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Abstract By implementing the gravitational decoupling
method, we find the deformed AdS-Schwarzschild black hole
solution when there is also an additional gravitational source,
which obeys the weak energy condition. We also deliberately
choose its energy density to be a certain monotonic function
consistent with the constraints. In the method, there is a posi-
tive parameter that can adjust the strength of the effects of the
geometric deformations on the background geometry, which
we refer to as a deformation parameter. The condition of
having an event horizon limits the value of the deformation
parameter to an upper bound. After deriving various thermo-
dynamic quantities as a function of the event horizon radius,
we mostly focus on the effects of the deformation parameter
on the horizon structure, the thermodynamics of the solu-
tion and the temperature of the Hawking–Page phase transi-
tion. The results show that with the increase of the deforma-
tion parameter: the minimum horizon radius required for a
black hole to have local thermodynamic equilibrium and the
minimum temperature below which there is no black hole
decrease, and the horizon radius of the phase transition and
the temperature of the first-order Hawking–Page phase tran-
sition increase. Furthermore, when the deformation param-
eter vanishes, the obtained thermodynamic behavior of the
black hole is consistent with that stated in the literature.

1 Introduction

Before the 1970s, there was no compelling reason to study
the thermodynamics of black holes, until Hawking’s area the-
orem changed this view [1]. Then, Bekenstein linked Hawk-
ing’s area theorem with the second law of thermodynamics
by assigning entropy to black holes [2]. Using such similarity
and assuming the event horizon of black holes as a Killing
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horizon, the four laws of black hole mechanics were formu-
lated [3]. However, with the classical view that black holes
absorb all matter and energy and emit no radiation, attribut-
ing temperature and entropy to black holes was questionable.
But by using quantum effects, Hawking showed that black
holes have radiation with the spectrum of a black body with a
certain temperature [4]. After the formulation of the standard
laws of thermodynamics of black holes, several interpreta-
tions and investigations were carried out in the thermody-
namics committee about black holes, such as entropy and
temperature, the first law of thermodynamics, and relations
between extensive and intensive quantities, see, e.g., Refs.
[5,6] and references therein.

The thermodynamic laws of ordinary materials are asso-
ciated with a pressure-volume term, however those for black
holes do not contain such a term. To overcome this incon-
sistency, an idea based on the immersion of black holes in a
background with a negative cosmological constant was pre-
sented [7]. In this view, pressure can be considered equal to a
negative cosmological constant. In this regard, in the context
of black hole thermodynamics, black holes with asymptotic
anti-de Sitter (AdS) are more interesting. The idea of using
the cosmological constant as the thermodynamic pressure
[8,9] generalized the first law of black hole thermodynamics
and formed an extended phase-space, see, e.g., Refs. [10,11].
Hence, in the presence of the cosmological constant, the mass
of a black hole does not represent the internal energy of the
thermodynamic system and is interpreted as the gravitational
version of the enthalpy [12].

The new perspective of black hole thermodynamics based
on the new interpretation of the cosmological constant and
black hole mass has led to new phenomena associated
with black holes. Accordingly, topics such as thermody-
namic equilibrium and phase transition can be addressed.
One of the most important thermodynamic behaviors is
the phase transition between sufficiently large (compared
to the AdS radius) black holes and an environment full
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of special radiation. This is known as the Hawking–Page
phase transition [13], which is considered as a confine-
ment/deconfinement phase transition in boundary conformal
field theory [14].

Furthermore, black hole thermodynamics has wide range
of applications compared to the Einstein gravity. Even, the
investigation of more complex behaviors in the issue of the
thermodynamic phase transition of black holes in modified
gravitational theories has received much attention, see, e.g.,
Refs. [15,16]. In general, finding a black hole as a solution
in a gravitational theory leads to the investigation of ther-
modynamic behavior from the researchers’ point of view.
Subsequently, more studies have been conducted and other
novel phenomena and phase structures have been observed,
see, e.g., Refs. [17–22].

The non-linear nature of equations in gravitational the-
ories leads to approximate methods and, of course, inno-
vative proposals for finding analytical solutions, which is
always an important task. In this regard, one of the attractive
approach for searching and analyzing solutions of the gravita-
tional equations is the gravitational decoupling (GD) method,
which serves as a useful tool, see, e.g., Refs. [23–25] and ref-
erences therein. Through this method, the known solutions of
the standard gravitational action can be extended (with some
minimal set of requirements) to additional sources and the
domain of modified gravitational theories. The implemen-
tation of the GD method makes it possible to decouple the
gravitational equations of sources into two parts, one for the
standard field equations and one for an additional gravita-
tional source. This method has been applied in the context
of the Randall-Sundrum brane-world [26,27] and has also
been extended to investigate in other gravitational issues,
including new black hole solutions, see, e.g., Refs. [25,28–
40]. In the present work, while employing the GD method,
we intend to extend the AdS-Schwarzschild vacuum solu-
tion in the presence of a generic gravitational source, which
satisfies the weak energy condition. Thereafter, we try to
find possible deformed AdS-Schwarzschild black hole solu-
tion and then investigate its thermodynamic properties and
Hawking–Page phase transition while varying the relevant
parameters.

