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Abstract We present the first leading hadron suppression
predictions in Pb+Pb and p+Pb collisions from a convolved
radiative and collisional energy loss model in which partons
propagate through a realistic background and in which the
radiative energy loss receives a short pathlength correction.
We find that the short pathlength correction is small for D
and B meson RAA(pT ) in both Pb+Pb and p+Pb collisions.
However the short pathlength correction leads to a surpris-
ingly large reduction in suppression for π mesons in p + Pb
and even Pb+Pb collisions. We systematically check the con-
sistency of the assumptions used in the radiative energy loss
derivation-such as collinearity, softness, and large formation
time-with the final numerical model. While collinearity and
softness are self-consistently satisfied in the final numerics,
we find that the large formation time approximation breaks
down at modest to high momenta pT � 30 GeV. We find that
both the size of the small pathlength correction to RAA(pT )

and the pT at which the large formation time assumption
breaks down are acutely sensitive to the chosen distribution
of scattering centers in the plasma.

1 Introduction

The modification of the spectrum of high transverse momen-
tum (high-pT ) particles is one of the key observables used to
understand the non-trivial, emergent, many-body dynamics
of quantum chromodynamics (QCD) in high-energy colli-
sions [1–4]. One of the most important findings of the Rel-
ativistic Heavy Ion Collider (RHIC) was a roughly factor
of five suppression of leading light hadrons with pT � 5
GeV/c in central Au+Au collisions [5,6]. This suppression,
equal for pions and eta mesons [7], along with null controls
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of qualitatively no suppression of the weakly-coupled pho-
tons in Au + Au collisions [8] as well as of leading hadrons
in d + Au collisions [6,9], clearly demonstrated that the
suppression of leading hadrons in central collisions is due
to final state energy loss of the high-pT partons interacting
with the quark-gluon plasma (QGP) generated in the heavy
ion collisions (HIC). Models of leading hadron suppression
based on final state energy loss derivations using perturba-
tive QCD (pQCD) methods qualitatively describe a wealth
of these high-pT RHIC data [10–12].

One of the other major findings of RHIC was the near per-
fect fluidity of the strongly-coupled low momentum modes of
the QGP formed in semi-central nucleus-nucleus collisions
as inferred by the remarkable agreement of sophisticated,
relativistic, viscous hydrodynamics models with the spectra
of measured hadrons with pT � 2 GeV [13–15].

The data from the Large Hadron Collider (LHC) has
been no less impressive. Of extraordinary importance have
been the signs that the non-trivial, emergent, many-body
QCD behavior associated with QGP formation in central
and semi-central heavy ion collisions at RHIC and LHC are
also observed in small collision systems such as p + p and
p + A for large final measured multiplicity. For example,
strangeness enhancement [16,17] and quarkonium suppres-
sion [18] appear to depend only on multiplicity but not colli-
sion system. And the same sophisticated, relativistic, viscous
hydrodynamics models [19] also describe the spectra of mea-
sured hadrons in high-multiplicity p+p and p+A collisions
[20,21].

One may thus conclude that small droplets of QGP form
even in these smallest of collision systems at the LHC. If QGP
is formed in high-multiplicity collisions of small systems,
then high-pT partons should suffer some final state energy
loss, as has been observed in large collision systems at RHIC
and LHC. (Models already demonstrate the importance of
final state energy loss in forward hadron production in cold
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nuclear matter [22,23].) Experimentally, there are tantaliz-
ing signs of the non-trivial modification of high-pT particles
in small collision systems [24–26]. However, there are likely
non-trivial correlations between the multiplicity in small col-
lision systems and the presence of high-pT , high-multiplicity
jets. For example, these correlations likely impact the initial
spectrum of high-pT partons [27] that enters the numerator
of the nuclear modification factor, while the minimum bias
spectrum in the denominator is unchanged; thus one should
be cautious in interpreting a standard RAB measurement.

From the experimental side, it is likely very interesting to
consider the ratio of the spectrum of a strongly-interacting
particle with a weakly-interacting particle, each from the
same multiplicity class.

From the theoretical side, we may potentially make
progress by considering the small collision system predic-
tions of the energy loss models used to describe so well qual-
itatively the large collision system high-pT particle suppres-
sion. One obvious challenge for directly comparing these
energy loss models to small collision system data is the
assumption made in the energy loss derivations that the high-
pT particles travel a large pathlength in the QGP medium. For
example, energy loss models built on BDMPS-Z-type energy
loss [28–33] utilize the central limit theorem [34], and so
assume a very large number of collisions occur between the
high-pT probe and the QGP medium. Even in large collision
systems of characteristic size ∼ 5 fm, since the mean free
path for these high-pT particles given by weakly-coupled
pQCD is ∼ 1–2 fm [34], the application of the central limit
theorem is dubious.

Even for the thin plasma approach of DGLV that naively
seems the best suited for modelling the radiative energy loss
processes in systems of phenomenologically relevant size,
there is an explicit assumption that the partonic pathlength
in the QGP medium, L , is large compared to the natural
scale set by the Debye screening mass μ, L � 1/μ. In the
original derivation of the induced gluon radiation spectrum,
contributions from the Gyulassy-Wang potential [35] were
dropped as they are O(e−Lμ). For μ ∼ gT ∼ 0.5 GeV
[36], the characteristic size L ∼ 1 fm in high-multiplicity
p + p and p + A collisions is not particularly large compared
to 1/μ ∼ 0.4 fm. Thus to create an energy loss model to
compare to data in these small systems, one needed the small
pathlength corrections to the DGLV opacity expansion.

This small pathlength correction to the first order in opac-
ity DGLV radiative energy loss were derived for the first time
in [37]. For later noting, the derivation in [37] benefited sig-
nificantly from a simplification due to the large formation
time assumption, τform � 1/μ, an assumption made also in
the original DGLV derivations.

The small pathlength correction to the usual DGLV energy
loss contained four surprises: due to the LPM effect (inter-
ference between the induced radiation and the usual vacuum

emissions due to the hard initial scattering), the small path-
length correction reduces the energy lost; the reduction in
energy loss is seen in all pathlengths (although the relative
importance of the correction decreases with pathlength, as
expected); the correction grows linearlywith partonic energy
(as opposed to the logarithmic growth of the usual DGLV
energy loss); and the correction breaks color triviality, with
the correction for gluons ∼ 10 times the size of the correction
for quarks.

Having derived the correction to the radiative energy loss
due to small pathlengths, it is of considerable interest to deter-
mine quantitatively the importance of the correction in phe-
nomenological models of high-pT particle suppression. It
is the goal of this manuscript to provide just such predic-
tions. We are particularly interested in seeing the quantitative
importance of the reduction in energy loss as a function of
energy and of collision system: the reduction in energy loss
from the short pathlength correction might provide a natural
explanation for the surprisingly fast rise in the nuclear mod-
ification factor with pT for leading hadrons at LHC [38] and
for the enhancement of the nuclear modification factor above
unity seen in p + A collisions [39,40].

What we will see is that for light flavor final states at larger
energies, pT � 30 GeV/c, the small system “correction”
becomes of order of the energy loss itself, which leads us to
consider systematically the extent to which energy loss model
energy losses are consistent with the various approximations
used in the opacity expansion derivation. We will consider
in detail the approximations used in the opacity expansion
derivation of radiative energy loss [37,41,42]. We will find
that for the radiated gluons that dominate the energy weighted
single inclusive emission distribution, the large formation
time assumption is violated for E � 30 GeV/c in large colli-
sion systems and for E � 10 GeV/c in small systems, where
E is the energy of the radiating parton; which implies the
need for yet another derivation of radiative energy loss in the
thin plasma limit but with the large formation time assump-
tion relaxed. We also see that the usual WHDG treatment
of the average elastic energy loss, with fluctuations given
by the fluctuation-dissipation theorem, is not appropriate for
small collision systems where the number of scatterings is
not large; thus in future work one must implement an elastic
energy loss appropriate for small and large collision systems.

2 Energy loss framework

We wish to make contact with known energy loss model
results. We will in particular attempt to, in as reasonable
way as possible, make an apples-to-apples comparison of the
Wicks–Horowitz–Djordjevic–Gyulassy (WHDG) convolved
radiative and collisional energy loss model [43], which has
seen such success in describing a breadth of leading hadron
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suppression data, with an energy loss model with the same
elastic energy loss but with a radiative energy loss that
includes the short pathlength correction as derived in [37].
Let us briefly review the radiative and collisional energy loss
setups.

2.1 Radiative energy loss

The Djordjevic–Gyulassy–Levai–Vitev (DGLV) opacity
expansion [42,44] gives the inclusive differential distribu-
tion of radiated gluons from a high-pT parent parton mov-
ing through a smooth brick of QGP. The expansion is in the
expected number of scatterings or the opacity L/λg , where
L is the length of the QGP brick and λg is the mean free path
of a gluon in the QGP.

The 4-momenta of the radiated gluon, the final hard parton,
and the exchanged Debye medium quasiparticle are given
respectively in lightfront coordinates (using the same con-
ventions as in [37]) by

k =
[
x P+,

m2
g + k2

x P+ ,k

]
(1a)

p =
[
(1 − x)P+,

M2 + k2

(1 − x)P+ ,q − k
]

(1b)

q = [
q+, q−,q

]
, (1c)

where M is the mass of the hard parton,mg is the gluon mass,
P+ is the initial hard parton momentum in the + direction,
and x is the radiated momentum fraction.

The DGLV approach makes a number of assumptions
related to the physical setup of the problem:

– The large pathlength assumption, that L � μ−1.
– The well separated scattering centers assumption, that

λg � μ−1.
– The eikonal assumption, that P+ = E+ � 2E is the

largest scale in the problem.
– The soft radiation assumption, that x � 1.
– The collinear radiation assumption, that k+ � k−.
– The large formation time assumption, that k2/xE+ � μ

and (k − q1)
2/xE+ �

√
μ2 + q2

1.

The DGLV single inclusive gluon radiation spectrum is then
[42,45]

dNg
DGLV

dx

= CRαs L

πλg

1

x

∫
d2q1

π

μ2(
μ2 + q2

1

)2
∫

d2k
π

∫
d�z ρ̄(�z)

× −2
{
1 − cos

[
(ω1 + ω̃m)�z

]}
(k − q1)

2 + m2
g + x2M2

×
[

(k − q1) · k
k2 + m2

g + x2M2 − (k − q1)
2

(k − q1)
2 + m2

g + x2M2

]
.

(2)

In Eq. 2 we have made use of the shorthand ω ≡
xE+/2, ω0 ≡ k2/2ω, ωi ≡ (k−qi )2/2ω,μi ≡

√
μ2 + q2

i ,

and ω̃m ≡ (m2
g+M2x2)/2ω following [37,42]. Additionally

qi is the transverse momentum of the i th gluon exchanged
with the medium; k is the transverse momentum of the radi-
ated gluon; �z is the distance between production of the hard
parton, and scattering; CR (CA) is the quadratic Casimir of
the hard parton (adjoint) representation (CF = 4/3 [quarks],
and CA = 3 [gluons]); and αs is the strong coupling.

The quantity ρ̄(�z) is thedistributionof scattering centers
in �z and is defined in terms of the density of scattering
centers ρ(�z) in a static brick,

ρ(�z) = N

A⊥
ρ̄(�z), (3)

where �z is in the direction of propagation, N is the number
of scattering centers, A⊥ is the perpendicular area of the
brick, and

∫
dz ρ̄(�z) = 1. The analysis of realistic collision

geometries adds complexity to the scenario, as detailed in
Sect. 2.7.

