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Abstract Quantum gravity is extended to include purely
virtual “cloud sectors”, which allow us to define a complete
set of point-dependent observables, including a gauge invari-
ant metric and gauge invariant matter fields, and calculate
their off-shell correlation functions perturbatively. The ordi-
nary on-shell correlation functions and the S matrix elements
are unaffected. Each extra sector is made of a cloud field, its
anticommuting partner, a “cloud-fixing” function and a cloud
Faddeev-Popov determinant. The additional fields are purely
virtual, to ensure that no ghosts propagate. The extension is
unitary. In particular, the off-shell, diagrammatic version of
the optical theorem holds. The one-loop two-point functions
of dressed scalars, vectors and gravitons are calculated. Their
absorptive parts are positive, cloud independent and gauge
independent, while they are unphysical if non purely virtual
clouds are used. We illustrate the differences between our
approach to the problem of finding a complete set of observ-
ables in quantum gravity and other approaches available in
the literature.

1 Introduction

Defining point-dependent observables in general relativity
is tricky, because the coordinates are not physical quanti-
ties, but just parametrizations of the location. A simple way
out is available when the spacetime point is associated with
a matter distribution. Consider, for definiteness, four scalar
fields φi (x), i = 1, . . . 4, and assume that they depend on
the coordinates xμ in such a way that it is possible to invert
xμ as functions xμ(φ) of φi . Then, every further field, say
a fifth scalar ϕ(x), can be written as a function of the refer-
ence fields φi : ϕ(x) → ϕ(x(φ)) ≡ ϕ̃(φ). The function ϕ̃(φ)

is obviously invariant under general changes of coordinates.
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The basic idea is to go back to the physical location every
time we change coordinates. The φi do not need to be new,
independent fields, but can be functions of the metric itself.

This line of thinking has been pursued in the literature for a
long time [1–12,15,16]. In Refs. [2–5] Komar and Bergmann
use functions of the metric. In Refs. [6–12] the fields φi

describe physical matter. Donnelly and Giddings [15,16]
view them as functions of the metric, for purposes similar
to the Coulomb-Dirac dressing of QED [17], the Lavelle–
McMullan dressing of non-Abelian gauge theories [18–20],
the worldline dressing and the Wilson lines.

Ultimately, the presence of the observer, which is “mat-
ter”, is what breaks general covariance, so we may want to
view the reference fields as independent matter. In this spirit,
we have to take into account that the fundamental theory is
changed by the presence of the fields φi . In Ref. [12] Rov-
elli questions the need to change the physical world for this
purpose and proposes an improvement inspired by the GPS
technology, based on a minimal amount of additional matter.
Yet, one still needs to provide the physics of the additional
matter and add it to the physics of the fundamental theory.
Viewing the reference fields as functions of the metric is more
appealing from the conceptual point of view, since it does not
force us to leave the realm of pure gravity.

These problems are more challenging at the fundamental
level, especially in quantum gravity, where they concern our
understanding of the fundamental physics of nature.

In this paper we pursue a new strategy, which may shed
a different light on the issue. We introduce purely virtual
[13,14] independent fields ζμ, which we call cloud fields,
and their anticommuting partners Hμ. We extend quantum
field theory to include such fields perturbatively in quantum
gravity (and general relativity) without affecting the funda-
mental laws of physics.

The cloud fields play the roles of φi . Precisely, the fields
φi should be imagined as the differences xμ − ζμ(x). An
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arrangement of this type also appears in [15,16]. In our
approach, however, the ζμ are neither additional matter, nor
functions of the metric, but independent fields, with their
own (higher-derivative) propagators, and their own interac-
tions. Moreover, they must be accompanied by anticommut-
ing partners Hμ in a suitable way, and rendered purely vir-
tual, because only in that case the fundamental physics does
not change, and no extra degrees of freedom (which would
include ghosts) are propagated.

The cloud fields ζμ are used to surround the elementary
fields of the theory, such as the metric tensor, with appropriate
dressings, in order to render them invariant under infinitesi-
mal changes of coordinates. The correlation functions of the
dressed fields are new physical quantities, and provide pre-
dictions that can in principle be tested experimentally.

The anticommuting partners Hμ are used to endow the
extended theory with a certain cloud symmetry, to ensure
that the fundamental interactions are unaffected by the pres-
ence of the cloud sectors. Specifically: (i) the correlation
functions of the undressed fields are unchanged, and (ii) the
S matrix amplitudes of the dressed fields coincide with the
usual S matrix amplitudes of the undressed fields. Once these
goals are achieved, we can concentrate on the new correla-
tion functions. Moreover, we can view the usual (undressed)
fields as mere integration and diagrammatic tools, and use
dressed fields everywhere else. This way, gauge invariance
and gauge independence become manifest in every operation
we make.

Because they are independent fields, ζμ and Hμ might
be viewed as a sort of matter. Then, however, their purely
virtual nature makes them “fake matter”. Because they are
introduced to be ultimately projected away (that is to say,
integrated out), they might be understood as “functions of
everything else”, at least in some particular cases (like the
classical limit). Nevertheless, they cannot be viewed as func-
tions of the other fields beyond the tree level, since they keep
circulating in loops. In view of these remarks, it is better to
understand ζμ and Hμ as new entities, defined by the very
same formalism we develop in the paper.

Note that the dressed metric just propagates the two gravi-
ton helicities. In the approaches of Refs. [6–12] it may propa-
gate six degrees of freedom (the additional ones coming from
the four reference scalars).

We achieve the goals we have stated in a fully perturba-
tive regime. By construction, the extended theory is local
and unitary. Moreover, it is renormalizable (if the underly-
ing gravity theory is renormalizable), up to the cloud sectors,
which may be nonrenormalizable due to their arbitrariness.
Although the observables that we define are invariant under
infinitesimal changes of coordinates, they are not necessarily
invariant under global changes of coordinates. From the con-
ceptual and physical points of view, this is what we need: we

break the global symmetry (our observations do that most of
the times) without violating unitarity.

In a parallel paper [21], we explore similar issues in gauge
theories.

Throughout the paper, “on shell” means on the mass shell,
and refers to the S matrix asymptotic states. The correlation
functions of the dressed fields differ from the usual correla-
tion functions anytime the external legs are not asymptotic
states on the mass shell. The word “virtuality” is used in con-
nection with the concept of pure virtuality, and refers to the
removal of all the on-mass-shell contributions to the corre-
lation functions due to a given particle, preserving unitarity
[14]. That particle is then called purely virtual.

The notion of pure virtuality relies on a new diagrammat-
ics [14], which allows us to introduce particles that mediate
interactions without ever being on shell. The construction is
compatible with unitarity, and takes advantage of the pos-
sibility of splitting the usual optical theorem [22–27] into
independent, spectral optical identities, associated with dif-
ferent (multi)thresholds [14]. When we want to render certain
particles χ purely virtual, and calculate diagrams involving
them, we need to start from ordinary Feynman diagrams, as if
χ were physical particles or ghosts, and remove the contribu-
tions of the χ -dependent nontrivial thresholds, as explained
in Ref. [14]. Since the spectral optical identities involving
those thresholds drop out altogether from the optical theo-
rem, unitarity is manifestly preserved, or enforced (if all the
potential ghosts are rendered purely virtual).

The removed degrees of freedom can also be understood
as fake particles, or “fakeons”. The main application of this
concept is the formulation of a consistent theory of quantum
gravity [28], which leads to observationally testable predic-
tions in inflationary cosmology [29]. At the phenomenolog-
ical level, fakeons evade common constraints that preclude
the usage of normal particles [30,31].

Before plunging into the technical details, we illustrate
some applications of the results of this paper. Although the
usual S matrix amplitudes do not change, we can define new
types of scattering processes. Consider, for example, “short-
distance” scattering processes among gravitons (or quarks
and gluons), that is to say, processes that occur within dis-
tances such that the incoming and outgoing states are not
allowed to become free (interactions in a quark guon plasma,
interactions between quarks and gluons at distances that are
smaller or much smaller than the proton radius, interactions
within the Plank scale, or some slightly larger scales, in
strongly interacting quantum gravity, etc.). We cannot advo-
cate the notion of asymptotic state to study such processes.
In our language, they do not need to be on the mass shell
and, therefore, they may be gauge dependent. The results
of this paper show that we can actually define these scatter-
ing processes by means of dressed fields. The price is that,
although the results we obtain are physical (i.e., they are
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gauge invariant and obey the optical theorem), they depend
on the clouds, through the cloud parameters, which we denote
by λ̃. These parameters do not belong to the fundamental
theory. Rather, they describe features of the experimental
setup (experimental resolutions, finite volume effects, finite
temperature effects, dependence on a background, etc.). The
λ̃ dependence of the results means that it is impossible to
eliminate the influence of the observer on the observed phe-
nomenon. Yet, we can get rid of the λ̃ dependences at a sec-
ond stage, by sacrificing a few measurements to calibrate
the instrumentation. Once the values of the parameters λ̃ are
determined, everything else is predicted uniquely, and can
be confirmed or falsified. Something similar occurs in the
study of infrared divergences of the S matrix amplitudes in
gauge and gravity theories [32–35], where it is necessary to
specify the resolution of the apparatus. The resolution is also
necessary to describe the observation of unstable particles,
like the muon [36], which do not admit asymptotic states in
a strict sense.

