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Abstract We discuss entanglement and violation of Bell-
type inequalities for a system of two Z bosons produced
in Higgs decays. We take into account beyond the Stan-
dard Model (anomalous) coupling between H and daughter
bosons but we limit ourselves to an overall scalar Z Z state
(we exclude the possibility that H contains a pseudo-scalar
component). In particular we consider the case when each
Z decays further into fermion-antifermion pair. We find that
the Z Z state is entangled and violates the CGLMP inequal-
ity for all values of the (anomalous) coupling constant. We
also discuss the impact of a background on these results. The
methods we develop are completely general, since they can
be extrapolated to any scalar particle decaying into two spin-
1 particles of different masses. Moreover, the violation of the
CGLMP inequality in the final state is theoretically ensured
for any value of the couplings.

1 Introduction

Violation of Bell inequalities is one of the most striking prop-
erties of quantum theory. Such a violation has been observed
in a variety of physical systems like e.g. pairs of photons
[1–3], ions [4], electrons [5], superconducting currents [6]
or solid state systems [7].

Recently, the possibility of observing quantum entangle-
ment and violation of Bell-type inequalities in high energy
physics has been put forward. In particular, scattering pro-
cesses [8,9], systems of top quarks [10–15], B0 B̄0 mesons
[16] and pairs of vector bosons arising from Higgs parti-
cle decay [17–22] were proposed in this context. This last
possibility for the first time was suggested by Alan Barr in
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[17]. Barr considered there the violation of Clauser–Horn–
Shimony–Holt (CHSH) and Collins–Gisin–Linden–Massar–
Popescu (CGLMP) inequalities in a system of WW bosons
arising in the decay of Higgs particle. In [18] the possible
violation of CHSH, Mermin and CGLMP inequalities for a
boson–antiboson system in an overall scalar state was dis-
cussed. In this paper the most general scalar state of two
boson system was considered. If the bosons originate from
the Higgs decay, then one of the components of such a gen-
eral scalar state corresponds to an anomalous coupling of
H with the daughter bosons (we explain this point in the
present paper in Sec. 2). Such a general scalar state of two
vector bosons in the context of quantum correlations for the
first time was discussed in [23] while the correlations of rel-
ativistic vector bosons in [24]. The authors of [19] analyzed
entanglement and violation of CGLMP inequality in the sys-
tem of two Z bosons produced in the decay of a Higgs par-
ticle assuming the Standard Model interaction of H with
the Z Z pair. In [21] entanglement of W bosons produced
in H → WW → lνlν channel was considered. The paper
[20] explores the possibility of using quantum state tomogra-
phy methods to determine a density matrix of massive parti-
cles produced in weak decays. In [22] entanglement and Bell
inequality violation in boson pairs arising in the Standard
Model processes H → WW ∗, H → Z Z∗, pp → WW ,
pp → WZ , and pp → Z Z is considered.

In this paper we discuss entanglement and violation of
the CGLMP inequality for a Z Z system produced in Higgs
decay. We consider anomalous (beyond the Standard Model)
structure of the vertex describing interaction of a Higgs parti-
cle with two daughter bosons but limit ourselves to the case of
a scalar Higgs. Anomalous coupling parameters in the ampli-
tude describing the interaction between H and Z Z bosons are
strongly constrained by measurements of Higgs properties
performed at the LHC [25], we discuss this point in detail in
next section, below Eq. (9). However, our analysis is based on
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the most general Lorentz-covariant, CPT conserving ampli-
tude (Eq. (8)) describing coupling of a (pseudo)scalar par-
ticle with two spin-1 particles with different masses. Thus,
our considerations can be applied to each of such processes.
The Higgs decay can be treated as an exemplary process of
this kind.

It is also worth to notice the very recent papers [26,27].
The authors of the former paper propose to use quantum
tomography techniques to bound anomalous coupling in
H → WW and H → Z Z decays while the authors of the
latter one use entanglement to probe new physics in diboson
production.

We use the standard units (h̄ = c = 1, here c stands
for the velocity of light) and the Minkowski metric tensor
η = diag(1,−1,−1,−1).

2 State of the two-boson system arising from the Higgs
decay

Our first goal is to construct a quantum state of two bosons
arising in the process

H → Z Z . (1)

Let us denote by M the Higgs mass and by k,m1 and p,m2

the four-momenta and invariant masses of the in general off-
shell Z bosons produced in the decay (1). In the actual decay
of the Higgs particle into a pair of Z bosons typically one of
them is nearly on-shell and the other one off-shell. Neverthe-
less, for the sake of generality, we consider Z bosons with
arbitrary invariant masses. We decided to work in this frame-
work as it covers all possible scenarios of a general on-shell
scalar decaying into vector bosons. On the other hand, when
we average the Z Z state over kinematical configurations we
use the probability distribution Pc(m1,m2) (Eq. (32)) giving
the probability that H decays into bosons with masses m1

and m2. For the actual process (1) this probability density is
peaked at mi = mZ (i = 1 or 2). For further remarks on
this point see the paragraph above Eq. (56). Moreover, we
treat of-shell particles like ordinary on-shell particles with
reduced masses. Similar approach has been applied in previ-
ous quantum-information-related studies [19,22] as well as
more phenomenologically-oriented papers like [28,29].