The work is organized as follows. In Sect. 2, while
briefly reviewing and implementing the GD method, we
introduce the desired gravitational action. In Sect. 3, we
derive the deformed AdS-Schwarzschild black hole. In
Sect. 4, we scrutinize the structure of the horizon and cal-
culate the thermodynamic quantities in the extended phase-
space to investigate the horizon structure, the thermodynam-
ics of the solution and the temperature of the Hawking–
Page phase transition. Finally, we summarize the results in
Sect. 5.

2 Modified gravitational action and decoupling field
equations

We consider the following action in four dimensions in which
an additional general Lagrangian term is added to the stan-
dard Einstein gravity with the cosmological constant, namely

A =
∫

d4x
√−g

(
R − 2�

2κ
+ Lm + LX

)
, (1)

where g is the determinant of the metric, R is the Ricci
scalar, � is the cosmological constant, Lm is the usual mat-
ter Lagrangian and LX represents Lagrangian for any other
matter or new gravitational sector beyond general relativity,
e.g. Lovelock gravity and/or new other scalar/vector/tensor
field(s). Meanwhile, κ = 8πGN/c4, however through the
work, we use the natural units h̄ = 1 = c, and also employ
the (−,+,+,+) signature. The variation of the action with
respect to the metric gives the field equations

Gμν + �gμν = κ T (tot)
μν , (2)

where Gμν is the Einstein tensor and T (tot)
μν represents the

total symmetric energy–momentum tensor as

T (tot)
μν = T (m)

μν + T (X)
μν , (3)

wherein

T (m)
μν = − 2√−g

δ(
√−g Lm)

δgμν
(4)

and

T (X)
μν = − 2√−g

δ(
√−g LX)

δgμν
. (5)

As an ansatz, we demand the solution to be the spherically
symmetric and static spacetime, namely

ds2 = −eν(r)dt2 + eμ(r)dr2 + r2(dθ2 + sin2θ dφ2), (6)

in the spherical coordinates. Hence, metric (6) must satisfy
the field Eq. (2), namely

κ
(
T (m)0

0 + T (X)0
0

)
= � + e−μ

(
1

r2 − μ′

r

)
− 1

r2 , (7)

κ
(
T (m)1

1 + T (X)1
1

)
= � + e−μ

(
1

r2 + ν′

r

)
− 1

r2 , (8)

κ
(
T (m)2

2 + T (X)2
2

)
= � + 1

4
e−μ

[
− μ′ν′ + 2ν′′

+ν′2 + 2
(
ν′ − μ′)
r

]
, (9)

where prime denotes derivative with respect to r and
T (tot)3

3 = T (tot)2
2 due to the spherical symmetry. However,

we effectively identify the energy–momentum tensors as

T (tot)
μ

ν = diag[−ε̃, p̃r , p̃t , p̃t ], (10)

T (m)
μ

ν = diag[−ε, pr , pt , pt ], (11)
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T (X)
μ

ν = diag[−E,Pr ,Pt ,Pt ], (12)

where (ε̃, ε and E) are energy densities, ( p̃r , pr and Pr ) are
radial pressure densities, and ( p̃t , pt and Pt ) are tangential
pressure densities. In general, when p̃t �= p̃r , these defini-
tions clearly indicate an anisotropy case.

In addition, the conservation equation

∇μT
(tot) μν = 0, (13)

with metric (6), is a linear combination of Eqs. (7)–(9). How-
ever, in terms of those two sources in relation (3), while using
relations (10)–(12), it gives

2

r
(pr − pt + Pr − Pt ) + ν′

2
(ε + pr + E + Pr )

+ (
p′
r + P ′

r

) = 0. (14)

Now, to solve the system Eqs. (7)–(9), we implement
the GD method, which is explained in detail in Ref. [24],
of course, we mention the necessary steps very briefly. We
assume that the solution of Eqs. (7)–(9) for the source T (m)

μν

when T (X)
μν = 0 is a general static spherically symmetric one

as

ds2|
T (X)
μν =0

= −eζ(r)dt2+eλ(r)dr2+r2(dθ2+sin2θ dφ2).

(15)

The energy–momentum tensor T (m)
μν is conserved with this

metric, i.e.

∇̃μT
(m) μν = 0, (16)

where ∇̃μ is calculated according to metric (15). We also

assume that the effects of the presence of the source T (X)
μν on

solution (15) are in the geometric deformation

ζ → ν = ζ + α g(r) (17)

and

e−λ → e−μ = e−λ + α f (r), (18)

where f (r) and g(r) are geometric deformations that alter the
radial and temporal metric components, respectively, and the
constant α is a free positive parameter, which can somehow
adjust the strength of the effects on these components simul-
taneously. Moreover, having α guarantees that solution (15)
is recovered in the limit α → 0. We refer to the parameter α

as a deformation parameter.
Then, substituting decompositions (17) and (18) into the

original field Eqs. (7)–(9) causes those to be separated into
two decoupled sets of equations. One set of the field equations
is for the standard energy–momentum tensor T (m)

μν , i.e.

