reduce strongly the BFKL Pomeron intercept. This is con-
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Fig. 2 Effects of non-linear corrections in proton structure functions F2(x, Q2) (left) and FL(x, Q2) (right) at Q2 = 5 GeV2 in twist 2 approxi-
mation. We show the twist 2 components obtained from the BFKL evolution, the BK correction and their sum

sistent with application of the Brodsky–Lepage–Mackenzie
scale fixing procedure [46] to the NLL BFKL kernel [47].
We stress, however, that the primary goal of the present
study is to understand importance of non-linear corrections to
BFKL evolution and its twist decomposition and fine details
of the model should not affect the key, general features of the
results.

We start the numerical analysis from evaluating the BK
correction to the BFKL evolution. We compute the lead-
ing twist 2 contributions to structure functions F2(x, Q2)

and FL(x, Q2). We choose the DIS reference scale Q2 =
5 GeV2, below which the DGLAP fit deteriorates of the final
HERA data on structure functions. As it will be clear from
the next part of the analysis, the higher twist corrections are
small and do not change the conclusions of this part. In Fig.
2 we display the twist 2 contributions to the structure func-
tions from: the BFKL equation, the BK correction and from
the sum of BFKL and BK parts. Both the BFKL part and
the BK correction are obtained with the same input. The
BK corrections to both structure function are large and neg-
ative. The magnitude of the corrections, both absolute and
relative, grows with decreasing x . Clearly, when the relative
correction is not small, the higher order corrections of the
non-linearity would be necessary to achieve a good approxi-
mation of the complete solution of the Balitsky–Kovchegov
equation. For the present study it is sufficient to conclude
that the non-linear corrections to BFKL results at twist 2 are
large already at x = 0.001.

Next we turn to the analysis of higher twist corrections to
the proton structure functions. The most important measure
of higher twist effects is its relative magnitude to the twist 2
approximation. We choose as a reference the twist 2 estimates

of the structure functions obtained from BFKL equation with
the BK correction. We restrict the analysis to twist τ = 4
effects. As it is clearly seen in Fig. 3, the relative twist 4
effects are small or moderate, so it is not necessary to consider
the higher, τ > 4, corrections. The magnitudes of relative
corrections are different, but the general pattern is similar for
both the structure functions. The twist 4 corrections coming
from BFKL are negative, and the BK twist 4 contributions
are positive, but with smaller absolute value than the leading
BFKL contribution. The overall higher twist corrections are
negative in both structure functions. The relative higher twist
corrections are found to be larger for FL, where they reach
up to about (negative) 10%. For F2 we find corrections up
to about (negative) 1.5%. This is expected, as the coefficient
function for FL generates a scale logarithm for twist 4, and
does not for twist 2, while for FT, that is dominant in F2,
the twist 4 contribution carries one less power of the scale
logarithm than the leading twist 2 term [41,42]. One should
keep in mind, however, that the twist content of the cross
sections depends not only on the evolution equation, but also
on the form of the input, and this dependence is stronger
when x is not very small.

The presented results are obtained taking the first order
corrections in non-linearity. Most likely this leads to over-
estimating the non-linear effects. It is expected to happen
because the expansion in non-linearity produces the alter-
nating series for the dipole scattering amplitude, as demon-
strated in [6]. Effects of the higher orders in non-linearity
should turn in when the relative first order correction stops
being much smaller than one, and this is certainly the case
when the first order correction reaches 50%. We expect that
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Fig. 3 Relative effects of twist 4 corrections in proton structure functions F2(x, Q2) (left) and FL(x, Q2) (right) at Q2 = 5 GeV2. We show the
ratios of the twist 4 corrections obtained from the BFKL evolution, the BK correction and their sum to the twist 2 BFKL + BK result

Table 1 Contribution of the BK corrections to structure functions
F2, FL at the leading twist

Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 10 GeV2

x = 0.01

�F2,BK/F2,BFKL − 26% − 24% − 22%

�FL,BK/FL,BFKL − 21% − 19% − 18%

x = 0.001

�F2,BK/F2,BFKL − 73% − 64% − 59%

�FL,BK/FL,BFKL − 60% − 53% − 48%

at higher orders the correction should be somewhat smaller,
but this not changes the overall pattern.