We will perform our computations in the center of mass
(CM) frame. In this frame we denote energies of Z bosons
as ω1 and ω2, consequently kμ = (ω1, k), pμ = (ω2,−k)

and ω2
1 − k2 = m2

1, ω2
2 − k2 = m2

2.
Using similar notation as in [18,23,24], a general scalar

state of two vector bosons with arbitrary masses can be writ-
ten as

|ψscalar
Z Z (k, p)〉 = gμν(k, p)e

μ
λ (k)eν

σ (p)|(k, λ); (p, σ )〉, (2)

where

gμν(k, p) = ημν + c
(kp)

(
kμ pν + pμkν

)
, c ∈ R, (3)

and |(k, λ); (p, σ )〉 denotes the two-boson state, one boson
with the four-momentum k and spin projection along z axis
λ, second one with the four-momentum p and spin projection
σ . The basis two-particle states fulfill the following orthog-
onality condition (for k �= p)1:

〈(k, λ); (p, σ )|(k, λ′); (p, σ ′)〉 = δλλ′δσσ ′ . (4)

The explicit form of amplitude eμ
λ (q) for the four-

momentum q = (q0, q) with q02 − q2 = m2 reads [24]

e(q) = [eμ
σ (q)] =

(
qT

m

I + q⊗qT

m(m+q0)

)

V T , (5)

and

V = 1√
2

⎛

⎝
−1 i 0
0 0

√
2

1 i 0

⎞

⎠ . (6)

These amplitudes fulfill standard transversality condition

eμ
σ (q)qμ = 0. (7)

To find an interpretation of the parameter c introduced in
Eqs. (2, 3) let us notice that the two boson state can be com-
puted using the structure of the vertex describing interaction
of the Higgs particle with two daughter vector bosons. Fol-
lowing e.g. [28,29] the amplitude corresponding to the most
general Lorentz-invariant, CPT conserving coupling of the
(pseudo)scalar particle with two vector bosons can be cast in
the following form:

Aλσ (k, p) ∝ [
v1ημν + v2(k + p)μ(k + p)ν

+v3εαβμν(k + p)α(k − p)β
]
eμ
λ (k)eν

σ (p), (8)

where λ, σ are spin projections of the final states, v1, v2, v3

are three real coupling constants, and εαβμν is a completely
antisymmetric Levi-Civita tensor.

The Standard Model interaction corresponds to v1 = 1,
v2 = v3 = 0. On the other hand, v3 �= 0 implies that Higgs
boson contains a pseudo-scalar component and indicates the
possibility of CP violation. For the moment, let us consider
the case v3 = 0, v1 �= 0, and v2 free. Comparing (2,3) with
(8) and taking into account the transversality condition (7)
we can relate the parameter c with the coupling constants v1,
v2

c = v2

v1
(kp). (9)

1 Here, for convenience, we use vectors which are rescaled with respect
to the basis vectors used in [24] or [18]. To obtain vectors used here one
have to multiply those from [18] by (2δ3(0)

√
ω1ω2)

−1.
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Let us mention that the assumption v1 = 0, apart from being
unphysical (we know that the Higgs has v1 �= 0), together
with v3 = 0 leads to a separable state. Therefore, from now
on we limit ourselves to the case v3 = 0, v1 �= 0, v2 free, that
is we assume that the Higgs boson is a scalar but we admit a
beyond Standard Model coupling v2 �= 0.

We would like to stress here that there exist experimen-
tal bounds on anomalous couplings v2 and v3. Strong bound
comes from the measurements of Higgs boson particles per-
formed at the LHC by the CMS Collaboration [25]. The
CMS Collaboration paper uses a different parametrization
of the amplitude describing the interaction between H and
two daughter bosons, instead of v1, v2 they use parameters
aZ Z

1 and aZ Z
2 – see Eq. (2) in [25]. Comparing (2) in [25]

and our Eq. (8) we obtain the following relation between the
parameterizations:

v1 ∝ aZ Z
1 m2

Z + 2aZ Z
2 (kp), v2 ∝ −2aZ Z

2 (10)

(with the same proportionality constant). Thus, following (9)

c = 2

(
aZ Z2
aZ Z1

(kp)
m2

Z

)
−1

1+2

(
aZ Z2
aZ Z1

(kp)
m2

Z

) ⇒

|c| = 2

∣∣∣
∣
aZ Z2
aZ Z1

∣∣∣
∣

(kp)
m2

Z
+ O

( ∣∣∣
∣
aZ Z2
aZ Z1

∣∣∣
∣

2 )
. (11)

Now, the experimental bounds on the ratio aZ Z
2 /aZ Z

1 are
given in Table 7 of [25] and in the on-shell case they read:
aZ Z

2 /aZ Z
1 ∈ [−0.12, 0.26] at 95% C.L. Thus, taking a larger

value in this range, i.e. |aZ Z
2 /aZ Z

1 | < 0.26, and neglecting
terms of order |aZ Z

2 /aZ Z
1 |2 and higher, we get

|c| < 0.26 2(kp)
m2

Z
. (12)

To estimate the maximal value of 2(kp)/m2
Z we use Eq. (A.5)

and assume that one of the Z bosons is on-shell and the invari-
ant mass of the off-shell Z boson is equal to zero. Inserting
the measured values for the Higgs mass M = 125.25 GeV
and Z mass mZ = 91.19 GeV [30] we finally obtain the
following bound for experimentally admissible values of c
in the process H → Z Z :

|c| < cmax
HZZ = 0.23. (13)

Ref. [26] suggests that even stronger bound could be obtained
using the tomography of the two-boson density matrix.
Therefore, in the actual process H → Z Z the range of the
parameter c which is not excluded by experimental data is
rather narrow. However, as we mentioned in Introduction,
the process H → Z Z can be treated as a model for the most
general case of a decay of a (pseudo)scalar particle into two
spin-1 particles with different masses. That is why in the fol-
lowing part of the paper we do not restrict values of c to the
interval (−cmax

HZZ, cmax
HZZ).