The dependence on the clouds is less surprising if we think
that even the gauge invariant correlation functions built by
means of Wilson lines depend on the Wilson lines them-
selves. Different Wilson lines describe situations of differ-
ent interest, experimentally. Yet, those dependences must be
there, since they are a reflection on the choices of the observer.

Another application concerns precisely the infrared behav-
iors of gauge and gravity theories. The standard way to deal
with this problem is to resum another type of dressing, made
of soft and collinear photons, gluons and gravitons [32–35].
An alternative way to regularize the infrared divergences is
by going a little bit off the mass shell. Working with the
usual correlation functions, however, this operation violates
gauge invariance. The new correlation functions considered
here, made of dressed fields, allow us to go off shell without
breaking the local symmetries, and can provide an alterna-
tive way to probe the infrared behaviors of gauge and gravity
theories.

Before plunging into the topics of the paper, we point out
some crucial differences between our methods and purposes,
and the ones of other approaches, which may appear to have
something in common with ours at first, but are actually very
different. We are referring to the Stueckelberg formalism [37]
and the compensator-field approach [38]. The former is used
to describe massive vectors, which is not our goal here. The
latter is used to rephrase the theory in a way that is conve-
nient for several applications, but is not meant to change the
physical cohomology.

In particular, after extending the theory, we still define
the physical observables as being gauge invariant: they are
not required to be invariant under the extra (cloud) transfor-
mations. This changes the cohomology of physical observ-
ables, and makes the extension nontrivial. A possible source
of trouble, however, comes from the fact that the extension

is higher-derivative, and may inject unphysical degrees of
freedom in the theory, in the form of ghosts. What saves the
day is the last ingredient of our construction, that is to say,
the requirement that the whole extension be purely virtual.
This makes the construction unitary, and essentially different
from the other proposals available in the literature. Moreover,
it guarantees that the fundamental spectrum of the theory is
unmodified.

On these premises, we manage to build the gauge-
invariant, cloud-dependent fields. While the usual correla-
tion functions do not change, we are able to treat new physi-
cal correlation functions: those that contain insertions of the
gauge-invariant fields, such as point-dependent observables,
including a gauge invariant metric tensor, as well as gauge
invariant matter fields. We can also consider new scattering
processes, like the short distance processes mentioned above.
We stress that the ones we study are not just gauge invariant
correlation functions: they are (non-asymptotic) correlation
functions of gauge invariant fields.

The explicit calculations we make show that if the extra
fields are not purely virtual, but quantized by means of the
usual Feynman prescription, for example, they cause disas-
ters, by propagating ghosts. This is what marks a crucial
distinction between the construction of this paper and its
alternatives. In principle, one can form correlation functions
of gauge invariant fields in other approaches, including the
compensator-field method. Then, however, one must address
the problem of ghosts, otherwise the results turn out to be
unphysical. This problem also plagues the correlation func-
tions of Wilson lines, as shown in Ref. [21]. It can only be
cured, as far as we know today, by resorting to a purely virtual
extension. Typically, issues with Lorentz invariance arise in
approaches employing Dirac clouds [17], which are of the
Coulomb type. These and other problems are overcome, or
addressed in much easier ways, in the approach of this paper.

Everything works as long as we keep the usual sector
and the cloud sectors to some extent separated. We show
it is indeed possible, because renormalization preserves the
unmixing. In particular, the functions that define the clouds
should be gauge invariant, while the usual gauge-fixing func-
tions should be cloud invariant. In this respect, we recall that
restrictions on the gauge-fixing choice are not unusual. A
familiar one is adopted in the context of the background field
method, where the gauge-fixing must be invariant under the
background transformations, otherwise it spoils the virtues of
the method. Similarly, the choices we make in our approach
highlight a number of virtues that are more difficult to
uncover otherwise.

The approach of this paper can offer a better understand-
ing of the physics that lies beyond the realm of scattering
processes in quantum field theory, and provides an answer
to the problem of finding a complete set of observables in
quantum gravity.
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Throughout the paper we work with the dimensional reg-
ularization [39–42], ε = 4 − D denoting the difference
between the physical dimension and the continued one.

The paper is organized as follows. In Sect. 2 we introduce
the fields we need to build the cloud sectors. In Sect. 3 we
recall the standard Batalin–Vilkovisky formalism for gravity
and the Zinn–Justin master equation. In Sect. 4 we define the
cloud sector. In Sect. 5 we show that the ordinary correla-
tion functions are unaffected by the cloud sector, and so are
the S matrix amplitudes. In Sect. 6 we build the correlation
functions of the dressed fields. In Sect. 7 we prove that the
gauge-trivial sector of the theory and the cloud sector are mir-
rored into one another by a certain duality relation. In Sect. 8
we add several copies of the could sector and show that each
insertion, in a correlation function, can be dressed with its
own, independent cloud. In Sects. 9 and 10 we compute the
one-loop two-point functions of the dressed scalars, vectors
and gravitons. We do so in Einstein gravity and in quan-
tum gravity with purely virtual particles. In Sect. 9 we work
with covariant clouds, and show that the absorptive parts are
unphysical. In Sect. 10 we turn to purely virtual clouds, and
show that the absorptive parts are then physical. In Sect. 11
we prove that the extended theory is renormalizable. Section
12 contains the conclusions.

2 The cloud field, its anticommuting partner, and the
dressed fields

In this section we lay out the basic notions that are needed to
build the cloud sectors. Let

δξ gμν = ξρ∂ρgμν + gμρ∂νξ
ρ + gνρ∂μξρ (2.1)

denote the transformation of the metric tensor gμν under
infinitesimal changes of coordinates δxμ = −ξμ(x). The
closure relations read

[δξ , δη]gμν = δ[ξ,η]gμν, [ξ, η]ρ ≡ ησ ∂σ ξρ − ξσ ∂σ ηρ.

(2.2)

We define the basic cloud field as an independent “vector”
ζμ(x) that transforms according to the rule

δξ ζ
μ(x) = ξμ(x − ζ(x)). (2.3)

In the next sections we explain how to include ζμ into the
action. For the moment, we just study its properties. A rela-
tion like (2.3) and similar ones below can be meant as expan-
sions in powers of ζ . From now on, we understand that the
argument of a function is x , whenever it is not specified.

It is easy to check that the definition (2.3) is meaningful,
since it closes:

[δξ , δη]ζμ = −ξρ(x − ζ )ημ
,ρ(x − ζ )

+ηρ(x − ζ )ξμ
,ρ(x − ζ ) = δ[ξ,η]ζμ, (2.4)

where X,μ ≡ ∂μX . To avoid a certain confusion that may
arise when the argument of a function is x−ζ(x), we need to
pay attention to the notation. An expression line ∂ρXμ(x−ζ )

is ambiguous, because the total derivative acts on the x depen-
dence inside ζ ν , while the partial derivative is not supposed
to. We have

∂ρ(Xμ(x − ζ )) = Xμ
,ρ(x − ζ ) − ζ σ

,ρX
μ
,σ (x − ζ ). (2.5)

The point-dependent dressed fields are then

ϕd(x) = ϕ(x − ζ(x)),

Aμd(x) = Aμ(x − ζ ) − ζ ν
,μAν(x − ζ ),

gμνd(x) = gμν(x − ζ ) − ζ ρ
,μgνρ(x − ζ )

−ζ ρ
,νgμρ(x − ζ ) + ζ ρ

,μζ σ
,νgρσ (x − ζ ), (2.6)

for scalars, vectors and the metric, respectively. Indeed, using
the Taylor expansion of ϕ(x − ζ ), it is easy to check that
δξϕ = ξρϕ,ρ implies

δξϕd(x) = ξρ(x − ζ )ϕ,ρ(x − ζ ) − δξ ζ
ρϕ,ρ(x − ζ ) = 0.

Moreover, δξ Aμ = ξρ Aμ,ρ + Aρξ
ρ
,μ implies

δξ Aμd(x) = Aρ(x − ζ )ξρ
,μ(x − ζ )

−ζ ν
,μAρ(x − ζ )ξρ

,ν(x − ζ )

−Aρ(x − ζ )∂μ(ξρ(x − ζ )) = 0,

where we have used (2.5) in the last step with Xμ = ξμ.
Similarly, (2.1) implies δξ gμνd(x) = 0.

Generically, if Tμ1···μn (x) is a tensor, its gauge invariant,
dressed version is

Tμ1···μn d(x) = (δν1
μ1

− ζ ν1
,μ1

) · · · (δνn
μn

− ζ νn
,μn

)Tν1···νn (x − ζ ).