We performed a similar analysis also for Q2 = 2 GeV2

and for Q2 = 10 GeV2 and found that the general pattern is
very similar to the case Q2 = 5 GeV2. Therefore, we do not
depict them in separate figures. Instead, the numerical values
of non-linear corrections at twist 2 are given in Table 1 for
these three values of Q2 at x = 0.01 and x = 0.001. To
be specific, we provide the numerical values of BK correc-
tions �F2,BK, �FL,BK compared to the BFKL results in the
leading twist for F2 and FL structure functions.

In Table 2 one can find the ratio of twist 4 and twist 2 for F2

(RF2 ) and FL (RFL ) structure functions: RF2 = (F (4)
2,BFKL +

�F (4)
2,BK)/(F (2)

2,BFKL+�F (2)
2,BK), RFL = (F (4)

L,BFKL+�F (4)
L,BK)/

(F (2)
L,BFKL + �F (2)

L,BK), as well as, the ratio of BK correc-
tion twist 4 to twist 2 for both structure functions: R�F2 =
�F (4)

2,BK/(F (2)
2,BFKL+�F (2)

2,BK), R�FL = �F (4)
L,BK/(F (2)

L,BFKL+
�F (2)

L,BK).
The overall pattern seen in both the tables agrees with

expectations. The effects of non-linearity are strongest at

Table 2 Ratio of twist 4 to twist 2 for structure functions F2, FL and
non-linear corrections. Definitions can be found in the main text

Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 10 GeV2

x = 0.01

RF2 −2.2% −1.2% −0.7%

R�F2 0.4% 0.15% 0.08%

RFL −17.4% −8.9% −5.1%

R�FL 2.1% 1.0% 0.5%

x = 0.001

RF2 −0.2% −0.5% −0.3%

R�F2 1.6% 0.6% 0.3%

RFL −8.6% −4.3% −2.4%

R�FL 10.3% 4.0% 2.0%

the leading twist, they grow with decreasing x and slightly
decrease with Q2. The higher twist corrections due to non-
linearity behave in a similar way, but they are much smaller
and their decrease with Q2 is much faster. Let us mention
that the results for Q2 = 2 GeV2 are presented here rather
for completeness than for phenomenological purposes. At
such low values of Q2 and low x the non-linear corrections
are of the same order as the linear part. Therefore, accurate
numerical predictions for sure require higher terms of the
expansion in non-linearity.

4.2 Discussion

The obtained results show a stronger dependence on x of the
twist 4 BK correction than the twist 4 BFKL contribution.
This is an expected results. In an earlier study [43] we found
that in the double logaritmic saddle point approximation the
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rapidity dependence of the twist 4 BFKL term is governed by

exp

(

2
√

ᾱsy log(Q2/Q2
0) − 2αsy

)

(up to power factors of

y), to be compared with twist 2 BFKL in the same approxi-

mation ∼ exp

(

2
√

ᾱsy log(Q2/Q2
0

)

. This means that in the

leading logarithmic BFKL evolution terms corresponding to
a double gluon ladder exchange in the total cross section,

expected to grow as ∼
[

exp

(

2
√

ᾱsy log(Q2/Q2
0)

)]2

, are

absent. In other words the multiple elementary t-channel glu-
ons present in the reggeized gluons of the BFKL formalism
have zero projection on the leading twist 4 exchange in the
double logarithmic approximation. The BK correction is dif-
ferent because it is generated by the triple gluon ladder ver-
tex, that couples the genuine two gluon ladder contribution
to the BFKL evolved γ ∗ scattering. Therefore one expects

the strong ∼
[

exp

(

2
√

ᾱsy log(Q2/Q2
0)

)]2

growth of the

BK twist 4 correction at asymptotically large y and its dom-
inance in total twist 4 at very small x . The presented results
indicate however, that this asymptotic regime is not reached
in HERA kinematics.

