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Abstract In this paper, we investigate the gravitational
lensing effects in the weak and strong field limits of a static
black hole with conformally coupled scalar field. In the weak
field limit, with the use of Gauss–Bonnet theorem we calcu-
late the deflection angle of the light. It is found that compar-
ing to Schwarzschild and Reissner–Nordström (RN) black
holes in general relativity, the weak deflection angle can be
enhanced/suppressed by the scalar hair. In the strong field
limit, we first compute the light deflection angle via calcu-
lating the lensing coefficients, all of which increase as the
values of electric and scalar charges increase. Then we eval-
uate the lensing observables in strong field regime by sup-
posing the hairy black hole as the candidate of M87* and
SgrA* supermassive black holes, respectively. We find that
the scalar hair has significant influences on various observ-
ables. In particular, the lensing observables of the charged
black hole with positive scalar hair and RN black hole have
degeneracy, which will be broken by the case with negative
scalar hair. Our theoretical findings imply that it is feasi-
ble to employ the gravitational lensing effects as a probe of
Einstein–Maxwell theory with negative scalar field differen-
tiating from general relativity, once the future astrophysical
observation is precise enough.
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1 Introduction

General relativity (GR) is the most successful theory describ-
ing gravity and our Universe. In particular, recent observa-
tion of gravitational waves generated from binary compact
objects [1,2] and black hole shadows [3,4] match the predic-
tions of GR and also provide us remarkable chances to test
GR in strong field regime, but the uncertainties in the data
leave some space for alternative theories of gravity. More-
over, GR also comes across some challenges in the explana-
tion of the accelerated expansion of the Universe, the large
scale structure and the understanding of the quantum grav-
ity [5–7]. Therefore, from both observational and theoreti-
cal perspectives, a more general theory of gravity is eagerly
required, thus, plenty of modified gravitational theories have
been proposed [8–10]. Among them, a remarkable way of
modifying the action of GR is to introduce scalar field as
an additional field. The advantage mainly stems from three
aspects. Firstly, the scalar field may be ubiquitous composite
in nature, for example, ultralight axions are indispensable in
string theory [11]. Secondly, scalar field is an important can-
didate for dark matter, dark energy and inflation which are
commonly believed to exist but their essences are not clear.
Thirdly, the no hair theorem of black hole in classical GR
states that black holes are solely characterized by their mass,
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electric charge and angular momentum [12,13]. However,
there is no hint for the absence of other fundamental quantity
describing black holes, and the introducing of scalar field
into the action is one of the direct ways to verify the no hair
theorem of the black hole and help us further understand
gravity.

A minimally coupled scalar field usually does not obey the
Gauss-law and thus, a black hole cannot have a non-trivial
regular scalar hair in GR [14] so that the no hair theorem
holds. However, it can be circumvented by introducing non-
minimal couplings between the gravity and scalar field. It was
addressed in [15,16] that an Einstein-conformally coupled
scalar theory could lead to a secondary scalar hair around
the Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB)
black hole, which was considered as the first counterexample
to the no hair theorem using scalar field. The uniqueness of
BBMB was then discussed in [17,18] and also numerically
reproduced in [19]. Nevertheless, in this sector the scalar
field diverges at the horizon and so its physical properties
are difficult to interpret. This situation was then improved by
introducing a cosmological constant in the solution, dubbed
the “Martinez–Troncoso–Zanelli (MTZ)” black hole, which
pushes the scalar field singularity behind the event horizon
[20,21]. The MTZ black hole only has a spherical or hyper-
bolic horizon depending on the sign of the cosmological con-
stant but no planar solution is allowed. Inspired by this, many
efforts have been made to construct planar black hole with
various matter hair [22–24]. In particular, physicists added
the Maxwell field and extended the theory into Einstein–
Maxwell-conformally coupled scalar theory of which the
action is [20]

S = 1

2κ

∫
d4x

√−g

[
R − FμνF

μν − κ

6
(ϕ2R + 6∂μϕ∂μϕ)

]

(1)

where κ = 8πG. The equations of motion derived from the
above action admit the static spherically symmetric solution
[25]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2θdφ2), (2)

with f (r) = 1 − 2M

r
+ q2

r2 + s

r2 , (3)

and the matter fields are given by

ϕ = ±
√

6

κ

√
s

q2 + s
, Aμ = −q

r
δtμ. (4)

Here M denotes the mass parameter, q is the electric charge
parameter and s characterizes the conformally-coupled scalar
hair or scalar charge of solution. The metric (2) could indi-
cate different spacetimes depending on the parameters, and
f (r) = 0 gives the roots rc,e = M ∓ √

M2 − q2 − s. Thus,

(i) when s > M2 − q2, the metric describes a naked sin-
gularity without horizon. (ii) when M2 − q2 ≥ s ≥ 0, the
metric describes a black hole with Cauchy horizon rc and
event horizon re, and the black hole becomes extreme as
s = M2 − q2. It is noted that in this case the geometry is
similar to Reissner–Nordström (RN) black hole with a elec-
tric charge Q2 = q2 + s. (iii) when −q2 < s < 0, it is
easy to obtain that the scalar field ϕ is imaginary, in which
case the kinetic part in the action (1) should be written as
∂μϕ∗∂μϕ [26]. The new form of the kinetic term does not
matter because it is trivial for constant ϕ, but we will not
consider this case in the following study. (iv) when s < −q2,
it could also describe a black hole, but the coefficient of the
term 1/r2 is negative differentiating from the RN black hole.
So, the black hole in this situation is also dubbed mutated RN
black hole. The black hole solution (2) is closely related to
the “BBMB black hole” constructed in [15,16], but instead
of non-regular scalar field in the BBMB BH, the scalar field
in the current system is regular. Many physical phenomena
on this black hole have been extensively studied. For exam-
ple, the stability of the black hole (2) against perturbations
was studied in [15,26]. The Hawking radiation of charged
particles was disclosed in [27]. The significant effect of the
conformally-coupled scalar charge on the black hole shadow
was recently explored in [28].

