
Eur. Phys. J. C (2023) 83:1057
https://doi.org/10.1140/epjc/s10052-023-12215-1

Regular Article - Theoretical Physics

Cosmological LTB black hole in a quintom universe

Sareh Eslamzadeh1,a, Kourosh Nozari1,b , J. T. Firouzjaee2,c

1 Department of Theoretical Physics, Faculty of Science, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
2 Department of Physics, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran

Received: 26 August 2023 / Accepted: 31 October 2023 / Published online: 19 November 2023
© The Author(s) 2023

Abstract We study cosmological Lemaitre–Tolman–Bondi
(LTB) black hole thermodynamics immersed in a quintom
universe. We investigate some thermodynamic aspects of
such a black hole in detail. We apply two methods of treating
particles’ tunneling from the apparent horizons and calculate
the black hole’s temperature in each method; the results of
which are the same. In addition, by considering specific time
slices in the cosmic history, we study the thermodynamic
features of this black hole in these specific cosmic epochs.
Also, we discuss the information loss problem and the rem-
nant content of the cosmological black hole in different cos-
mic epochs in this context. We show that approximately in all
the cosmic history, the temperature of the black hole’s appar-
ent horizon is more than the temperature of the cosmological
apparent horizon.
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1 Introduction

Black holes are living in the expanding universe. To be pre-
cise, in our expanding universe there are no asymptotically
flat black holes. So, it is necessary to treat the physics and
thermodynamics of black holes in an expanding cosmologi-
cal background. Accordingly, black holes asymptotic to the
expanding universe, under the title of “Cosmological Black
Holes”, have been the subject of many researches these years.
Such black holes leave a series of questions, like: What
effects does the cosmic expansion have on the local physics
of black holes in the entire cosmic epochs? What effects
does the content of the universe leave on the black hole?
How should be redefined the physics of black holes based
on expanding universe? How should be changed the defi-
nitions such as black hole horizon, its singularities, and its
mass and thermodynamics in an expanding universe? One of
the prior research describing black holes in the Friedmann–
Robertson–Walker (FRW) universe is the McVittie’s solu-
tion [1]. After that, solutions like Einstein and Strauss [2],
Vaidya [3], and Lemaitre–Tolman–Bondi (LTB) [4–6] have
been introduced. The noticeable point in such a research is
the redefinition of the horizons based on local concepts, not
based on asymptotically flat conditions; which was suggested
by Hayward as trapping horizon [7], and by Ashtekar and
Krishnan as dynamical horizon [8]. Besides the dynamic
nature of the LTB metric, the FLRW metric can be mod-
eled as a background and is a special case of the LTB metric.
Building upon the properties of the LTB metric, a cosmolog-
ical black hole can be constructed [9], where its singularity
and horizon are formed during the collapse [10]. In Refs.
[11,12], one can find helpful reviews on the various horizons
like event, Killing, apparent, trapping, isolated, and dynam-
ical horizons.

After the discovery of positively accelerating expansion
of the universe [13,14], the Dark Energy was introduced as a
mysterious component responsible for this positively accel-
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erated expansion. The first suggested candidate for this weird
component was the cosmological constant [15]. But, prob-
lems of the cosmological constant [16] such as fine-tuning,
coincidence, and the essence of being constant caused parti-
cle physics to give some new alternatives. Therefore, fields
like Quintessence [17], K-essence [18], Tachyon [19], Phan-
tom [20], and Quintom [21] were some of the most important
subsequent suggestions. If we pay attention to the equation
of state parameter, w f ield = p

ρ
, as an important quantity for

a cosmological component, the Quintom field has a fascinat-
ing aspect: it is actually a combination of two fields including
a Quintessence field with w > −1 plus a Phantom field with
w < −1. Since the observational data are in the favor of a
transition from the quintessence phase to a phantom phase
at late time, a mechanism for crossing of the cosmological
constant equation of state parameter, that is, w = −1, is
required. In Ref. [22], one can find some observational and
theoretical evidences for the necessity of the Quintom field
existence as a suitable candidate for the Dark Energy.