The following comment is also in order here: when we
consider a decay of a scalar particle into two gauge bosons,
gauge invariance requires that v2 coupling appears in the
combination v2(kμ pν −ημν(kp)) which is equivalent to c =
−1. Thus, the cases c = 0 and c = −1 are indeed special as
it was emphasized in [18].

The normalization of the scalar state defined in Eq. (2) is
the following:

〈ψscalar
Z Z (k, p)|ψscalar

Z Z (k, p)〉 = A(k, p), (14)

with

A(k, p) = 2 +
[
(1 + c) (kp)

m1m2
− cm1m2

(kp)

]2 ≡ 2 + κ2, (15)

where, for further convenience, we have introduced the
parameter κ . Using formulas (A.3–A.7) we find that in the
CM frame κ depends only on masses M , m1, m2 and the
parameter c:

κ = β + c(β − 1/β), (16)

where

β = M2 − (m2
1 + m2

2)

2m1m2
. (17)

The range of possible values of κ depends on the value of c
and is the following:

κ ∈ (−∞, 1] for c ∈ (−∞,−1), (18)

κ ∈ [0, 1] for c = −1, (19)

κ ∈ [2√−c(1 + c),∞) for c ∈ (−1,− 1
2 ), (20)

κ ∈ [1,∞] for c ∈ [− 1
2 ,∞). (21)

Nevertheless, further theoretical constraints must be taken
into account to give the physically allowed range for c. In
particular, perturbative unitary (see [31] for a recent review
applied to Higgs physics) imposes bounds over the values of
the anomalous coupling v2. Namely, based on Z Z → Z Z
scatterings, numerical bounds have been obtained for the
H → Z Z anomalous couplings [32]. Comparing our ampli-
tude (Eq. (8)) with Eq. (9) from [32] we get the following rela-
tion between our parametrization and parametrization used
in [32]:

v1 ∝ aZ ZH
1 m2

Z − aZ ZH
2 (kp), v2 ∝ aZ ZH

2 . (22)

Thus, following (9)

c =
(

aZ ZH2
aZ ZH1

(kp)
m2

Z

)
1

1−
(
aZ ZH2
aZ ZH1

(kp)
m2

Z

) . (23)

Now, we use Eq. (A.5) assuming that one of the Z bosons
is on-shell and the invariant mass of the off-shell Z boson is

123



1050 Page 4 of 11 Eur. Phys. J. C (2023) 83 :1050

equal to zero and apply Eqs. (11, 12, 25) from [32] to obtain

(kp)

m2
Za

Z ZH
1

� 0.68158 (24)

which gives

c �
0.68158aZ ZH

2

1 − 0.68158aZ ZH
2

. (25)

Therefore, taking into account that according to Table I in
[32]: |aZ ZH

2 | < 1.97, we notice that c has a pole in the
allowed range for aZ ZH

2 and hence c ∈ (−∞,∞). That is,
we find that the requirement of perturbative unitarity does
not limit accessible values of c in the process H → Z Z .

Now, denoting

n = k
|k| , (26)

in the CM frame we can write the Z Z scalar state (2) as

|ψscalar
Z Z (m1,m2, n, c)〉 =

∑

λσ

Ωλσ |(k, λ); (p, σ )〉, (27)

where kμ = (ω1, 0, 0, |k|n), pμ = (ω2, 0, 0,−|k|n), ω1,
ω2, |k| are given by Eqs. (A.6, A.7, A.4), respectively, and

Ω = − 1√
2 + κ2

V (I + (κ − 1)n ⊗ nT )V T , (28)

(V is defined in Eq. (6)).
Without loss of generality we take n along z axis, n =

(0, 0, 1) and simplify our notation:

|((ω1, 0, 0, |k|), λ); ((ω2, 0, 0,−|k|), σ )〉 ≡ |λ, σ 〉. (29)

With such a choice we have

Ω = 1√
2 + κ2

⎛

⎝
0 0 1
0 −κ 0
1 0 0

⎞

⎠ , (30)

and the explicit form of the Z Z state in this case reads

|ψscalar
Z Z (m1,m2, c)〉 = 1√

2 + κ2

[
|+,−〉

−κ|0, 0〉 + |−,+〉
]
. (31)

It is worth taking note that the form of the above state agrees
with the most general form of the Z Z state arising in the
H → Z Z process conserving parity—compare Eq. (7) from
[19]. Moreover, when we put c = 0 in Eq. (16) the state (31)
coincides with the Z Z state discussed in [19] where only the
Standard Model vertex has been considered.

2.1 Averaging over kinematical configurations

In the realistic case when the state is determined on the basis
of data obtained from various kinematical configurations, one

has to average over these configuration. Thus, in such a case
we receive a mixed state which for a given c reads

ρZ Z (c) =
∫

dm1 dm2 Pc(m1,m2)ρ(m1,m2, c), (32)

where ρ(m1,m2, c) = |ψscalar
Z Z (m1,m2, c)〉〈ψscalar

Z Z
(m1,m2, c)〉 (c.f. (31)) andPc(m1,m2) is a normalized prob-
ability distribution. To determine the form ofPc(m1,m2), we
assume that each of the Z bosons produced in the process (1)
decays subsequently into massless fermion–antifermion pair,
i.e. we consider the process

H → Z Z → f +
1 f −

1 f +
2 f −

2 . (33)

The normalized differential cross section of the decay Z Z →
f +
1 f −

1 f +
2 f −

2 is given by

1

σ

σ

dΩ1 dΩ2
=

( 3

4π

)2
Tr

[
ρZ Z (c)(�T

1 ⊗ �T
2 )

]
, (34)

where �i is the decay matrix of Zi → f +
i f −

i , Ωi is the solid
angle related to the final particle fi [19,33]. Now, inserting
(32) into (34), integrating with respect to solid angles, using
the property that