(2.7)

We can also define dual fields, which allow us to raise and
lower the indices and invert the definitions of the dressed
fields given above. The dual cloud field ζ̃ μ(x) is defined as
the solution of the equation

ζ̃ μ(x) = −ζμ(x − ζ̃ (x)), (2.8)

which can be worked out recursively by expanding in powers
of ζμ:

ζ̃ μ(x) = −ζμ(x + ζ(x + ζ(x + ζ(x + · · · )))).
Differentiating (2.8), we find
[
δμ
ρ − ζμ

,ρ(x − ζ̃ (x))
] [

δρ
ν − ζ̃ ρ

,ν(x)
]

= δμ
ν . (2.9)

Using this identity and (2.3) we derive the infinitesimal trans-
formation of ζ̃ μ, which reads

δξ ζ̃
μ(x) = −(δμ

ν − ζ̃ μ
,ν(x))ξ

ν(x). (2.10)

It is straightforward to check its closure.
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The inverse relations are

ϕ(x) = ϕd(x − ζ̃ (x)),

Aμ(x) = Aμd(x − ζ̃ ) − ζ̃ ν
,μAνd(x − ζ̃ ),

gμν(x) = gμνd(x − ζ̃ ) − ζ̃ ρ
,μgνρd(x − ζ̃ )

−ζ̃ ρ
,νgμρd(x − ζ̃ ) + ζ̃ ρ

,μζ̃ σ
,νgρσd(x − ζ̃ ),

Tμ1···μn (x) = (δν1
μ1

− ζ̃ ν1
,μ1

) · · · (δνn
μn

− ζ̃ νn
,μn

)Tν1···νnd(x − ζ̃ ).

(2.11)

Observe that (2.8) implies

xμ − ζμ(x)
∣∣
x→x−ζ̃

= xμ − ζ̃ μ(x) − ζμ(x − ζ̃ (x)) = xμ.

Defining yμ = xμ − ζ̃ μ(x) and relabelling x ↔ y, we find
the dual identity

ζμ(x) = −ζ̃ μ(x − ζ(x)). (2.12)

Differentiating this relation, we also find
[
δμ
ρ − ζ̃ μ

,ρ(x − ζ )
] [

δρ
ν − ζ ρ

,ν(x)
] = δμ

ν . (2.13)

Vectors and tensors with upper indices are dressed as fol-
lows:

Aμ
d (x) = Aμ(x − ζ ) − ζ̃ μ

,ν(x − ζ )Aν(x − ζ ),

gμν
d (x) = (δμ

ρ − ζ̃ μ
,ρ(x − ζ ))(δν

σ − ζ̃ ν
,σ (x − ζ ))gρσ (x − ζ ),

Tμ1···μn
d (x) = (δμ1

ν1
− ζ̃ μ1

,ν1
(x − ζ )) · · ·

(δμn
νn

− ζ̃ μn
,νn

(x − ζ ))T ν1···νn (x − ζ ). (2.14)

Indeed, (2.9) with x → x − ζ(x) ensures that

Aμ
d (x)Aμd(x)

= (δμ
ν − ζ̃ μ

,ν(x − ζ ))Aν(x − ζ )(δρ
μ − ζ ρ

,μ)Aρ(x − ζ )

= Aμ(x − ζ )Aμ(x − ζ ),

as required for a scalar. Similarly, gμν
d (x)gνρd (x) = δ

μ
ρ .

Moreover, the behaviors of upper indices under infinitesi-
mal transformations, as in δξ Aμ = ξρ Aμ

,ρ − Aρξ
μ
,ρ , imply

that the fields (2.14) are invariant. For example,

δξ A
μ
d (x) = −(δμ

ν − ζ̃ μ
,ν(x − ζ ))ξν

,ρ(x − ζ )Aρ(x − ζ )

+(δμ
ν − ζ̃ μ

,ν(x − ζ ))ξν
,ρ(x − ζ )Aρ(x − ζ ) = 0.

Here we have used

δξ ζ̃
μ
,ρ(x − ζ ) = −(δμ

ν − ζ̃ μ
,ν(x − ζ ))ξν

,ρ(x − ζ ),

which follows from (2.10).
It is also crucial to introduce anticommuting partners Hμ

of ζμ, defined by the transformation law

δξ H
μ = −H νξμ

,ν(x − ζ ). (2.15)

The consistency of this transformation follows from its clo-
sure:

[δξ , δη]Hμ = Hρξν
,ρ(x − ζ )ημ

,ν(x − ζ )

+H νξρ(x − ζ )ημ
,νρ(x − ζ ) − (ξ ↔ η)

= −Hρ(x)(∂ρ(ηνξμ
,ν − ξνημ

,ν))(x − ζ )

= δ[ξ,η]Hμ. (2.16)

The anticommuting partner H̃μ of ζ̃ μ is a field transforming
exactly as Hμ.

We have achieved what we wanted, that is to say, define
point-dependent observables in general relativity. However,
we have done it at the cost of introducing new fields, the cloud
fields (and their anticommuting partners). The next prob-
lem is to include the extra fields into the action, and ensure
that the extension does not change the fundamental theory,
and does not propagate unphysical degrees of freedom. First,
we develop a formalism to ensure that the correlation func-
tions of the undressed fields and the S matrix amplitudes are
unmodified, despite the presence of new interactions. Then,
we render the whole new sectors purely virtual.

We also want the construction to be perturbative (expand-
ing the metric around flat space), diagrammatic and local.
We do not require polynomiality, though, since in quantum
gravity we have to renounce it anyway.

3 Batalin–Vilkovisky formalism and Zinn–Justin
master equation

In this section we recall the standard Batalin–Vilkovisky for-
malism [43,44] for gravity, which is a convenient tool to
study the Ward–Takahashi–Slavnov–Taylor identities [45–
48] to all orders in a compact form.

The classical action Scl(g, A, ϕ) can be any action of clas-
sical gravity, possibly coupled to matter. For concreteness,
we assume that the matter sector is made of an Abelian vec-
tor Aμ and a neutral scalar field ϕ. The specific form of Scl

is not important for the theoretical setup we are going to
develop. However, particular forms of Scl will be used in the
computations.

We introduce the set of fields �α = (gμν,Cμ, C̄μ, Bμ,

Aμ, ϕ), where Cμ are the Faddeev–Popov ghosts [49],
C̄μ are the antighosts and Bμ are the Nakanishi–Lautrup
Lagrange multipliers [50,51]. The superscript α collects all
the indices. We couple sources K α = (Kμν

g , KC
μ , KC̄

μ , K B
μ ,

Kμ
A ,Kϕ) to the field transformations by means of the func-

tional

SK (�, K ) = −
∫

(Cρ∂ρgμν + gμρ∂νC
ρ + gνρ∂μC

ρ)Kμν
g

−
∫

(Cρ∂ρ Aμ + Aρ∂μC
ρ)Kμ

A

−
∫

(Cρ∂ρϕ)Kϕ −
∫

Cρ(∂ρC
μ)KC

μ

−
∫

BμKC̄
μ . (3.1)
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This way, the transformations of the fields can be written as

δξ�
α = θ(SK ,�α) = −θ

δr SK
δK α

, (3.2)

where ξμ = θCμ, θ is a constant anticommuting (Grass-
mann) variable and

(X,Y ) =
∫ (

δr X

δ�α

δlY

δK α
− δr X

δK α

δlY

δ�α

)
(3.3)

are the Batalin–Vilkovisky antiparentheses [43,44], the sub-
scripts r and l denoting the right and left derivatives, respec-
tively.

The closure of the algebra of the transformations is
encoded in the identity

(SK , SK ) = 0. (3.4)

The Jacobi identity satisfied by the antiparentheses implies
the nilpotence relation (SK , (SK , X)) = 0 for every X .

The gauge-fixed action reads

Sgf(�) = Scl(g, A, ϕ) + (SK , �(�)), (3.5)

where �(�) is the “gauge fermion”, that is to say, a local
functional that is introduced to fix the gauge. For example,
in a generic covariant gauge we may choose

�(�) =
∫ √−gC̄μ

(
Gμ(g) − λgμνB

ν
)
,

Gμ(g) = gνρ∂ρgμν − λ′

2
gνρ∂μgνρ, (3.6)

where λ, λ′ are gauge-fixing parameters and Gν(g) is the
gauge-fixing function. We have

(SK , �) =
∫ √−gBμ

(
Gμ(g) − λgμνB

ν
)

+Sghost → 1

4λ

∫ √−gGμg
μνGν + Sghost,

Sghost = −
∫

C̄μ
(
SK ,

√−gGμ − λ
√−ggμνB

ν
)
,

where the arrow denotes the integration over Bμ and Sghost

is the ghost action. Other gauge choices will be considered
in the paper.

The total action is

S(�, K ) = Sgf(�) + SK (�, K ) (3.7)

and satisfies the Zinn–Justin equation [52]

(S, S) = 0, (3.8)

also known as master equation. This identity collects the
gauge invariance of the classical action, the triviality of the
gauge-fixing sector, as well as the closure of the algebra. We
have the nilpotence relation (S, (S, X)) = 0 for every X .

4 Cloud sector

In this section we build the cloud sector. To trivialize its
effects on the usual correlation functions and the S matrix
elements, we mimick the key aspects of the gauge-fixing
procedure. In particular, we need:

1. the cloud field ζμ;
2. its anticommuting partner Hμ;
3. a new symmetry (which we call cloud symmetry), which

shifts ζμ by (minus) Hμ; and
4. anticommuting Hμ-partners H̄μ, as well as Lagrange

multipliers Eμ.