The connection between thermodynamics variables and
black hole geometry was firstly introduced by Bekenestein
[23]. Afterward, four laws of thermodynamics for black
holes were established [24] and, then, Hawking initiated the
research on the possibility of black hole evaporation [25].
There are two straightforward approaches to calculate the
particle tunneling rate from the black hole horizon: One based
on the Hamilton–Jacobi method [26], and the other based on
the null geodesics method [27,28]. In Ref. [11] and refer-
ences therein, one can find an elegant review on the topic of
tunneling methods and Hawking’s radiation from both sta-
tionary and dynamical black holes. Besides, thermodynamic
features of cosmological black holes have been of interest in
some research works [31–38].

The present study aims to probe the tunneling process from
the horizons of the cosmological LTB black hole surrounded
by a quintom field. In this regard, in Sect. 2, we illustrate
spacetime which contains the cosmological LTB black hole
in the Quintom field as the background dark energy. We char-
acterize the initial conditions which are required to construct
both cosmological and black hole apparent horizons. Also,
we debate on what effects the existence of Quintom has on
these horizons in the entire cosmic history. In Sect. 3, we
apply the Parikh–Wilczek method to calculate the entropy
and temperature of the cosmological and black hole appar-
ent horizons. Besides, we investigate the correlation between
radiative modes and black hole remnant. In Sect. 4, we are
curious about the time evolution of the cosmological black
hole surrounded by Quintom matter; precisely their horizons
and thermodynamics time evolution in the entire cosmic his-
tory. Finally, we summarize our results in Sect. 5.

2 Cosmological LTB black hole in a quintom universe

To construct the metric of the cosmological LTB black hole
in the Quintom dominated universe, we benefit the results of
Ref. [39]. In this regard, we assume the line element to be as
follows

ds2 = −dt2 + eφ̄dr2 + eφd�2, (1)

where t is a cosmic time parameter and (r, θ, ϕ) are comov-
ing coordinates with d�2 = dθ2 + sin2 θdϕ2; φ and φ̄ are
functions of t and r . We consider the energy–momentum
tensor of the Quintom field in the perfect fluid form as

Tμν = (ρ + p)uμuν + pgμν, (2)

where ρ and p are density and pressure of the Quintom
field, respectively; and uμ = (1, 0, 0, 0) is the four-velocity.
Assuming there is no accretion, G0

1 = 0 (see [39]), other
components of the Einstein’s field equations are as follows

G0
0 = 8πρ,

G1
1 = G2

2 = G3
3 = −8πp. (3)

As explained in Ref. [39], taking into account the source
to be a single perfect fluid and the background to be spatially
flat, the comoving observer realizes a spatially homogenous
pressure. Therefore, the Einstein equations give

φ̈ + 3

4
φ̇2 = −8πp(t),

φ̇′φ̇
φ′ + 3

4
φ̇2 = 8πρ(r, t), (4)

where overdot and prime denote differentiation with respect
to t and r , respectively. Following Ref. [39], we set the pres-
sure in the form

p = − p0

(t0 − t)2 , (5)

where p0 is a positive constant and t0 is recognized as the
Big Rip singularity time. The solution of the Eq. (4) is given
by

eφ = [
P(r)(t0 − t)

1−k
2 + S(r)(t0 − t)

1+k
2

] 4
3 , (6)

where k ≡ √
1 + 24πp0 is a constant in terms of p0; P and

S are arbitrary functions of r . By choosing P = r3/2, S is
determined in such a way that the boundary conditions would
be recovered correctly. Finally, the metric functions of the
cosmological black hole in a Quintom dominated universe
are found as follows [39]

eφ =
[
r

3
2 (t0−t)

1−k
2 −

(
3

2

√
2M+√

6πρ0r
3
2

)
(t0−t)