κ ε = −� − e−λ

(
1

r2 − λ′

r

)
+ 1

r2 , (19)

κ pr = � + e−λ

(
1

r2 + ζ ′

r

)
− 1

r2 , (20)

κ pt = � + 1

4
e−λ

[
−λ′ζ ′ + 2ζ ′′ + ζ ′2 + 2

(
ζ ′ − λ′)
r

]
.

(21)

Another set of the field equations is for the source T (X)
μν , i.e.

κ E = −α f

r2 − α f ′

r
, (22)

κ Pr − α
e−λg′

r
= α f

(
1

r2 + ν′

r

)
, (23)

κ Pt − αe−λ

4

(
2g′′ + αg′2 + 2g′

r
+ 2g′ζ ′ − λ′g′

)

= α f

4

(
2ν′′ + ν′2 + 2

ν′

r

)
+ α f ′

4

(
ν′ + 2

r

)
,

(24)

which clearly shows that when the deformation parameter is
zero, this source vanishes.

At this stage, one can investigate the field Eqs. (19)–(21) to
determine (T (m)

μν , ζ, λ), and then solve the field Eqs. (22)–(24)

to specify (T (X)
μν , g, f ). In other words, both sets, although

separated, remain gravitationally connected, i.e. to solve the
second set, one needs first to solve the first set. However, since
the number of unknowns in each set of equations is more
than the number of independent equations, it is necessary to
apply additional conditions and/or extra relations, e.g. the
equation of state. More explicitly, after solving the first set,
five unknowns remain in the three equations corresponding
to the additional source. Hence, to solve this set, we need to
impose two constraints, which we will perform in the next
section.

3 Deformation of AdS-Schwarzschild black hole

In order to deform AdS-Schwarzschild black hole for action
(1), we start in the absence of LX and with the solution of
the exterior Schwarzschild (i.e., in vacuum with T (m)

μν = 0)
in the AdS background. In this regard, the field Eq. (2) give

eζ(r)|
T (m)
μν =0

= e−λ(r)|
T (m)
μν =0

= 1 − 2M

r
+ r2

l2
(25)

for the region r > R, where R is the surface of the self-
gravitating system, M is the ADM mass and l = √

3/|�| is
the AdS radius.

In order to have black holes with a well-defined event
horizon structure for action (1), the sufficient condition (i.e.,
the Kerr–Schild condition)

eμ(r) = e−ν(r) (26)

can be imposed [25] on metric (6). Actually, by adding
this ansatz, the deformed black hole metric is a metric that
respects the symmetries. Accordingly, a direct consequence
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of Eqs. (7) and (8) plus condition (26) is that the total source
T (tot)

μν must satisfy the equation of state

p̃r = −ε̃. (27)

When T (m)
μν = 0, this relation yields the constraint

[Pr = −E]
∣∣
T (m)
μν =0

, (28)

i.e., in this case, with positive energy density of the source
T (X)

μν , only its negative radial pressure density is allowed.
Furthermore, by deriving the conservation of the energy–
momentum tensor of sources with metric (6) while using
decompositions (17) and (18) as well as using relations (11)
and (16), the first equality in relation (25), and condition (26),
gives1

∇μT
(m) μ

ν = −α g′

2
(ε + pr )δ1 ν = −∇μT

(X) μ
ν. (29)

This relation, while assures the decoupling of the field equa-
tions, shows the exchange of energy between the sources.
Moreover, from relation (29), it is obvious that there is no
energy exchange in the absence of T (m)

μν , or in the special
case where ε = −pr , and/or when the geometric deforma-
tion g is constant.

From now on, for simplicity, we consider the back-
ground geometry to be the AdS-Schwarzschild vacuum, i.e.
when T (m)

μν = 0 and we have solution (25), but hence-
forth we do not mention the subscript. In fact, in the
continuation, our aim is to explore the back-reaction of
a static, spherically-symmetric energy–momentum tensor
on the four-dimensional AdS-Schwarzschild black hole. Of
course, it should be noted that in the mentioned case, one can
get the solution without resorting to the GD method. How-
ever, we utilize the GD method as an alternative approach to
solve this case to better observe the effect of moving away
from the AdS-Schwarzschild solution and also to benefit
from varying the deformation parameter when studying the
thermodynamic properties. In other words, the merit of the
GD method, in general, is that it is easy any interpretation in
terms of energy exchange as well as in terms of superposition
of configurations.

Accordingly, in the next step, by substituting condi-
tion (26) and the AdS-Schwarzschild solution (25) into
decompositions (17) and (18), we obtain

α f (r) =
(

1 − 2M

r
+ r2

l2

)
[eα g(r) − 1]. (30)

Hence, the line element (6) becomes

ds2 = −eζ(r)B(r)dt2 + 1

eζ(r)B(r)
dr2

1 It is instructive to emphasize that the use of the first equality in relation
(25) and condition (26) is necessary to obtain the result of Eq. (29).

+r2(dθ2 + sin2θdφ2), (31)

where

B(r) ≡ eα g(r). (32)

Therefore, to completely specify the line element (6) in this
case, we need to specify the behavior of function B(r) (or
indeed g(r)).