The reason why ζμ and Hμ must have opposite statistics
is precisely that the latter is the shift of the former by the new
symmetry. The reason why H̄μ and Eμ must be included is
that they allow us to “fix the could”, in the same way as we
normally fix the gauge. Indeed, the fields Hμ can be seen as
the “Faddeev–Popov ghosts” of the cloud symmetry, while
H̄μ are the “cloud antighosts”, and Eμ are the Lagrange
multipliers for the “cloud-fixing”. Finally, the reason why
ζμ alone is not sufficient, but Hμ, H̄μ and Eμ are needed as
well, is that the multiplet �̃α = (ζμ, Hμ, H̄μ, Eμ) provides
the easiest way to ensure that the contributions of the extra
fields mutually compensate in all the usual, on-shell corre-
lation functions and the S matrix amplitudes. This way, the
fundamental physics does not change, and the cloud sector
makes a difference only in the new correlations functions,
which are those built with the gauge invariant fields.

Then, we further extend the construction to a whole
Batalin–Vilkovisky formalism for the cloud sector. First, we
include a new set of sources K̃ α = (K̃ ζ

μ, K̃ H
μ , K̃ H̄

μ , K̃ E
μ ),

coupled to the �̃α transformations. Second, we extend the
definition (3.3 ) of antiparentheses to the new sector:

(X, Y ) =
∫ (

δr X

δ�α

δlY

δK α
− δr X

δK α

δlY

δ�α
+ δr X

δ�̃α

δlY

δ K̃ α
− δr X

δ K̃ α

δlY

δ�̃α

)
.

Third, we collect the gauge transformations (2.3) and (2.15)
of the new fields ζμ and Hμ, and the cloud transformations,
into the functionals

Sgauge
K = SK −

∫
Cμ(x − ζ )K̃ ζ

μ −
∫

H νC μ
,ν(x − ζ )K̃ H

μ ,

Scloud
K =

∫
Hμ K̃ ζ

μ −
∫

Eμ K̃ H̄
μ , Stot

K = Sgauge
K + Scloud

K .

The cloud transformations, which are encoded into the
second functional, are just the most general shifts of ζμ and
H̄ . For example, the total (gauge plus cloud) transformation
of ζμ reads

δξ,Hζμ = θ
(
Stot
K , ζμ

) = −θHμ(x) + θCμ(x − ζ(x))

= −Hμ(x) + ξμ(x − ζ(x)),
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where H = θH .
It is easy to check the identities

(Sgauge
K , Sgauge

K ) = (Scloud
K , Scloud

K ) = 0, (4.1)

which express the closures of both types of transformations.
The first identity follows from (2.2), (2.16) and (3.4).

We also have:

Sgauge
K − SK = −

(
Scloud
K ,

∫
Cμ(x − ζ )K̃ H

μ

)
,

Scloud
K = −

(
Scloud
K ,

∫
ζμ K̃ ζ

μ +
∫

H̄μ K̃ H̄
μ

)
. (4.2)

These formulas show that the functionals Sgauge
K − SK and

Scloud
K are cohomologically exact under the cloud symmetry,

i.e., they have the form (Scloud
K , local functional). Together

with (SK , Scloud
K ) = 0 (which is trivial), they imply the fur-

ther identity

(Sgauge
K , Scloud

K ) = 0, (4.3)

which gives, together with (4.1),

(Stot
K , Stot

K ) = 0. (4.4)

4.1 The cloud and the total action

We fix the cloud by adding (Stot
K , �̃) to the action, where

�̃(�, �̃) is the “cloud fermion”. A typical form of it is

�̃(�, �̃) =
∫ √−gd H̄

μ
(
Vμ − λ̃gμνdE

ν
)

, (4.5)

where gd is the determinant of gμνd and Vμ denotes the
“cloud function”, i.e., the function that specifies the cloud.
We assume that Vμ is gauge invariant:

(Sgauge
K , Vμ) = 0, (Sgauge

K , �̃) = 0. (4.6)

Basically, we can view Vμ as a function of the dressed metric
gμνd.

We find

(Stot
K , �̃) = (Scloud

K , �̃) =
∫ √−gdE

μ
(
Vμ − λ̃gμνdE

ν
)

+
∫

H̄μ δ

δζ ρ

[√−gd

(
Vμ − λ̃gμνdE

ν
)]

Hρ.

(4.7)

The last term gives a “Faddeev–Popov determinant” for the
cloud, which is crucial for the diagrammatic properties that
we derive in the next sections.

The total action of the extended theory is then

Stot(�, K , �̃, K̃ ) = Scl + (S tot
K , � + �̃) + Stot

K (4.8)

and satisfies its own master equation

(Stot, Stot) = 0. (4.9)

Note that Stot is gauge invariant, since Eqs. (4.1), (4.4) and
(4.6) imply

(Sgauge
K , Stot) = (Scloud

K , Stot) = 0. (4.10)

We can also write

Stot(�, K , �̃, K̃ ) = S(�, K ) + (Scloud
K ,�),

� = �̃ −
∫

Cμ(x − ζ )K̃ H
μ −

∫
ζμ K̃ ζ

μ −
∫

H̄μ K̃ H̄
μ ,

which shows that the difference between the dressed action
and the ordinary action is cohomologically exact with respect
to the cloud symmetry.

4.2 Covariant cloud

To make explicit calculations, we need to choose the could
functionVμ in (1). A convenient starting point is the covariant
cloud function

Vμ(g, ζ ) = gνρ
d ∂ρgμνd − λ̃′

2
gνρ

d ∂μgνρd, (4.11)

where λ̃′ is a further cloud parameter. This choice mimicks
the gauge-fixing function of formula (3.6), and makes the
cloud sector as similar as possible to the gauge-fixing one.

Other choices are considered in the paper (see formula
(10.1) and comments right below it). It should be kept in
mind that the freedom we have for Vμ is enormous, given
that it describes the influence of the surrounding, classical
environment on the observation of a quantum phenomenon.
When we are interested in a renormalizable theory of quan-
tum gravity, like the one of [28] (see Sect. 10), it is conve-
nient to restrict to gauge-fixing functions and cloud functions
that are manifestly renormalizable by power counting. In this
paper, we focus on those.

Note that we are allowed to use second metrics, inside
the clouds (as well as inside the gauge-fixing function). For
example, we can use the flat-space metric ημν to raise the
indices of ∂μ. Sometimes, however, it may be convenient to
use a unique metric everywhere, for a better control on the
renormalization properties of the dressed theory.

5 Cloud independence of the non-cloud sector

In this section we prove that the ordinary correlation func-
tions of elementary and composite fields are unmodified. This
also ensures that the vertices and diagrams of the cloud sector
do not affect the renormalization of the non-cloud sector of
the theory. Moreover, we show that the S matrix amplitudes
of the dressed fields are cloud independent and coincide with
the usual S matrix amplitudes of the undressed fields.
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The generating functional of the correlation functions is

Z(J, K , J̃ , K̃ ) =
∫

[d�d�̃]exp
(
i Stot(�, K , �̃, K̃ )

+i
∫

�α Jα + i
∫

�̃α J̃α

)
(5.1)

andW (J, K , J̃ , K̃ ) = −i ln Z(J, K , J̃ , K̃ ) is the generating
functional of the connected ones. The ordinary correlation
functions are the functional derivatives with respect to the
sources Jα , calculated at J̃ = K̃ = 0. They are collected in

Z(J, K , 0, 0) =
∫

[d�d�̃]exp

(
i S(�, K ) + i(Stot

K , �̃) + i
∫

�α Jα

)

=
∫

[d�]exp

(
i S(�, K ) + i

∫
�α Jα

)

×
∫

[d�̃]ei(Scloud
K ,�̃). (5.2)

We want to prove that this expression coincides with the
ordinary generating functional, thanks to the identity
∫

[d�̃]ei(Scloud
K ,�̃) = 1. (5.3)

Since �̃ depends on both � and �̃, the left-hand side
of (5.3) is in principle a functional of �. To show that it is
actually a constant, we consider arbitrary infinitesimal defor-
mations of the fields �. Let δ�̃ denote the variation of �̃ due
to them. The variation of the integral is then

δ

∫
[d�̃]ei(Scloud

K ,�̃) = i
∫

[d�̃](Scloud
K , δ�̃)ei(S

cloud
K ,�̃),

(5.4)

Performing the change of field variables �̃α → �̃α +
θ(Scloud

K , �̃α) in the integral
∫

[d�̃]δ�̃ ei(S
cloud
K ,�̃),

we obtain∫
[d�̃]δ�̃ ei(S

cloud
K ,�̃)

=
∫

[d�̃]
[
δ�̃ + θ(Scloud

K , δ�̃)
]

ei(S
cloud
K ,�̃). (5.5)

We have used the fact that (Scloud
K , �̃) is independent of the

sources, so (Scloud
K , �̃) → (Scloud

K , �̃) + θ(Scloud
K , (Scloud

K ,

�̃)) = (Scloud
K , �̃). The equality (5.5) shows that the right-

hand side of (5.4) vanishes, as we wished to prove.

5.1 Cloud independence of the S matrix amplitudes

Now we prove that the scattering amplitudes of the dressed
fields coincide with the usual scattering amplitudes (of
undressed fields). Specifically, the clouds have no effect on
the mass shell, when the polarizations are attached to the
amputated external legs.

First, we recall a general result about the invariance of
the S matrix amplitudes under a perturbative change of field
variables (see, for example, [21] for the proof). Consider a
generic theory of scalar fields ϕ, described by some classical
action S(ϕ). If O(ϕ) denotes a composite field that is at least
quadratic in ϕ, define new fields ϕ′ ≡ ϕ + O(ϕ).