1+k
2

] 4
3

,

(7)
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and

eφ̄ = φ′2

4
eφ. (8)

To compare and check the boundary conditions, one can
find in Ref. [40] the cosmological LTB black hole described
with the line element as follows

ds2=−dt2+ R′2(r, t)
1+2E(r)

dr2+R2(r, t)(dθ2+ sin2 θdϕ2),

(9)

where R(r, t) is a physical radius, E(R) = 1
2 Ṙ

2(r, t)− M(R)
R(r,t)

gives the meaning of the total energy per unit mass, while
M(R) is the mass in the sphere of comoving radius r . If a
collapsing metric is built by this metric, one can show that
the apparent horizon (trapping horizon or dynamical horizon)
will form at R = 2M surface. The quantity E(r) is like
the curvature function which includes a contribution from
the kinetic energy and the gravitational potential energy. To
investigate the boundary conditions of the metric Eqs. (7)
and (8), we compare Eqs. (1), (7) and, (9), then rewrite the
metric in terms of R as follows

R ≡ eφ/2 =
[
r

3
2 (t0 − t)

1−k
2

−
(

3

2

√
2M + √

6πρ0r
3
2

)
(t0 − t)

1+k
2

] 2
3

. (10)

In this regard, there are some special cases based on Eqs.
(9) and, (10) as follows:

• p0 �= 0, ρ0 �= 0 and, M �= 0: black hole solution in the
Quintom dominated universe;

• p0 �= 0, ρ0 �= 0 and, M = 0: Quintom dominated cos-
mology;

• p0 = 0, ρ0 �= 0 and, M �= 0: black hole solution in
a dust dominated universe with ρ0 = ρda3, where, ρd
and a are dust density and scale factor of the universe,
respectively. Therefore, the metric of Eq. (10) turns into

R =
[
r

3
2 +

(3

2

√
2M + √

6πρ0r
3/2

)
t

] 2
3 ; (11)

• p0 = 0, ρd = 0 and, M �= 0: Schwarzschild solution;
• p0 = 0, ρd �= 0 and, M = 0: dust dominated cosmology.

To investigate the apparent horizons of the cosmological
LTB black hole immersed in a Quintom dominated universe
we rewrite Eq. (1) based on the Schwarzschild notation

ds2 = −(1 − X2)dt2 + dx2 + 2Xdtdx + x2d�2, (12)

where

x ≡ eφ/2 and X ≡ ∂x

∂t
. (13)

To find the apparent horizons, we benefit the new time coor-
dinate like

dT =
(
dt + X

1 − X2 dx

)
L−1, (14)

where L is a total differential that is a function of time and
coordinate and therefore is not a constant. As a result, the
metric of the cosmological LTB black hole in a Quintom
dominated universe turns into

ds2 = −(1 − X2)L2dT 2 + 1

1 − X2 dx
2 + x2d�2. (15)

To calculate the apparent horizons, xH , we should find the
roots of χ ≡ 1−X2 = 0 which is equivalent to the following
expression

1 −
4

(√
3πρ

2 r3/2(1 + k)(1 − t)
k−1

2 − 1
2r

3/2(1 − k)(1 − t)− 1+k
2 + 3(k+1)

√
M(1−t)

k−1
2

2
√

2

)2

9

(
−√

6πρr3/2(1 − t)
k+1

2 + r3/2(1 − t)
1−k

2 − 3
√
M(1−t)

k+1
2√

2

)2/3 = 0, (16)