Now, using Eqs. (22) and (30), the differential equation
governing the function B(r) reads

r2κ E =
(

2M − r − r3

l2

)
B ′(r) +

(
1 + 3r2

l2

)
[1 − B(r)].

(33)

Equation (33) shows that the behavior of function B(r)
depends on the function of energy density E , which in turn
depends on the choice of T (X)

μν as the additional source. To

proceed, we resort to the weak energy condition for the T (X)
μν ,

namely

E ≥ 0, (34)

E + Pr ≥ 0, (35)

E + Pt ≥ 0. (36)

In the special case under consideration, due to constraint (28),
condition (35) holds. Considering Eq. (33), condition (34)
puts the constraint
(

2M − r − r3

l2

)
B ′(r) +

(
1 + 3r2

l2

)
[1 − B(r)] ≥ 0 (37)

on the function B(r). While using the conservation Eq. (14)
plus constraint (28), condition (36) imposes the constraint

2(E + Pt ) = −rE ′ ≥ 0 (38)

on the function E(r).
Once again, to continue the process, we deliberately

choose the energy density function of the additional source
as the special monotonic function2

E(r) = α

κ(β + r)4 , (39)

which satisfies3 both condition (34) and constraint (38), and
has rapid asymptotic decay. In fact, considering Eq. (22) and
choosing function (39), we have selected a special function
for the geometric deformation f (r) and in turn the function
B(r). In function (39), r �= −β, where β is a constant param-
eter with length dimension that controls the behavior of E(r)
at r = 0, i.e. it is necessary to avoid the central singularity.

2 Also, this function is a reminder that the energy density of radiation
is proportional to 1/r4.
3 Note that, the dimension of the deformation parameter is the square
of length in the natural units.
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We refer to the parameter β as a control parameter. In addi-
tion, the role of the deformation parameter in function (39)
is consistent with Eq. (22). Meanwhile, substituting (39) into
Eq. (38) gives

Pt = r − β

β + r
E, (40)

and in turn, by using relation (12) and constraint (28), the
trace of the energy–momentum tensor T (X)

μν is obtained to be

T (X) = − 4β

β + r
E . (41)

Thus, under the mentioned considerations, the energy–
momentum tensor T (X)

μν depends only on a single function
of the radial coordinate, its energy density function.

Now, by substituting function (39) into Eq. (33) and solv-
ing the differential equation for the function B(r), we obtain

B(r) =
αβ2

3(β+r)3 + α
β+r − αβ

(β+r)2 + r + r3+c1
l2

r(1 − 2M/r + r2/ l2)
, (42)

where c1 is an integration constant. However, to have the
background AdS-Schwarzschild solution (25) in the limit
α → 0 (i.e., when B(r)−−−→

α→0
1, and consistent with defi-

nition (32)), it is necessary to set4

c1 = −2Ml2. (43)

Hence, the metric function reads

eζ(r)B(r) = 1 − 2M

r
+ r2

l2
+ α

β2 + 3r2 + 3βr

3r(β + r)3 ≡ F(r),

(44)

which preserves the asymptotic behavior in the form of
the AdS solution. Moreover, the asymptotic behavior of the
term resulting from the additional source is 1/r2, i.e. like a
Maxwell field.

Therefore, the line element for the region outside a self-
gravitating system filled with the energy–momentum tensor
T (X)

μν , while choosing the behavior of its energy density as
function (39), is

ds2 = −F(r) dt2 + 1

F(r)
dr2 + r2(dθ2 + sin2θ dφ2).

(45)

We refer to the black hole solution of this metric as a
deformed AdS-Schwarzschild black hole, and in the next
section, investigate its horizon structure and thermodynam-
ics.

4 Note that, due to function (39), solution (42) with value (43) auto-
matically satisfies constraint (37).

4 Structure of horizon and thermodynamics of
deformed AdS-Schwarzschild black hole

First of all, the metric function (44) in the limit β → 0
becomes the metric function corresponding to the well-
known charged AdS black hole, i.e.

F(r)|β→0 = 1 − 2M

r
+ r2

l2
+ α

r2 . (46)

Therefore,
√

α can be interpreted as the electric charge of
black hole. In this particular case, the thermodynamic behav-
ior of the black hole is reminiscent of that investigated in
Refs. [7,41]. However, in these references, with the elec-
tric charge as a conserved charge of the theory, the possi-
bility of variable electrostatic energy with an electric poten-
tial has been considered, while we consider the deforma-
tion parameter only as a free parameter.5 Moreover, we
emphasize that in the case of β = 0, relation (41) indicates
that the trace of the additional energy–momentum tensor is
zero, and utilizing constraint (28) and relation (40) gives
Peff ≡ 1

3 (Pr + Pt + Pt ) = 1
3E . These results plus the sec-

ond footnote confirm that the additional energy–momentum
tensor is the one of a Maxwell field and its solution is simply
the electrically charged static AdS black hole.

On the other hand, we deliberately put the control param-
eter, i.e. β, by hand in function (39) so that β �= 0 prevents
the divergence of the energy density E . Therefore, it is better
to check the effect of the control parameter on the behavior of
the metric function. For this purpose, we expand the metric
function (44) around the zero of its argument to obtain

F(r)|r→0 =
α
β

− 6M

3r
+ 1 + 1

3
r2

(
3

l2
− α

β4

)
+ O

(
r3

)
.