Then, the following results hold. The locations p2 = m2
ph

of the poles of the two-point functions 〈ϕ |ϕ〉 and 〈ϕ′ |ϕ′〉
coincide perturbatively, wheremph denotes the physical mass
(possibly equipped with an imaginary part, if the particle is
unstable). We have

〈ϕ |ϕ〉 	 i Z

p2 − m2
ph + iε

, 〈ϕ′ |ϕ′〉 	 i Z ′

p2 − m2
ph + iε

,

for p2 	 m2
ph, for suitable factors Z and Z ′.

Moreover, the correlation functions that contain more than
two ϕ′ insertions satisfy

〈
j∏

a=1

p2
a − m2

ph√
Z ′ ϕ′(pa)〉on-shell

= 〈
j∏

a=1

p2
a − m2

ph√
Z

ϕ(pa)〉on-shell, (5.6)

which proves that the S matrix amplitudes are invariant under
the change of field variables ϕ → ϕ′.

Applying this theorem to the could extension of the gravity
theory, we have, in momentum space,

〈
n∏

i=1

k2
i ε

μi νi
id (ki )gμi νi d(ki )

×
j∏

a=1

p2
aε

ρa
ad(pa)Aρad(pa)

l∏
b=1

q2
b − m2

ph√
Z ′

ϕ

ϕd(qb)

〉

on-shell

=
〈

n∏
i=1

k2
i ε

μi νi
i (ki )gμi νi (ki )

×
j∏

a=1

p2
aε

ρa
a (pa)Aρa (pa)

l∏
b=1

q2
b − m2

ph√
Zϕ

ϕ(qb)

〉

on-shell

. (5.7)

The polarizations εμν(k) and εμ(p) of the gravitons and the
vector fields, respectively, satisfy kμεμν(k) = pμεμ(p) = 0,
and include the normalization factors 1/

√
Z . The “dressed”

polarizations ε
μν
d (k) and ε

μ
d (p) are the same, apart from hav-

ing normalization factors 1/
√
Z ′. With an abuse of notation,

we use the same symbols for the fields and their Fourier
transforms, since the meaning is clear from the context. By
the theorem proved in the first part of this section, the right-
hand side of (5.7) is cloud independent and coincides with
the usual S matrix amplitude.

Note that formulas (2.6) show that the expansion of
gμνd in powers of ζ ρ , combined with the expansion of gμν

around the flat-space metric ημν , contains a linear contribu-
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tion −ζμ,ν − ζν,μ, besides gμν itself, plus nonlinear terms
(which can be regarded as composite fields O(ϕ)), where
ζμ = η μνζ

ν . Thus, gμνd is not of the form ϕ′ = ϕ + O(ϕ).
Nevertheless, the linear terms −ζμ,ν − ζν,μ are killed by the
polarization εμν(k), after the Fourier transform. This means
that ε

μν
d (k)gμνd(k) is of the required form, apart from an

unimportant normalization factor.
Also note that we are not comparing correlation functions

of the same theory, as in (5.6). We are jumping from one
theory (the extended one, to which the left-hand side of (5.7)
refers) to another theory (the non extended one, to which the
right-hand side of (5.7) refers), thanks to the result proved
previously in this section.

In the end, the product k2ε
μν
d (k)gμνd(k) is gauge invariant

(and, therefore, gauge independent, for the arguments given
below) and its dressing is trivial:

lim
k2→0

k2ε
μν
d (k)〈gμνd(k) · · · 〉 = lim

k2→0
k2εμν(k)〈gμν(k) · · · 〉.

The same result holds for the insertions of vectors and scalars
(and fermions, if present).

The identity (5.7) proves that the ordinary theory of scat-
tering can be understood as a theory of scattering of dressed
fields. We can even forget about the undressed fields alto-
gether, and always work with the dressed fields. So doing,
gauge invariance and gauge independence become mani-
fest. In particular, the S-matrix amplitudes are automatically
ensured to be gauge independent.

Clearly, the proof of this section relies heavily on the
notion of asymptotic state, which is crucial to build the S
matrix elements. For this reason, it does not generalize to
short-distance scattering processes, where the incoming and
outgoing states are not allowed to become free. Those pro-
cesses can be studied from the correlation functions of gauge-
invariant fields (which are not constrained to be on the mass
shell), once they are equipped with the notion of pure virtu-
ality.

6 Dressed correlation functions

In this section we study the correlation functions that contain
insertions of dressed fields. It is possible to study them sys-
tematically by coupling new sources to them and extending
the generating functionals again. We replace the action Stot

inside (5.1) by

Sext
tot = Stot +

∫ (
Jμν

d gμνd + Jμ
d Aμd + Jdϕd

)
, (6.1)

and denote the extended functionals by Z ext
tot (J, K , J̃ , K̃ , Jd) =

exp(iW ext
tot (J, K , J̃ , K̃ , Jd)). The insertions of dressed fields

can be studied by taking the functional derivatives with
respect to the new sources Jμν

d , Jμ
d , Jd. The extended action

is gauge invariant, since (4.10) implies

(Sgauge
K , Sext

tot ) = 0. (6.2)

Clearly, Sext
tot is not cloud invariant.

It is straightforward to prove that the correlation functions
of the dressed fields, collected in the functional Z ext

tot (Jd) =
exp(iW ext

tot (Jd)) ≡ Z ext
tot (0, 0, 0, 0, Jd) = exp(iW ext

tot (0, 0, 0,

0, Jd)), are gauge independent. The argument is identical
to the one of subsection 7.1 of [21], so we do not repeat it
here. Gauge independence will be verified explicitly in the
computations.

7 Gauge/cloud duality

In this section we show that the gauge-trivial sector and the
cloud sector are dual to each other. We call this property
gauge/cloud duality. Sometimes, it can be used to simplify
the computations.

We begin by noting that the transformation law (2.3) and
the definitions (2.6) imply that the could transformation of
the dressed metric is just an infinitesimal diffeomorphism
(2.1) with parameters Hμ

d such that

Hμ = (δμ
ν − ζμ

,ν)H
ν
d . (7.1)

Precisely,

(Stot
K , gμνd) = (Scloud

K , gμνd) = Hρ
d ∂ρgμνd

+gμρd∂νH
ρ
d + gνρd∂μH

ρ
d = δdiff

Hd
gμνd. (7.2)

Similarly, for scalars and vectors we have

(Scloud
K , ϕd) = Hρ

d ∂ρϕd,

(Scloud
K , Aμd) = Hρ

d ∂ρ Aμd + Aρd∂μH
ρ
d . (7.3)

It is easy to check that Hμ
d is gauge invariant (Sgauge

K , Hμ
d ) =

0. Moreover, the cloud transformation of Hμ
d mimics the

gauge transformation of the ghosts Cμ:

(Scloud
K , Hμ

d ) = Hρ
d ∂ρH

μ
d . (7.4)

We define the dressed cloud field ζ
μ
d as the dual field of

formula (2.8):

ζ
μ
d = ζ̃ μ. (7.5)

Using (7.1), it is easy to derive the cloud transformation of
ζ

μ
d , which reads

(Scloud
K , ζ

μ
d ) = Hμ

d (x − ζd(x)). (7.6)

Note that ζ
μ
d is not gauge invariant. Using (2.10 ), its gauge

transformation can be used to define the dressed Faddeev-
Popov ghosts

Cμ
d ≡ (δμ

ν − ζ
μ
d,ν)C

ν = −(Sgauge
K , ζ

μ
d ), (7.7)
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which, instead, are gauge invariant by construction. Their
cloud transformations read

(Scloud
K ,Cμ

d ) = (Sgauge
K , (Scloud

K , ζ
μ
d ))

= (Sgauge
K , Hμ

d (x − ζd(x))) = Cρ
d H

μ
,ρd(x − ζd),

(7.8)

having used (4.3) and (Sgauge
K , Hμ

d ) = 0.
Now, collecting (2.6), (7.1), (7.5) and ( 7.7), we define the

change of field variables

�, �̃ → �d, �̃d (7.9)

from undressed fields to dressed fields, leaving all the other
fields unchanged: C̄μ

d = C̄μ, Bμ
d = Bμ, H̄μ

d = H̄μ and
Ed = E . The transformations are perturbatively local, which
means that when we use them as changes of field variables
in the functional integral, the Jacobian determinant is equal
to one, using the dimensional regularization.

To ensure that the antiparentheses are preserved, so that
all the properties derived till now continue to hold, we embed
(7.9) into a canonical transformation

�, �̃, K , K̃ → �d, �̃d, Kd, K̃d, (7.10)

of the Batalin–Vilkovisky type. Its generating functional is

F(�, �̃, Kd, K̃d) =
∫

�d(�, �̃)Kd +
∫

�̃d(�, �̃)K̃d.