while we put t0 = 1 in Eq. (13). Therefore, substituting
r3/2 in terms of x , Eq. (16) would be an equation with six
roots, some of which are the location of apparent horizons
in this cosmological background. Setting M = 1 and finding
a numerical solution, we conclude that the second and third
roots of the Eq. (16) are real and match with the boundary
condition as we have illustrated them in Fig. 1. The second
root is the black hole apparent horizon, xBH , and the third one
is the cosmological apparent horizon, xCH . There is a cer-
tain time in the past when the two horizons were coincided.
Also, there is a certain time before the Big Rip when the two
horizons will coincide again, and the naked singularity will
be leftover. After creation of the horizons, with passing time,
the size of the cosmological LTB black hole horizons in the
Quintom universe evolves in such a way that the cosmologi-
cal apparent horizon size (blue dashed curve) first increases
and then decreases, while the black hole apparent horizon
size (red solid curve) first decreases and then increases. It
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Fig. 1 The behavior of the cosmological and black hole apparent hori-
zons versus time in blue curve (dashed line) and red curve (solid line),
respectively. Plot has been depicted with fixed mass, M = 1, while
ρ0 = 0.0002, p0 = 0.001, and t0 = 1

seems that the black hole horizon shrinking is due to the
phantom component in this setup.

3 Thermodynamics of cosmological LTB black hole in a
quintom universe

Firstly, a brief description of how Hawking radiation works
is explained in what follows. According to the quantum field
theory, the vacuum is a complex entity of virtual particles that
are continuously created, interacted, and then annihilated.
In general, a vacuum is stable; but the presence of external
fields makes it possible for the particles to become real. We
suppose a static gravitational field with the Killing vector
field ξα . The particles’ energy created in this field is equal to
ω = −pαξα , where pα is four-momentum of the the particle
and it is null for a massless particle. Whenever the virtual
pair particle is created inside the horizon, the virtual parti-
cle with positive energy can tunnel throughout the horizon.
Also, whenever the virtual pair particle is created outside the
horizon, the virtual particle with negative energy can tun-
nel into the horizon. In both cases, the black hole absorbs
the particle with negative energy, therefore, the mass of the
black hole decreases; while the particle with positive energy
escapes to infinity, and the observer detects it as Hawking
radiation. Because the particle can classically fall into the
black hole horizon, its action is real. For a particle that goes
out the horizon of the black hole, the action becomes com-
plex and the tunneling rate is determined by the imaginary
part of the action. The transmission rate, �, which is equal
to the probability of emission divided by the probability of
absorption of particles, is related to the imaginary part of the
action on one side and to the temperature on the other side,

as follows

� = Pem
Pabs

∼ exp(−βω) ∼ exp(−2ImS) (17)

where β−1 is known as the temperature of the black hole.
This explanation obliges us to calculate the imaginary part
of the action to obtain the temperature of the black hole by
quantum tunneling of the particles. There are two methods
to calculate the imaginary part of the action: the Hamilton–
Jacobi method [26] and the Parikh–Wilczek method [27,28].
The only noteworthy point remains that we are dealing with
dynamic black holes instead of stationary ones.

In the cosmological context, a spherically symmetric
black hole with a dynamical horizon cannot produce pure
Hawking particle-antiparticle pairs, as this would break the
principle of energy conservation and causes the apparent
horizon to become spacelike [29]. In other words, the appar-
ent horizon of any dynamical spacetime must lie inside the
event horizon, and any virtual particle pairs created by the
vacuum cannot escape and must fall back into the primordial
black holes (PBHs). When we deal with fully dynamical met-
ric, Hawking’s quantum field theory approach to black hole
radiation [30] cannot be applied, as it is only suitable for late-
time stationary black holes and cannot calculate the thermal
aspect of Hawking radiation. Alternatively, new approaches
[26–28] have been developed to calculate Hawking radiation
in dynamical backgrounds. These approaches are based on
the semiclassical approach using adiabatic vacuum in quan-
tum field theory in curved spacetime, and suggest that radi-
ation is likely emitted from the neighborhood of the appar-
ent horizons rather than near the event horizon. In the case
of dynamical black holes, universal definitions such as the
black hole horizon and its surface gravity must be redefined
based on local physics bases. The most important definitions
are trapping horizon, which are introduced by Hayward [7],
and Kodama vector [41]. We are not going to explain these
definitions here, but one can find some useful information
on them in Refs. [11,12,42]. Our strategy in what follows is
to apply the Hamilton–Jacobi and Parikh–Wilczek methods
separately to the cosmological LTB black hole in a Quin-
tom dominated universe with the related definitions for the
dynamical black holes.