2.2 Short pathlength correction to DGLV radiative energy
loss

The derivation of the modification to the radiative energy
loss in the DGLV [41,42] opacity expansion approach with
the relaxation of the large pathlength assumption L � μ−1

was considered in [37,46]. In the derivation of the short
pathlength correction, all assumptions and approximations
made in the original GLV and DGLV derivations were kept,
except that the short pathlength approximation L � μ−1

was relaxed. The single inclusive radiative gluon distribu-
tion, including both the original DGLV contribution as well
as the short pathlength correction, is

dNg
DGLV+corr

dx

= CRαs L

πλg

1

x

∫
d2q1

π

μ2(
μ2 + q2

1

)2
∫

d2k
π

∫
d�z ρ̄(�z)

×
[
−2

{
1 − cos

[
(ω1 + ω̃m)�z

]}
(k − q1)

2 + m2
g + x2M2

×
[

(k − q1) · k
k2 + m2

g + x2M2 − (k − q1)
2

(k − q1)
2 + m2

g + x2M2

]
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+ 1

2
e−μ1�z

⎛
⎝
(

k
k2 + m2

g + x2M2

)2 (
1 − 2CR

CA

)

× {
1 − cos

[
(ω0 + ω̃m)�z

]}
+ k · (k − q1)(

k2 + m2
g + x2M2

) (
(k − q1)

2 + m2
g + x2M2

)
× {

cos
[
(ω0 + ω̃m)�z

]− cos [(ω0 − ω1)�z]
})]

,

(4)

where the first two lines of the above equation are the origi-
nal DGLV result [42,45], Eq. 2, while the last two lines are
the short pathlength correction. We emphasize that contribu-
tions from all diagrams which are not suppressed under the
relevant assumptions are included. Of particular importance
is the large formation time assumption, which allows one to
systematically neglect a significant number of diagrams in
both the original DGLV derivation [41,42] and in the short
pathlength correction [37,46].

Since dN/dx includes an integration over all �z, the cor-
rection is present for the energy loss of a parton going through
plasma of any length; however, the relative contribution of
the correction term does go to zero as the pathlength goes to
infinity.

The finite pathlength correction originates from not
neglecting the qz = iμ1 pole in the Gyulassy-Wang poten-
tial, as was originally done [42,45], which leads to the overall
exp(−μ1�z) scaling of the correction term in Eq. 4 [37,46].

There is a significant literature of energy loss deriva-
tions and corrections to earlier energy loss derivations. Even
though the focus of this work is the numerical implementa-
tion of Eq. 4 and the examination of its underlying assump-
tions, it is worth taking some time to contextualize the short
pathlength correction in Eq. 4 within the literature. In partic-
ular, there is currently no other derivation of short pathlength
corrections to any energy loss formalism in the literature.

The original BDMPS [28–31] energy loss derivation
explicitly neglects the qz = iμ pole in the Gyulassy–Wang
potential. In principle, then, one could derive a short path-
length correction in the original BDMPS-Z formalism anal-
ogous to the one derived in [37,46]. Subsequent work within
the BDMPS-Z formalism [28–33] considered the saddle
point approximation of the path integral, that in the limit
of a large number of scatterings one could make a simple
harmonic oscillator approximation (via the central limit the-
orem). This SHO approximation explicitly requires a large
opacity L/λ � 1. For a perturbative calculation, one requires
the scattering centers are well-separated, λ � 1/μ, and so a
large opacity implies a large pathlength; one therefore cannot
determine a short pathlength correction to the SHO approx-
imated BDMPS-Z approach. If one assumes that the system
is strongly coupled (see, e.g., [47,48]) and λ � μ−1, then
all paths are long and there is no short pathlength correction.

In the improved opacity expansion (IOE) [49,50], the
starting point is already the z-integrated path integral; i.e.
the IOE starts with the equation of motion for the propagator
in transverse position space, and is completely insensitive to
questions about the interplay between any longitudinal scales
such as the pathlength, mean free path, and distance between
scattering centers. Within the IOE formalism the “Gyulassy–
Wang” potential is taken to be V

(
q2
) ∼ 1/

(
q2 + μ2

)2
where, importantly,q is the transverse momentum exchanged
with the scattering center; i.e. any potential pole from the z
component of the fully three dimensional Gyulassy–Wang
potential is already neglected. Thus the IOE formalism is
unable to compute any short pathlength correction to the
energy loss.

Similar to the IOE approach, the finite size-improvement
[51] to the AMY formalism [52–54] begins with Zakharov’s
path integral formalism and considers only the transverse
momentum transfer q from the in-medium scattering cross
section. Thus, like in the IOE approach, unless the scattering
center cross section is considered in full three dimensions,
the finite size-improvement to AMY cannot capture the short
pathlength corrections to energy loss.

There is a further extensive literature of work that uti-
lizes only the 2D (rather than 3D) potential, and thus cannot
capture the short pathlength corrections found in [37,46].
Some of these works include the antenna problem [55–60],
q̂ resummation [61], jet cascades [62,63], running coupling
effects in q̂ [64], the radiative energy loss of neighboring sub-
jects [65], and quark branching beyond the soft gluon limit
[66].

In [67] the authors couple the opacity expansion to the
collective flow of the quark gluon plasma. This work explic-
itly makes the assumption μ�z � 1; thus short pathlength
corrections to this derivation are possible, but not included
in the original derivation.

In [68–70] the Gyulassy–Wang static scattering center
potential in canonical opacity expansion calculations was
replaced by HTL propagators communicating between the
high-energy parent parton and the in-medium thermal par-
ton. In the first derivation [68,69], the authors work purely in
momentum space to compute the interaction rate; since the
authors do not Fourier transform into position space, their
result is completely insensitive to the particulars of the path.
This work was improved in [70] where a Fourier transform
into position space was done and, as is done in the opacity
expansion approach, the phases were kept. However the limit
L → ∞ is explicitly taken. In principle one could derive a
short pathlength correction to this derivation by relaxing the
assumption of L → ∞.

The higher twist (HT) approach [71,72] in general only
keeps the most length-enhanced contributions [73]. In prin-
ciple, one may include less enhanced contributions from the
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assumed factorized nuclear expectation values of the various
four point functions.

Gradient jet tomography [74,75] couples a high momen-
tum parton to an asymmetric medium. The practical imple-
mentation of this procedure utilizes the dipole approxima-
tion in the path integral approach where the entire nuclear
medium is treated as a sheet [76], and so any sensitivity to
longitudinal physics is lost.

2.3 Numerical implementation of the radiative energy loss

For all numerical calculations we neglect the running of the
strong coupling constant, and use αs = 0.3, consistent with
[37,42,43]. Additionally we use charm and bottom quark
masses of mc = 1.2 GeV/c2, and mb = 4.75 GeV/c2,
respectively. The effective light quark and gluon masses
are set to the asymptotic one-loop medium induced thermal
masses, of mlight = μ/2 and mg = μ/

√
2 respectively [77].

The upper bounds on the |k| and |q| integrals are given by
kmax = 2x(1−x)E and qmax = √

3Eμ, following [43]. This
choice of kmax guarantees that the momentum of the radiated
gluon; and the initial and final momenta of the parent parton
are all collinear.

In order to maintain consistency with the WHDG model,
we assume the distribution of scattering centers is exponen-
tial: ρexp.(z) ≡ 2

L exp[−2z/L]. The exponential distribution
serves to make the integral in �z analytically simple. The
physical motivation for this is that an exponentially decay-
ing distribution of scattering centers captures the decreasing
density of the QGP due to Bjorken expansion [78]. It is likely
that using an exponential rather than, say, a unit step or power
law decay distribution is an overestimate of the effect of the
expansion, since Bjorken expansion obeys a power law decay
along the incident partons path, not exponential. It turns out
that, for the uncorrected DGLV result, the distribution of
scattering centers ρ̄(�z) affects the characteristic shape of
dNg/dx ; however we will see that the radiative energy loss is
largely insensitive to ρ̄(�z) [34]. Once the short pathlength
correction is included, however, the energy loss becomes far
more sensitive to the distribution of scattering centers; par-
ticularly at small �z [37].

The integral in Eq. 4 can be dramatically simplified if one
assumes that the kinematic bound on q, qmax = √

3Eμ,
can be taken to infinity. Assuming that qmax → ∞ allows
one to perform the angular and k integrals analytically, after
which one may return the kinematic limit qmax = √

3Eμ.
This procedure was done for all previous WHDG predic-
tions [38,43,79] in order to make the numerics simpler; how-
ever we performed the full numerical calculation without
using this approximation. A full description of this kinematic
approximation is provided in [42].

To gain some familiarity with the effect of the short
pathlength correction, we calculate the fractional radiative

Fig. 1 The induced radiative fractional energy loss �E/E is plotted
as a function of energy E for charm quarks (c), and gluons (g); and at
E = 10 GeV (top panel), and E = 100 GeV (bottom panel). Note that
�E/E < 0 is energy gain relative to the vacuum. Calculations were
done with constant μ = 0.5 GeV and λg = 1 fm

energy loss numerically according to Eq. 4. The mean radia-
tive energy loss is calculated from dNg/dx using

〈
�E

E

〉
=
∫

dx x
dNg

dx
. (5)

The results of evaluating Eq. 5 as a function of the medium
length L are shown in Fig. 1. The four surprises mentioned
in the Introduction are in evidence here: the short pathlength
correction reduces the energy loss; the short pathlength cor-
rection does not disappear for L � μ−1, since all possible
distances of scattering �z are integrated over in Eq. 5; the
short pathlength correction grows linearly with energy; and
the effect of the reduction in vacuum radiation is particularly
strong for gluons because of the breaking of color triviality.

One may also consider the relative size of the short path-
length correction to the radiative energy loss in comparison
to the uncorrected radiative energy loss, by calculating the
ratio �Ecorrected/�EDGLV, shown in Fig. 2.

To understand the energy E , length L , and incident
Casimir CR dependence of the relative size of the short path-
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length correction to the radiative energy loss, we examine the
asymptotic dependence of both the DGLV and short path-
length corrected DGLV fractional radiative energy loss. For
asymptotic energies the short pathlength corrected fractional
energy loss is given by [37]

�Ecorrected

E
= CRαs

2π

L

λg

(
−2CR

CA

)
12

2 + μL

×
∫ 1

0
dx ln

(
Lkmax

2 + μL

)
(6a)

= CRαs

2π

L

λg

(
−2CR

CA

) ln
(

2EL
2+μL

)
2 + μL

, (6b)

which was calculated in this asymptotic analysis for simplic-
ity with kmax = 2xE and, also for simplicity, an exponential
distribution of scattering centers. The equivalent asymptotic
result without the short pathlength correction is given by [45]

�EDGLV

E
= CRαs

4

L2μ2

λg

1

E
log

E

μ
. (7)

The relative size of the correction is then given by

−�Ecorrection

�EDGLV
= 4

π

CR

CA

E

μ2L(2 + μL)
, (8)

keeping only leading terms in E . From Eq. 8, the relative
size of the short pathlength correction: increases linearly in
energy, is CA/CF = 9/4 times larger for gluons in compar-
ison to quarks, and is ∼ 15 times larger for a system with
μ = 0.5 GeV and L = 1 fm as opposed to a system with
L = 5 fm. One may see in Fig. 2 that the detailed numerics
display these three behaviors.