The overall picture emerging from the numerical analysis
is quite clear. It turns out that the non-linear evolution, as
given by the BK equation, have strong effects in the lead-
ing twist 2 component of the structure functions, and the
higher twist components coming from the BK equation are
strongly suppressed w.r.t. the leading twist terms. It should
be stressed that the large non-linear corrections found in BK
at twist 2 affect the results obtained in the BFKL frame-
work, and the corresponding effect in the DGLAP frame-
work depends on the factorization scale, as discussed below.
Combining the large BK effects in twist 2 and weak at higher
twists, we conclude that the non-linear corrections are con-
centrated at low scales. Hence we expect that in DGLAP
framework the BK corrections can be mostly absorbed into
the input for the twist 2 gluon evolution, provided the ini-
tial scale of DGLAP evolution μF,0 is big enough. Clearly,
the scale for the BK effects is the saturation scale Qs, so
we conclude that with μF,0 � Qs the DGLAP description
should not be significantly affected by non-linear evolution
effects. This conclusion may change when μF,0 < Qs(x)
for some range of x probed by the data. Then one would
expect a significant modification the twist 2 DGLAP evolu-
tion due to non-linearity. Fits to the proton structure functions
at HERA assuming saturation effects indicate that in HERA
kinematics Q2

s < 1 GeV2. Hence, with DGLAP fits assum-
ing typically μ2

F,0 = 2 GeV2 or a higher value, they should
not be affected by non-linearity. The situation may change,
however, for DIS on a large nucleus with the mass number A,
for which the saturation scale Q2

s is enhanced by A1/3 w.r.t.
the saturation scale in proton. In order to account for the pos-

sibility of Qs > Q0, in the next section we shall consider the
effects of non-linearity on the Q2 evolution in this regime.

5 Non-linear evolution in the collinear approximation

5.1 The double logarithmic regime

In the numerical analysis we found strong effects of the BK
correction in twist 2 components of the structure functions.
In order to better understand the origin of this effect let
us consider the double logarithmic limit of the BK equa-
tion. It is convenient to start from the BK evolution for
the unintegrated gluon distribution, f (x, k2), related to the
collinear gluon distribution by the LL formula, xg(x, Q2) =
∫ Q2

dk2 f (x, k2)/k2. In what follows we shall also use nota-
tion f (x, k2) → f (y, k2) with y = log(xin/x). We keep the
convention for the Mellin transform used in the previous sec-
tions:

f̃ (y, γ ) =
∫

dk2

k2 f (y, k2)(k2/Q2
0)

γ ,

f (y, k2) =
∫ c+i∞

c−i∞
dγ

2π i
f̃ (y, γ )(k2/Q2

0)
−γ . (18)

The unintegrated gluon distribution is related to the dipole
amplitude through the formula [48]

f (x, k2) = NcS⊥
4αsπ2 (k2)2∇2

kφ(y, k2)|y=log(1/x), (19)

where the function φ(y, k2) is the Fourier transform of
N (y, r)/r2, see Eq. (5). The BK equation for the uninte-
grated gluon distribution reads [28,48]:

∂ f (y, k2)

∂y

= ᾱsk
2
∫

da2

a2

[
f (y, a2) − f (y, k2)

|a2 − k2| + f (y, k2)√
4a4 + k4

]

−2πα2
s

S⊥

[

k2
∫

k2

da2

a4 f (y, a2)

∫

k2

db2

b4 f (y, b2)

+ f (y, k2)

∫

k2

da2

a4 log(a2/k2) f (y, a2)

]

, (20)

where S⊥ is the transverse target area, for a uniform target
with radius RA, S⊥ = πR2

A. The first line represents the
linear part (the BFKL equation), and the second line is a
non-linear correction corresponding to the triple pomeron
interaction in the BK equation. Note that the non-linear term
corresponds to integrals with a strict anti-collinear ordering,
a2, b2 > k2, so it vanishes in the collinear limit. In the Mellin
representation this equation reads:
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∂ f̃ (y, γ )

∂y

= ᾱsχ(−γ ) f̃ (y, γ )

− 2πα2
s

S⊥Q2
0

∫
dγ1

2π i

∫
dγ2

2π i
2π i δ(γ1 + γ2 + 1 − γ )

×
[

1

(γ1+1)(γ2+1)
+ 1

(γ1+1)2

]

f̃ (y, γ1) f̃ (y, γ2),

(21)

which, using the symmetry between γ1 and γ2 can be rewrit-
ten as

∂ f̃ (y, γ )

∂y
= ᾱsχ(−γ ) f̃ (y, γ )

− πα2
s

S⊥Q2
0

∫
dγ1

2π i

∫
dγ2

2π i
2π i

×δ(γ1 + γ2 + 1 − γ )