The aim of this work is to study the gravitational lensing
effects of the hairy black hole solution (2). We shall explore
the effect of the conformally coupled scalar hair on the weak
and strong gravitational effects, respectively. The gravita-
tional lensing is a phenomenon in which the path of light
from a distant object is bent by the gravitational field of a
massive object. Depending on the amount of light deflec-
tion, the gravitational lensing is usually divided into weak
and strong effects. Weak deflection limit occurs when the
light ray passes far away from the photon sphere while strong
deflection limit occurs when the light ray passes from the
vicinity of the photon sphere. The gravitational lensing is one
of the powerful astrophysical tools to investigate the features
of central gravitational source and even the related theory of
gravity. Many approaches have been proposed to investigate
the gravitational lensing of black holes in both limits.

Early studies on the weak gravitational field approxima-
tion have successfully explained the astronomical observa-
tions, please see [29–31] for reviews. With a perturbative
method, the deflection angle and weak gravitational lensing
of RN black hole have been analyzed in [32]. The formula
with Taylor expansion was proposed for weak field limit of
static and spherically symmetric black hole in [33], which
was then generalized in Kerr black hole lensing [34,35].
Later, the Gibbons–Werner method was proposed in [36],
in which the Gauss–Bonnet theorem in the optical geometry
was resorted. Specifically, Gibbons and Werner proposed that
for a static and spherically symmetric black hole, the deflec-
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tion angle of light can be calculated by integrating the Gaus-
sian curvature of the optical metric outwards from the light
ray, as a consequence of the focusing of light rays emerges
as a global topological effect. This method was soon used
in stationary and axisymmetric black holes [37]. For a com-
prehensive review on the applications of the Gauss–Bonnet
theorem to gravitational deflection angle of light in the weak
field limit, one refers to [38]. On the other hand, the grav-
itational lensing in the strong gravity regime of black hole
has attracted considerable attention since one could get the
near horizon properties of black hole from it. The authors of
[39] introduced the lens equation for the strong field limit of
Schwarzschild black hole with numerical methods, after that
Bozza proposed an analytical logarithmic expansion method
for strong field lensing [40], which was then extended into
general asymptotically flat spacetime [41]. Based on the ana-
lytical method, various lensing observables for static and
spherically symmetric spacetimes have been proposed in
[40,42] and then extensively studied in [43–61]. Especially,
since the achievements of the Event Horizon Telescope [3,4]
provide us with the direct observation to explore the strong
gravity regime, so we could expect to understand the prop-
erties of black holes from the lensing effect. This is why the
gravitational lensing in the strong gravity regime of black
holes has attracted more and more attentions, in which the
observables may serve as diagnosis to reveal properties of
black holes in alternative theories of gravity and compare
with their counterparts in GR.

This paper is organized as follows. In Sect. 2, we shall
analyze the null geodesic equation in the equatorial plane of
charged black holes with conformally coupled scalar hair.
With the use of Gauss–Bonnet theorem, we will calculate
the light deflection angle in the weak field limit in Sect. 3.
In Sect. 4, we focus on the light deflection in the strong field
limit and evaluate the lensing observable of the supermassive
black holes with conformally coupled scalar hair. The last
section contributes to our closing remarks. We shall set G =
c = 1 unless we restore them for discussion.

2 Light rays in the equatorial plane of charged black
holes with scalar hair

As a preparation, in this section we shall analyze the null
geodesic of the hairy black hole (2) and check how the scalar
charge affects the light rays. Since the spacetime is spherical
symmetric and all θ = const. are equivalent, hence we can
consider the equatorial plane with θ = π/2 without loss of
generality. To this end, it is convenient to rescale all quantities
in the units of 2M to be dimensionless. Thus, we rewrite the
metric Eq. (2) projected on the equatorial plane as

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dφ2 (5)

where the functions are

A(r) = B(r)−1 = 1 − 1

r
+ q2

r2 + s

r2 and C(r) = r2. (6)

Due to the time-translational and spherical symmetries of the
metric, the photon’s motion will have two conserved quanti-
ties

E = A(r)ṫ and L = C(r)φ̇, (7)

where the dots denote the derivative respective to the affine
parameter. Then, recalling that we have

A(r)ṫ2 − B(r)ṙ2 − C(r)φ̇2 = 0 (8)

for photon, we obtain the orbit equation

ṙ2 = E2 − L2A(r)

C(r)
≡ Veff(r). (9)