(47)

Hence, with the value of

β = α

6M
, (48)

the metric function F(r) has no singularity at r = 0. Further
investigation of this particular case may lead to a regular
black hole, however we leave this investigation to another
work. That is, although relation (48) is necessary to avoid
the divergence of the metric function, we do not limit our
investigation to it in this work.

However, by the simple transformation r → β + r ,
the control parameter is turned on. Hence, the energy–
momentum tensor T (X)

μν no longer describes a pure Maxwell
field and the corresponding metric is modified. Actually, we
are interested to have the black hole solution of metric (45) in

5 Of course, the deformation parameter can also be considered as an
additional hair that is not related to other charges, i.e. the mass, the
electric charge and the angular-momentum.
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the presence of non-vanishing β. For this purpose, the equa-
tion governing the radius of the event horizon rh is determined
by the larger root of equation

F(rh) = 0, (49)

which is a sixth order equation. Its solution is complicated
and not useful for our purpose. Hence, instead of solving
it analytically, we restrict ourselves to specifying its impor-
tant consequences by resorting to its various corresponding
diagrams in Fig. 1 with fixed values of its constants.

For each of the curves in this figure, the intersection of
the metric function with the horizontal axis determines its
corresponding event horizon radius. In this regard, this figure
shows that the condition of having an event horizon limits the
value of the deformation parameter to an upper bound, αmax.
In general, the value of αmax depends on the values of other
parameters, namely M , l and β. For instance, Fig. 1 indicates
that when M = 1, l = 1 and β = 1, the radius of the event
horizon decreases with increasing the value of α, until we
obtain6 αmax ≈ 6. In the continuation of this work, we pay
attention to this limitation. In other words, we comply the
value 0 < α < αmax as a condition for having an event
horizon for the deformed AdS-Schwarzschild black hole.

Alternatively, we have plotted the metric function F(r),
relation (44), with respect to r , while varying the control
parameter β and fixing the other parameters including the
deformation parameter α in Fig. 2. This figure shows that
when M = 1, l = 1 and α = 4, the radius of the event
horizon increases with increasing the value of β. This effect is
expected because the β parameter shifts the radial coordinate
as mentioned earlier. In turn, increasing the radius of the
event horizon affects the thermodynamic properties, and this
indicates the influence of the control parameter on them.

To investigate the thermodynamic behavior of the obtained
solution, while using Eq. (49), we first express the mass of
the black hole in terms of the radius of the event horizon, i.e.

M = 1

6

[
3rh + 3r3

h

l2
+ α

β2 + 3r2
h + 3βrh

(β + rh)3

]
. (50)

Furthermore, the entropy of the deformed AdS-Schwarzschild
black hole can be obtained from the Bekenstein–Hawking
formula [2,42] as a quarter of the area of the event horizon,
i.e.

S ≡ Ah

4L2
Pl

= πr2
h , (51)

where the Planck length LPl is considered in the natural units
and the second equality is due to the static and spherical sym-
metry. Also, the definition of black hole pressure (density)

6 However, using Eq. (49) with these mentioned values gives α =
3(2 − rh − r2

h )(1 + r3
h )/(1 + 3rh + 3r2

h ) that yields α−−−−→
rh→0

6.

P in AdS space (in the natural units with a negative cosmo-
logical constant, see, e.g., Ref. [7]) is

P = 3

8πl2
. (52)

Then by obtaining rh and l from relations (51) and (52), and
substituting into relation (50), the mass of the deformed AdS-
Schwarzschild black hole can also be expressed in terms of
thermodynamic quantities S and P as

M = 1

6

⎡
⎢⎢⎢⎣3

√
S

π
+ 8PS

√
S

π
+ α

β2 + 3 S
π

+ 3β

√
S
π(

β +
√

S
π

)3

⎤
⎥⎥⎥⎦ . (53)

Hence, for the deformed AdS-Schwarzschild black hole, we
can write the (generalized) first law of black hole thermody-
namics in the extended phase-space as7

dM = TdS + VdP, (54)

where T and V are the Hawking temperature and the ther-
modynamic volume, respectively. Of course, in relation (54),
the presence of VdP instead of PdV indicates that the mass
M is the enthalpy of black hole instead of the internal energy.

Now, using relation (53), let us derive these thermody-
namic quantities. In this regard, the temperature reads

T =
(

∂M

∂S

)
P

=
1 + 8PS − π α S(√

πβ+√
S
)4

4
√

π S
. (55)

Of course, this relation can also be derived using the defini-
tion of the Hawking temperature in terms of the radius of the
event horizon, i.e.