3.1 The Hamilton–Jacobi method

The Hamilton-Jacobi equation for the cosmological LTB
black hole in Quintom universe based on the metric (12)
is

χ(∂r S)2 − 2Xω(∂r S) − ω2 = 0, (18)

where S is the action and ω is the energy of a tunneling
particle. We note that as before, χ is defined as χ ≡ 1−X2 =
0 where X ≡ ∂x

∂t and r is the comoving radial coordinate. The
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invariant particle energy is determined based on the Kodama
vector, K = (1, 0, 0, 0), as follows

ω = −Ki∂i S = −∂t S. (19)

It is important to note that Eq. (18) contains both r and
t since ω as the particle’s energy is defined by the Kodama
vector based on the time differentiation of the action.

Choosing the solution of the Eq. (18) with positive radial
momentum, we have

∂r S = ωX

χ
(1 + O(χ)). (20)

Therefore, ∂r S has a pole at the horizon. On the other
hand, the action can be written as the sum of a real term and
an imaginary term as follows

S =
∫ (

dr∂r S + dt∂t S
)

=
∫ (

dr∂r S + 1

2
ω

)
. (21)

To calculate the imaginary part of the action which the
first term contains it, we expand χ at the horizon as follows

χ � χ̇∂t + χ ′∂x, (22)

where � means the approximation on the horizon and, ∂x =
x − xH . Also, from the metric (12), outward null radial path
crossing the horizon gives the result

∂t = −
(1

2
X

)∣∣
H
∂x . (23)

Substituting Eq. (23) into Eq. (22), we conclude

χ =
(

χ ′ − 1

2X
χ̇

) ∣∣∣∣
H

(x − xH ) + · · ·
= 2κH (x − xH ) + O((x − xH )2), (24)

where

κH = 1

2
� r |H = 1

2X2

(
χ ′ − 1

2X
χ̇

)∣∣∣∣
H

, (25)

is the dynamical surface gravity. Substituting Eq. (24) into
Eq. (20) and then in Eq. (21), it is possible to calculate the
imaginary part of the action using the Feynman’s prescription
as follows

ImS = Im
∫

∂r Sdr = Im
∫

ωX

2κH (x − xH − iε)
dx

= πωH

κH

. (26)

Finally, using Eq. (17) we can find the temperature of the
cosmological LTB black hole immersed in Quintom universe
as follows

T = β−1 = κH

2π
. (27)

3.2 The Parikh–Wilczek method

Our approach is based on the quantum tunneling of the parti-
cles from the apparent horizon. We apply the null geodesics
method which is well-known as the Parikh–Wilczek method
[27]. Actually, the method describes the Hawking radiation
by the pair of particle-antiparticle production near the horizon
and the escape of the particle to infinity through the quan-
tum tunneling process. The tunneling particle rate is related
to both the imaginary part of the action and the tempera-
ture inverse. Therefore, calculations start with calculating
the imaginary part of the action for a particle that is moving
from an initial state at xin to the final state at xout as follows

ImS ≡ Im
∫

E dt = Im
∫ xout

xin
px dx

= Im
∫ xout

xin

∫ px

0
d p̃x dx, (28)

where xin = xH −ε and xout = xH +ε. Also, in what follows
ω̃ is the energy of the particle and we suppose this as a self
interaction. With Hamilton equation, dpx = dH

ẋ , Eq. (28)
changes to the following form

ImS = Im
∫ xout

xin

∫ M−ω̃

M

dH

ẋ
dx = −Im

∫ ω̃

0

∫ xout

xin

dx

ẋ
dω.