× (γ + 1)2

(γ1 + 1)2(γ2 + 1)2 f̃ (y, γ1) f̃ (y, γ2). (22)

This implies the evolution equation for collinear gluon dis-
tribution:

∂ g̃(y, γ )

∂y
= ᾱsχ(−γ )g̃(y, γ )

+ πα2
s

S⊥Q2
0

∫
dγ1

2π i

∫
dγ2

2π i
2π i δ(γ1 + γ2 + 1 − γ )

× (γ + 1)2

(γ1 + 1)2(γ2 + 1)2

γ1g̃(y, γ1) γ2 g̃(y, γ2)

γ
, (23)

where g̃(y, γ )=∫
dQ2/Q2 xg(x, Q2)(Q2/Q2

0)
γ
∣
∣
x=xin exp(−y)

is the collinear gluon distribution xg(x, Q2) in the Mellin
representation. Note that the relation f (x, k2)=k2∂k2xg(x, k2)

leads to the f̃ (y, γ ) = (−γ )g̃(y, γ ) relation in the (y, γ )

variables. In the double logaritmic limit, which corresponds
to the leading powers of γ around γ = 0, we obtain:

(−γ )
∂ g̃(y, γ )

∂y
= ᾱsg̃(y, γ )

− πα2
s

S⊥Q2
0

∫
dγ1

2π i

∫
dγ2

2π i
2π i δ(γ1 + γ2 + 1 − γ )

× (γ + 1)2

(γ1 + 1)2(γ2 + 1)2 γ1g̃(y, γ1) γ2 g̃(y, γ2), (24)

where we approximated χ(−γ ) � −1/γ + O(1) around
γ → 0. Before further analysis of this equation let us com-
pare it to the GLR equation [8,49]:

∂2xg(x, Q2)

∂y∂ log(Q2/Q2
0)

= ᾱs xg(x, Q
2) − Nc

2CF

πα2
s

S⊥Q2 (xg(x, Q2))2 (25)

which in the Mellin representation (y, γ ) takes the form:

(−γ )
∂ g̃(y, γ )

∂y
= ᾱsg̃(y, γ )

− Nc

2CF

πα2
s

S⊥Q2
0

∫
dγ1

2π i

∫
dγ2

2π i
2π i δ(γ1 + γ2 + 1 − γ )

×g̃(y, γ1)g̃(y, γ2), (26)

with CF = (N 2
c − 1)/2Nc. Let us notice that after the Mellin

transform the non-linear term becomes the convolution as
expected, and the 1/Q2 factor changes into the 1/Q2

0 which
carries the physical dimension. We find differences between
the non-linear equation (24) and the GLR equation. The color
prefactor of GLR Nc/2CF = N 2

c /(N 2
c − 1) differs from our

byO(1/N 2
c ) and this is beyond the leading Nc accuracy of the

BK equation. There is, however, a more important difference
in the integral kernel in the Mellin space. GLR gives

K̃GLR = 2π i δ(γ1 + γ2 + 1 − γ ), (27)

while we obtain:

K̃BK = 2π i δ(γ1 + γ2 + 1 − γ )
γ1γ2(γ + 1)2

(γ1 + 1)2(γ2 + 1)2 . (28)

In order to compare the essential properties of these two
kernels and resulting evolution equations let us consider their
large Q2 behavior. In this region the evolution is dominated
by linear term. Further, we want to determine the leading
powers of the logarithm log(Q2/Q2

0) that emerge from both
the kernels.

At first, let us focus on the limit t = log(Q2/Q2
0) �

ᾱsy � 1. In this region the saddle point solution of the linear
evolution equation is dominated by the anomalous dimension
γs = √

ᾱsy/t 
 1. Note that in the convention for the
Mellin moments applied in this paper, they equal to minus
anomalous dimensions.