∫
�i dΩi = 4π

3 I , and differentiating with
respect to m1, m2 we obtain

1

σ

dσ

dm1 dm2
(m1,m2, c)

= Pc(m1,m2)

Tr[ρ̃(m1,m2, c)] Tr[ρ̃(m1,m2, c)], (35)

where by ρ̃(m1,m2, c) we have denoted non-normalized
density matrix ρ(m1,m2, c), i.e.,

ρ̃(m1,m2, c) =
[
|+,−〉 − κ|0, 0〉 + |−,+〉

]

×
[
〈+,−| − κ〈0, 0| + 〈−,+|

]
. (36)

Next, Eq. (8) from [29] in our notation can be written as2

1

σ

dσ

dm1 dm2
(m1,m2, c)

= N
λ1/2(M2,m2

1,m
2
2)m

3
1m

3
2

D(m1)D(m2)
Tr[ρ̃(m1,m2, c)], (37)

where N is a normalization factor independent ofm1,m2 and
c; while the functions λ and D are defined in Eqs. (A.1, A.2).
Comparing (35) with (37) (and taking into account (36)) we
finally obtain the probability distribution

Pc(m1,m2) = N
λ1/2(M2,m2

1,m
2
2)m

3
1m

3
2

D(m1)D(m2)

[
2 + κ2]. (38)

For a given value of c the normalization factor N can be
determined numerically. In [19] the probability distribution

2 Zagoskin and Korchin in [29] work in the helicity basis. Note that
with our choice of the reference frame the sign of the third component
of the spin for one of the bosons coincides with the helicity while for
the other one with minus the helicity.
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Pc=0(m1,m2) has been obtained with the help of Monte
Carlo simulation. The results coincide with those computed
from (38).

Therefore, using (16, 32, 38), the density matrix averaged
over kinematical configurations can be written as

ρZ Z (c) = 1

2a + b

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 a 0 −d 0 a 0 0
0 0 0 0 0 0 0 0 0
0 0 −d 0 b 0 −d 0 0
0 0 0 0 0 0 0 0 0
0 0 a 0 −d 0 a 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

, (39)

where for better visibility we have framed the non-zero
matrix elements:

a = B(0), (40)

b = B(2) + 2c
[
B(2) − B(0)

]

+ c2[B(2) + B(−2) − 2B(0)
]
, (41)

d = B(1) + c
[
B(1) − B(−1)

]
, (42)

and we have introduced the following notation

B(n) =
∫

0≤m1+m2≤M

dm1dm2
λ1/2(M2,m2

1,m
2
2)m

3
1m

3
2

D(m1)D(m2)
βn,

(43)

for n = −2,−1, 0, 1, 2.
Note that sometimes it is relevant for phenomenologi-

cal purposes to implement cuts on the possible values of
the boson masses (for example to remove part of the back-
ground of a certain scattering process). This feature is easily
implemented theoretically via the integrals defining B(n).
For instance, when considering a lower cut in the off-shell
mass of the vector boson, mi ≥ mcut

i , one just needs to mod-
ify the lower bound in the integral over the corresponding
mass:

∫

0≤m1+m2≤M

dm1dm2 =
∫ M

0
dm1

∫ M−m1

0
dm2

→
∫ M

mcut
1

dm1

∫ M−m1

mcut
2

dm2. (44)

When we insert the measured values for the Higgs mass,
Z mass and Z decay width, i.e., M = 125.25 GeV, mZ =
91.19 GeV, �Z = 2.50 GeV [30] we obtain

aZ = 2989.76, (45)

bZ = 9431.55 + 12883.6c + 4983.07c2, (46)

dZ = 4819.07 + 2752.19c. (47)

3 Bell inequalities and entanglement

Now, we are at a position to discuss the violation of Bell
inequalities in a system of two Z Z bosons. Various Bell
inequalities have been designed for detecting departures from
local realism by quantum mechanical systems [34], the most
popular one being the CHSH inequality [35]. For a sys-
tem consisting of two d-dimensional subsystems the opti-
mal Bell inequality was formulated in [36,37] and is known
as the CGLMP inequality. For two qubits it reduces to the
CHSH inequality. We consider here two spin-1 particles
therefore we present the CGLMP inequality for d = 3.
We assume that Alice (Bob) can perform two possible mea-
surements A1 or A2 (B1 or B2) on her (his) subsystem,
respectively. Each of these measurements can have three
outcomes: 0,1,2. Let P(Ai = Bj + k) denotes the proba-
bility that the outcomes Ai and Bj differ by k modulo 3, i.e.,
P(Ai = Bj + k) = ∑l=2

l=0 P(Ai = l, Bj = l + k mod 3),
and let us define the following quantity

I3 = [
P(A1 = B1) + P(B1 = A2 + 1)

+P(A2 = B2) + P(B2 = A1)
]

−[
P(A1 = B1 − 1) + P(B1 = A2)

+P(A2 = B2 − 1) + P(B2 = A1 − 1)
]
. (48)

The CGLMP inequality has the form

I3 ≤ 2. (49)

We assume that Alice can perform measurements on one of
the Z bosons, Bob on the second one. In principle, what they
can measure are spin projections on given directions. A few
remarks are in order here. In [18] we discussed broader the
problem of choice of the proper spin observable. We have
advocated there the Newton–Wigner spin operator. Under
our assumptions, when Alice applies this spin operator to the
basis vector |λ, σ 〉, this action can be written as the action
of (Sλ′λ ⊗ I ) on |λ′〉 ⊗ |σ 〉, where Si are standard spin-1
matrices (and analogously for Bob). Therefore, from now on
we take Alice (Bob) observables as A⊗ I (I⊗B) and identify
|λ〉 ⊗ |σ 〉 ≡ |λ, σ 〉.