(29)

We consider the lightlike geodesics for massless particles’
tunneling regarded to the metric of Eq. (12) (known as the
Painlevé–Gullstrand like coordinate), we have

ẋ2 + 2
√

1 − χ ẋ − χ = 0. (30)

As a result, we find the outgoing and ingoing trajectories
as follows

ẋ = ±1 − √
1 − χ, (31)

which gives ẋ � χ
2 for plus sign (outgoing trajectories).

Substituting Eq. (31) into Eq. (29), the imaginary part of the
action for massless outgoing particles is given by

ImS = −Im
∫ ω

0

∫ xout

xin

2dx dω̃

χ
. (32)

We put χ from Eq. (24) into Eq. (32), therefore, we can
calculate the imaginary part of the action by Parikh-Wilczek
method as follows

ImS =
∫ ω

0

2π dω̃

2κH

= πωH

κH

. (33)

As a result, the temperature with null geodesics approach
will be the same which we obtained with Hamilton–Jacobi
method in Eq. (27). We expected the same outcome regard-
less of the calculation method since we expect the infinity
observer to detect a certain temperature.
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3.3 Non-thermal spectrum

After the discovery of the thermal Hawking radiation, the
information paradox has been discussed [43,44]. Afterward,
a criterion for calculating the correlation between radiation
modes was proposed as follows [45,46]

ζ (ω1 + ω2;ω1, ω2) = ln [�(ω1 + ω2)] − ln [�(ω1)�(ω2]),
(34)

here ζ is the correlation function and ω1,2 are the tunneling
particles’ energy. Actually, Eq. (34) lets us to know whether
the probability of tunneling of two particles with energies
ω1 and ω2 is the same as the probability of tunneling of
one particle with energy ω1 + ω2 or not. If the correlation
between emitted modes is not zero, it means the radiation
deviates from pure thermal radiation. Regarding Eq. (17), one
can find that the transmission rate is related to the imaginary
part of the action, and regarding Eq. (34), the existence of a
correlation between the emitted modes is obvious. Actually,
we think that it is an important effect of the presence of the
Quintom field in the environment of the black hole that causes
this correlation between the emitted modes.

4 Evolution of thermodynamic features of cosmological
LTB black hole

We probed the time evolution of the horizons in the previous
sections. In this section, we intend to investigate the effect of
time evolution on the thermodynamics of the cosmological
LTB black hole immersed in a Quintom universe. In other
words, first of all, we obtain the apparent horizons in terms
of the mass and derive the equation for temperature versus
the mass of the black hole. Then, we evaluate the black hole
temperature behavior in some cosmic epochs. This is impor-
tant for us to answer the question whether the LTB black hole
in a Quintom universe evaporates in the same way in all cos-
mic epochs or the time is an essential component that affects
Hawking radiation and the black hole remnant. We have to
find the apparent horizons from Eq. (16), but contrary to the
previous section, here we want to fix the time and obtain an
explicit expression in terms of the mass of the black hole.
To describe precisely, if we consider a fixed time, there is
a critical mass in which two apparent horizons coincide. As
we illustrate in Fig. 2, whatever the mass of the black hole
is less than the critical mass, the two horizons are far away
from each other; actually, the black hole horizon becomes
smaller and the cosmological horizon becomes larger.

In order to obtain an explicit equation for the tempera-
ture in terms of the mass, first of all, we need the explicit
expressions for the cosmological and black hole apparent
horizons radii. These radii can be obtained via Eq. (16). The

Fig. 2 The behavior of the cosmological and black hole apparent hori-
zons versus the mass. Plot has been depicted with fixed time: t = −0.4
for the green curve and t = +0.4 for the purple curve. Solid lines show
the black hole apparent horizons and dashed lines show the cosmolog-
ical apparent horizons with ρ0 = 0.0002, p0 = 0.001, and t0 = 1

third root of the Eq. (16) is the cosmological apparent hori-
zon, xCH . Applying the self-gravitating shells [47], we put
M − ω instead of M in xCH . In this manner, we gain the
cosmological apparent horizon after the particle tunneling,
xout in Eq. (29). Selecting the outgoing trajectories from Eq.
(31), expanding ẋ on the horizon, applying the residue calcu-
lus and expanding the result in terms of ω, finally we obtain
the imaginary part of the action as follows

ImS

=
∫ ω

0

[
320.1x2

CH

x3
CH + 22.9x3/2

CH

√
M − 208.1M

+O(ω, ω2, . . .)