At the practical level, the whole operation amounts to work
out the transformations of the dressed fields, which we have
already done, and couple them to the dressed sources. Col-
lecting the gauge transformations (7.7) and the cloud trans-
formations (7.2), (7.3), (7.4 ), (7.6) and (7.8), we find

Sgauge
K =

∫
Cμ

d K̃ ζ
μd −

∫
Bμ

d KC̄
μd,

Scloud
K = −

∫
(Hρ

d ∂ρgμνd + gμρd∂νH
ρ
d + gνρd∂μH

ρ
d )Kμν

gd

−
∫

Hρ
d (∂ρH

μ
d )K H

μd −
∫

Hρ
d (∂ρϕd)Kϕd

−
∫

(Hρ
d ∂ρ Adμ + Aρd∂μH

ρ
d )K A

μd

−
∫

Eμ
d K̃ H̄

μd −
∫

Hμ
d (x − ζd)K̃

ζ
μd

−
∫

Cν
d H

μ
,νd(x − ζd)K̃

C
μd.

We see that the canonical transformation (7.10) switches
the gauge transformations and the cloud transformations.
Similarly, it exchanges the roles of the gauge-fixing function
Gμ and the cloud function Vμ: Gμ(g(ζ, gd)) ↔ Vμ(gd). We
may also say that it exchanges the quantization prescription
of the gauge-trivial sector with the one of the cloud sector
(see below).

The correlation functions of the dressed fields coincide
with the ones of the undressed fields in a specific gauge. For
example, choosing the covariant gauge (3.6) and the covari-
ant cloud (1), (4.11), we have

〈gμ1ν1d(x1) · · · gμnνnd(xn)ϕd(y1) · · · ϕd(y j )

×Aρ1d(z1) · · · Aρkd(zk)〉
= 〈gμ1ν1(x1) · · · gμnνn (xn)ϕ(y1) · · · ϕ(y j )

×Aρ1(z1) · · · Aρk (zk)〉λ→λ̃,λ′→λ̃′ . (7.11)

Combined with the cloud independence of the right-hand
side, proved in Sect. 5, this property ensures that the dressed
correlation function can be calculated by replacing λ with λ̃

and λ′ with λ̃′ in a usual correlation function. The left-hand
side of (7.11) normally includes a huge number of diagrams.
However, (7.11) implies that most contributions cancel out
in the end.

8 Multiclouds

In this section we show how to equip each insertion with its
own, independent dressing. To do so, we extend the formal-
ism of the previous sections by adding several copies of the
could sector.

We introduce many cloud fields ζμi , where i labels
the copies. Then we add copies of their anticommuting
partners Hμi (the cloud ghosts), the antighosts H̄μi and
the Lagrange multipliers Eμi . We collect them in �̃αi =
(ζμi , Hμi , H̄μi , Eμi ). We also couple sources K̃ αi to their
transformations. Next, we extend the definition (3.3) of
antiparentheses to include all the copies:

(X,Y ) =
∫ [

δr X

δ�α

δlY

δK α
− δr X

δK α

δlY

δ�α

+
∑
i

(
δr X

δ�̃αi

δlY

δ K̃ αi
− δr X

δ K̃ αi

δlY

δ�̃αi

)]
. (8.1)

Finally, we extend the gauge transformations and introduce
cloud transformations for each copy:

Sgauge
K = SK −

∑
i

∫
Cμ(x − ζ i )K̃ ζ i

μ

−
∑
i

∫
H νiC μ

,ν(x − ζ i )K̃ Hi
μ ,

Scloud i
K =

∫
(Hμi K̃ ζ i

μ − Eμi K̃ H̄ i
μ ),

Scloud
K =

∑
i

Scloud i
K , Stot

K = Sgauge
K + Scloud

K . (8.2)

It is easy to check that the identities (4.1) and (4.4) continue
to hold.
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The simplest cloud fermion is just the sum of the cloud
fermions of each copy:

�̃(�, �̃) =
∑
i

∫ √
−gid H̄

μi

(
V i

μ + λ̃i

2
giμνdE

νi

)
, (8.3)

where giμνd is the dressed metric tensor built with the i th

cloud field ζμi , and V i
μ is the i th cloud function, assumed to

be gauge invariant, (Sgauge
K , V i

μ) = 0. For simplicity, we also
assume that each V i

μ depends only on the i th cloud field ζμi

(besides gμν), i.e., different cloud sectors are not mixed. We
can just take each V i

μ to be a function of giμνd.
The total action of the extended theory is still (4.8), and

satisfies the master equations (4.9) and (4.10). Moreover,

(Scloud i
K , Stot) = 0 (8.4)

for every i .
It is always possible to build gauge invariant functions

with two cloud fields. For example, the functions

ζ
μ
1i (x) ≡ ζμ1(x) + ζ̃ μi (x − ζ 1(x)) (8.5)

are gauge invariant, since (2.3) and (2.10) imply

δξ ζ
μ
1i (x) = ξμ(x − ζ 1) − ζ̃ μi

,ν (x − ζ 1)ξμ(x − ζ 1)

−(δμ
ν − ζ̃ μi

,ν (x − ζ 1))ξν(x − ζ 1) = 0.

We do not have control on such functions, when they are
turned on. For this reason, it may be important to prove, when
possible, that the operations we make preserve the unmixing
stated above.

The insertions of dressed fields can be studied by means
of the extended action

Sext
tot = Stot +

∑
i

∫ (
Jμνi

d giμνd + Jμi
d Ai

μd + J idϕi
d

)
. (8.6)

The correlation functions that do not contain insertions
belonging to some cloud sector are independent of that cloud
sector. Indeed, the proof of (5.3) can be repeated for every
cloud sector separately.

The gauge/cloud duality is less powerful in the presence
of many clouds. It can be used to eliminate one cloud, or a
combination of clouds, but not all of them. For example, a
correlation function

〈g(1)
μ1ν1d(x1) · · · g(n)

μnνnd(xn)A
(n+1)
ρ1d (y1) · · ·

A(n+ j)
ρ jd

(y j )ϕ
(n+ j+1)
d (z1) · · · ϕ(n+ j+k)

d (zk)〉, (8.7)

with different clouds for every field, can be simplified to

〈gμ1ν1(x1)g
(2) ′
μ2ν2d(x1) · · · g(n) ′

μnνn d(xn)A
(n+1) ′
ρ1d (y1) · · ·

A(n+ j) ′
ρ jd

(y j )ϕ
(n+ j+1) ′
d (z1) · · · ϕ(n+ j+k) ′

d (zk)〉, (8.8)

by means of a field redefinition that exchanges the first
dressed field with its undressed version. The primes mean

that the clouds of the other fields must be redefined as a con-
sequence.

These operations preserve the unmixing, after further
redefinitions of the cloud fields. For example, the transfor-
mation (7.10) leads to

ϕ
(i)
d (x) = ϕ

(1)
d (x − ζ i ′(x)), i > n + j,

where ϕ
(1)
d is the scalar field dressed with the first cloud

(which does not even appear in (8.7), but this does not matter
for what we are saying) and ζ i ′(zi ) is the solution of

ζμi ′(x) = ζμi (x) − ζμ1(x − ζ i ′(x)).

To restore the unmixing, it is sufficient to define the new i th
cloud field as ζμi ′, i > 1, after relabelling ϕ

(1)
d as ϕ. The

same can be done for the other insertions of (8.7).
Repeating the arguments of Sect. 5, it is possible to extend

the results of that section to the multicloud case, i.e., prove
that the usual correlation functions are cloud independent,
and that the S matrix amplitudes coincide with the usual ones,
formula (5.7), even when each insertion is dressed with its
own, independent cloud.

In the explicit calculations of this paper we work with a
unique cloud, for simplicity.

9 One-loop two-point functions

In this section we calculate the one-loop two-point functions
of the basic dressed fields in the covariant gauge, with a
covariant cloud. We show that the absorptive parts are in
general unphysical. In the next section we turn to purely
virtual clouds, and show that the absorptive parts then become
physical.

We define the expansion around flat space by writing
gμν = ημν + 2κhμν and gμνd = ημν + 2κhμνd, where
κ = √

8πG and G is Newton’s constant. It is convenient to
make the replacements

Cμ → κCμ, Bμ → κBμ,

C̄μ → κC̄μ, � → κ−2�,

ζμ → κζμ, Hμ → κHμ,

Eμ → κEμ, H̄μ → κ H̄μ, �̃ → κ−2�̃,

so that the loop expansion coincides with the expansion in
powers of κ .

The two-point functions can be calculated by expanding
the dressed fields (2.6) to the first order in κ , where we find

ϕd = ϕ − κζμϕ,μ, Aμd = Aμ − κζρ Aμ,ρ − κζρ
,μAρ,

hμνd = hμν − 1

2
(ζμ,ν + ζν,μ) − κζρhμν,ρ

−κζρ
,μhνρ − κζρ

,νhμρ + κ

2
ζ ρ
,μηρσ ζ σ

,ν,

123
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where ζμ = ημνζ
ν . The higher-order corrections can be

neglected in our calculations, since they give only tadpoles.
We start from Einstein gravity minimally coupled to a

massless scalar field ϕ and a vector field Aμ. The action is

− 1

16πG

∫
d4x

√−gR + 1

2

∫
d4x

√−ggμν(∂μϕ)(∂νϕ)

−1

4

∫
d4x

√−gFμνFρσ g
μρgνσ .

The two-point function of the dressed scalar field reads

〈ϕd |ϕd〉 = 〈ϕ |ϕ〉 − κ〈ζμϕ,μ |ϕ〉 − κ〈ϕ |ζμϕ,μ〉
+κ2〈ζμϕ,μ |ζ νϕ,ν〉 + O(κ3),

to the quadratic order in κ . A vertical bar separates the (ele-
mentary or composite) field of momentum p (to the left) from
the one of momentum −p (to the right). The diagrams are
shown in Fig. 1.