As already said, in the large Q2 regime, the solution for
the gluon distribution g̃(y, γi ) is dominated by γi ∼ 0, so
the Dirac δ imposes γ � 1 in the non-linear correction term
(28). Therefore it may be approximated by

K̃BK � 2π i δ(γ1 + γ2 + 1 − γ ) 4γ1γ2. (29)

It is important to notice that the factor 4γ1γ2 in the integral
kernel does not change the dominance of the γi ∼ 0 region
in the integrand. It is because in this region the collinear
gluon distributions are strongly enhanced, they behave as:
g̃(y, γi ) ∼ exp(−ᾱsy/γi ), and the prefactors γi are sub-
leading with respect to the exponentiated γi pole part. The
aforementioned condition γ � 1 yields the leading 1/Q2
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dependence of the non-linear correction term, as in the case
of the GLR equation, while the leading part of the gluon dis-
tribution is given by the linear evolution and remains local-
ized in the region of γ � 0. The integral operator corre-
sponding to this kernel has the same structure as the GLR
correction term induced by (27), but with the replacement:
g̃(y, γi ) → γi g̃(y, γi ). In the double logarithmic regime we
get the following integral representation of the linear rapidity
evolution equation:

− γ g̃(y, γ ) � ᾱs

∫ y

dy′g(y′, γ ). (30)

This implies that the factors γi g̃(y, γi ) that appear in the
non-linear term of Eq. (24) are suppressed by one order of ᾱs

in the resummations of scale logarithms. Another way to see
this is to use the saddle point solution to the gluon evolution
equation, the solution,

xg(x, Q2) = A(ᾱsy/ log3(Q2))1/4

× exp(2
√

ᾱsy log(Q2))

∣
∣
∣
∣
y=log(xin/x)

.

Multiplication by the Mellin moment γ corresponds to the
differentiation w.r.t. log(Q2). It leads to lowering the power
of logarithm. Explicitly:

∂xg(x, Q2)

∂ log(Q2)
=

(√
ᾱsy

log(Q2)
− 3

4 log(Q2)

)

xg(x, Q2).

(31)

In the counting of leading logarithms the relative pow-
ers of αs and log(k2) are important, and both the factors√

ᾱsy/ log(Q2) and −3/(4 log(Q2)) lower the power of log-
arithm by one w.r.t. the power of ᾱs. It follows that one iter-
ation of the non-linear term from the BK equation expressed
in terms of the collinear gluon distribution, comes at the
α4

s log(Q2/Q2
0)/Q

2 order, to be compared with the GLR
non-linear term, ∼ α2

s log(Q2/Q2
0)/Q

2.
The last conclusion holds true for the collinear gluon dis-

tribution resulting from the resummation of term enhanced
by powers of log(Q2/Q2

0), and for t = log(Q2/Q2
0) � ᾱsy.

For the other asymptotic regions: ᾱsy � t � 1, and
ᾱsy ∼ t � 1, the dominant value of the anomalous dimen-
sion γs = √

ᾱsy/t is not bounded to be much smaller than
one, and there is no significant value reduction in the tran-
sition from the gluon collinear gluon distribution function
g̃(y, γ ) to the unintegrated one, f̃ (y, γ ) � γ g̃(y, γ ), as the
loss of one power of the scale logarithm is compensated by a
similar or larger enhancement by the factor of ᾱsy. In these
regions we recover the logaritmic scaling of the GLR equa-
tion.

The conclusion about the strong suppression of the non-
linear BK term in the double logarithmic approximation with
t � ᾱsy hierarchy can be checked by a direct analysis of this

term in momentum space. The transverse momentum inte-
grals in Eq. (20) have lower boundary of k2 – it corresponds
to the anticollinear ordering. Hence the non-linear term, pro-
portional to α2

s cannot produce the logarithm log(k2/Q2
0),

to be contrasted with the linear term, that yields the lead-
ing αs log(k2/Q2

0) contribution. Thus we get the same con-
clusion as from the analysis in the Mellin moments space:
the non-linear correction in the BK equation enters at lower
order of the logaritmic log(Q2) resummation of the perturba-
tive series, than the corresponding term in the GLR equation.
This difference may be traced back to the logaritmic integra-
tion needed to obtain the collinear gluon distribution from the
unintegrated one. As a direct consequence, we expect that for
t � ᾱsy � 1, the non-linear corrections from BK equation
are significantly weaker than in the GLR equation.