]

dω.

(35)

The existence of the higher-order terms of ω proves the non-
thermal nature of the radiation which we explained previ-
ously. Regarding Eq. (17), to calculate the temperature, we
need to keep the coefficient of ω in the result of Eq. (35).
As a result, we neglect higher-order terms of ω in this step
and calculate the imaginary part of the action for a massless
particles’ tunneling. After that, based on Eq. (17), we find the
temperature of the cosmological apparent horizon of the cos-
mological LTB black hole immersed in a Quintom universe
as follows

TCH

∣
∣
∣∣
t=−0.4

= 1

4πβ

=
0.000248569

(
22.9x3/2

CH

√
M + x3

CH − 208.1M
)

x2
CH

.

(36)
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In the same way, the temperature of the black hole apparent
horizon of the cosmological LTB black hole immersed in a
Quintom universe is as follows

TBH

∣
∣
∣
∣
t=−0.4

= 1

4πβ

=
0.000237356

(
22.1x3/2

BH

√
M + x3

BH − 237.6M
)

x2
BH

.

(37)

We repeat the same calculations for the black hole hori-
zon and also for these two horizons at other times. Eventually,
we find the temperature of the cosmological and black hole
horizons of the cosmological LTB black hole in a Quintom
universe as shown in Fig. 3. In the critical mass, when two
horizons created, the temperature starts to rise from zero.
Approximately, in all of the cosmic history, the temperature
of the black hole’s apparent horizon is more than the tem-
perature of the cosmological apparent horizon for the cos-
mological LTB black hole in a Quintom universe. Actually,
the word approximately is a keyword here, especially for
the beginning of the Hawking radiation. The three panels of
Fig. 3 are qualitative in essence since are drawn with some
approximations and also all constants to be unity. The appar-
ent horizon of black hole is always smaller than that of the
universe; the main reason for the temperature of the black
hole to be approximately always higher than that of the uni-
verse. On the other hand, by comparing equations Eqs. (36)
and (37), we see that a smaller coefficient for the first term
and a larger coefficient for the mass of the black hole with
a minus sign may cause the temperature of the black hole
horizon to be lower than the temperature of the cosmological
horizon in some subspaces of the model parameter space,
especially in the initial moments of the Hawking radiation.
Conceptually, it may reflect the non-equilibrium situation in
the first steps of the Hawking radiation emission. In another

words, at the beginning steps of formation of the two horizons
and Hawking radiation, the temperature of the cosmological
horizon may be higher than the black hole temperature. But,
after a short time, by the flow of energy between the two
horizons via Hawking radiation, the two horizons attain the
same temperature. Continuing to radiate via Hawking radi-
ation, the temperature of the black hole horizon would be
higher than the cosmological one as expected.

Also, there is a certain mass in which the two tempera-
tures are the same. Comparing different epochs, at the time
far from the Big Rip, it is predicted that the temperature of
the cosmological LTB black hole immersed in a Quintom
universe would be stopped at a lower temperature. In other
words, in epochs closer to the Big Rip, for the cosmological
LTB black hole in a Quintom universe, higher Hawking tem-
peratures are expected in the final stage of the evaporation.