Due to the gravitational effect, the light rays exist in the
region where Veff(r) ≤ 0. According to the orbit equation,
a photon incoming from infinity with a impact parameter
u ≡ L/E larger than some minimum value approaches the
center object, and then goes far away after reaching the radial
minimum distance r0. Otherwise, the photon falls into the
horizon. The turning point of the trajectory, r0, should satisfy
Veff(r) = 0 which gives us the relation

u ≡ L/E =
√
C(r0)

A(r0)
. (10)

The turning point r0 has a minimum rm which is determined
by Veff(r) = V ′

eff(r) = 0. For the hairy black hole (2), the
light ring with radium rm corresponds to the photon sphere
due to the spherical symmetry, and the radius of unstable
photon sphere (V ′′

eff(r) > 0) is

rm = 3

4

(
1 +

√
1 − 32

9
(q2 + s)

)
. (11)

It is clear that for positive allowed scalar charge, a larger s
corresponds to a smaller radius of the light ring or photon
sphere, while for s < −q2, increasing s also suppresses rm .
Subsequently, the critical impact parameter um is defined as

um ≡ u(rm) =
√
C(rm)

A(rm)

= 1

2

√√√√√√√√√

(√
−8q2 − 8s + 9

4 + 3
2

)2

4q2(√
−8q2−8s+ 9

4 + 3
2

)2 − 2√
−8q2−8s+ 9

4 + 3
2

+ 4s(√
−8q2−8s+ 9

4 + 3
2

)2 + 1
.

(12)

123



1043 Page 4 of 13 Eur. Phys. J. C (2023) 83 :1043

Fig. 1 The geometrical
configuration of gravitational
lensing

In this scenario, the photons with impact parameter u < um
will be attracted into the horizon of the black hole; while
photons with u > um move towards to the black hole till a
minimum distance r0 and then are scattered into infinity; and
photons with u = um circle around the black hole forming a
bright photon sphere with radius r = rm .

Therefore, the light deflection angle αD is finite only for
r0 > rm and becomes infinity at r0 = rm . A cartoon of geo-
metrical configuration about gravitational lensing is shown in
Fig. 1, where β is the angular separation between the source
and the black hole, and θ is the angular separation between
the image and the black hole, DOL is the distance between
the observer and the lens, and DOS is the distance between
the observer and the source, respectively. The calculation of
light deflection angle for the black hole lensing is an over-
lasting topic, but it is still difficult to give a general formula
of αD for all the possible light rays. Fortunately, in the far
limit of the source and the observer, the deflection angle of
light can be evaluated from the null geodesic as [62]

αD = 2
∫ ∞

r0

dr

dr/dφ
− π. (13)

where dr/dφ can be obtained from (7) and (9) as

dr

dφ
=

√
C(r)

B(r)

(
C(r)

A(r)

1

u2 − 1

)
. (14)

In general, it is not easy to solve (13) for arbitrary impact
parameter, but many effective methods have been proposed
to calculate the deflection angle for the light rays in weak
field limit, in which the closet approach distance of a light
ray to the lens is much larger than its gravitational radius, i.e.,
r0 
 M ; and in strong field limit (r0 ∼ M). Thus, in next
sections, we shall employ the Gauss–Bonnet method [36,38]
to evaluate αD in weak field limit and Bozza’s proposal [40,
43] to calculate αD in strong field limit for the light rays
around the hairy black hole (2) with a conformally coupled
scalar field, respectively.

3 Weak gravitational lensing effect

In this section, we shall study the influence of the confor-
mally coupled scalar hair on the deflection angle of light
in the weak gravitational lensing effect of black hole. We
will use the Gauss–Bonnet theorem in the optical geometry,
which was pioneerly proposed by Gibbons and Werner [36].
With this inspiration, the Gauss–Bonnet method has been
widely used to calculate the deflection angle of light in var-
ious spherically or axisymmetric black holes, see for exam-
ples [63–73] and references therein. It is noted that Gibbons
and Werner’s approach to gravitational lensing is only valid
when the observer and source are both Euclidean (or equiva-
lently they are both in a flat region of spacetime), otherwise
there would be contributions to the deflection angle coming
from the background geometry of the spacetime. A compre-
hensive applications of Gauss–Bonnet method to compute
the gravitational deflection angle of light in weak field limit
has been reviewed in [38]. In that paper, the authors firstly
considered the effects of finite distance from a massive object
to a light source and a receiver on the gravitational deflec-
tion angle of light and then took the infinite-distance limit to
obtain the final results which are consistent with the previous
works. We will proceed our study following the main steps
of this method.