2.4 Multi-gluon emission

The DGLV energy loss kernel Eq. 4 gives the inclusive spec-
trum of emitted gluons. Thus the expected number of gluons
can be greater than 1. In fact, one sees that for hard partons
emerging from the center of a central heavy ion collision,
the expected number of emitted gluons is ∼ 3 [80]. To take
into account multi-gluon emission we assume that the mul-
tiple gluon emissions are independent, following [80]. This
assumption of independent emissions allows us to convolve
the single inclusive gluon emission kernel given by dNg/dx
into a Poisson distribution. Explicitly we can write

Prad(ε, E) =
∞∑
n=0

Pn(ε, E), (9)

Fig. 2 The ratio of the magnitude of the correction to the DGLV
radiative energy loss −�Ecorrected and the uncorrected DGLV radia-
tive energy loss �EDGLV is plotted as a function of incident energy
E . This ratio is plotted for charm quarks (c), and gluons (g); and at
L = 1 fm (dashed) and L = 5 fm (solid). Calculations were done with
constant μ = 0.5 GeV and λg = 1 fm

where the Pn are found via the convolution

Pn+1(ε) = 1

n + 1

∫
dxn

dNg

dx
Pn(ε − xn) (10)

and we have P0(ε) ≡ e−〈Ng〉δ(ε). Here, and for the rest of
the paper, we define 1−ε as the fraction of initial momentum
kept by the parton, that the final energy of the parton in terms
of the initial energy of the parton is E f ≡ (1 − ε)Ei . The
Poissonian form of Eq. 9 guarantees the distribution is nor-
malized to one, and the expected number of emitted gluons is∑

n

∫
dε n Pn(ε, E) = 〈Ng〉. The bounds on the xn integral

are max(0, ε − 1) ≤ xn ≤ min(ε, 1), which are determined
by ensuring that no functions are evaluated outside of their
domains. The support of Prad(ε) ends when the bounds of
the xn integral are equal, i.e. ε ∈ (0, 2) is the region of sup-
port. The support of Prad(ε) past ε = 1 is unphysical, and we
interpret this as the probability for the parton to lose all of its
energy before exiting the plasma. Under this interpretation
we put the excess weight

∫ 2
1 dε Prad(ε) into a delta function

at ε = 1.
We note that the random variable Ng should rigorously

be thought of as Ng = (Ng
vac + Ng

med) − Ng
vac where Ng

med
is the number of radiated gluons occurring due to medium
interactions, and Ng

vac is the number of DGLAP vacuum radi-
ation gluons. With this understanding, the independent gluon
emission assumption means that (Ng

vac + Ng
med) and Ng

vac

should each be modeled by a Poisson distribution. Then Ng

is actually given by a Skellam distribution [81], the differ-
ence between two Poisson distributions. In the current model,
energy gain relative to the vacuum at some x∗ corresponds to
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dNg(x∗)/dx < 0; whereas it should rigorously correspond
to dNg(−x∗)/dx > 0. Following previous work [38,43,80],
we will simply model P(ε) as a Poisson distribution; the
effect of this simplification is not obvious and requires future
work.

2.5 Elastic energy loss

Elastic energy loss is taken into account using the result
derived by Braaten and Thoma (BT) [82], wherein analytic
calculations are done in two asymptotic energy regimes. The
elastic energy loss of a quark is calculated in the regions
E � M2/T and E � M2/T , where M is the mass of the
incident quark, and T is the temperature of the medium. For
E � M2/T the differential energy loss per unit distance is

dE

dz
= 8πα2

s T
2

3

[
1

v
− 1 − v2

2v2 log
1 + v

1 − v

]

× log

(
2

n f
6+n f B(v)

ET

mgM

)(
1 + n f

6

)
, (11)

where B(v) is a smooth function satisfying constraints listed
in [82], v is the velocity of the hard parton, and n f is the
number of active quark flavors in the plasma (taken to be
n f = 2 throughout). For E � M2/T the differential energy
loss per unit distance is

dE

dz
= 8πα2

s T
2

3

(
1 + n f

6

)

× log

(
2

n f
2(6+n f ) 0.92

√
ET

mg

)
. (12)

The energy loss at arbitrary incident energy is taken to be the
connection of these two asymptotic results such that dE/dz is
continuous (determined numerically). It is assumed that: for
incident hard gluons the energy loss scales simply by a factor
ofCA/CF = 9/4; and that there are enough elastic collisions
such that the central limit theorem is applicable, following
the WHDG model [43]. The latter assumption implies that
the distribution of elastic energy loss is Gaussian with mean
provided by the BT energy loss formula, and width by the
fluctuation dissipation theorem [83]

σ = 2

E

∫
dz

dE

dz
T (z), (13)

where z integrates along the path of the parton, and T (z) is
the temperature along the path.

Thus

Pel(p f |pi , L , T )

≡ 1√
2πσ

exp

[
−
(
p f − (pi + �p)√

2σ

)2
]

, (14)

where �p is found by integrating Eqs. 11 and 12 over z, and
thus

Pel(ε|pi , L , T )

≡ pi√
2πσ

exp

[
−
(

(1 − ε)pi − (pi + �p)√
2σ

)2
]

, (15)

where the additional pi is the Jacobian resulting from chang-
ing variables from p f to ε.

2.6 Total energy loss

As done in [43], we convolve the radiative and elastic energy
loss probabilities to yield a total probability of energy loss,

Ptot(ε) ≡
∫

dx Pel(x)Prad(ε − x). (16)

Note that Prad(ε) contains Dirac delta functions at both ε = 0
and ε = 1 while Pel(ε) is only a Gaussian. We will see
below that the lack of a probability of nothing happening in
the elastic energy loss probability is a major shortcoming in
modelling the suppression in small collision systems.

2.7 Geometry

For large systems it is standard to use the Glauber model for
the collision geometry, with Wood–Saxon distributions for
the nucleon density inside the heavy ions [84]. For p + A
collisions the Glauber model cannot be applied in its most
simple form, since subnucleonic features of the proton are
expected to be important [85]. Additionally, the subsequent
evolution of the medium can be treated in a more sophisti-
cated way than simply assuming a Bjorken expansion of the
initial Glauber model geometry as was done, e.g., in [86]. In
this work we will use collision profiles generated with [85],
and sourced from [87]. In these calculations, initial condi-
tions are given by the IP-Glasma model [88,89], which are
then evolved with the MUSIC [15,90,91] viscous relativistic
(2+1)D hydrodynamics code, followed by UrQMD micro-
scopic hadronic transport [92,93]. In this first comparison,
we wish to make as few changes as possible from the orig-
inal WHDG model and so we will use the initial tempera-
ture profile T (τ = τ0 = 0.4 fm) for our collision geome-
try, where τ0 is the turn-on time for hydrodynamics. This
means that we are effectively using the IP-Glasma model
[88,89] as the initial condition coupled with Bjorken expan-
sion time dependence for all presented phenomenological
results (unless otherwise stated.) This method for generat-
ing the initial conditions also allows for fluctuating initial
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conditions, which will be useful for future calculations of
azimuthal momentum anisotropy of hard partons vn . In addi-
tion, future work investigating the use of the complete and
realistic time-dependent collision profiles from [85,87] will
be of interest.

The QGP is treated as an ultrarelativistic mixture of a
Fermi and Bose gas, following [43,94]. This results in stan-
dard expressions, for various thermodynamics quantities [94]

μ = T

√
4πα

(
1 + n f

6

)
(17a)

σgg = 9πα2
s

2μ2 and σqg = 4

9
σgg (17b)

ρg = 16
ζ(3)

π2 T 3 and ρq = 9n f
ζ(3)

π2 T 3 (17c)

ρ = ρg + σqg

σgg
ρq = 4

ζ(3)

π2 T 3(4 + n f ) (17d)

λ−1
g = ρgσgg + ρqσqg = σggρ (17e)

where ζ is the Riemann zeta function, T is the temperature,
ρq (ρg) is the density of quarks (gluons), n f is the number
of active quark flavors (taken to be n f = 2 throughout), σqg
(σgg) is the gluon-gluon (quark-gluon) cross section, and we
have used Nc = 3. The cross section weighted density is
denoted as ρ, which we will subsequently refer to as the
density for simplicity.

The radiative (Eq. 4) and elastic (Eqs. 11 and 12) energy
loss results were derived using a “brick” model, which rep-
resents a medium with a fixed length L and constant temper-
ature T . In order to capture fluctuations in temperature and
density, we need a mapping from the path that a parton takes
through the plasma, to a brick with an effective length Leff

and effective temperature Teff.
We follow WHDG [43] and define the effective pathlength

as

Leff(xi , φ̂) = 1

ρeff

∫
dz ρ(xi + zφ̂, τ0), (18)

and the effective density as

ρeff ≡
∫

d2x ρ2(x, τ0)∫
d2x ρ(x, τ0)

⇐⇒ T 3
eff ≡

∫
d2x T 6(x, τ0)∫
d2x T 3(x, τ0)

.

(19)

Here, the effective pathlength Leff includes all (xi , φ) depen-
dence, and ρeff is a constant for all paths that a parton takes
through the plasma for a fixed centrality class. In princi-
ple, one can allow both the effective density and effective
pathlength to depend on the specific path taken through the
plasma. However, such a numerically intensive model is

beyond the scope and objective of this work. Nonetheless,
we will discuss some implications of the details of the geom-
etry modelling in Sect. 6.

In WHDG [43] the prescription ρ ≡ ρpart was made,1

where ρpart is the participant density – the density of nucle-
ons which participate in at least one binary collision. This
prescription is not necessary in our case, since we have
access to the temperature profile [85,87]. The temperature
is extracted from the hydrodynamics output [85,87], and for
Leff one evaluates the temperature at the initial time set by the
hydrodynamics simulation, τ0 = 0.4 fm. There is no unique
mapping from realistic collision geometries to simple brick
geometries, and more options are explored in [86].

Bjorken expansion [78] is then taken into account by
approximating

Teff(τ ) ≈ Teff(τ0)
(τ0

τ

)1/3 ≈ Teff(τ0)

(
2τ0

Leff

)1/3

(20)

where in the last step we have evaluated T (τ, x) at the average
time τ = L/2, following what was done in [43,95,96]. In
[43] this was found to be a good approximation to the full
integration through the Bjorken expanding medium.

For a given collision system we can then calculate the
distribution of effective pathlengths that a hard parton will
travel in the plasma. We assume, as is standard and consis-
tent with WHDG [43], that the hard partons have starting
positions weighted by the density of binary nucleon-nucleon
collisions, provided by IP-Glasma [87]. Figure 3 shows the
distribution of effective pathlengths PL for central p + Pb
(red), semi-central Pb + Pb (blue), and central Pb + Pb col-
lisions (black) for

√
s = 5.02 TeV. We also indicate the

average effective pathlength in these three systems by sin-
gle vertical lines. One can see that all three distributions are
broad, the p + Pb system perhaps surprisingly so. One may
further see that the average effective pathlength for central
p + Pb collisions is not particularly small, ∼ 1 fm, which
is not too different from the average effective pathlength for
semi-central Pb + Pb collisions, ∼ 2 fm.