3.1 Probabilities of spin projection measurements for a
particular configuration

In general, when discussing the violation of CGLMP inequal-
ity by the state ρZ Z (c) (Eq. (39)) we do not restrict our atten-
tion to spin projection measurements only. However, for a
particular configuration, the probabilities Pλσ that Alice and
Bob receive λ and σ when they measure spin projections
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along directions a and b in the pure state (27), respectively,
can be calculated explicitly. We present them below

P±± = 1

4[2 + κ2]
{[

1 − (a · b)
]2

+2(κ − 1)
[
1 − (a · b) + (

1 + (a · b)
)
(a · n)(b · n) − (a · n)2

−(b · n)2] + (κ − 1)2[
1 − (a · n)2][

1 − (b · n)2]}
, (50)

P±∓ = 1

4[2 + κ2]
{[

1 + (a · b)
]2

+2(κ − 1)
[
1 + (a · b) − (

1 − (a · b)
)
(a · n)(b · n) − (a · n)2

−(b · n)2] + (κ − 1)2[
1 − (a · n)2][

1 − (b · n)2]}
, (51)

P0± = 1

2[2 + κ2]
{

1 + (κ2 − 1)(a · n)2

−[
(a · b) + (κ − 1)(a · n)(b · n)

]2
}
, (52)

P±0 = 1

2[2 + κ2]
{

1 + (κ2 − 1)(b · n)2

−[
(a · b) + (κ − 1)(a · n)(b · n)

]2
}
, (53)

P00 = 1

2 + κ2

[
(a · b) + (κ − 1)(a · n)(b · n)

]2
. (54)

For the case m1 = m2 the above probabilities coincide with
the probabilities found in [18].

It is worth noticing that if Alice and Bob are allowed to
use only spin projections as observables then, in principle,
the violation of the Bell inequality would be suboptimal as
we are not covering the whole space of possible observables.

3.2 Bell inequalities in a general ZZ state

Now, we want to answer the question whether the state (39)
violates the CGLMP inequality. In general, for a given state ρ

there does not exist a simple way to find optimal observables
A1, A2, B1, B2, i.e., such observables for which the value
of I3 is maximal in the state ρ. Usually, optimal observ-
ables are looked for with the help of a certain optimization
procedure. In [19] such a procedure was proposed in the con-
sidered there Standard Model coupling case, i.e. for c = 0. In
this procedure one modifies the well known optimal choice of
observables for the maximally entangled state. For complete-
ness we describe the details of this procedure in Appendix
B.1. This procedure works very well for the case c = 0 and
for c close to that value. However, for higher values of |c|
this procedure gives the observables which do not violate the
CGLMP inequality.

Thus, we have considered also a different optimization
procedure. This procedure is inspired by the proof of Theo-
rem 2 in [38]. The details of this approach we described in
Appendix B.2.

In Fig. 1 we present the maximal value of I3 as a function
of c obtained with the help of both mentioned above opti-
mization strategies. This plot shows that the state ρZ Z (c)
can violate the CGLMP inequality (39) for all values of c.
For c ∈ (cZ−, cZ+), where cZ− = −1.3749, cZ+ = 1.6690, the

Fig. 1 In this figure we present the maximal value ofI3 in the state (39)
as a function of c. We have inserted the measured values for the Higgs
mass, Z mass and Z decay width, i.e., we put a, b, d given in Eqs. (45,
46, 47). The I(1)

3 curve was obtained with the help of the optimization

procedure described in Appendix B.1 while the curve I(2)
3 with the help

of the procedure from Appendix B.2. Vertical dotted lines delimit the
range (−cmax

HZZ, cmax
HZZ) (with cmax

HZZ = 0.26—compare Eq. (13)) of the
parameter c admissible by experimental data for the process H → Z Z

optimization procedure proposed in [19] gives higher viola-
tion of CGLMP inequality than the procedure proposed in
Appendix B.2. For other values of c the situation is opposite.
The highest value of I3 we obtained is equal to 2.9047, it is
attained for cZmax = −0.8536.

Regarding the values |c| < cmax
HZZ, larger violation of

order [2.5, 2.8] is obtained when the optimization strategy
from Appendix B.1 is implemented, while violations of
order [2.2, 2.3] are attained for the optimization presented
in Appendix B.2.

3.3 Entanglement of a general Z Z state

To evaluate entanglement of the state (39) we use the com-
putable entanglement measure called logarithmic negativity
[39,40]

EN (ρ) = log3(||ρTB ||1), (55)

where ||A||1 = Tr(
√
A†A) is the trace norm of a matrix A

and TB denotes partial transposition with respect to the sec-
ond subsystem. The trace norm of a matrix A is equal to the
sum of all the singular values of A; when A is hermitian then
||A||1 is equal to the sum of absolute values of all eigenvalues
of A.

If a state ρ is separable then the logarithmic negativity of ρ

is equal to zero. Thus, EN (ρ) > 0 indicates that the state ρ is
entangled. In Fig. 2 we have plotted the logarithmic negativity
of the state (39) with aZ , bZ , and dZ given in Eqs. (45,46,47).
We see that the state is entangled for all values of c, the
maximal value of the logarithmic negativity equal to 0.9964
is attained for c = −0.7371. It is worth noticing that the state
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Fig. 2 In this figure we present logarithmic negativity of the state (39),
EN (ρZ Z (c)) as a function of c. We have inserted the measured values
for the Higgs mass, Z mass and Z decay width, i.e., we put a, b, d given
in Eqs. (45,46,47). The cusp occurs for the value of c for which the
parameter dZ in the density matrix vanishes and is caused by the change
in monotonicity of the trace norm of the partially transposed matrix.
Vertical dotted lines delimit the range (−cmax

HZZ, cmax
HZZ) (with cmax

HZZ =
0.26—compare Eq. (13)) of the parameter c admissible by experimental
data for the process H → Z Z

with the highest entanglement corresponds to c = −0.7371
while the state with the highest violation of the CGLMP
inequality corresponds to c = −0.8536, i.e., these states
are different. This observation is consistent with the general
property of CGLMP inequality [41].