For convenience, we introduce the new coordinate u ≡
1/r , then we can rewrite the orbital equation of photon (14)
as

( du

dφ

)2 = u4C(r)(C(r) − A(r)u2)

B(r)A(r)u2 . (15)

Obviously, by inserting the metric functions into (15), we
can obtain the orbital equation of photons. However, due
to the complexity, we cannot solve the differential equation
analytically. Instead, we use the weak field, small charges q
and s approximation to obtain the analytical approximation
solution. The orbital function of the photon is then obtained
as
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Fig. 2 The schematic figure of lensing setup and domain of integration,
which is a copy of FIG.2 from Ref. [38]

u � sin φ

u
+ M(1 + cos2 φ)

u2

+ M2 cos φ(−3 sin 2φ + 5(3π − 6φ + 4 tan φ))

8u3

− q2 cos φ(3π − 6φ + sin 2φ + 4 tan φ)

8u3

− s cos φ(3π − 6φ + sin 2φ + 4 tan φ)

8u3

+ O(M3, q3, s2). (16)

Then by solving the above equation, we get the angle φ as

φ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arcsin(uu) + M(u2u2−2)

u
√

1−u2u2 − M2(15uu−20u3u3+3u5u5+15(1−u2u2)
3
2 arccos(uu))

4u2(1−u2u2)
3
2

+
q2( 4uu√

1−u2u2
+6 arccos(uu)+sin(2 arccos(uu)))

8u2 +
s( 4uu√

1−u2u2
+6 arccos(uu)+sin(2 arccos(uu)))

8u2 for |φ| < π
2 ,

π − arcsin(uu) + M(2−u2u2)

u
√

1−u2u2 + M2(15uu−20u3u3+3u5u5+15(1−u2u2)
3
2 arccos(uu))

4u2(1−u2u2)
3
2

+
q2(

2uu(u2u2−3)√
1−u2u2

−6 arccos(uu))

8u2 +
s( 2uu(u2u2−3)√

1−u2u2
−6 arccos(uu))

8u2 for |φ| > π
2 .

For the weak field limit, we can choose the domain of φ to
be −π ≤ φ ≤ π without the loss of generality. As shown in
Fig. 2, the range of angular coordinates value φS of the source
point is −π/2 ≤ φS ≤ π/2, and the range of the angular
coordinate value φO of the observer point is |φO | > π/2. We
assume the infinite distance limit for the source and observer,
i.e., uS, uO → 0 which corresponds to the angles φS → 0
and φO → π , respectively.

Then, we will calculate the deflection angle of light in the
weak-field limit by using the Gauss–Bonnet theorem. For the
source and the observer on the equatorial plane, the deflection
angle of light is expressed as [38,64,74]

αD ≡ �O − �S + φOS . (17)

Here �S and �O are the included angles of the connecting
line between the source and the lens, and the connecting line
between the observer and the lens and the radial direction
of the light rays respectively. φOS is the longitude separa-

tion angle between source and observer (cf. Fig. 2). For con-
venience, we define the integral region of the quadrilateral
(O∞, O, S, S∞) asD. According to Gauss–Bonnet theorem,
the deflection angle of light is then evaluated by [38,64]

αD = −
∫ ∫

D
KodS −

∫ S

O
κgd. (18)

Here κg and Ko are the geodesic curvature of light rays and
the Gaussian curvature of the integral region D respectively.
d and dS are the infinitesimal line element along the bound-
ary and the area element of surface respectively. To proceed,
we solve out dt from the null condition ds2 = 0 for a sta-
tionary axisymmetric metric as

dt =
√

ρi j dxi dx j + βi dx
i , (19)

where i, j run from 1 to 3, the metric ρi j defines a three-
dimensional Riemannian manifold, and ρi j and βi are

ρi j dx
i dx j ≡ −grr (r, θ)

gtt (r, θ)
dr2 − gθθ (r, θ)

gtt (r, θ)
dθ2

+g2
tφ(r, θ) − gtt (r, θ)gφφ(r, θ)

g2
t t (r, θ)

dφ2, (20)

βi dx
i ≡ −gtφ(r, θ)

gtt (r, θ)
dφ. (21)

For the metric (2), we have βi = 0 and ρi j is the optical metric
due to the spherical symmetry. Consequently, the geodesic
curvature κg is zero and the light deflection angle is [38,75]

αD = −
∫ ∫

D
KodS. (22)

For the light propagation on the equatorial plane of the current
hairy black hole, the Gaussian curvature Ko can be defined
as [38,64,74]

Ko =
(2)Rrφrφ

detρ(2)
i j

= 1√
detρ(2)

i j

×
⎡
⎣ ∂

∂φ

⎛
⎝

√
detρ(2)

i j

ρ
(2)
rr

(2)�
φ
rr

⎞
⎠ − ∂

∂r

⎛
⎝

√
detρ(2)

i j

ρ
(2)
rr

(2)�
φ
rφ

⎞
⎠

⎤
⎦ ,

(23)
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where (2)Rrφrφ , (2)�
φ
rr and detρ(2)

i j are defined by the opti-
cal metric ρi j on the equatorial plane. Therefore, the closed
surface integral of Gaussian curvature is [38]

−
∫ ∫

D
KodS =

∫ φR

φS

∫ ∞

r(φ)

Ko

√
detρ(2)drdφ, (24)

where r(φ) is the orbit function obtained from (16), and the
area element of surface is defined as dS = √

detρ(2)drdφ.
Then recalling the metric factors of (2), we can obtain the
Gaussian curvature and the area element of surface

Ko � −2M

r3 + 3M2

r4 + 3q2 + 3s

r4 , dS

=
(
r + 3M + 15M2

2r
− 3(q2 + s)

2r

)
drdφ, (25)

such that the surface integral of Gaussian curvature is given
as

−
∫ ∫

D
KodS � 4M

u
+ 15M2π

4u2 − 3π(q2 + s)

4u2 . (26)

Subsequently, the deflection angle of light ray (18) in weak
field limit is evaluated as