Figure 4 compares the temperature of the plasma as a func-
tion of proper time in the rest frame of the plasma calculated
via hydrodynamics (solid lines) versus the temperature from
the Bjorken expansion formula (dashed lines). The effective
temperature using hydrodynamics is calculated using Eq. 19
and the Bjorken expansion approximation to the time depen-
dence of the effective temperature is given by Eq. 20. Cal-
culations are performed for the same three collision systems
as in Fig. 3. Due to the fluctuations of the initial conditions
of the plasma in our model – because of both nucleonic and
subnucleonic fluctuations [85] – we obtain a distribution of

1 Note that the difference between the density and cross section
weighted density falls out at the level of Leff and ρeff.
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Fig. 3 Distribution of the effective pathlengths PL (L) in p + A and
A + A collision systems, weighted by the binary collision density. The
collision systems Pb + Pb at 0–5% and 50–60% centrality; as well as
p + Pb at 0–5% centrality are shown, all at

√
s = 5.02 TeV. Vertical

lines indicates the average lengths for the respective collision systems,
which numerically are 0.99 fm, 2.06 fm, and 4.68 fm left to right

effective temperatures at each point in proper time. We show
the mean and the 2σ width of the Bjorken temperature esti-
mates in Fig. 4. The width in the Bjorken result arises solely
from the variation of the initial hydrodynamics temperature
profile at τ = τ0. We computed the mean and standard devi-
ation of the temperature distribution as a function of τ for the
full hydrodynamics simulation; however the widths of these
distributions are not plotted in Fig. 4 as for τ > τ0 they are
negligible compared to the width in the Bjorken expansion
results.

One can see that for the A + A collisions, the Bjorken
formula does a very good job of approximating the tempo-
ral evolution of the temperature from the full hydrodynam-
ics simulations. For the central p + A system, however, the
Bjorken formula significantly overestimates the temperature
as a function of time. We comment below on the effect of
this overestimation on the energy loss model.

The overestimation of the temperature in p + A collisions
from the Bjorken expansion formula implies that the effective
temperature used in the energy loss model is overestimated;
as a result, the effects of energy loss are all overestimated in
the small collision system. However, we expect this overesti-
mation to be a small effect; using 〈Leff〉 ∼ 1 fm, one can see
in Fig. 4 that the difference between the full hydrodynam-
ics temperature and the Bjorken estimate at 〈τ 〉 ∼ 0.5 fm
is very small. Exploring the effect of dynamical effective
pathlengths and time-dependent temperatures, which take
medium expansion into account using the full hydrodynamic
temperature profiles as a function of time, is left for future
work.

The average pathlength in 0–5% most central p + Pb col-
lisions is L ∼ 1 fm, which has an average temperature of

Fig. 4 Plot of the temperature T as a function of the proper time τ (in
the plasma rest frame). The Bjorken expansion approximation (Bjorken)
[78] to the τ dependence of temperature, T (τ ) ≈ Teff(τ0)[τ0/τ ]1/3,
is plotted along with the effective temperature Teff(τ ) calculated as
a function of time via hydrodynamics (Hydrodynamics) according to
Eq. 19. Uncertainty bands represent a 2σ (95% CI), and are shown only
for the Bjorken estimate only as the uncertainty on the Hydrodynamics
result is negligible. Both curves are plotted for the collision systems
Pb + Pb at 0–5%, and 50–60% centrality; as well as p + Pb at 0–5%
centrality. The freeze-out temperature Tf.o. = 0.155 GeV is shown as a
horizontal gray line, which is the temperature at which it is assumed that
hadronic degrees of freedom take over in the plasma. Hydrodynamic
temperature profiles are taken from [85]

T ≈ 0.35 GeV, and correspondingly a mean free path of
λg ≈ 0.75 fm. As one can see from Fig. 3, the large path-
length assumption thus breaks down for the vast majority of
hard scatterings in central p + A collisions. Further, in these
small collision systems L/λg ∼ 1 for most of the distribution
of effective pathlengths, which implies that approaches that
assume many soft scatterings are likely inapplicable.

We note that although the hydrodynamics simulation turns
off the QGP phase at the freeze-out temperature Tf.o. =
0.155 GeV, the Bjorken expansion formula Eq. 20 has no
such turn off. High-pT particles can of course interact with
matter in the hadronic phase, which is, in part, captured by
using the Bjorken expansion formula for determining the
effective temperature as an input into our energy loss model.
It is worth emphasizing that the effective pathlengths are
determined at the initial time τ0 = 0.4 fm, well before much
of the plasma has had a chance to cool down; thus we do
not lose any contribution to the effective pathlengths from
hadronization.

2.8 Nuclear modification factor

The observable which we will be computing is the nuclear
modification factor RAB(pT ) for a collision system A + B,
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defined experimentally by

Rh
AB(pT ) ≡ dN AB→h/dpT

〈Ncoll〉dN pp→h/dpT
, (21)

where dN AB/pp→h/dpT is the differential number of mea-
sured h hadrons in A + B/p + p collisions, and 〈Ncoll〉
is the expected number of binary collisions (usually cal-
culated according to the Glauber model [84].) To access
this observable theoretically we make several assumptions
about the underlying quark and gluon partons. In the fol-
lowing we will only refer to quarks, but all assumptions and
formulae apply equally well for gluons. We first assume,
following [43,94], that the spectrum of produced quarks
q in the initial state of the plasma (before energy loss) is
dNq

prod/dpi = Ncoll × dNq
pp/dpi where dNq

pp/dpi is the
quark production spectrum in p + p collisions. We further
assume that the parton production spectra can be approxi-
mated by a power law,

dNq
pp

dpi
(pi ) = A

pn(pi )
i

, (22)

where n(pi ) is slowly varying, and A is a proportionality
constant. The n(pi ) function is fitted using the initial parton
spectra according to Eq. 22. For charm and bottom quarks,
the initial parton spectra are computed using FONLL2 at
next-to-leading order [97]; and for gluons and light quarks,
production spectra are computed3 to leading order [98] as in
[38,41].

From Sect. 2.6, we have the total probability density func-
tion Ptot(ε|pi ), which is the probability for a parton with
initial transverse momentum pi to lose a fraction ε of it’s
energy such that the final momentum is pT = (1 − ε)pi .
Assuming that particle spectra are modified primarily due to
energy loss implies,

dNq (pT ) = dNq (pi ) Ptot (ε | pi ) dε, (23)

where dNq(pi ) (dNq(pT )) is the differential number of
quarks in the initial (final) state with momentum pi (pT ).
Finally we assume that Ptot(ε|pi ) varies slowly with pi , lead-
ing to the following expression for the partonic Rq

AB (neglect-
ing hadronization for now) [94]

Rq
AB (pT ) ≡ dN AB→q/dpT

Ncoll × dN pp→q/dpT
(24)

2 Practically, the spectra are generated with the online tool at
http://www.lpthe.jussieu.fr/∼cacciari/fonll/fonllform.html and then fit
to: ∝ p−n(pt )

T .
3 Note that the fraction of light quarks to gluons is obtained from Fig.
2 in [38].

=
Ncoll

∫ dε
1−ε

A
(pT /1−ε)n(pT /[1−ε]) P

(
ε | pT

1−ε

)
Ncoll A p−n(pT )

T
(25)

�
∫

dε Ptot (ε | pT ) (1 − ε)n(pT )−1. (26)

In the above we have used P (ε|pT /[1 − ε]) ≈ P(ε|pT )

and n[pT /(1 − ε)] ≈ n(pT ) which follows from the slowly
varying assumptions about n(pT ) and P(ε|pT ) and the soft
assumption ε � 1. The assumption that n(pT ) varies slowly,
can easily be verified when fitting Eq. 22 to spectra. Since
radiative energy loss is dominant, P(ε|pT ) will be peaked at
�E/E determined with Eq. 5. Asymptotically this grows as
log(E)/E for the (D)GLV result [45], and as log(E) for the
correction [37]. It is safe to assume this logarithmic growth
is slow, however at high energies where the short pathlength
correction dominates this assumption may become worse.

To incorporate our model for the collision geometry,
we expand Eq. 26 to average over the effective pathlengths
according to the length distribution described in Sect. 2.7,

Rq
AB (pT )

= 〈Rq
AB(pT , L , T )〉geometry

=
∫

dLeff PL(Leff)

∫
dεPtot(ε | {pT , Leff ,

T (Leff/2)})(1 − ε)n(pT )−1, (27)

where PL(Leff) is the normalized distribution of effective
pathlengths weighted weighted by the binary collision den-
sity (Fig. 3) and T (Leff/2) is the effective temperature deter-
mined according to Eq. 20.

The spectrum dNh/dph for a hadron h is related to the
spectrum dNq/dpq for a parton q via [94]

dNh

dph
(ph) =

∫
dNq

dpq

(
ph
z

)
1

z
Dh
q (z, Q)dz, (28)

where z = pq/ph ∈ (0, 1], ph is the observed hadron
momentum, Dh

q (z, Q) is the fragmentation function for the
process q �→ h, and Q is the hard scale of the problem taken
to be Q = ph/z. The hadronic Rh

AB is then found in terms
of the partonic Rq

AB (Eq. 27) as [94]

Rh
AB (pT ) =

∑
q

∫
dz 1

z D
h
q (z)

dNq
pp

dpq

(
pT
z

)
Rq
AB

(
pT
z

)
∑

q

∫
dz 1

z D
h
q (z)

dNq
pp

dpq

(
pT
z

) . (29)

For details of the derivation needed for both Eqs. 26 and 29,
refer to Appendix B of [94]. The fragmentation functions for
D and B mesons are taken from [99], and the fragmenta-
tion functions for π mesons are taken from [100]. Note that
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the fragmentation functions for π mesons were extrapolated
outside their domain in Q2, as we found that the extrapo-
lation was smooth. There are uncertainties in both the frag-
mentation function fits and the generation of initial parton
spectra’s; however these uncertainties are very small com-
pared to others in this problem (running coupling, first order
in opacity, etc.), and so we will not take the fragmentation
function uncertainties into account.

3 Initial results

As a first exploration of the effect of the short pathlength cor-
rection to the DGLV radiative energy loss model, we consider
Pb + Pb and p + Pb collision systems. We emphasize that
in this work we are not trying to create the best possible fit
to data (which could be done by tuning various parameters),
but are instead focused on the impact of the short pathlength
correction. For this reason all numerical values are used in
consistency with the original WHDG predictions [38,43,79],
and agreement with data is not the primary focus of this work.

3.1 Suppression of heavy flavor mesons

In Fig. 5, we show RAA(pT ) for D mesons in
√
s = 5.02 TeV

Pb + Pb collisions at 0–10% and 30–50% centrality from
our convolved radiative and collisional energy loss model,
with and without the short pathlength correction to DGLV
radiative energy loss, compared to data from CMS [101], and
ALICE [40]. In Fig. 6, we show RAA(pT ) for B mesons in√
s = 5.02 TeV Pb + Pb collisions at 0–10% centrality from

our convolved radiative and collisional energy loss model,
with and without the short pathlength correction to DGLV
radiative energy loss, compared to minimum bias data from
CMS [102].