It should be interesting to revisit the original argument
about the connection between the GLR equation and the BK
equation in the double logartithmic approximation (DLA)
given in Ref. [5], that has lead to a different conclusion than
ours. That analysis was performed in the transverse position
representation. Two key approximations were applied: (i) the
dipole kernel was approximated by the leading behavior for
large daughter dipoles, r 
 r ′, |r′ − r|,

r2

r′2(r′ − r)2
−→ θ(r ′ − r)

r2

r′4 , (32)

where the parent and daughter size dipole vectors are given
by r and r′, r′ − r respectively, θ is the Heaviside function.
In addition, consistently, N (x, r′ − r) was approximated by
N (x, r′). Furthermore, (ii): the DLA relation between the
dipole cross section and the collinear gluon distribution,

N (x, r)
r2 = αsπ

2

2NcS⊥
xg(x, 1/r2), (33)

was employed. This lead to the following approximate form
of the BK equation:

x
∂

∂x
xg(x, 1/r2)

= ᾱs

2

∫ 1/�2

r2

dr ′2

r ′2

[

2xg(x, 1/r ′2) − π2αs

2NcS⊥
r ′2(xg(x, 1/r ′2))2

]

,

(34)

where � is a nonperturbative energy scale of QCD or alter-
natively the saturation scale. From this equation the GLR
equation was obtained by taking the logartithmic derivative,
r2∂/∂r2. Unfortunately, step (i) is not accurate enough to
provide the correct dependence on r2 of the non-linear term.
In Eq. (34) the r2 dependence of the r.h.s. is coming entirely
from the lower end-point region of the r ′2 integration. This
is justified for the linear term in the DLA due to its 1/r ′2
leading behavior in the integrand, but is not correct for the
non-linear term. It is clear when one considers the non-linear
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term in the BK equation rewritten in terms of xg(x, 1/r2),
using (33). It reads:

− α2
s

4S⊥

∫ r ′<1/�

d2r′ xg(x, 1/r ′2) xg(x, 1/(r′ − r)2).

(35)

When this more accurate expression is differentiated with
respect to log(r2), the result:

− α2
s

4S⊥

∫ r ′<1/�

d2r′ xg(x, 1/r ′2) r2 ∂

∂r2 xg(x, 1/(r′−r)2)

(36)

receives contributions from the whole integration region of
r′ with no enhancement for r ′ → r . Hence, in this integral all
scales of the collinear gluon distributions are probed down to
�2, with no enhancement of a particular region from the inte-
gration kernel. So, the contributions of gluon distributions at
different scales 1/r ′2 are weighted only by the integration
volume effects, and they enhance the large r ′ region, corre-
sponding to small 1/r ′2 ∼ �2 scales.1 This is different than
in the case of analogous differentiation of approximate inte-
gral (34), where the scales in both gluon distributions go to
large 1/r2. Of course, such modification of the scales in the
gluon distributions changes the evolution lenght in the scale
and consequently, also the powers of logarithms of the hard
scale included in the final equation of the GLR type with
respect to the exact BK equation. In particular, when the
scale approaches �2, the effects of evolution are not present
and there are no contributions of the large scale logarithms.
This point, however rather subtle, is essential. The scheme
that we implemented is free from inaccuracies introduced by
approximation (32).

The BK equation describes the evolution of color dipole
scattering amplitude. From this amplitude we obtain the
underlying unintegrated gluon distribution that belongs to a
wider class of Transverse Momentum Distributions (TMDs),
see e.g. [50,51]. More precisely, the distribution f (x, k2)

that we use is called the dipole TMD (in the TMD notation:
xG(2)(x, k2)). In general TMDs are defined by expectation
values of gauge link contours, that correspond to parton con-
figurations, and therefore depend on the scattering process.
An important TMD is called the Weizsäcker–Williams dis-
tribution (xG(1)(x, k2) in the TMD notation), relevant for
many physical processes, e.g. for dijet production in DIS. The
Weizsäcker–Williams and dipole gluon TMDs have the same
behavior for k2 � Q2

s , but differ dramatically for k2 ∼ Q2
s

or k2 < Q2
s . They also obey different evolution equations:

1 In fact, the evolution of gluon distributions introduces some enhance-
ment of the large scales 1/r ′2 and 1/(r′ − r)2 scales (i.e. the small
r ′2 and (r′ − r)2), but these effects are enhanced only moderately by
powers of logarithms and cannot fully compensate the strong power
enhancement of large r ′ values due to the integration volume effects.

while the dipole gluon TMD is governed by the BK equation,
in the evolution of the Weizsäcker–Williams gluon TMD the
quadrupoles play an important role and the evolution is more
complicated [52]. Hence, in general, one may expect that
the non-linear evolution equation of the integrated versions
of different TMDs are also different. The present analysis
is focused only on the dipole gluon TMD and the conclu-
sions may be not applicable to other gluon TMDs and their
integrated counterparts. Let us add that in the McLerran–
Venugopalan model [15,16] the the Weizsäcker–Williams
TMD is directly related to φ(x, k2) (see e.g. [53]), and in
the double logarithmic approximation the evolution equa-
tion of φ(x, k2) takes the GLR form. The equivalence of
xG(1)(x, k2) and φ(x, k2), however, does not hold when the
QCD evolution effects are taken into account.