α � 4M

u
+ 15M2π

4u2 − 3π(q2 + s)

4u2 + O
(

1

u3

)
. (27)

It is clear that when the scalar hair parameter s = 0, the
deflection angle reproduces the result for RN black hole [76],
and further setting q = 0 will recover the deflection angle of
light for Schwarzschild black hole [38]. The effect of scalar
charge on the deflection angle we can read from (27) is inter-
esting. For the hairy black hole with s > 0, the light deflection
angle cannot be distinguished from that happens in RN black
hole with charge Q2 = q2 +s, and both of them have smaller
deflection angle than Schwarzschild black hole. However, for
the hairy black hole with s < −q2, the deflection angle is
enhanced by the comformally coupled scalar, which means
that the negative scalar charge could make the light bend
more, when comparing to Schwarzschild and RN black hole.

4 Strong gravitational lensing effect

In this section, we will move on to the strong lensing limit,
in which the closest distance of a light ray to the lens is very
close to its gravitational radius (r0 ∼ M). Thus, the deflec-
tion angle in this case will increase and eventually diverge as
r0 decreases into the radius of photon sphere. We will first
calculate the deflection angle in strong field limit, and then
combine it with the lens equation to evaluate various lensing
observables including the images and the time delay for the
supermassive black holes.

4.1 Deflection angle

To handle the integral in (13) in the strong deflection limit,
we will follow the method proposed in [40,41], the main
strategy of which is to expand the deflection angle near the
radius of photon sphere and then give an analytical formula of
the deflection angle. To proceed, we introduce the auxiliary
variable z ≡ A(r)−A(r0)

1−A(r0)
= A−A0

1−A0
, then we can rewrite the

integral as

2
∫ ∞

r0

dr

dr/dφ
=

∫ 1

0
R(z, r0)h(z, r0)dz, (28)

where

R(z, r0) = 2(1 − A0)

A′

√
B (2A0Au)√
CA0

√
4AC

,

h(z, r0) = 1√
A0 − AC0

C

. (29)

with A0 = A(r0) and C0 = C(r0). It is easy to check that
R(z, r0) is regular for all values of z and r0, while h(z, r0)

diverges as z → 0. To deal with the divergent term, we
expand the expression of the square root in h(z, r0) to the
second order such that

h(z, r0) ∼ h0(z, r0) = 1√
m̄(r0)z + n̄(r0)z2

, (30)

where m̄(r0) and n̄(r0) are the expansion coefficients. Sub-
sequently, according to [40,43], the deflection angle in the
strong field limit for the light ray with impact parameter,
u(r0), can be given as

αD(u) = −ā log
( u

um
− 1

)
+ b̄ + O (u − um) (31)

where ā and b̄ are the strong deflection coefficients

ā = R(0, rm)

2
√
n̄m

, and b̄ = −π + bD + bR + ā log
c̄r2

m

um
,

(32)

with c̄ defined as the coefficient in Taylor expansion of u −
um = c̄(r0 − rm)2 and

bD = 2ā log
2(1 − Am)

A′
mrm

, bR

=
∫ 1

0
[R(z, rm)h(z, rm) − R(0, rm)h0(z, rm)]dz. (33)

It is noticed that in the above formulas the functions with the
subscript m are evaluated at r = rm .

With the above preparation, we are ready to study the
features of the light deflection angle in strong gravitational
lensing by the hairy black hole (2), and we focus on the
effect of the scalar charge. In Fig. 3 we show the strong field
deflection coefficients ā and b̄, depicted as a function of the
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Fig. 3 The lens coefficients ā and b̄ in strong filed limit as functions of scalar charged for selected electric charge. Here we fix M = 1/2

Fig. 4 The light deflection angle in strong filed limit as functions of
scalar charged for selected electric charge. Here we fix M = 1/2 and
set u = um + 0.003

scalar hair with selected values of electric charge. We can
read off the following features from the plots. (i) Both ā and
b̄ (if real) are enhanced by the electric charge, which means
that the coefficients have smallest values for Schwarzschild
black hole. (ii) For positive scalar charge, s > 0, the coeffi-
cients are larger for hairy black hole with stronger s, which
is expected because in this case increasing s corresponds to
larger effective electric charge of RN black hole. (iii) For
negative scalar charge with s < −q2, stronger scalar hair
smoothly suppresses the coefficients. These features of ā and
b̄ have obvious prints on the the deflection angle, αD , shown
in Fig. 4, from which we see that the effects of the electric
and scalar charges on the αD are similar to those on the coef-
ficients. This similarity can be easily understood from the
expression (31).