Concerning the logarithmic negativity for |c| < cmax
HZZ,

it this is considerably far apart from 0, within a range ∼
[0.85, 0.95]. This indicates a high grade of entanglement in
any Z Z pair stemming from Higgs decays.

3.4 Impact of a background

Because the reconstruction of ρZ Z (c) in a collider experi-
ment is done via quantum tomography methods [19,20,42],
the presence of systematic and statistical errors as well as
the existence of a small background in H → Z Z →
f +
1 f −

1 f +
2 f −

2 processes lead to a modification of its exact
form. Following the discussion given in [19], we will focus
on analyzing H → Z Z → e+e−μ+μ−, since it constitutes
one of the cleanest channels to be explored at the LHC. In
principle, the two Z bosons are cleanly identified. Due to the
fact that one of them is nearly on-shell, it gives two leptons
whose invariant mass is close tomZ , while the remaining two
leptons have a much lower invariant mass. We have labeled
the (very close to real) Z boson with largest invariant mass as
Z1 and its four-momentum could be reconstructed from its
decay products l+1 l−1 . On the other hand, the off-shell Z boson
is labeled as Z2 and its momentum is determined summing
up the momenta of its decay products l+2 l

−
2 .

Concerning both the systematic and statistical errors of the
tomography procedure, it was stated in [19] that the statistical
one dominates with respect to the systematics and detector

resolution. An estimation of the former was computed in this
previous paper and the results show that, even with these
errors, a violation of Bell inequalities for the ρZ Z (0) state
could be probed at the 4.5σ level in the HL-LHC. Regard-
ing the background of the process, the main one comes from
the electroweak one pp → Z Z/Zγ → 4 l, being this one
about 4 times smaller at the Higgs peak [43]. Nevertheless, as
claimed in [19], a background subtraction will be necessary
before computing the entanglement observable and evalu-
ating the CGLMP inequality. In general, the non-negligible
background will slightly contribute to the statistical uncer-
tainty of the measurements. Moreover, as proposed in [19],
the larger the invariant mass m2 of the off-shell Z boson,
the more entangled the ρZ Z (c) state. Therefore, requiring a
lower cut on m2 leads to an interplay between increasing the
entanglement (hence the violation of the CGLMP inequality)
and decreasing the statistics (thus increasing the uncertainty
in the measurements). In Figs. 3, 4, 5 we have studied the
theoretical dependence of I3 and EN on c, once the cuts
m2 ≥ 0, 10, 20, 30 GeV are implemented.

Returning for a moment to our discussion of “offshellness”
of Z bosons produced in the decay (1), let us notice that I(1)

3

and I(2)
3 obtained for m1 = mZ , 0 GeV ≤ m2 ≤ mH − mZ

(blue curves in Figs. 3, 4) are identical as I(1)
3 and I(2)

3 plot-
ted in Fig. 1 where we allowed arbitrary masses m1 and m2

(of course constrained by the four-momentum conservation).
The same holds for EN plotted in Figs. 2 and 5 (blue line). Of
course this coincidence is not accidental, it results from the
fact that the probability distribution Pc(m1,m2) is peaked at
mi = mZ .

Finally, in order to estimate the overall allowed uncertainty
in both the entanglement and the Bell inequality violation, we
have estimated the noise resistance of the CGLMP inequality
violation with respect to the white noise. To this aim we
considered the state ρZ Z (c) mixed with the identity operator,
i.e. the state

λρZ Z (c) + (1 − λ) 1
9 I9, λ ∈ (0, 1]. (56)

Now, the noise resistance we define as a minimal value of λ,
λmin, for which the state (56) violates the CGLMP inequality.
Inserting the state (56) into the CGLMP inequality (B.8) and
taking into account that Tr(OBell) = 0 we obtain

λmin = 2

max{Tr(ρZ Z (c)OBell)} . (57)

We obtained the maximal value of Tr(ρZ Z (c)OBell) = I3

with the help of two different optimization procedures (
Appendix B.1 and Appendix B.2) and denoted as I(1)

3 and

I(2)
3 , respectively (compare Fig. 1). Therefore, we have

λmin = 2

max{I(1)
3 , I(2)

3 }
(58)
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Fig. 3 In this figure we present the maximal value of I3 in the state
(39) as a function of c. We have inserted the measured values for the
Higgs mass, Z mass and Z decay width, i.e., we put a, b, d given in
Eqs. (45,46,47). We have applied the optimization procedure described
in Appendix B.1 and assumed the cuts m2 ≥ 0, 10, 20, 30 GeV are
implemented. Vertical dotted lines delimit the range (−cmax

HZZ, cmax
HZZ)

(with cmax
HZZ = 0.26—compare Eq. (13)) of the parameter c admissi-

ble by experimental data for the process H → Z Z

Fig. 4 In this figure we present the maximal value of I3 in the state
(39) as a function of c. We have inserted the measured values for the
Higgs mass, Z mass and Z decay width, i.e., we put a, b, d given in
Eqs. (45,46,47). We have applied the optimization procedure described
in Appendix B.2 and assumed the cuts m2 ≥ 0, 10, 20, 30 GeV are
implemented. Vertical dotted lines delimit the range (−cmax

HZZ, cmax
HZZ)

(with cmax
HZZ = 0.26—compare Eq. (13)) of the parameter c admissi-

ble by experimental data for the process H → Z Z

and this value we have plotted in Fig. 6.
The plots show that for values of c close to 0 (which are the

expected ones, due to the present bounds in anomalous cou-
plings for the HZZ vertex [44]), one can stand up to almost
a 20% of noise and still attain a violation of the CGLMP
inequality and hence an entangled state. Actually, the resis-
tance to noise increases with the invariant mass of the off-
shell Z boson, reaching for the cutm2 ≥ 30 GeV a resistance
of 20% for c ∈ [−3, 3] and a resistance of almost 30% for
c ∈ [−2, 2].