T ≡ 1

4π
F ′(r)|r=rh =

1 + r2
h

[
3
l2

− α
(β+rh)4

]

4πrh
, (56)

where we have substituted M from relation (53). Then, taking
rh and l from relations (51) and (52), and substituting into
relation (56), it reads the same as relation (55) as expected.
Also, the thermodynamic volume is [43,44]

V =
(

∂M

∂P

)
S

= 4S3/2

3
√

π
(57)

that, in terms of the radius of the event horizon, obviously
reads

V = 4

3
πr3

h . (58)

7 Note that, in this law, we do not consider the deformation parameter as
a possibility of variable electrostatic energy, see, e.g., Ref. [38]. Never-
theless, if one puts a term like +� dα in the right hand of relation (54),
due to partial derivatives, relations (55), (57) and (61) will not change,
and by definition (59), relation (60) will not change either.
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Fig. 1 Using relation (44), the
figure schematically (i.e.,
scale-free) illustrates the
behavior of the function F(r)
with respect to r for fixed values
of M = 1, l = 1 and β = 1, and
different chosen values of α. As
α increases, the radius of the
event horizon decreases, until
αmax ≈ 6

Fig. 2 Using relation (44), the
figure schematically (i.e.,
scale-free) illustrates the
behavior of the function F(r)
with respect to r for fixed values
of M = 1, l = 1 and α = 4, and
different chosen values of β. As
β increases, the radius of the
event horizon increases

To continue investigation of the thermodynamic behavior
of the deformed AdS-Schwarzschild black black hole, we
apply the thermodynamic machinery suggested in Ref. [7].
We assume that the black hole occurs in a canonical ensem-
ble. We also assume that each related extended phase-space
contains a fixed value of the deformation parameter. In this
case, the Gibbs free energy is8

G ≡ M − T S, (59)

which in terms of the radius of the event horizon becomes

G = rh

4
− r3

h

4l2
+ α

9r3
h + 12βr2

h + 8β2rh + 2β3

12(β + rh)4 . (60)

8 We do not consider the deformation parameter in this relation either.

In this regard, it is known that the condition of better thermal
equilibrium globally corresponds with more negative values
of the Gibbs free energy. Also, the criterion of the phase
transition is related to the vanishing Gibbs free energy of the
black hole.

Another useful quantity in the thermodynamic study of a
black hole is the specific heat capacity at constant pressure,
CP, which determines the local thermodynamic stability of
the black hole. In the case at hand, it is

CP ≡ T

(
∂S

∂T

)
P

= 2π
1 + r2

h

[
3
l2

− α
(β+rh)4

]
3
l2

− 1
r2

h
− α

(β+rh)4 + 4αrh
(β+rh)5

, (61)

where we have used the chain rule and relation (56). However,
the local thermodynamic stability corresponds to positiveCP

values.
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On the other hand, among the various black hole phase
transitions, one of the most significant is the Hawking–Page
phase transition [13]. This is a study of the thermodynamics
between an AdS-Schwarzschild black hole and the thermal
AdS space. In this respect, we consider the constant values of
β = 1 and9 l = 1 and choose several constant values of the
deformation parameter within its allowed range to investigate
its effects on the stability of the black hole and particularly
on the Hawking–Page phase transition.

First, let us investigate the thermodynamic stability of
the black hole locally through the behavior of the specific
heat capacity at constant pressure. In this regard, Fig. 3 indi-
cates the behavior of the CP function with respect to the
radius of the event horizon for several values of the defor-
mation parameter in its allowed range. The resulting curves
contain a discontinuity at a certain horizon radius, such
that for the chosen values it is approximately in the range
of 0.55 < rh < 0.6. Moreover, the black holes with horizon
radii located in the region of negative CP values are ther-
modynamically unstable, and a minimum value of horizon
radius is required for a black hole to have local thermody-
namic equilibrium. However, as the deformation parameter
increases, such minimum required radius decreases. Figure 3
also shows that black holes in the CP < 0 region have small
horizon radii (which we refer to as small black holes (SBHs))
and transform into other thermodynamically allowed states.
However, black holes with larger horizon radii in the CP > 0
region (which we refer to as large black holes (LBHs)) have
a clear local thermodynamic stability. Hence, LBHs are ther-
modynamically preferred over SBHs. In addition, according
to this figure, as α increases, the horizon radius of locally
stable black holes decreases. Furthermore, in the region of
LBHs, for all curves, as the horizon radius increases, the cor-
responding value of CP first decreases to a minimum and
then increases. To scrutinize the thermodynamic behavior of
black holes globally, we investigate the behavior of the Gibbs
free energy function.

In this regard, first we have depicted the G function ver-
sus rh with fixed values of β = 1 and l = 1, and differ-
ent chosen values of α in Fig. 4. It is clear that the global
thermodynamic equilibrium is better achieved with less neg-
ative values of the G function. Here, as an important aspect,
this figure illustrates that LBHs have less negative values
of the G function. Hence, Fig. 4 confirms that in addition
to local thermodynamic stability, this group of black holes
also has global thermodynamic stability, while SBHs do not.
Thus once again, LBHs are thermodynamically preferred
over SBHs. This figure also shows that the function G is
first ascending and then descending for all allowed values
of the deformation parameter. However, as the deformation

9 Actually, considering relation (52), we investigate the thermodynamic
behaviors at constant pressure.

parameter increases, these maximum values of theG function
and also the horizon radius of the phase transition (wherein
G = 0) increase. Nevertheless, increasing the deformation
parameter causes the thermodynamic stability of a black hole
to be disturbed compared to its previous position. Also, each
maximum point of the G function represents a horizon radius
and a temperature. However, to better realize the phase tran-
sition and the global thermodynamic stability of black holes,
we probe the behavior of the G function versus the horizon
temperature in the following figure. Although it is better and
instructive to first plot the temperature versus the radius of
the event horizon.