4.2 Observables in strong lensing by supermassive black
holes

4.2.1 Various observables in strong lensing

We assume that the observer and source are almost aligned
and are located in flat spacetime and the curvature influence
the light deflection angle only near the lens [77]. Then, con-
sidering that the source is behind the lens, one shall have the

lens equation [39,78]

β = θ − DLS

DOS
�αn, (34)

where �αn = αD−2nπ is the offset of deflection angle loop-
ing over the black hole n times. Then combining the deflec-
tion angle (31) and the lensing equation (34), one can approx-
imately obtain the position of the n-th relativistic image as
[40]

θn = θ0
n + umen(β − θ0

n )DOS

āDLSDOL
, (35)

where θ0
n is the image position corresponding to αD = 2nπ

and the factor en is

en = exp

(
b̄ − 2nπ

ā

)
. (36)

Considering that the gravitational lensing has conservative
surface brightness and the magnification is the quotient of the
solid angles subtended by the n-th image and the source, the
magnification of n-th relativistic image can then be evaluated
as [40,79,80]

μn =
(

β

θ

dβ

dθ

)−1 ∣∣∣∣
θ0
n

= u2
men(1 + en)DOS

āβDLSD2
OL

. (37)

The above formula implies two features of the magnification.
One is that it decreases exponentially with n, so the first rela-
tivistic image could be the brightest one. The other is that the
magnification is proportional to 1/D2

OL which is very small
and thus the relativistic images are very faint, however, the
images can have large brightness if the alignment β is close
to zero. Besides, in order to define some more interesting
observables, one usually treats only the outermost image θ1

as a single image, and packs all the remaining ones together
as θ∞ which represents the asymptotic position of a set of
images in the limit n → ∞. Then one can evaluate the fol-
lowing three observables of the relativistic images [40]:

the angular position of the asymptotic relativistic image
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θ∞ = um
DOL

, (38)

the angular separation between the outermost and

asymptotic relativistic images

S = θ∞ exp

(
b̄

ā
− 2π

ā

)
, (39)

and the relative magnification of the outermost relativistic

image

rmag = μ1∑ ∞
n=2μn

� 5π

ā log(10)
, (40)

respectively. Consequently, with the above formulas, we can
theoretically predict various observables of the strong lens-
ing for the hairy black hole (2) once we determine the lens-
ing coefficients ā, b̄ and the critical impact parameter um .
Inversely, if it is successful to measure the above lensing
observable from experiment, the results would be helpful for
us to identify the nature of the hairy black holes or lens.

In addition, in the aspect of time measurement, if one
can distinguish the time signals of the two images from the
lens, then he/she can consider another important observable
in strong field lensing, i.e. the time delay. Since the deflection
angle for the hairy black hole could be more than 2π and
multiple images of the source could be formed, hence the
travel time in different light paths corresponding to different
images will be theoretically distinguishable. The time delay
between i-th and j-th images could be approximated as [43]

�T s
i, j = 2π(i − j)

ã

a
+ 2

√
Bmum
Amc̄

e
b

2a

(
e− 2π j∓β

2a − e− 2π i∓β
2a

)

for the images on same side of the lens, (41)

�T o
i, j = (2π(i − j) − 2β)

ã

a

+2

√
Bmum
Amc̄

e
b

2a

(
e− 2π j−β

2a − e− 2π i+β
2a

)

for the images on opposite sides of the lens, (42)

with ā, b̄, c̄ defined in last subsection and ã = R̃(0,rm )

2
√

βm
,

R̃(z, r0) = 2(1 − A0)

A′

√
CBA0√
AC

(
1 − 1√

A0h(z, r0)

)
. (43)

In both cases, the time delay mainly comes from the first
term as the contribution from the second term usually can be
negligible, subsequently, the time delay between the first and
second relativistic images on same side of the lens is given
by [43]

�T s
2,1 = 2πθ∞DOL . (44)

With those formulas in hands, we can evaluate the values
of various lensing observations by presupposing the astro-
physical compact objects as the hairy lens.

4.2.2 Evaluating the observables by M87* and SgrA*
supermassive black holes

In this subsection, we shall investigate the lensing observa-
tions by supposing the supermassive M87* and SgrA* black
hole as the lens by the hairy black hole with conformally cou-
pled scalar, and do the comparison with the Schwarzschild
and RN cases. To this end, we should apply the realistic
mass and distance of the lens, i.e., M = 6.5 × 109M� and
DOL = 16.8 Mpc for M87* [81] while M = 4.0 × 106M�
and DOL = 8.35 Kpc for SgrA* [82].

The angular positions of the first and second relativistic
images, θ1 and θ2 for selected parameters are computed via
(34) and listed in Table 1. Here we take DLS/DOS = 0.5. For
both M87* and SgrA*, when s = 0, the results are for RN
black hole with the electric charge q = 1/4. We see that as
the value of the scalar hair increases, both θ1 and θ2 decrease,
but the position of source β slightly affects the angular posi-
tions. This means that comparing to the RN black hole, the
supermassive black hole with negative conformally coupled
scalar hair corresponds to larger angular positions while the
ones with the positive scalar hair has smaller angular posi-
tions, which will be hold for higher order relativistic images.
Moreover, with the same parameters, both the angular posi-
tions of the hairy black hole and their deviations from GR for
SgrA* are larger than those for M87*, making it is easier to
detect in SgrA*. Next, using (37), we calculate the relative
magnification of the first and second order images and tabu-
lated the selected results in Table 2 for M87* and Table 3 for
SgrA*. From the tables, we see that the first order image
for the current hairy black hole is highly magnified than
the second order image, and the effect of the hair is again
monotonous. It implies that the images of this hairy black
hole can be brighter or darker than those of RN, depending
on the sign of the scalar hair. The inverse proportional effect
of β on the relative magnifications is also reflected in the
tables. Moreover, the relative magnification of the outermost
relativistic image, rmag , as a function of the scalar charge
for selected electric charge is plotted in Fig. 5, which shows
that with the increasing of both charges, rmag will become
smaller. This behavior is expected as it is related with the
deflection coefficient ā (shown in Fig. 3) via (40).