5.2 Effects of the high gluon density regime

Now we turn to effects of the non-linearity when the gluon
density is large, in particular to the gluon saturation regime.
We shall perform a heuristic analysis of the impact of satu-
ration effects. We choose a simple model of f (x, k2), that
provides clear analytic insight. The key feature of the model
is presence of x-dependent saturation scale, that plays the role
of lower cutoff on k, separating the linear evolution region
from the region with strong suppression effects due to uni-
tarity corrections, which impose fundamental constraints on
the dipole scattering amplitude. In addition, the geometric
scaling property of the dipole cross section is assumed to
hold. The geometric scaling was initially discovered in the
HERA data for the total γ ∗ p cross section [54], and it holds
with a good accuracy for color dipole cross section obtained
from the BK equation at larger rapidities [55–57]. The scal-
ing is equivalent to universality of shape of the dipole cross
section at different rapidities, and is also known as the “trav-
elling wave” phenomenon [58,59]. The physics picture and
generic features of the obtained results do not depend on
details of the shape of f (x, k2). The dipole scattering ampli-
tude obtained from the simple model we assume has the geo-
metric scaling built in, and it is consistent with the unitatity
constraints. The way the amplitude approaches the unitarity
limit is slightly different from the Levin–Tuchin law [55] that
follows from the BK equation, but this difference does not
affect the conclusions of the analysis. A similar reasoning
lead to an proposal to impose unitarity effects on QCD evo-
lution at small x as an absorptive boundary [60,61], which
is not sensitive to a particular way to approach the unitarity
limit. The geometric scaling implies the following form of
the unintegrated gluon density

f (x, k2) = S⊥Q2
s (x) h(k2/Q2

s (x)), (37)

where Qs(x) is the x-dependent saturation scale, and the
function h is the universal profile of the BK solution. BK
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equation leads to an approximate power dependence of the
saturation scale, Q2

s (x) � Q2
0(xin/x)λ, with λ � 0.3. Uni-

tarity of the color dipole cross section scattering of a very
dense target implies the asymptotic behavior

h(ξ) � ξ2 for ξ → 0, (38)

that corresponds to f (y, k2) ∼ k4 for k2 
 Q2
s (y) [57]. For

ξ � 1 the behavior of h(ξ) is driven mostly by the linear
evolution. For the purpose of this analysis it is sufficient to
approximate the large ξ behavior of h(ξ) by ξγc , where γc
is a positive number, much smaller than 1, related to the
anomalous dimension of the gluon distribution function. The
simplest model of h(ξ) that incorporates both the features is

h(ξ) = A[ξ2θ(1 − ξ) + ξγcθ(ξ − 1)], (39)

where θ is the Heaviside function and A is a numerical con-
stant.

We apply this model to estimate the effect of the non-linear
term in the BK equation on the collinear gluon distribution
for various hierarchy of scales. The regime of Q2 � Q2

s (y)
was studied above in the double logarithmic limit. Using the
model of the BK solution for f (y, k2) we get

xg(x, Q2) �
∫ Q2

dk2

k2 f (x, k2)

= A(xin/x)
λ

[∫ Q2
s (x) k2dk2

Q4
s (x)

+
∫ Q2

Q2
s (x)

dk2

k2 (k2/Q2
s (x))

γc

]

= A(xin/x)
λ

[

1/2 + (Q2/Q2
s (x))

γc − 1

γc

]

. (40)

Applying the expansion in γc around zero up to the first order,
and keeping only the leading logarithmic term we get

xg(x, Q2) � (xin/x)
λ log(Q2/Q2

s (x)). (41)

In the absence of non-linear correction the saturation scale in
log(Q2/Q2

s (x)) should be replaced by a much smaller scale
μ0 
Qs(x), giving xg(x, Q2)|linear � (xin/x)λ log(Q2/μ2

0).
Hence the relative correction due to non-linearity reads

xg(x, Q2) − xg(x, Q2)|linear

xg(x, Q2)|linear

� log(Q2/Q2
s (x)) − log(Q2/μ2

0)

log(Q2/μ2
0)

= − log(Q2
s (x)/μ

2
0)

log(Q2/μ2
0)

.