In this respect, Fig. 5 shows the behavior of the tempera-
ture of horizon with respect to rh for fixed values of β = 1
and l = 1, and different chosen values of α. This figure indi-
cates that as rh increases, the temperature of horizon first
decreases and then increases for all values of α. The min-
imum temperature in this figure exactly corresponds to the
maximum Gibbs function in Fig. 4. In general, the changing
behavior of the temperature function is in accord with the
behavior of the G function.

Now, employing relations (56) and (60), Fig. 6 shows the
behavior of the Gibbs function with respect to the horizon
temperature for fixed values of β = 1 and l = 1, and dif-
ferent chosen values of the deformation parameter. The cusp
of each curve in this figure represents the maximum of the
G function (as shown in Fig. 4) and the minimum temper-
ature (as shown in Fig. 5). At temperatures below the min-
imum temperature, there are no black holes. Figure 6 indi-
cates that as the temperature increases from its minimum,
there are two branches of black holes. In both branches the
G function decreases, which is in accordance with Fig. 4.
The right/upper branches contain SBHs with CP < 0, while
the left/lower branches have CP > 0 and include black holes
with intermediate horizon radii (which we refer to as inter-
mediate black holes (IBHs)) with positive values of the G
function, the intersection of curves with the horizontal axis
(the phase transition with G = 0), and LBHs with negative
values of the G function.

Since thermodynamically, smaller (and even negative)
values of the G function are preferred, there are actu-
ally two global thermodynamically stable phases. The first
phase in which G = 0 represents the immersion environ-
ment of black holes and includes the thermal radiation (the
thermal bath filled with the cosmological constant). This
region is preferred with respect to IBHs. The second phase
belongs to LBHs, which indicate more stability and thermo-
dynamic preference. The proximity of the phase transition
between the thermal radiation medium and the deformed
AdS-Schwarzschild LBHs is known as the Hawking–Page
phase transition. The intersection of the curves with the hori-
zontal axis shows the temperature of the first-order Hawking–
Page phase transition. Figure 6 also illustrates that as the
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Fig. 3 Using relation (61), the figure schematically (i.e., scale-free)
illustrates the behavior of the CP function with respect to rh for fixed
values of β = 1 and l = 1, and different chosen values of α. In the
CP < 0 region, the black holes do not have local thermodynamic equi-

librium. In the CP > 0 region, as α increases, the black holes with
smaller horizon radii have local thermodynamic equilibrium. Also, in
this region for all curves, as rh increases, the corresponding value of CP
first decreases to a minimum and then increases

Fig. 4 Using relation (60), the
figure schematically (i.e.,
scale-free) illustrates the
behavior of the function G with
respect to rh for fixed values of
β = 1 and l = 1, and different
chosen values of α. The
intersection points of the curves
with the horizontal axis (i.e.,
G = 0) indicate the horizon
radius of the phase transition.
As α increases, the rh of the
phase transition and the
maximum value of the G
function also increase. More
interestingly, in the G < 0
region, black holes with larger
rh have less negative G function

deformation parameter increases, the G function and espe-
cially its maximum increases (consistent with Fig. 4), the
minimum temperature decreases (consistent with Fig. 5)
while the temperature of the Hawking–Page phase transition
increases.

5 Conclusions

Initially, we considered the Einstein–Hilbert action with the
presence of the cosmological constant and a standard mat-
ter source plus any additional gravitational source. The aim
of this work is to find the black hole solution(s) for such
an action and to search for the corresponding thermody-
namic behaviors. To proceed, we have employed the GD
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Fig. 5 Using relation (56), the
figure schematically (i.e.,
scale-free) illustrates the
behavior of the temperature of
horizon with respect to rh for
fixed values of β = 1 and l = 1,
and different chosen values of α.
As rh increases, the horizon
temperature first decreases to a
minimum and then increases

Fig. 6 The figure schematically
(i.e., scale-free) illustrates the
behavior of the G function with
respect to the horizon
temperature for fixed values of
β = 1 and l = 1, and different
chosen values of α. A deformed
AdS-Schwarzschild black hole,
like a Schwarzschild black hole,
exhibits a phase transition with a
thermal radiation medium. The
region of the thermal radiation is
indicated by an arrow for each
curve, and the end of each arrow
indicates the temperature of the
first-order Hawking–Page phase
transition
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method, which serves as a useful tool for searching solutions
to the gravitational equations. Then, we have taken the back-
ground as the AdS-Schwarzschild vacuum solution, and have
looked for the static spherically symmetric solution(s) when
the additional source is also present. By implementing the
GD method, we have used two geometric deformation func-
tions to alter the radial and temporal components of the back-
ground metric. Meanwhile, in process of this method, there
is a common positive parameter that can adjust the strength
of the effects on these components simultaneously, and we
refer to it as a deformation parameter. When this parameter
vanishes, the background solution is recovered. Through the
GD method, the field equations are separated into two decou-
pled sets of equations for each source, although they remain
gravitationally connected.