From the figures we conclude that for heavy flavor final
states, the short pathlength correction to the RAA is small
up to pT ∼ 100 GeV, and that the difference grows with
pT . This small difference was expected from the numeri-
cal energy loss calculations performed in [37] and repro-
duced in Fig. 1 that showed the small pathlength correc-
tions are a relatively small correction for quarks. Agreement
with data for D0 mesons (Fig. 5) is especially good for all
pT � 5 GeV, given that the calculation is leading order. The
D0 meson suppression prediction is underestimated for mod-
erate pT � 20 GeV in comparison to a previous prediction
with the WHDG model in [79]. We believe the main cause of
this difference with past results is from not using the approx-
imation qmax → ∞ (see Sect. 2.1), which overestimates the
energy loss – especially at low pT .

Figure 7 shows predictions for the RpA of D mesons as
a function of the final transverse momentum pT for central
p+Pb collisions at

√
s = 5.02 TeV from our convolved radia-

Fig. 5 The nuclear modification factor RAA as a function of final trans-
verse momentum pT is calculated for D0 mesons, with and without the
short pathlength correction to the radiative energy loss. Calculations
were done for 0–10% centrality as well as 30–50% centrality. Data
from CMS [101], and ALICE [40] are shown for comparison; where
error bars (boxes) indicate statistical (systematic) uncertainties. The
global normalisation uncertainty on the number of binary collisions is
indicated by the solid boxes in the top left corner of the plot (left to
right: 0–10% CMS, 0–10% ALICE, 30–50% ALICE)

Fig. 6 The nuclear modification factor RAA as a function of final
transverse momentum pT is calculated for B mesons with and with-
out the short pathlength correction. Data for B± mesons from CMS
[102] is shown for comparison, where error bars (boxes) indicate sta-
tistical (systematic) uncertainties. The global normalisation uncertainty
on the number of binary collisions is indicated by the solid boxes in the
top left corner of the plot

tive and collisional energy loss model compared to ALICE
data [103]. In the same figure, we also show the prediction of
RpA of D mesons from our energy loss model with the colli-
sional energy loss turned off. One can see that the energy loss
model that includes both collisional and radiative energy loss,
both the small pathlength corrected and the uncorrected ver-
sion, dramatically overpredicts the suppression in this small
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Fig. 7 The nuclear modification factor RpA for D0 mesons as a func-
tion of final transverse momentum pT is calculated with and without the
short pathlength correction. The RpA is calculated both with collisional
and radiative energy loss (el. + rad.), and with radiative energy loss only
(rad. only). Data from ALICE [103] for D0 mesons is shown for com-
parison, where statistical (systematic) uncertainties are represented by
error bars (boxes). The global normalisation uncertainty on the number
of binary collisions is indicated by the solid box in the center left of the
plot

system. At the same time, the predictions from the model
with the collisional energy loss turned off are significantly
less oversuppressed compared to the data. The surprising sen-
sitivity to the presence of the collisional energy loss process is
due to our naive implementation of the collisional energy loss
as discussed in Sect. 2.6: the WHDG [43] collisional energy
loss model assumes an average collisional energy loss with
Gaussian fluctuations, which is inappropriate for a small sys-
tem with very few elastic scatterings.

3.2 Suppression of light flavor mesons

Figure 8 shows the RAA(pT ) for π mesons as a function of
pT in 0–5% most central Pb + Pb collisions at

√
s = 5.02

TeV from both our convolved radiative and collisional energy
loss model compared to the RAA(pT ) for charged hadrons
measured by ATLAS [104], CMS [105], and ALICE [106].
In our energy loss model, we used the fraction of π mesons
originating from light quarks versus gluons as in [38].

Figure 8 shows that the short pathlength correction does,
in fact, lead to a stronger pT dependence in RAA(pT ) than the
prediction without the correction. In fact, the correction leads
to a large change in predicted RAA(pT ), even at moderate
momenta 20 GeV � pT � 100 GeV, when compared to
the size of the correction for heavy flavor mesons. This large
change in RAA(pT ) is consistent with the large change in
the average energy loss as calculated numerically in [37]
and reproduced in Figs. 1 and 2; the correction is almost a
factor of 10 times larger for gluons compared to quarks due

Fig. 8 The nuclear modification factor RAA for π mesons produced
in Pb + Pb collisions at 0–5% centrality is calculated using WHDG,
with and without the short pathlength correction to the radiative energy
loss. Charged hadron suppression data from ATLAS [104], CMS [105],
and ALICE [106] is plotted for comparison; with error bars (boxes)
corresponding to statistical (systematic) uncertainties. The global nor-
malisation uncertainty on the number of binary collisions is indicated
by the solid boxes in the center left of the plot (left to right: CMS,
ALICE). The normalisation uncertainty for the ATLAS data is included
in the systematic uncertainties

to the specific way in which color triviality is broken by the
short pathlength correction to the energy loss. For pT �
200 GeV the corrected result is tantalizingly consistent with
data, however for pT � 200 GeV the corrected result predicts
anomalously large enhancement up to RAA = 1.5 at pT �
450 GeV, a shocking ∼ 200% increase over the uncorrected
result.

Figure 9 shows predictions for the RpA(pT ) of π mesons
in 0–10% most central p + Pb collisions from our convolved
radiative and collisional energy loss model, with and with-
out the short pathlength correction to the radiative energy
loss, as well as predictions from our model with the colli-
sional energy loss turned off. Figure 9 also shows ATLAS
charged hadron RpA(pT ) data [39]. In this figure the break-
down of the elastic energy loss is even more obvious than
for the heavy flavor mesons, since the elastic energy loss for
gluons is enhanced by a factorCA/CF ≈ 2. The uncorrected
radiative-only result (no collisional energy loss) predicts mild
suppression of RAA ≈ 0.9 for all pT ; and the corrected
radiative-only result predicts enhancement that grows mono-
tonically in pT , reaching RAA ≈ 1.5 at pT = 150 GeV. The
predicted enhancement for pT � 100 GeV is in excess of
the measured enhancement [39], however for pT � 100 GeV
the presence of enhancement is qualitatively consistent with
data.

The short pathlength “correction” leads to changes in
RAA(pT ) of 100% or greater in the light hadron sector, with
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Fig. 9 The nuclear modification factor RpA for π mesons as a function
of final transverse momentum pT , is calculated with and without the
short pathlength correction to the radiative energy loss. The RpA is cal-
culated both with collisional and radiative energy loss (el. + rad.), and
with radiative energy loss only (rad. only). Data from ATLAS [39] for
charged hadrons is shown for comparison, where statistical (systematic)
uncertainties are represented by error bars (boxes). The global normal-
isation uncertainty on the number of binary collisions is indicated by
the solid box in the top left corner of the plot

predictions of RAA(pT )well in excess of 1 for extremely high
momenta, in both small and large collision systems leads us to
question whether or not the energy loss calculation is break-
ing down in some fundamental way. In particular, are we
applying the energy loss formulae in our energy loss model
in some regimes where the assumptions made in the deriva-
tion of those energy loss formulae no longer apply?

4 Consistency of assumptions in DGLV

The prediction of significant enhancement of high-pT light
flavor mesons shown in Figs. 8 and 9 stems from the asymp-
totic dependence of the short pathlength correction on energy
[37]. We see from Eqs. 6b and 7 that for asymptotically large
values of energy, �Ecorr./E ∼ E0 while �EDGLV/E ∼
ln E/E . Thus, inevitably, the correction becomes larger than
the uncorrected result in the large E limit. Presumably, then,
there’s some intermediate value of the energy at which the
assumptions that went into either the DGLV derivation, the
derivation of the correction, or both are violated. As noted in
the Introduction, the derivations of both DGLV energy loss
and its small pathlength correction assumed: (1) the Eikonal
approximation which assumes that the energy of the hard
parton is the largest scale in the problem; (2) the soft radia-
tion approximation which assumes x � 1; (3) collinearity
which assumes k+ � k−; (4) the impact parameter varies
over a large transverse area; and (5) the large formation time
assumption which assumes ω0 � μ ⇔ k2/2xE � μ and

ω1 � μ1 ⇔ (k − q1)2/2xE �
√

μ2 + q2
1 . For the large

formation time assumption we found that in the original cal-
culation (details in [46]), ω0 � μ was only used in the
weaker form ω0 � μ1; and so we will be considering this
weaker assumption instead.

In this section we numerically check the consistency of
these assumptions with the final radiative energy loss result.
In particular, the analytic properties of the matrix element
mean that it may have non-zero support for momenta that are
unphysical (even complex). The relevant question for us is:
does the matrix element (modulus squared) give a significant
contribution to the energy loss in kinematic regions that are
integrated over but for which the derivation of the matrix
element is not under control?

In an attempt to (partially) answer this question, we are
motivated to calculate expectation values of ratios assumed
small under the various assumptions, weighted by the abso-
lute value of the mean radiative energy loss distribution,
Eq. 5.4 Explicitly the procedure to calculate the expectation
value of a function R({Xi }), depending on the set of variables
{Xi }, is

〈R〉 ≡
∫

d{Xi } R({Xi })
∣∣∣ dE

d{Xi }
∣∣∣∫

d{Xi }
∣∣∣ dE

d{Xi }
∣∣∣ , (30)

where {Xi } can be any of {k,q, x,�z} and d{Xi } ≡ ∏
i dXi .

Also note that R can depend on quantities that are not inte-
grated over, such as {L , E, μ}. It is important to note that
this expectation value is not an expectation value in the usual
sense, where the distribution is the distribution of radiated
gluons, because we are weighting by the radiative energy
loss and not radiated gluon number. It is also important to
note that even if a particular assumption is violated in the
sense of this weighted average, that violation does not nec-
essarily mean that the correction computed by relaxing the
assumption is large; rather, we only know that the correction
is not necessarily small.

Figure 10 investigates the large formation time assump-
tion. The figure shows the expectation value of ω1/μ1 =
(k − q1)

2/2xE
√

μ2 + q2
1, where the DGLV and correction

derivations assume that ω1/μ1 � 1, using L = 5 fm,
λg = 1 fm, and μ = 0.5 GeV. The large formation time
assumption is explicitly violated for the energy loss with and
without the short pathlength correction. For the energy loss
without the correction, the large formation time assumption
is violated for E � 100 GeV for both charm quarks and glu-
ons, while for the energy loss with the correction the large
formation time assumption is violated for E � 35 GeV for

4 Just to be clear, we are weighting by the mean radiative energy loss
as determined by the single inclusive gluon emission distribution, ∼
x dNg/dx ; we are not weighting by the Poisson convolved distribution.
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Fig. 10 Plot of 〈R〉 ≡ 〈ω1/μ1〉 as a function of parent parton energy E .
〈R〉 � 1 implies consistency with the large formation time assumption.
〈R〉 is computed without (dashed) and with (solid) the short pathlength
correction for charm quarks (dark red) and gluons (orange). All curves
use constant L = 5 fm, λg = 1 fm, and μ = 0.5 GeV

gluons and for E � 50 GeV for charm quarks. This break-
down calls into question the validity of the large formation
time assumption in DGLV radiative energy loss for pT � 100
GeV, regardless of whether the energy loss receives a short
pathlength correction. The increased rate and magnitude of
large formation time assumption violation once the short
pathlength correction is included in the energy loss indicates
that the short pathlength corrected energy loss model pre-
dictions may be breaking down at moderate to high pT in
central A + A collisions. One sees that the large formation
time assumption, always breaks down before enhancement,
�E/E < 0, is predicted.