(42)

This correction enters without a suppressing power factor
of 1/Q2, hence at the leading twist, and due to logarithmic
dependencies on the scales it is not small. This is consistent
with our findings of strong non-linear correction in the pro-
ton structure functions at twist 2. The presented estimate is
rather crude, but it clearly shows how the non-linear correc-
tions contribute to twist observables. It happens because the
gluon recombination / unitarity leads to a strong suppression

of unintegrated gluon distribution f (x, k2) in the region k2 <

Q2
s (x), and this imposes an effective lower cut-off on the log-

aritmic integration in xg(x, Q2) = ∫
Q2

s (x) dk
2/k2 f (x, k2).

In these consideration we assumed that the saturation scale
Qs � μ0, where μ0 should be interpreted as an intrinsic
hadronic scale of the proton, for instance it could be related to
the inverse proton size. This is not in the perturbative domain,
but this does not endanger the conclusions as μ0 enters only
as a lower cut-off of logarithmic integrations. It should be
clearly distinguished from an initial scale of the DGLAP
evolution μF,0, which is typically set to be greater than 1 GeV,
and greater than the saturation scale in the proton. For the
case μF,0 � Qs(x) the leading twist non-linear correction
enter mostly as the input of the DGLAP evolution, with weak
correction terms, as described in Sec. 5.1.

5.3 The intermediate region

Above we discussed the non-linear effects for Q2 � Q2
s (x)

and in the high gluon density regime. The intermediate region
of Q2 ∼ Q2

s (x) is hardest to analyze analytically, as in
this region Q2

s (x)/Q
2 � 1 and the linear and non-linear

effects have similar size. Also, the relevant scale logarithms
are of order 1, and the double logarithmic approximation
is expected to have a very limited accuracy there. Hence,
we believe that for a reliable numerical predictions in this
region should be obtained within a complete non-linear evo-
lution framework as given e.g. by the complete BK equation
or the JIMWLK equation. Measurements of proton structure
functions from HERA and their phenomenological analysis
suggest, that the bulk of HERA data, say for Q2 > 2 GeV2

are driven by the linear evolution regime, as the saturation
scale at HERA is below 1 GeV. The situation is expected
to be different for deep inelastic scattering on heavy nuclei,
that is going to be studied at the Electron–Ion Collider and in
the possible future Large Electron–Hadron Collider (LHeC)
[62,63]. For a nucleus with mass number A one expects the
saturation scale Q2

s to be enhanced by a factor of A1/3 with
respect to the proton case. Moreover at the LHeC one expects
to probe the range of x that may extend down to 2 · 10−6 at
Q2 = 1 GeV2, see e.g. [64]. Hence one may reach Q2

s of
few GeV2 and there are good prospects to probe the non-
linear effects well in the perturbative regime – at the lowest
x the LHeC data on the proton and nuclear structure func-
tions should have Q2 < Q2

s . In this region one expects that
the dominance of twist 2 does not hold and the DGLAP
framework may be not sufficient to describe the data. Perhaps
an even more remarkable scenario may be realized – given
the fact that the twist expansion in our approach leads to an
asymptotic series with the expansion parameter ∼ Q2

s /Q
2,

one may expect that the twist expansion ceases to make sense
for Q2 < Q2

s . Therefore it should be extremely interesting
to probe this kinematic region experimentally and investi-
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gate the theoretical side within the framework of non-linear
evolution equations. The problem of potential impact of non-
linear effects on the proton and nucleus structure functions at
LHeC was addressed in several studies [64–67]. In particular,
in a recent analysis [67] careful matching of the DGLAP and
BK description was perfomed for (x, Q2) range where both
approaches are valid, and the differences between the predic-
tions at small x and moderate Q2 were studied. On a general
level, the numerical results found in Ref. [67] have a similar
pattern to the one following from our study, which, however,
is more focused on identifying the structural features, and
not yet on precision fits to the data.
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