Then the characteristic observables including the position
of the innermost image θ∞ and the separation S defined in
(38)-(39), as functions of the scalar charge for supermassive
black holes are depicted in Fig. 6. θ∞ descends but S grows
up with the increasing of the electric charge, similar as the
phenomena in RN black hole [83]. In the allowed region
of the scalar charge, θ∞ decreases and S increases as the
value of scalar hair increases, and their deviations from those
in GR are both more significant for positive scalar charge.
Moreover, by comparing the upper plots and bottom plots,
we find that the characteristic observables in the current hairy
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Table 1 The angular positions of the first and second relativistic images, θ1 and θ2, for supermassive black holes with the selected scalar charge s
and the position of the source β. Here we fix the electric charge q = 1/4. The unit is microarcseconds (μas)

θ1, θ2 M87* SgrA*

s

− 0.25 − 0.125 0 0.125 0.2 − 0.25 − 0.125 0 0.125 0.2

β

1 22.035 20.635 18.992 16.926 15.811 29.506 27.631 25.430 22.664 21.172

22.023 20.616 18.956 16.804 14.870 29.489 27.606 25.382 22.500 19.911

10 22.035 20.635 18.992 16.926 15.811 29.506 27.631 25.430 22.664 21.172

22.023 20.616 18.956 16.804 14.870 29.489 27.606 25.382 22.500 19.911

100 22.035 20.635 18.992 16.926 15.811 29.506 27.631 25.430 22.664 21.172

22.023 20.616 18.956 16.804 14.870 29.489 27.606 25.382 22.500 19.911

Table 2 The relative
magnification of the first and
second order images, μ1 and
μ2, for the supermassive M87*
black hole with the selected s
and β. Again we fix q = 1/4

μ1,μ2 s

− 0.25 − 0.125 0 0.125 0.2

β

1 2.783 × 10−12 3.832 × 10−12 6.351 × 10−12 1.729 × 10−11 9.415 × 10−11

3.527 × 10−15 6.125 × 10−15 1.446 × 10−14 7.944 × 10−14 1.581 × 10−12

10 2.783 × 10−13 3.832 × 10−13 6.351 × 10−13 1.729 × 10−12 9.415 × 10−12

3.527 × 10−16 6.125 × 10−16 1.446 × 10−15 7.944 × 10−15 1.581 × 10−13

100 2.783 × 10−14 3.832 × 10−14 6.351 × 10−14 1.729 × 10−13 9.415 × 10−13

3.527 × 10−17 6.125 × 10−17 1.446 × 10−16 7.944 × 10−16 1.851 × 10−14

Table 3 The relative
magnification of the first and
second order images, μ1 and
μ2, for the supermassive SgrA*
black hole with the selected s
and β. Again we fix q = 1/4

μ1, μ2 s

− 0.25 − 0.125 0 0.125 0.2

β

1 4.990 × 10−12 6.876 × 10−12 1.139 × 10−11 3.101 × 10−11 1.688 × 10−10

6.324 × 10−15 1.098 × 10−14 2.593 × 10−14 1.424 × 10−13 2.835 × 10−12

10 4.990 × 10−13 6.876 × 10−13 1.139 × 10−12 3.101 × 10−12 1.688 × 10−11

6.324 × 10−16 1.098 × 10−15 2.593 × 10−15 1.424 × 10−14 2.835 × 10−13

100 4.990 × 10−14 6.876 × 10−14 1.139 × 10−13 3.101 × 10−13 1.688 × 10−12

6.324 × 10−17 1.098 × 10−16 2.593 × 10−16 1.424 × 10−15 2.835 × 10−14

Fig. 5 The behaviors of relative magnification of the outermost relativistic image as a function of the scalar charge with different electric charge.
The left panel is for M87* supermassive black hole while the right panel is for SgrA*
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Fig. 6 The behaviors of lensing observables s − θ∞ (left), s − S(right). The upper panel is for M87* supermassive black hole while the bottom
panel is for SgrA*

Table 4 The time delay between the first and the second images �T2,1
(44) for the supermassive M87* black hole with selected charges

�T2,1/min s

− 0.125 − 0.25 0 0.125 0.16

q

0 19871.5 18716.1 17385.6 15757.7 15210.2

1/4 19311.4 18077.9 16621.9 14734.1 14041.2

1/3 18851.8 17544.8 15960.7 13732.8 12735.8

black hole and their deviation from GR are more profound
for the SgrA* than M87*.

Finally, we evaluate the time delay between the first image
and the second image for black hole with scalar hair as the
M87* and SgrA* supermassive black hole, respectively. The
results with selected charges are listed in Tables 4 and 5.
In each table, it is clear that comparing to the Schwarzschild
black hole, the electric charge shortens the time delay, and the
negative scalar charge enhances it while the positive scalar
charge suppresses it. In addition, the time delay and its devi-
ation for M87* can be thousands (hundreds) minutes and
even more, which is much longer than the several minutes
for SgrA*. This is reasonable because M87* is much farther
than SgrA* from us.