One possibility for the increased rate and degree of large
formation time breakdown once the short pathlength is
included – and the erroneously large correction at high pT for
π mesons – is the emphasis placed on short pathlengths by
the exponential distribution of scattering centers. The expo-
nential distribution was originally chosen to make the analyt-
ics simple, with the physical motivation that it captures the
Bjorken expansion in the medium [42]. Bjorken expansion
leads to a power law decay of the plasma density in time
[78], and so an exponential distribution likely overestimates
the amount of expansion. This biases scatterings to occur at
smaller �z than is physical, and likely overestimates the con-
tribution from the short pathlength correction. Additionally
it is not obvious how to model the time dependence of the
collision geometry before thermalization τ � τ0, as in prin-
ciple the medium should be thermalizing during this time.
Furthermore the treatment of scatters that occur for times
τ � τ0 is not obvious as it is possible that the well-separated
scattering centers assumption λ � μ−1 breaks down in this

phase of the plasma. It was found numerically that DGLV
energy loss results are insensitive to the exact distribution
of scattering centers used [34]. Perhaps not surprisingly, the
small pathlength correction has a large sensitivity to the exact
distribution of scattering centers used [37].

We are thus motivated to consider an alternative distri-
bution of scattering centers as we consider whether or not
the various assumptions made in the energy loss derivations
are consistent with our final energy loss numerics. In this
paper we will consider, in addition to the usual exponen-
tial distribution, the truncated step distribution from [37].
The truncated step distribution is given by ρ̄step(�z) ≡
(L−a)−1�(�z−a)�(L−�z), where a is a small distance
cut off. The truncated step function attempts to capture the
effect of a “turn on” of the QGP, before which no energy loss
takes place, with subsequent equal probability for a scatter-
ing to occur until the end of the pathlength. We think of the
exponential distribution and truncated step distributions as
limiting cases for what the real distribution of scattering cen-
ters may be. The exponential distribution maximally empha-
sizes the effect of early-time physics, while the truncated step
distribution completely neglects early-time physics. A more
realistic distribution is likely somewhere in between these
two extremes.

One choice for a is a = μ−1, since for �z � μ−1, the
production point and scattering center are too close to be
individually resolved. Another choice is a = τ0, the hydro-
dynamics turn-on time; τ0 is a particularly reasonable choice
since we already only consider the medium density evolu-
tion for times τ > τ0 in computing our pathlengths, Eq. 18.
For a typical value of μ = 0.5 GeV in central Pb + Pb col-
lisions, τ0 � μ−1 � 0.4 fm; however in central p + Pb
collisions μ−1 � 0.25 fm < τ0 = 0.4 fm, and so the dis-
tinction between the two options for a might be important.
In this report we have chosen to use a = τ0 throughout for
simplicity.

We now check all of the assumptions made in the computa-
tion of the DGLV radiative energy loss for: the corrected and
uncorrected results; the exponential and truncated step scat-
tering center distributions; charm quarks and gluons; and for
large (L = 5 fm) and small (L = 1 fm) systems (Figs. 11, 12,
13, 14, 15, 16). All calculations use constant μ = 0.5 GeV,
and λg = 1 fm which are approximate averages in A + A
collisions, and standard benchmark choices [34].

Figures 11 and 12 show the expectation values of ω1/μ1 =
(k−q1)

2/2xE
√

μ2 + q2
1 and ω0/μ1 = k2/2xE

√
μ2 + q2

1,
respectively. The large formation time assumption is equiv-
alent to both ratios much less than one. For an exponential
distribution of scattering centers with L = 5 fm (top panes of
Figs. 11 and 12), the large formation time assumption: breaks
down for E � 40 GeV for the corrected result, and breaks
down for E � 100 GeV for the uncorrected result. For the
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Fig. 11 Plot of 〈R〉 ≡ 〈ω1/μ1〉 as a function of parent parton energy E .
〈R〉 � 1 implies consistency with the large formation time assumption.
〈R〉 is computed without (dashed) and with (solid) the short pathlength
correction for charm quarks [gluons] with scattering centers distributed
according to the exponential distribution (dark red [orange]) and trun-
cated step function (dark blue [light blue]). L = 5 fm in the top pane
and L = 1 fm in the bottom pane. All curves use constant λg = 1 fm
and μ = 0.5 GeV

truncated step distribution with L = 5 fm, the large forma-
tion time assumption breaks down for both the corrected and
uncorrected results for E � 100 GeV. We see in the plots
the known numerical insensitivity to the distribution of scat-
tering centers in the uncorrected DGLV radiative energy loss
result.

For L = 1 fm (bottom panes of Figs. 11 and 12), the shape
of all curves are approximately the same, but scaled by a
factor ∼ 1 fm/5 fm in E . Thus the breakdown in the large
formation time assumptions occurs roughly five times earlier
in E for the L = 1 fm pathlengths compared to the L = 5 fm
pathlengths. The reason for this simple approximate scaling
is that all of the nontrivial dependence of �E/E on E and L
in the distribution of emitted gluons Eq. 4 comes from terms
∼ ωα�z where α ∈ {0, 1,m}. Once integrated these terms
become ωαL ∼ L/E ; assuming k and q have negligible
dependence on E . If the kinematic cutoffs on the k, and q

Fig. 12 Plot of 〈R〉 ≡ 〈ω0/μ1〉 as a function of parent parton energy E .
〈R〉 � 1 implies consistency with the large formation time assumption.
〈R〉 is computed without (dashed) and with (solid) the short pathlength
correction for charm quarks [gluons] with scattering centers distributed
according to the exponential distribution (dark red [orange]) and trun-
cated step function (dark blue [light blue]). L = 5 fm in the top pane
and L = 1 fm in the bottom pane. All curves use constant λg = 1 fm
and μ = 0.5 GeV

integrals are important then this scaling breaks down; any
deviation from this simple scaling must be due to the effects
of the cutoff.

We found that finite kinematic bounds do not significantly
affect the consistency of the assumptions. The above scaling
argument holds for all expectation values 〈R〉 so long as R
does not depend on �z. Thus, in order to keep the number
of plots shown to a manageable number, most assumption
consistency plots from now on will be shown for only L =
5 fm.

The collinear and soft assumptions are tested for consis-
tency in Figs. 13 and 14, respectively. We find that both of
these assumptions are consistently satisfied for both the short
pathlength corrected and uncorrected DGLV results, for both
the exponential and the truncated step distributions of scat-
tering centers.
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Figure 14 shows 〈x〉 as a function of parent parton energy
E , where 〈x〉 � 1 is assumed under the soft approxima-
tion. The expectation value 〈x〉 decreases monotonically in
energy for the uncorrected result with an exponential dis-
tribution of scattering centers; all other expectation values
appear to converge numerically to a constant nonzero value.
For the DGLV result with an exponential distribution, one
can calculate 〈x〉 analytically for asymptotically high ener-
gies. For asymptotically high energies we take mg → 0,
M → 0, kmax → ∞, and qmax → ∞. These simplifications
allow the angular, k, and q integrals to be done analytically,
as described in [42,45]. Proceeding in this way we obtain the
following asymptotic expression for 〈x〉:

〈x〉DGLV
exp. = 1

log( 4E
Lμ2 )

+ O
(
Lμ2

4E

)

�⇒ 〈x〉 → 0 as E → ∞. (31)

In a similar way we can derive the same result for the short
pathlength correction with an exponential distribution, using
the asymptotic result from [37] (see Eq. 6a)

〈x〉corr.
exp. = 1

2

⎡
⎣− 1

2 + log
(

2EL
2+Lμ

)
−1 + log

(
2EL

2+Lμ

)
⎤
⎦

→ 1

2
as E → ∞. (32)

Note that numerical investigation of 〈x〉 indicates that the
convergence to the asymptotic values is slow for both the
corrected and uncorrected energy loss. For the truncated step
distribution it is more difficult to perform asymptotic calcula-
tions, but numerical investigation shows that the uncorrected
result with truncated step distribution converges to 〈x〉 ≈ 1

3 ,
and the corrected result with truncated step distribution con-
verges to 〈x〉 ≈ 1

2 .
Figure 15 tests the consistency of the large pathlength

assumption with the DGLV result as a function of parent par-
ton energy E for charm quarks. For L = 1 fm, we see that the
large pathlength assumption is not a good approximation for
either the uncorrected or small pathlength corrected DGLV
calculation for the exponential scattering center distribution;
with 〈1/�z μ〉 ∼ 0.6, the large pathlength assumption is not
a particularly good approximation for the truncated step dis-
tribution, either. Even for L = 5 fm, the large pathlength
assumption breaks down for the short pathlength corrected
energy loss when the exponential distribution of scattering
centers is used. While not shown, results for gluons are essen-
tially identical. We see that, as expected, one must quantita-
tively determine the importance of the short pathlength cor-
rection terms to the radiative energy loss derivation for short

Fig. 13 Plot of 〈R〉 ≡ 〈k−/k+〉 as a function of parent parton energy
E . 〈R〉 � 1 implies consistency with the collinear approximation. 〈R〉
is computed without (dashed) and with (solid) the short pathlength cor-
rection for charm quarks [gluons] with scattering centers distributed
according to the exponential distribution (dark red [orange]) and trun-
cated step function (dark blue [light blue]). L = 5 fm in the top pane
and L = 1 fm in the bottom pane. All curves use constant L = 5 fm,
λg = 1 fm, and μ = 0.5 GeV

Fig. 14 Plot of 〈R〉 ≡ 〈x〉 as a function of parent parton energy E .
〈R〉 � 1 implies consistency with the soft approximation. 〈R〉 is com-
puted without (dashed) and with (solid) the short pathlength correction
for charm quarks [gluons] with scattering centers distributed according
to the exponential distribution (dark red [orange]) and truncated step
function (dark blue [light blue]). L = 5 fm in the top pane and L = 1
fm in the bottom pane. All curves use constant L = 5 fm, λg = 1 fm,
and μ = 0.5 GeV

pathlengths, L ∼ 1/μ for all values of E and for all parton
types.

We note that there was one final assumption implicitly
made in the derivation of the short pathlength correction
to the DGLV radiated gluon distribution, the short forma-
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Fig. 15 Plot of 〈R〉 ≡ 〈1/�z μ〉 as a function of parent parton energy
E . 〈R〉 � 1 implies consistency with the large pathlength assumption.
〈R〉 is computed without (dashed) and with (solid) the short pathlength
correction for charm quarks [gluons] with scattering centers distributed
according to the exponential distribution (dark red [orange]) and trun-
cated step function (dark blue [light blue]). L = 5 fm in the top pane
and L = 1 fm in the bottom pane. All curves use constant λg = 1 fm
and μ = 0.5 GeV

tion time (with respect to scattering centers) assumption,
�z ω0 � 1 [37,46]. This in conjunction with the large
formation time assumption furnishes a separation of scales
�z−1 � ω0 � μ1. Alternatively one can view this as
a large pathlength assumption, wherein we have replaced
�z μ � 1 with �z ω0 � 1; which is guaranteed to be a
weaker assumption, according to the large formation time
assumption. Figure 16 shows 〈�zω0〉 as a function of parent
parton energy E for charm quarks with the short pathlength
corrected energy loss. We find that for both large and small
systems, and exponential and truncated step distributions this
assumption holds self-consistently. While not shown, results
for gluons are essentially identical. The short formation time
(with respect to scattering centers) assumption is intimately
tied to the large formation time assumption, and so if future
work aims to remove the large formation time assumption,
then this assumption should also be removed. Note that we
computed 〈�z ω0〉 (assumed � 1) instead of 〈(�z ω0)

−1〉
(assumed � 1), due to numerical convergence issues with
the latter.