The covariant gauge defined by (3.6) gives the ordinary
scalar self-energy

〈ϕ |ϕ〉 = i

p2 + iε
+ 3iκ2(λλ′ − 3λ − λ′ + 5)(λ′ − 1)

16π2ε(λ′ − 2)2

×(−p2 − iε)−ε/2 + O(κ3).

Using the covariant cloud (4.11), the remaining diagrams of
Fig. 1 give the total

〈ϕd |ϕd〉 = i

p2 + iε
+ 3iκ2(λ̃λ̃′ − 3λ̃ − λ̃′ + 5)(λ̃′ − 1)

16π2ε(λ̃′ − 2)2

×(−p2 − iε)−ε/2 + O(κ3). (9.1)

The dependence on the gauge-fixing parameters λ and λ′ has
disappeared, as expected. The result depends on the choice
of the cloud, through the parameters λ̃ and λ̃′, and satisfies
formula (7.11), due to the gauge/cloud duality.

The off-shell absorptive part of the two-point function is
defined by amputating the external legs and taking the real
part, multiplied by minus 2 (see [21] for details). We find

Abso[〈ϕd |ϕd〉] = −2Re[(i p2)〈ϕd |ϕd〉(i p2)]
= −3κ2(λ̃λ̃′ − 3λ̃ − λ̃′ + 5)(λ̃′ − 1)

16π(λ̃′ − 2)2

×(p2)2θ(p2) + O(κ3).

The sign of the lowest-order contribution is positive or
negative, depending on the cloud parameters λ̃ and λ̃′, so
Abso[〈ϕd |ϕd〉] is not physical.

In the case of the vector field, the undressed two-point
function reads

〈Aμ |Aν〉 = 〈Aμ |Aν〉0 + iκ2
(
3λ − (1 − 2λ′)2

)

24π2ε(λ′ − 2)2

×
(

ημν − pμ pν

p2

)
(−p2 − iε)−ε/2,

where 〈Aμ |Aν〉0 is the free propagator. After the gravita-
tional dressing, we find

〈Aμd | Aνd〉 = 〈Aμ | Aν〉0 +
iκ2

(
3λ̃ − (1 − 2λ̃′)2

)

24π2ε(λ̃′ − 2)2

×
[
ημν + f (λ, λ′, λ̃, λ̃′, λA)

pμ pν

p2

]
(−p2 − iε)−ε/2,

where f is a function that we do not report here, while λA

is the gauge-fixing parameter of the Aμ propagator. To get
rid of λA, we must include a gauge dressing for Aμ (besides
the gravitational dressings we have already included). This
operation is straightforward, since it is sufficient to consider
the two-point function 〈Fμνd |Fρσd〉 of the field strength. We
obtain 〈Fμνd |Fρσd〉 = 〈Fμν |Fρσ 〉λ→λ̃,λ′→λ̃′ , in agreement
with (7.11). The absorptive part reads

Abso[〈Fμνd |Fρσd〉] = −2Re[(i p2)〈Fμνd |Fρσd〉(i p2)]

= −
κ2

(
3λ̃ − (1 − 2λ̃′)2

)

24π(λ̃′ − 2)2
(p2)2θ(p2)

×(ημρ pν pσ − ημσ pν pρ

−ηνρ pμ pσ + ηνσ pμ pρ).

Again, it is not physical.

10 Purely virtual clouds and physical absorptive parts

To find physical absorptive parts, we must turn to purely vir-
tual clouds. This is achieved as follows. The free propagators
mix the graviton field hμν and the cloud field ζμ. Inside the
propagators, we can distinguish three types of poles in p2: the
physical poles, the gauge-trivial poles and the cloud poles.
The cloud poles are those introduced by the cloud, and appear
in 〈hμν |ζ ρ〉0 and 〈ζ ρ |ζ σ 〉0. The gauge-trivial poles are those
involving the unphysical components of hμν , which are h00,
h0i , the longitudinal components p j hi j (p) and the trace hii
(in some reference frame), where i, j are space indices. The
physical poles are the remaining ones.

The three classes of poles can be clearly distinguished in
the special gauge of Ref. [54], which can be extended to the
could sector straightforwardly. The gauge fermion (3.6) is
replaced by

�(�) =
∫

C̄0
(
G0(g) − λ + 3

4
B0

)

+
∫

C̄i
(
Gi (g) − λ

λ + 3

4
Bi

)
,

G0(g) = λ∂0h00 + ∂0hii − 2∂i h0i ,

Gi (g) = 2λ∂0h0i − λ∂i h00 − λ + 3

2
∂ j hi j + λ + 1

2
∂i h j j .

(10.1)
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Fig. 1 Two-point function of
the dressed scalar field to order
κ2

The cloud fermion (1) is replaced by an analogous formula,
with λ → λ̃, C̄μ → H̄μ, Bμ → Eμ, Gμ → Vμ, hμν →
hμνd = hμν − (∂μζν + ∂νζμ)/2 + O(κ).

We do not report the free propagators explicitly, because
they are quite lengthy and not strictly necessary for our
calculations (see [21] for their expressions in gauge the-
ories). We just report that they contain only single poles
(which is what makes the special gauge “special”), and that
the gauge-trivial poles are located at λE2 − p2 = 0 and
4λE2 − p2(3 + λ) = 0, the cloud poles are located at
λ̃E2 − p2 = 0 and 4λ̃E2 − p2(3 + λ̃) = 0, and the phys-
ical poles are obviously located at E2 − p2 = 0, where
pμ = (E,p) is the propagator momentum. What is important
is that a unique gauge-fixing parameter, λ, and a unique cloud
parameter, λ̃, are sufficient to distinguish the three classes of
poles in a manifest way.

The cloud poles must be quantized as purely virtual [14].
This means that, after performing the threshold decompo-
sition of a diagram as explained in Ref. [14], the (multi)
thresholds receiving contributions from those poles must be
removed. The gauge-trivial poles can be quantized in the way
we want (because the correlation functions of the dressed
fields are gauge independent). The physical poles must be
quantized by means of the Feynman iε prescription.

It is convenient to quantize the gauge-trivial poles as
purely virtual as well, like the cloud poles. Since the purely
virtual poles do not contribute to the absorptive parts of the
two-point functions at one loop, we can just ignore all of
them.

At the end, each calculation amounts to just one diagram,
the usual self-energy diagram (second drawing of Fig. 1),
with a caveat: we must replace the internal graviton and vec-
tor propagators with their physical parts, which are

〈Aμa |Aνb〉0 phys = i
δabδ

μ
i δν

j�
i j

p2 + iε
,

〈hμν |hρσ 〉0phys = i

2

δ
μ
i δν

j δ
ρ
k δσ

l

p2 + iε
(�ik� jl

+�il� jk − �i j�kl), (10.2)

where �i j = δi j − (pi p j/p2).
In the scalar case, the absorptive part of 〈ϕd |ϕd〉 turns out

to be zero. We can partially understand this result by noting
that the optical theorem relates it to the cross section of a
process (graviton emission by a scalar field), which cannot
occur on shell. Nevertheless, the correlation function we are

studying is not on shell. Yet, the result is still zero, due to the
graviton polarizations, which are implicit in (10.2).

In the case of the vectors, we find, at rest,

Abso[〈Aid |A jd〉] = −2Re[(i p2)〈Aid |A jd〉(i p2)]
= κ2δi j

12π
(p2)2θ(p2) + O(κ3), (10.3)

which is positive, as expected.
Finally, the absorptive part of the dressed graviton two-

point function (in pure gravity, at rest) is

Abso[〈hi jd |hkld 〉] = −2Re[(i p2)〈hi jd |hkld〉(i p2)]
= κ2(3δikδ jl + 3δilδ jk − 2δi jδkl)

80π

×(p2)2θ(p2) + O(κ3), (10.4)

which is again positive definite.
Now we switch to the theory of quantum gravity with

purely virtual particles [28]. It is convenient to formulate it
in the variables of Ref. [53], to gain an explicit distinction
among the graviton, the inflaton φ and the massive purely vir-
tual spin-2 particle χμν . We can actually ignore χμν , because
it does not contribute to the absorptive parts that we want to
compute. Neglecting the cosmological constant, the relevant
terms of the action are

− 1

16πG

∫
d4x

√−gR + 1

2

∫ √−g

[
gμν(∂μφ)(∂νφ)

−3m2
φ

2κ2

(
1 − eκφ

√
2/3

)2
]

+1

2

∫
d4x

√−ggμνeκφ
√

2/3(∂μϕ)(∂νϕ)

−1

4

∫
d4x

√−gFμνFρσ g
μρgνσ .

The absorptive part (10.3) of the vector two-point function
does not change. The one of the scalar two-point function is
no longer zero, because it receives a contribution from the
inflaton. In the high-energy limit (where we can neglect the
mass mφ), we find

Abso[〈ϕd |ϕd〉] = κ2

48π
(p2)2θ(p2) + O(κ3).