4 Conclusions

In conclusions, we have analyzed entanglement and Bell
inequality violation in a system of two Z bosons produced
in Higgs decay. We consider beyond the Standard Model

Fig. 5 In this figure we present logarithmic negativity of the state (39),
EN (ρZ Z (c)) as a function of c. We have inserted the measured values
for the Higgs mass, Z mass and Z decay width, i.e., we put a, b, d given
in Eqs. (45,46,47). We have assumed the cuts m2 ≥ 0, 10, 20, 30 GeV
are implemented. Vertical dotted lines delimit the range (−cmax

HZZ, cmax
HZZ)

(with cmax
HZZ = 0.26—compare Eq. (13)) of the parameter c admissible

by experimental data for the process H → Z Z

Fig. 6 In this figure we present λmin (58), as a function of c. We have
inserted the measured values for the Higgs mass, Z mass and Z decay
width, i.e., we put a, b, d given in Eqs. (45,46,47). We have assumed
the cuts m2 ≥ 0, 10, 20, 30 GeV are implemented. Vertical dotted
lines delimit the range (−cmax

HZZ, cmax
HZZ) (with cmax

HZZ = 0.26—compare
Eq. (13)) of the parameter c admissible by experimental data for the
process H → Z Z

structure of the vertex describing interaction of H with
daughter bosons. The amplitude corresponding to the most
general Lorentz-invariant, CPT conserving coupling of a
(pseudo)scalar particle with two vector bosons depends on
three coupling constants v1, v2, v3, and is explicitly given
in Eq. (8). The Standard Model interaction corresponds to
v1 = 1, v2 = v3 = 0 while v3 �= 0 implies Higgs boson
with a pseudo-scalar component and indicates the possibil-
ity of CP violation. In this paper we have considered the case
v3 = 0, v1 �= 0, v2 free, i.e. we have assumed the scalar
Higgs boson but admitted a beyond Standard Model cou-
pling v2 �= 0. In such a case, the state of produced bosons,
beyond four-momenta and spins, can be characterized by a
single parameter c which, up to normalization is equal to
v2/v1 (compare Eq. (9)). Under such assumptions, in the
center-of-mass frame, we have determined the most general
state of Z Z boson pair for a particular event H → Z Z .
Next, we have considered a more realistic case when data
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are collected from different kinematical configurations. In
such a situation a Z Z state can be calculated by averaging
over those configurations with respect to a proper probabil-
ity distribution function (PDF). Thus, assuming further that
each Z boson decays into fermion-antifermion pair, we have
derived the corresponding PDF and computed the Z Z boson
density matrix. Finally, we have shown that this matrix is
entangled and violates the CGLMP inequality for all values
of coupling (i.e. for all values of c) including the range admis-
sible by experimental data [25]. The procedure to check this
is completely general and can be applied for any other decay
of a scalar particle into vector bosons, with their correspond-
ing decay to fermions, once the PDF of the latter decay is
known.

Moreover, our preliminary studies show that the inclu-
sion of a CP-odd anomalous coupling should not qualita-
tively change the results derived. However, in this case the
optimization strategy is more involved and work is still in
progress.

Summarizing, this work settles a constructive way of prob-
ing the entanglement and violation of Bell inequalities of any
vector boson pair coming from a spin-0 particle, indepen-
dently of the value of the couplings in hand (as long as the
interactions among particles are CPT and Lorentz invariant).
This feature is of a complete novelty in the literature and
states the highly non-trivial fact that non locality (and hence
entanglement) of vector bosons in these kinds of processes is
theoretical ensured in any phenomenological model (it could
have been the case in which although the state is entangled,
it does not violate any Bell inequality). Thus, the only limi-
tation in checking the quantum behavior of these processes
comes from the experimental side. In particular, this work
gives the theoretical framework to test the quantum nature
of processes in a great variety of phenomenological models,
covering for instance models with extended scalar sectors as
well as axion like particles (ALP) models where we let the
ALP to interact with vector bosons.
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Appendix A: Some definitions and useful formulas

Following e.g. [29] we define the following functions

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (A.1)

D(m) = (
m2 − m2

Z

)2 + (mZ�Z )2, (A.2)

where mZ , �Z denotes the mass and decay width of the on-
shell Z boson. In the CM frame the Higgs particle with the
four-momentum (M, 0) decays into two off-shell Z bosons
with four-momenta kμ = (ω1, k), ω2

1 − k2 = m2
1 and pμ =

(ω2,−k), ω2
2 − k2 = m2

2. The energy conservation gives

M = ω1 + ω2. (A.3)

Using these equations in the CM frame we obtain

k2 = 1

4M2 λ(M2,m2
1,m

2
2), (A.4)

kp = 1

2

[
M2 − m2

1 − m2
2

]
, (A.5)

ω1 = 1

2M

[
M2 + (m2

1 − m2
2)

]
, (A.6)

ω2 = 1

2M

[
M2 − (m2

1 − m2
2)

]
. (A.7)

Appendix B: Optimal observables for CGLMP violation

For completeness we describe here the optimization stra-
tegies used to obtain observables A1, A2, B1, and B2 which
maximize the value of I3 as depicted in Fig. 1.