5 Suppression with exponential and step distributions

We saw in the previous section that for pT � 40 GeV the
large formation time approximation breaks down for energy
loss calculations using the exponential distribution of scatter-
ing centers (which bias the scattering to shorter pathlengths)
while the large formation time approximation breaks down

Fig. 16 Plot of 〈R〉 ≡ 〈�z ω0〉 as a function of parent parton energy E .
〈R〉 � 1 implies consistency with the large formation time (with respect
to scattering centers) assumption used in the short pathlength correction
derivation [37]. 〈R〉 is computed with the short pathlength correction
for charm quarks for pathlengths of 5 fm [1 fm] with scattering centers
distributed according to the exponential distribution (dark red [dark
blue]) and truncated step function (orange [light blue]). All curves use
constant λg = 1 fm and μ = 0.5 GeV

only for pT � 100 GeV for an energy loss calculation using
the truncated step distribution of scattering centers. Addition-
ally, we claimed that the exponential distribution of scattering
centers and the truncated step distribution of scattering cen-
ters represent two extreme possibilities for what a more real-
istic distribution of scattering centers likely will be. We are
thus motivated to explore the sensitivity of our suppression
predictions to the choice of distribution of scattering centers.
For pure DGLV energy loss without the short pathlength cor-
rection, one saw an insensitivity to this choice of scattering
center distributions [34]. We will see that when including
the short pathlength correction to the radiative energy loss,
the heavy flavor observables are still relatively insensitive to
the distribution of scattering centers. However, we find that
hadron observables that include a contribution from gluons
are very sensitive to the choice of scattering center distribu-
tion, with the use of the truncated step function dramatically
reducing the effect of the short pathlength correction to pion
RAA(pT ). This dramatic reduction in the effect of the short
pathlength correction to the phenomenologically accessible
pion suppression observable is expected from the dramatic
reduction in the effect of the short pathlength correction to
the average radiative energy loss, as seen in [37].

Figure 17 shows RAA(pT ) for D mesons in central 0–10%
and semi-central 30–50% Pb + Pb collisions at

√
s = 5.02

TeV for both the exponential and truncated step distribu-
tions of scattering centers. Figure 18 shows RAA(pT ) for B
mesons in central 0–10% Pb + Pb collisions at

√
s = 5.02
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TeV for both the exponential and truncated step distribu-
tions of scattering centers. For both heavy meson cases the
truncated step distribution decreases the RAA by up to 10%
(20%) for the original (corrected) WHDG results. For both
D and B mesons with a truncated step distribution, the short
pathlength correction is negligible for pT � 100. As seen
before, with an exponential distribution of scattering centers
the effect of the short pathlength correction is � 10%, which
is small compared to other theoretical uncertainties in the
model (e.g. higher orders in αs , treatment of the early times,
etc.). Agreement with data is good for all predictions (cor-
rected/uncorrected, and exp./trunc. step distributions), except
for pT � 10 where bulk effects may be important and the
eikonal approximation is likely breaking down.

The radiative-only nuclear modification factor RpA for
D0 mesons in 0–10% most central p + A collisions is shown
in Fig. 19, with and without the short pathlength correction,
and with both an exponential and a truncated step distribu-
tion of scattering centers. We only show the radiative-only
RpA since in Sect. 3 we determined that the elastic contri-
bution was erroneously large in p + A collisions due to the
inapplicability of the average elastic energy loss in previous
WHDG calculations in small collision systems. The RpA

for the exponential distribution without the correction and
the truncated step distribution with and without the correc-
tion all agree with each other to within 5% and predict mild
suppression of RpA ≈ 0.9 for all pT . The corrected RpA

with an exponential distribution predicts mild suppression at
low pT � 20 GeV and consistency with unity at moderate
pT � 20 GeV. Measured RpA is shown for D0 mesons pro-
duced in 0–5% most central p + Pb collisions from ALICE
[103]. Data predicts mild enhancement for all pT , not incon-
sistent with our results shown here.

Figure 20 shows RAA(pT ) for pions in 0–5% central
Pb + Pb collisions at

√
s = 5.02 TeV. The convolved col-

lisional and radiative energy loss model predictions both
include and exclude the short pathlength correction to radia-
tive energy loss, and use either the exponential or the trun-
cated step distribution for the scattering centers. The predic-
tions are compared to data from ATLAS [104], CMS [105],
and ALICE [106]. While the predictions excluding the short
pathlength correction are insensitive to the particular scatter-
ing center distribution chosen, one can see the tremendous
sensitivity of the predictions to the scattering center distri-
bution when the short pathlength correction to the radiative
energy loss is included; when the truncated step distribution
is used, the effect on RAA(pT ) of the short pathlength cor-
rection to the DGLV radiative energy loss is dramatically
reduced.

Figure 21 shows RpA(pT ) for π mesons and charged
hadrons in 0–10% central p+Pb collisions at

√
s = 5.02 TeV.

For our theoretical predictions of pion suppression we only
include radiative energy loss, as the average elastic energy

Fig. 17 Plot of the RAA for D mesons as a function of final transverse
momentum pT in

√
s = 5.02 TeV Pb+Pb central 0–10% (top) and

semi-central 30–50% (bottom) collisions. Predictions with (solid) and
without (dashed) the short pathlength correction to the radiative energy
loss are shown using the exponential (red) and truncated step (blue)
distributions for the scattering centers. Data are from ALICE [40] and
CMS [102]. The global normalization uncertainty on the number of
binary collisions is indicated by solid boxes in the top left corner of the
plot (left to right, top to bottom: CMS 0–10%, ALICE 0–10%, ALICE
30–50%)

loss of the WHDG model is inappropriate to use here. We
show predictions with (solid) and without (dashed) the short
pathlength correction to the radiative energy loss, and we
show predictions when using either the exponential (red)
or truncated step (blue) distribution of scattering centers.
Charged hadron suppression data is from ATLAS [39].

The difference between the Rπ
pA(pT ) predictions from the

two scattering center distributions is small when excluding
the short pathlength correction. We see again that the effect
on nuclear modification factor from the short pathlength cor-
rection to the radiative energy loss is large when using the
exponential distribution of scattering centers and relatively
small when using the truncated step distribution of scatter-
ing centers. The prediction of enhancement by the corrected
RpA with an exponential distribution is qualitatively sim-
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Fig. 18 The nuclear modification factor RAA as a function of final
transverse momentum pT is calculated in Pb + Pb collisions at

√
s =

5.02 TeV for B mesons. Predictions with (solid) and without (dashed)
the short pathlength correction to the radiative energy loss are shown
using the exponential (red) and truncated step (blue) distributions for
the scattering centers. Data are from CMS [102]. The experimental
global normalization uncertainty on the number of binary collisions is
indicated by the solid box in the top left corner of the plot

Fig. 19 The nuclear modification factor RpA for D mesons as a func-
tion of final transverse momentum pT in 0–10% central p+Pb collisions
at

√
s = 5.02 TeV. Only radiative energy loss is included; predictions

with (solid) and without (dashed) the short pathlength correction are
shown using the exponential (red) and truncated step (blue) distributions
for the scattering centers. Data are from ALICE [103]. The experimen-
tal global normalization uncertainty on the number of binary collisions
is indicated by the solid box in the top left corner of the plot

ilar to the observed enhancement for moderate momenta
pT � 60 GeV. If we are provocative, we may thus sug-
gest that the experimentally measured excess in RpA(pT ) is
actually due to final state effects rather than initial state or
normalization effects.

Fig. 20 Plot of the RAA for π mesons produced in 0–5% most central
Pb+Pb collisions at

√
s = 5.02 TeV, as a function of the final transverse

momentum pT . Predictions with (solid) and without (dashed) the short
pathlength correction to the radiative energy loss are shown using the
exponential (red) and truncated step (blue) distributions for the scatter-
ing centers. Data from ATLAS [104], CMS [105], and ALICE [106].
The experimental global normalization uncertainty on the number of
binary collisions is indicated by the solid boxes in the center left of
the plot (left to right: CMS, ALICE). Note that in the ATLAS data the
normalization uncertainty is included in the systematic uncertainty

Fig. 21 The nuclear modification factor RpA for π mesons as a func-
tion of final transverse momentum pT in 0–10% p + Pb collisions at√
s = 5.02 TeV. Only radiative energy loss is included; predictions with

(solid) and without (dashed) the short pathlength correction are shown
using the exponential (red) and truncated step (blue) distributions for
the scattering centers. Data for charged hadrons are from ATLAS [39].
The experimental global normalization uncertainty on the number of
binary collisions is indicated by the solid box in the top left corner of
the plot

6 Discussion

The primary goal of this work, as outlined in Sects. 2–5, is to
implement the WHDG convolved energy loss model [38,43]
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with the novel inclusion of the short pathlength correction to
the radiative energy loss [37].

Due to the complexity of this model, there are many points
at which one must decide on the level of approximation to
proceed with. In line with the motivation of this work, we
have always chosen to maintain consistency with previous
work such as WHDG and DGLV. This has occasionally led
us to overlook a more physically reasonable prescription (in
our view) for a component of the energy loss model. One
such instance concerns the treatment of the realistic collision
geometry (see Sect. 2.7) and how it is mapped to the brick
geometry. We will now present a derivation of a more realistic
effective pathlength and effective temperature, which could
be implemented in future work.

An integral part of radiative energy loss is the distribution
of scattering centers, ρ̄(�z), normalized to a single hard scat-
ter at first order in opacity (see Eq. 3). The quantity ρ̄(�z) is
a model for the shape of the plasma, as the parton prop-
agates through it. In theory, it is possible to improve the
realism of the model by integrating through the plasma, in
some sense replacing ρ̄(�z) with a realistic plasma density
ρ(x, τ ) and correspondingly T with a realistic plasma tem-
perature T (x, τ ). In this case the pathlength L no longer
needs to be specified a priori. This approach would allow
for a more accurate simulation of the hard partons prop-
agation through the plasma, and is implemented similarly
in the CUJET model [107,108]. Unfortunately implement-
ing this approach is exceedingly computationally expensive,
even for the original DGLV result, and would present sig-
nificant computational challenges for the short pathlength
corrected results.

To account for a realistic collision geometry, we instead
need effective temperatures, densities, and lengths as inputs
to the simple brick models for elastic and radiative energy
loss. Essentially, we establish a brick with characteristic
{Leff, Teff, ρ̄} for each parton that propagates through the
plasma. The relationship between the plasma density ρ(x, τ )

and the distribution of scattering centers ρ̄(�z), is a separa-
tion of the shape of the plasma density from its magnitude.
Schematically, we can write this separation as

dNg

dx
=
∫

d�z ρ(xi + φ̂�z,�z)
dNg

d�z dx

∣∣∣∣
μ=μ(z)

(33)

≈
∫

d�z′ ρ(xi + φ̂�z′,�z′)

×
∫

d�z ρ̄(�z)
dNg

d�z dx

∣∣∣∣
μ=μeff

, (34)

where
∫

d�z ρ̄(�z) = 1. In the above xi is the hard parton

production point, φ̂ is the direction of propagation, and ρ is
the density of the QGP. Equation 33 is equivalent to what is
done in CUJET [107,108] while Eq. 34 is the approximation

made in GLV [45], DGLV [42], WHDG [38,43] and the short
pathlength correction to DGLV [37]. Note that the step from
Eqs. 33 to 34 is exact for a brick of plasma.