Table 5 The time delay between the first and the second images �T2,1
(44) for the supermassive SgrA* black hole with selected charges

�T2,1/min s

− 0.125 − 0.25 0 0.125 0.16

q

0 13.146 12.381 11.501 10.424 10.062

1/4 12.775 11.959 10.996 9.747 9.289

1/3 12.471 11.607 10.559 9.085 8.425

5 Closing remarks

Gravitational lensing has powerful applications in solving
important astrophysical problems as well as testing GR and
modified theories of gravity. In classical GR, black holes
are determined by the mass, electric charge, and spin as the
characterized quantities, which is known as no hair theorem
for black holes. However, in a modified gravity with intro-
duced scalar field, besides of the three characterized param-
eters, additional parameters encoding the matters are usually
involved to describe the black holes with scalar hair. Thus,
it is natural that the appearance of scalar hairs changes the
horizon of a black hole and also influences its observable
behavior. On the other hand, studying gravitational lensing
effects of the black holes gives us a way to probe its exis-
tence and properties from potential astronomical observa-
tions. Einstein–Maxwell-conformally coupled scalar theory
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is an extension of Einstein-conformally coupled scalar theory
in which the first counterexample to the no hair theorem using
scalar field was constructed in spite of the non-regular scalar
field, but the charged black hole constructed in Einstein–
Maxwell-conformally coupled scalar theory admits a regu-
lar scalar field due to the introducing of the Maxwell field.
Depending on the strength of the scalar charge, this charged
black hole with conformally coupled scalar field can mimic
the RN black hole and beyond, which makes it attract lots
of interests. This paper focused on the gravitational lensing
effects of the hairy black hole, and also various strong observ-
ables lensed by supposing this black hole as the supermassive
black holes in M87* and SgrA*.

In the weak field limit, we mainly calculated the light
deflection angle with the use of Gauss–Bonnet theorem. The
deflection angle with the vanishing scalar hair parameter
s = 0 reproduces the result for RN black hole further with the
electric charge q = 0 recover that for Schwarzschild black
hole. For s > 0, the light deflection angle has degeneracy
between the hairy black hole and RN black hole, and both
of them have smaller deflection angles than Schwarzschild
black hole. For s < −q2, the scalar charge could make
the light deflect more than that in Schwarzschild and RN
black holes. As a conclusion, we found that comparing to
Schwarzschild and RN black holes in GR, the weak deflec-
tion angle can be enhanced/suppressed by the conformally
coupled scalar field.

In the strong field limit, we first calculated the light deflec-
tion angle by calculating the strong gravitational lensing
coefficients of the black hole with scalar hair, all of which
become larger as the values of electric and scalar charges
increase. Then we evaluated the lensing observations by sup-
posing the supermassive M87* and SgrA* black holes as the
lens by the hairy black hole. The angular positions of the first
and second relativistic images decrease as the value of the
scalar hair increases, which suggests that comparing to the
RN black hole, the supermassive black hole with negative
conformally coupled scalar hair corresponds to larger angu-
lar positions while the one with the positive scalar hair has
smaller angular position. The first order image for the hairy
black hole is more magnified than the second order image,
and for larger scalar hair, the magnification of each order
image is larger but the relative magnification of the outermost
relativistic image is smaller. In addition, two more charac-
teristic observables, the position of the innermost image θ∞
and the angular separation S, for the supermassive black holes
have also been calculated. In the allowed region of the scalar
charge, θ∞ decreases and S increases as the value of scalar
hair increases, and their deviations from those in GR are
both more significant for positive scalar charge. Moreover,
our results shew that all the lensing observables for the hairy
black hole and their deviations from GR for SgrA* are larger
than those for M87*, which may imply it is easier to detect

the strong gravitational lensing in SgrA* than M87*. Finally,
we examined the time delay between the first image and the
second image. It was found that the electric charge and the
positive scalar charge suppress the time delay, while the neg-
ative scalar charge extends it. Additionally, due to the farther
distance of M87* than SgrA* from us, M87* supermassive
black hole lensing corresponds much longer time delay than
SgrA* one.

In conclusion, our theoretical study suggests that the light
deflection angle in both weak field and strong field regimes
have degeneracy between the charged black hole with pos-
itive scalar hair in Einstein–Maxwell-conformally coupled
scalar theory and RN black hole in GR, but the degeneracy
would be broken by the negative scalar hair. Assuming the
charged hairy black hole as the candidate of supermassive
M87* and SgrA* black holes, we found that various lens-
ing observables in strong gravity regime can differentiate the
theoretical predictions from Einstein–Maxwell-conformally
coupled scalar theory and GR. Thus, we could expect that the
strong gravitational effects could serve as a potential probe to
test this theory with negative scalar hair in the near future. It is
noted that the data for the supermassive black holes we used
here are from the observations of the EHT Collaboration,
the shadow data of which has also been employed to set con-
straints on the scalar charge in [28]. However, the GRAVITY
Collaboration also survey the properties of central object in
SgrA*, and its observations of several stars give strict bounds
on the extended mass of the central black hole [84,85]. Thus,
one possible interesting direction is to mimic the time-like
orbits of various stars around the supermassive SgrA* black
hole supposed as the current hairy black hole, and then fur-
ther use the observations from GRAVITY to constrain the
scalar charge.
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