The first procedure is similar to that applied in [19]. The
second one is inspired by the proof of Theorem 2 in [38].

First, it is clear that the CGLMP inequality (49) can be
written as

Tr
(
ρOBell

) ≤ 2, (B.8)

where OBell is a certain operator depending on the observ-
ables A1, A2, B1, and B2.

Next, each hermitian 3×3 observable A can be represented
via the 3×3 unitary matrixUA. This unitary matrix is defined
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in a simple way: columns ofUA are normalized eigenvectors
of A in a given basis. With this notation one obtains [19]

OBell = −[UA1 ⊗UB1 ]P1[I ⊗ S3]P†
1 [UA1 ⊗UB1]†

+[UA1 ⊗UB2 ]P0[I ⊗ S3]P†
0 [UA1 ⊗UB2 ]†

+[UA2 ⊗UB1 ]P1[I ⊗ S3]P†
1 [UA2 ⊗UB1 ]†

−[UA2 ⊗UB2 ]P1[I ⊗ S3]P†
1 [UA2 ⊗UB2 ]†, (B.9)

where S3 is the standard spin z component matrix, S3 =
diag(1, 0,−1), and P0, P1 are 32 × 32 block-diagonal per-
mutation matrices:

Pn =
⎛

⎝
Cn O O
O Cn+1 O
O O Cn+2

⎞

⎠ , n = 0, 1, (B.10)

where O is the 3 × 3 null matrix and C is the 3 × 3 cyclic
permutation matrix

C =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ . (B.11)

Each U from (B.9) can be taken as an element of SU (3)

group, this group has 8 parameters. Thus, to perform the full
optimization of OBell for a given state one should check the
84 dimensional parameter space.

Appendix B.1: Strategy 1

To simplify this task, in [19] the following approach was
applied. It is known what is the form of the optimal Bell oper-
ator for the maximally entangled state ρME = |ψME 〉〈ψME |,
|ψME 〉 = 1√

3
(| + +〉 + |00〉 + | − −〉). Let us denote this

optimal Bell operator by OME
Bell .

For κ = 1 the state |ψscalar
Z Z 〉(m1,m2, c) (31) reduces to

|ψscalar
Z Z 〉|κ=1 = 1√

3
(| + −〉 − |00〉 + | − +〉). (B.12)

Applying to |ψscalar
Z Z 〉|κ=1 the operator OA ⊗ I , where

OA =
⎛

⎝
0 0 1
0 −1 0
1 0 0

⎞

⎠ , (B.13)

we obtain the maximally entangled state |ψME 〉. Thus, the
optimal Bell operator for the state |ψscalar

Z Z 〉|κ=1 has the form

(OA ⊗ I )†OME
Bell (OA ⊗ I ). (B.14)

Next, we have

(UA ⊗UB)
∑

λσ

Ωλσ |λ, σ 〉 =
∑

λσ

Ω ′
λσ |λ, σ 〉, (B.15)

where

Ω ′ = UAΩUT
B . (B.16)

For the maximally entangled state ΩME = 1√
3
I , thus this

state is invariant on the actionU⊗U∗. Therefore, the optimal
Bell observable for the state |ψscalar

Z Z 〉|κ=1, instead of the form
(B.14) can be written in an equivalent form

(UOA ⊗U∗)†OME
Bell (UOA ⊗U∗), (B.17)

where U is an arbitrary unitary matrix. The value of I3 with
the Bell operator given in (B.17) in the state |ψscalar

Z Z 〉|κ=1 is
the same for all unitary matrices U .

For κ �= 1 the Bell operator (B.14) is no longer an optimal
one. Moreover, different choices ofU in (B.17) lead to differ-
ent values of I3 in this case. Thus, one can look for an optimal
choice taking the Bell operator in the form (B.17) and opti-
mizing over all U matrices. This can be simplified further
by observing that the state (OA ⊗ I )|ψscalar

Z Z 〉(m1,m2, c),
according to (30, B.16) is represented by the matrix

ΩOA = 1√
2 + κ2

⎛

⎝
1 0 0
0 κ 0
0 0 1

⎞

⎠ , (B.18)

and that ΩOA is invariant under transformations (B.16) with

UA =
⎛

⎝
α 0 β

0 eiφ 0
γ 0 δ

⎞

⎠ , UB = U∗
A,

(
α β

γ δ

)
∈ SU (2).

(B.19)

Therefore, optimization can be restricted to U representing
distinct cosets ofU (3)/(SU (2)×U (1)). In this paper, for the
purpose of optimization, we used the following parametriza-
tion of U

U = exp(i�), (B.20)

with

� =
⎛

⎝
0 eiφ1 R cos θ 0

e−iφ1 R cos θ 0 eiφ2 R sin θ

0 e−iφ2 R sin θ 0

⎞

⎠ . (B.21)

To obtain Fig. 1, for each value of c we performed the
optimization using the above parametrization. The optimal
choice of R, θ , φ1, and φ2 depends on the value of c, this
change of parametrization is responsible for the cusp appear-
ing in the plot.

Appendix B.2: Strategy 2

In this case we define a matrix

UV (t) =
⎛

⎝
cos t

2 0 sin t
2

0 1 0
− sin t

2 0 cos t
2

⎞

⎠ (B.22)
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and assume that observables used by Alice and Bob are rep-
resented by the following unitary matrices:

UA1 = UV (0), UA2 = UV (π
2 ), (B.23)

UB1 = UV (t), UB2 = UV (−t). (B.24)

Next, we are looking for such value of t which gives the
highest violation of the CGLMP inequality. It appears that
the optimal value is t = −π

4 . We used this value to plot
Fig. 1.
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