The power of the approximation made in Eq. 34 lies in
separating the dependence of the path taken by the parton
through the plasma from the rest of the energy loss cal-
culation. This approach allows us to prescribe ρ̄(�z), for
instance exponential decay or truncated step, and perform
the �z integral analytically. A more realistic approach to
this, but less numerically intensive than integrating through
the realistic plasma, would be to fit a trial ρ̄(�z|xi , φ) to
the realistic plasma density ρ(xi , φ) for each path taken by
a parton through the plasma.

The magnitude of the density is definitionally related to
the opacity n̄ via [45]

n̄ ≡ Leff

λeff
≡
∫

dz
∫

d2q
dσgg(z)

d2q
ρ(xi + zφ̂, τ = z) (35)

≈ σ eff
gg

∫
dz ρ(xi + zφ̂, τ = z) (36)

where ρ is the density from Eq. 17d, and we have used Eq. 36
to define the effective length Leff and effective gluon mean
free path λeff. Equations 17e and 36 yield

Leff

λeff
= (λeff ρeff)

−1
∫

dz ρ(xi + zφ̂, τ = z) (37)

�⇒ Leff = 1

ρeff

∫
dz ρ(xi + zφ̂, τ = z), (38)

where we have the freedom to prescribe ρeff. Note that Eq. 38
differs from Eq. 18 in the fact that the density is evaluated at
τ = z, which follows from the definition of the opacity in
Eq. 35.

Breaking apart the opacity n̄ as n̄ = Leff/λeff serves to:

– make contact with the effective pathlength prescription
in WHDG [43], with a more rigorous derivation;

– obtain a prescription for the effective density ρeff which
can then be used to calculate other thermodynamic quan-
tities in Eq. 17, most importantly the Debye mass μ;

– and obtain a length scale Leff in the problem, which is
important for prescribing the distribution of scattering
centers ρ̄(�z).

In this manuscript, we have followed WHDG in using
Eq. 19 as the effective density, which prescribes a single den-
sity to the entirety of the plasma. A more natural approach can
be motivated by considering the step form Eqs. 33 to 34. In
this step, we have approximated μ(z) ≈ μeff, which leads to
a natural definition for ρeff as the average temperature along
the path through the plasma, weighted by the plasma density.

123



Eur. Phys. J. C (2023) 83 :1060 Page 21 of 25 1060

ρeff = 〈ρ〉(xi , φ) =
∫

d�z ρ2(xi + φ̂�z,�z)∫
d�z ρ(xi + φ̂�z,�z)

. (39)

This means both Leff and ρeff depend on the specific path that
the parton takes. This dramatically increases the numerical
complexity as we must now evaluate the energy loss dis-
tribution for a distribution in (Leff, ρeff). Note that Bjorken
expansion is naturally taken into account with this prescrip-
tion for the effective density ρeff and so we do not need to
use the approximation in Eq. 20.

This approach could be implemented in future work, offer-
ing the advantage of a more realistic collision geometry com-
pared to the implementation in this work and WHDG [43];
while still being significantly less computationally expensive
than integrating through the realistic plasma as in CUJET
[108].

7 Conclusions

In this article we presented the first predictions for the sup-
pression of leading high-pT hadrons from an energy loss
model with explicit short pathlength corrections to the radia-
tive energy loss. We included collisional energy loss in the
model, as well as averages over realistic production spectra
for light and heavy flavor partons that propagate through a
realistic QGP medium geometry generated by second order
viscous hydrodynamics. Thus our calculations here are, to a
very good approximation, those of the WHDG energy loss
model [86], but with short pathlength corrections [37] to
the DGLV opacity expansion [42,45]. Predictions were pre-
sented for central and semi-central Pb + Pb collisions and
central p+Pb collisions and compared to data from the LHC.

We saw that the inclusion of the short pathlength cor-
rection to the radiative energy loss led to a reduction of the
suppression of leading hadrons. This reduction is well under-
stood as a result of the short pathlength correction enhanc-
ing the effect of the destructive LPM interference between
the zeroth order in opacity DGLAP-like production radiation
and the radiation induced by the subsequent collisions of the
leading parton with the medium quanta. The reduction in the
suppression also increases as a function of pT , which is a
result of the different asymptotic energy scalings of DGLV
energy loss (�E ∼ log E) compared to the short pathlength
correction (�E ∼ E).

For heavy flavor observables, the inclusion of the short
pathlength corrections leads to only a modest ∼ 10%
enhancement of RAA(pT ) in Pb + Pb and p + Pb collisions.
Even though the relative RpA enhancement of ∼ 10% is sim-
ilar to that of RAA, as one can see in Fig. 2 the influence of
the short pathlength correction on the energy loss is signif-
icantly larger for shorter pathlengths and therefore also in
the smaller collision system. The reason that the RpA and

RAA have similar relative enhancements is due to the scal-
ing RAA ∼ (1 − ε)n−1, where ε ≡ �E/E is the fractional
energy lost by the leading parton. One can determine that
the effective short pathlength correction, averaged over the
Poisson convolution and geometry, is about 100% stronger in
p + Pb compared to central Pb + Pb. (Note that the Poisson
convolution, with its large probability of no interaction or
energy loss for short pathlengths, is crucial for in fact reduc-
ing the enormous short pathlength correction influence seen
in Fig. 2 in the energy loss model.) Thus, since RpA ∼ 1 and
n ∼ 6, even though the short pathlength correction is about
100% stronger in p + Pb, the influence on RpA is similar to
that in RAA.

When we assume that the distribution of scattering centers
that stimulate the emission of gluon radiation from high-pT
partons is given by an exponential, which biases the leading
partons to scatter at shorter distances, the short pathlength
correction to Rπ

AA(pT ) grows dramatically with pT . This
very fast growth in pT is due to the very large short pathlength
correction to the gluonic radiative energy loss: the short path-
length correction to radiative energy loss breaks color triv-
iality, and the correction to gluonic radiative energy loss is
about ten times that of quark radiative energy loss (instead
of the approximately factor of two that one would expect
from color triviality) [37]. When a truncated step function is
used as the distribution of scattering centers that stimulate
the emission of gluon radiation, the short pathlength cor-
rection to Rπ

AA(pT ) becomes a much more modest ∼ 10%.
It is interesting, but perhaps not totally surprising, that the
short pathlength correction to the energy loss introduces an
enhanced sensitivity to the precise distribution of scattering
centers used in the energy loss model. In either case of dis-
tributions of scattering centers, the more rapid growth in the
short pathlength correction as a function of pT than that of the
uncorrected DGLV energy loss [38] suggests that at least part
of the faster-than-expected growth of the measured Rπ

AA(pT )

as a function of pT may be due to the influence of the short
distance corrections to the energy loss of hard partons; cf.
the reduction of suppression due to running coupling [109].

We found that the average collisional energy loss, with
fluctuations of this energy loss given by a Gaussian whose
width is dictated by the fluctuation-dissipation theorem, of
the WHDG energy loss model [86] is inappropriate for small
colliding systems. Considering radiative energy loss only,
RpA(pT ) for heavy flavor hadrons was again only modestly,
� 10%, affected by the short pathlength correction to energy
loss. Rπ

pA(pT ) was significantly affected, ∼ 50%, by the
short pathlength correction for an exponential distribution of
scattering centers, but more modestly so, ∼ 10%, for a trun-
cated step distribution of scattering centers. For both distribu-
tions of scattering centers, the short pathlength corrected pion
nuclear modification factor sees a tantalizing enhancement
above 1, similar to data [39,40]. One may then provocatively
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suggest that the experimentally measured enhancement of
RpA(pT ) > 1 may be due – at least in part – to final state
effects.

We also investigated the self-consistency of the approxi-
mations used in the derivations of DGLV and short pathlength
correction to DGLV single inclusive radiative gluon emis-
sion kernels for the phenomenologically relevant physical
situations of RHIC and LHC. We constructed dimensionless
quantities that represented the approximations and checked
whether, when averaged with a weight given by the strength
of the energy loss kernel determined by DGLV or the short
pathlength corrected DGLV, those quantities were small (or
large) as required by the approximations that went into deriv-
ing those same DGLV and short pathlength corrected DGLV
single inclusive radiated gluon spectrum kernels.

We found that, when weighted by the energy loss kernel,
the soft and collinear approximations were self-consistently
satisfied when computed with phenomenologically relevant
parameters. We further found that both the original DGLV
derivation and the DGLV derivation with the inclusion of the
short pathlength correction are not consistent with the large
formation time approximation for modest O(10–100 GeV)

energies and pathlengths O(1–5 fm), independent of the
choice of distribution of scattering centers. Finally, we see
that the large pathlength approximation breaks down for
small pathlengths ∼ 1 fm and even for large pathlengths
∼ 5 fm for large enough � 100 GeV energies. We noted in
Sect. 2.1 one more assumption, that of large transverse area.
This assumption is very difficult to assess using the methods
of this article, especially as the utilization of the assump-
tion occurs very early in the derivation. Qualitatively, even
in p + A collisions, one has that the transverse size of the
system will be ∼ (1 fm)2 whereas the typical scale set by the
scattering process itself is 1/μ2 ∼ (0.5 fm)2. It thus seems
likely that this large transverse size assumption holds even
for small collision systems.

Instead of thinking of the self-consistency of the numer-
ics with the assumptions that went into the derivation of the
energy loss, one may rather formulate the issue as whether or
not one is integrating the matrix element (modulus squared)
beyond the region under which its derivation is under con-
trol. Thus one way of understanding that, e.g., 〈ω0/μ1〉 > 1
as shown in Fig. 12 is that the matrix element is integrated
over regions of kinematics under which the derivation is not
under control. One may consider restricting the kinematics
that are integrated over to those for which the derivation is
under control. We find, for example, that the expectation of
the collinear approximation 〈k−/k+〉 is self-consistently less
than 1, but note that the gluon kinematics are restricted in such
a way as to enforce collinearity |k|max = 2x(1 − x)E ⇔
k− < k+. As was shown in [34,110], the DGLV inclusive
gluon emission kernel is not under good control near the
kinematic bound k− ∼ k+. One may thus consider restrict-

ing the gluon kinematics such that the large formation time
assumption is respected, for example, by taking |k|max =
Min(

√
2xEμ1, 2x(1 − x)E) ⇔ ω0 < μ1 and k− < k+.

Then presumably one would find that 〈ω0/μ1〉 � 1. How-
ever, as was shown in [110], there would then be a significant
sensitivity in the energy loss model predictions to the exact
kinematic bound chosen.

We thus conclude that in order to confidently compare
leading hadron suppression predictions in A + A collisions
at � 100 GeV or in p + A collisions at � 10 GeV from an
energy loss model based on an opacity expansion of the single
inclusive gluon emission kernel, future work is needed to re-
derive the opacity expansion single inclusive gluon emission
kernel with both the large pathlength and the large formation
time approximations relaxed. Further work of numerically
implementing finite pathlength effects in elastic energy loss
[86,111] will also play an important role in any quantita-
tive comparison of an energy loss model and leading hadron
suppression in small systems such as p + A collisions.
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