In continuation, after solving the set of equations for the
background, five unknowns remain in the three equations cor-
responding to the additional source. Hence, to solve this set,
we imposed two constraints. Actually, we have assumed that
the additional source obeys the weak energy condition, and
we have also deliberately chosen its energy density function
to be a special monotonic function proportional to the inverse
of the distance to the fourth power. Also for consistency, this
function is proportional to the deformation parameter and
includes a control parameter to prevent it from diverging at
the center. Actually, in the absence of the control parameter,
we showed that the additional energy–momentum tensor is
the one of a Maxwell field. Moreover, to have black holes with
a well-defined event horizon structure, we have imposed the
Kerr–Schild condition that the radial and temporal compo-
nents of the solution to be inverses of each other regardless of
their signs in the signature. We refer to the obtained solution
as a deformed AdS-Schwarzschild black hole. The solution
found, although complicated, turns out to be analytical and
with quite interesting features. Then, the focus of the work
has been to investigate the horizon structure, the thermody-
namics of the solution and the Hawking–Page phase transi-
tion mainly by varying the deformation parameter. However,
within the work (including figures), we considered several
values of the deformation parameter with fixed values of
other constants (hence, actually at constant pressure).

Since we intended to consider the black hole solution, we
first plotted the metric function versus the distance. For each
of the curves in this figure, the intersection of the metric func-
tion with the horizontal axis specifies that there is an event
horizon radius. However, the figure shows that the condition
of having an event horizon limits the value of the deforma-
tion parameter to an upper bound, as we have also shown
through the corresponding derivation. Hence, we confined
the investigation to vary the deformation parameter up to its
upper bound value.

Next, we assumed that the black hole occurs in a canoni-
cal ensemble and wrote the first law of black hole thermody-

namics in the extended phase-space and then derived various
thermodynamic quantities as a function of the event horizon
radius. We also assumed that each related extended phase-
space contains a fixed value of the deformation parameter as
a free parameter and not a thermodynamic quantity. There-
after, to determine the thermodynamic stability of the black
hole locally, we plotted the obtained heat capacity at constant
pressure versus the radius of the event horizon. The figure
shows that a discontinuity occurs between the negative and
positive values of the heat capacity at constant pressure for
all its curves. The negative region contains SBHs that are
locally thermodynamically unstable. Whereas, the positive
region contains LBHs that are locally thermodynamically
stable. In other words, for a black hole to have local ther-
modynamic equilibrium, a minimum value of horizon radius
is required, and as the deformation parameter increases, this
minimum required radius decreases. In addition, in the region
of LBHs, for all curves, as the horizon radius increases, the
corresponding value of CP first decreases to a minimum and
then increases, while as the deformation parameter increases,
the horizon radius of locally stable black holes decreases.

Furthermore, to determine the thermodynamic stability of
the black hole globally, we plotted the obtained Gibbs free
energy versus the radius of the event horizon. This figure
shows that the Gibbs function starts from the region of posi-
tive values, and with the increase of the horizon radius, it first
increases to a maximum and then decreases to more negative
values after crossing the horizontal axis (i.e., the phase tran-
sition point). The figure also illustrates that LBHs have less
negative values of the Gibbs free energy. Hence, in addition
to local thermodynamic stability, this group of black holes
also has global thermodynamic stability and is thermody-
namically preferred over SBHs. Moreover, with the increase
of the deformation parameter, the maximum values of the
Gibbs function and the horizon radius of the phase transition
increase. Nevertheless, increasing the deformation parame-
ter causes the thermodynamic stability of a black hole to be
disturbed compared to its previous position.

Then, to better realize the phase transition and global
thermodynamic stability of black holes, we plotted the tem-
perature versus the event horizon radius and the Gibbs free
energy versus the horizon temperature. The figures indicate
that there is a minimum temperature that exactly corresponds
to the maximum of the Gibbs function. As the deformation
parameter increases, the minimum temperature decreases
and no black hole exists below this minimum temperature.
The second figure illustrates that SBHs are in one branch of
the curves, and in the other branch are IBHs, the phase transi-
tion point (i.e., thermal radiation) and LBHs. The proximity
of the phase transition between the thermal radiation medium
and the deformed AdS-Schwarzschild LBHs is known as the
Hawking–Page phase transition. As the deformation param-
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eter increases, the temperature of the first-order Hawking–
Page phase transition increases.

In the special case of vanishing the deformation parame-
ter, the obtained thermodynamic behavior of the black hole
is consistent with that stated in Ref. [7]. Also, we showed
that in the special case of vanishing the control parameter,
the obtained metric function corresponds to the charged AdS
black hole, which was investigated in Refs. [7,41] with the
square of the deformation parameter as the role of electric
charge. In addition, we showed that increasing the control
parameter increases the radius of the event horizon, which
in turn affects the thermodynamic properties. Furthermore,
we indicated that for a certain non-zero value of the control
parameter, the obtained metric function has no singularity at
the center. Further investigation of this particular case may
lead to a regular black hole, however we leave these investi-
gations to another work.
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