Switching off the matter sector, the absorptive part (10.4)
of the dressed graviton two-point function also receives a
correction from the inflaton φ, and the final result is (10.4)
multiplied by 19/18.
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11 Renormalization

In this section we study the renormalization of the extended
theory. We assume that the starting theory of quantum gravity
is renormalizable by power counting, like the theory based
on purely virtual particles of Ref. [28]. To have better power-
counting behaviors, it may be convenient to use a higher-
derivative gauge-fixing, as in [55], and higher-derivative
clouds as well. The cloud fields ζμi have dimension minus
one in units of mass, so nonpolynomial functions of them are
turned on by renormalization.

The theory of [28] is unitary. If the clouds are purely vir-
tual, the complete dressed theory is unitary as well. However,
the arguments of this section do not rely on unitarity, so the
results we obtain also apply to nonunitary clouds, and even
nonunitary theories, such as the Stelle theory [56], where
the Feynman prescription is used for the quantization of the
every field (and so χμν is a ghost).

When the arguments work for gravity exactly as they do
for gauge theories, we skip the details of the proofs. The
reader should refer to [21] for the missing derivations.

First, the master equation (4.9) satisfied by Stot implies an
analogous master equation

(�tot, �tot) = 0 (11.1)

for the generating functional �tot = Wtot(J, J̃ , K , K̃ ) −∫
�α Jα − ∑

i

∫
�̃αi J̃ iα of the one-particle irreducible (1PI)

Green functions, where �α = δrWtot/δ Jα , �̃αi = δrWtot/

δ J̃αi . Second, the i th cloud invariance (4.10) of the total
action Stot, which is the identity (Scloud i

K , Stot) = 0, implies
the i th cloud invariance

(Scloud i
K , �tot) = 0 (11.2)

of the � functional.
Proceeding inductively, we can show that the total renor-

malized action SR tot satisfies the renormalized master equa-
tions

(SR tot, SR tot) = 0, (Scloud i
K , SR tot) = 0. (11.3)

Since the cloud symmetry is the most general shift of the
cloud fields, the second equation ensures that the total renor-
malized action is the sum of a cloud-independent renormal-
ized action SR and some cloud-exact rest. Separating Scloud

K
itself, which is nonrenormalized, we can write

SR tot = SR + (Scloud
K , ϒR) + Scloud

K

for some local functional ϒR . It is possible to extend the
arguments of Sect. 5 to SR tot and show that SR is cloud inde-
pendent and coincides with the usual renormalized action,
while the scattering amplitudes are gauge independent.

Moreover, the dependence on the gauge-fixing parame-
ters and the dependences on the cloud parameters go through
renormalization as canonical transformations. In particular,

the beta functions of the physical parameters are gauge inde-
pendent and cloud independent.

Some simplification comes from the introduction of
“cloud numbers”, besides the usual ghost number. The usual
ghost number is defined to be equal to 1 for Cμ, minus 1 for
C̄μ, K B

μ , Kμν
g , Kμ

A , Kϕ , K̃ ζ i
μ and K̃ Hi

μ , minus 2 for KC
μ , and

0 for every other field and source. The i th cloud number is
defined to be equal to one for Hμi , minus one for H̄μi , K̃ Hi

μ

and K̃ Ei
μ , and zero in all the other cases.

Every term of the action Stot is neutral with respect to the
ghost and cloud numbers just defined, with the exception of
the source terms

∫
Hμi K̃ ζ i

μ . Since, however, such terms can-
not be used in nontrivial 1PI diagrams, all the counterterms
are neutral. This ensures that each cloud number is separately
conserved in 1PI diagrams beyond the tree level.

Power counting is not very helpful in the cloud sectors,
since the cloud fields ζμi have negative dimensions. A simpli-
fication can be achieved by combining the background-field
method with the Batalin–Vilkovisky formalism, as shown in
Ref. [57]. So doing, the gauge and cloud transformations are
not renormalized. Yet, the cloud sectors are nonrenormal-
izable, strictly speaking, since infinitely many counterterms
are allowed by power counting and the symmetry constraints.
For example, we can always build gauge invariant candi-
date counterterms that depend nontrivially on the fields of
each cloud sector and are exact under every cloud symmetry.
Examples are

(Scloud1
K , (Scloud2

K , . . . (ScloudN
K , ϒ̃))),

where N denotes the number of clouds, and ϒ̃ is a gauge
invariant local functional, built with gauge invariant combi-
nations of cloud fields, such as (8.5). We cannot exclude that
different cloud sectors mix under renormalization. Neverthe-
less, we can prove that the counterterms that do not contain
fields and sources of some cloud sector are the same as if that
sector were absent.

The renormalization in every non-background-field app-
roach can be reached by means of a (renormalized) canonical
transformation. Details on this can be found in Ref. [57].

Equipped with the renormalized action and the renormal-
ized gauge transformations, we can build dressed fields that
are gauge-invariant with respect to the latter. The correla-
tion functions of the renormalized dressed fields are gauge
independent.

Finally, the arguments that lead to the identity (5.7) con-
tinue to hold after renormalization. We have an identity anal-
ogous to (5.7), where the dressed and undressed fields are
replaced by their renormalized versions. In particular, the
S matrix amplitudes of the renormalized dressed fields are
cloud independent and coincide with the usual S matrix
amplitudes of the renormalized undressed fields. Since the
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former are gauge independent by construction, the latter are
gauge independent as well.

12 Conclusions

We have extended quantum field theory to include purely vir-
tual cloud sectors, to study point-dependent physical observ-
ables in general relativity and quantum gravity, with particu-
lar emphasis on the gauge invariant versions of the metric and
the matter fields. The cloud diagrammatics and its Feynman
rules are derived from a local action, which is built by means
of cloud fields ζμi and their anticommuting partners Hμi . It
incorporates the choices of clouds, the cloud Faddeev–Popov
determinants and the cloud symmetries. The usual gauge-
fixing must be cloud invariant, while the cloud-fixings must
be gauge invariant.

The formalism allows us to define physical, off-mass-
shell correlation functions of point-dependent observables,
and calculate them within the realm of perturbative quantum
field theory. Every field insertion can be equipped with its
own, independent cloud. We may eventually replace the ele-
mentary fields with the dressed ones everywhere, to work in
a manifestly gauge independent environment.

The extension does not change the fundamental physics,
in the sense that the ordinary correlation functions and the
S matrix amplitudes are unmodified. It allows us to com-
pute new correlation functions, those containing insertions
of dressed fields. If the clouds are quantized as purely virtual,
the extended theory is unitary. In particular, the correlation
functions of the dressed fields obey the off-shell, diagram-
matic version of the optical theorem. No unwanted degrees
of freedom propagate.

A Batalin–Vilkovisky formalism and its Zinn–Justin mas-
ter equations allow us to study renormalizability and the
WTST identities to all orders in the perturbative expansion.
A gauge/cloud duality shows that the usual gauge-fixing is
nothing but a particular cloud, provided it is rendered purely
virtual. A purely virtual gauge-fixing is a natural upgrade of
the so-called physical gauges [58].

We have illustrated the key properties of our approach
by computing the one-loop two-point functions of dressed
scalars, vectors and gravitons, and comparing purely virtual
clouds to non-purely virtual clouds, in Einstein gravity as
well as in quantum gravity with purely virtual particles. If
purely virtual clouds are used, the absorptive parts are pos-
itive, cloud independent and gauge independent. This sug-
gests that they are properties of the fundamental theory. The
absorptive parts are not positive, in general, if non-purely
virtual clouds are used.

Pure virtuality can be a natural environment to extract
physical information from off-shell correlation functions.
Among the other things, it allows us to break global invari-

ances without breaking the local ones, avoiding undesirable
consequences on unitarity. We can also define short-distance
scattering processes, where the results depend on the coulds.
It emerges that in such processes the observer necessarily
disturbs the observed phenomenon. The net effect is that the
amplitudes are physical, but depend on the cloud parameters.
Yet, after sacrificing a few measurements for the calibration
of our instrumentation, we are able to make testable, and
possibly falsifiable, predictions.

We did not introduce true matter to define the metric as
a physical observable. Instead, we used purely virtual dress-
ings. In this sense, our approach provides the identification
of a complete set of observables in quantum gravity. Yet, it
raises new issues. It would be interesting to clarify the relation
between the Komar–Bergmann classical approach [2–5] and
the one formulated here, as well as investigate the nonlocal
nature of the algebra of commutators (check [15,16] for this
aspect in the Donnelly–Giddings approach). It is important
to recall that pure virtuality at the operatorial level still has to
be understood (the formulation we have today being mainly
diagrammatic [14]), so we may not be ready to use the results
of this paper for a canonical analysis of the observables and
a Hamiltonian quantization.

The formulation developed here is perturbative, around
flat space. To overcome these limitations, we need to face
old and new challenges. An obstacle is that the prescription
for purely virtual particles is understood only diagrammati-
cally (hence, perturbatively) at present. Even standard pro-
cedures, like the resummation of self-energies into effective
propagators, hide unexpected features, as discussed in Ref.
[36]. Another challenge is to generalize or adapt the known
nonperturbative methods. The numeric (lattice) approaches
are not immediately helpful, since they are mostly suited for
Euclidean theories, where the crucial aspects of purely virtual
particles disappear. Results about the perturbative expansion
around a non flat background have been obtained in the con-
text of primordial cosmology [29]. Still, a systematics of
purely virtual particles in curved spacetime is awaiting to be
developed.
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