Moreover, we have illustrated Hawking temperature of the
black hole apparent horizon and cosmological apparent hori-
zon in some cosmic epochs in Figs. 4 and 5, respectively. In
these figures, the left panels represent the universal behavior
of temperature and the right panels indicate the final stage
of the evaporation in more detail. Actually, the results of the
final stage of evaporation are interesting in some aspects; In
cosmic epochs far from Big Rip, decreasing the mass, the cos-
mological horizon’s temperature is expected to be constant
while the black hole horizon’s temperature first increases and
then suddenly falls into zero. Conversely, in cosmic epochs
close to the Big Rip, decreasing the mass, the cosmological
horizon’s temperature suddenly falls into zero and the black
hole horizon’s temperature is expected to increase slightly.
The interesting point is the probability of the remnant forma-
tion. Indeed, we conclude if the cosmological LTB black hole
in a Quintom universe evaporates in the early universe, the
final remnant’s content would be the baryonic matter. While,
if it evaporates in the epochs close to the Big Rip, the final

Fig. 3 The behavior of the black hole and cosmological apparent hori-
zons’ temperatures versus the mass in three cosmic epochs. We consider
the fixed time equal to t = −0.4, 0,+0.4 from left to right. The Hawk-
ing temperature of the black hole apparent horizon is more than the

Hawking temperature of the cosmological apparent horizon in approx-
imately all epochs. Whatever the cosmological LTB black hole in a
Quintom universe evaporates in the early universe, its final temperature
is expected to be lower
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Fig. 4 The behavior of the black hole apparent horizon temperature
versus the mass in some cosmic epochs. The left panel shows the uni-
versal behavior while the right panel shows the final stage of the evapora-
tion in more details. We put fixed times t = −0.4,−0.2, 0,+0.2,+0.4

from bottom to top. The temperature of the black hole horizon in the
early universe falls into zero and the remnant with baryonic or dark
energy content remains

Fig. 5 The behavior of the cosmological apparent horizon temperature
versus the mass in some cosmic epochs. The left panel shows the univer-
sal behavior while the right panel shows the final stage of the evaporation
in more details. We put fixed times t = −0.4,−0.2, 0,+0.2,+0.4 from

bottom to top. The temperature of the cosmological horizon in the early
universe is expected to reach a finite temperature and in the late time it
is expected to fall into zero

remnant’s content probably would be a dark energy content
like Quintom matter.

About the sudden and sharp drop in the right panels of
Figs. 4 and 5, as we have mentioned previously, this is a trace
of existing non-zero mass remnant with zero temperature.
If the black hole evaporates in the early universe, evapora-
tion continues until the temperature of the black hole horizon
reaches zero, and the stable remnant remains. Maybe, these
remnant can be a candidate for the primordial black hole and
even cold dark matter. On the other hand, if the black hole
evaporates in the late universe, Phantom domination causes
the Big Crunch or Big Chill. Therefore, we can consider the
zero temperature of the outer horizon of the black hole related

to the Phantom dominance of the universe, growing the cos-
mological horizon size and Big Crunch/Big Chill. Existence
of a non vanishing mass remnant has been observed in black
hole evaporation in the contexts such as a noncommutative
black hole, a quantum corrected black hole and especially
for a black hole embedded in a scalar field. Therefore, obser-
vation of a sudden drop here is a trace of a non-zero mass
remnant with vanishing temperature [48].

Finally, we note that the calculation of temperatures in this
setup should make sense in some adiabatic approximation,
when the concept of temperature itself makes sense. Indeed,
the correlation between ω1 and ω2 modes in Eq. (34) can
give a measure of the deviation from equilibrium. Indeed, if
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the evolution of the apparent horizons is fast, one does not
expect a notion of equilibrium temperature to exist.

5 Summary and conclusion

In this work we have probed the cosmological LTB black
hole immersed in a Quintom universe. First, we have intro-
duced the related metric and illustrated the time evolution
of the black hole and the cosmological horizons. We have
shown that there is a certain time in the past where the two
horizons were coincided and, there is a certain time before
the Big Rip where the two horizons will coincide. In this
respect, we have noticed that the black hole horizon shrink-
ing is due to the phantom component in this quintom model
universe. Afterwards, we have applied two methods of tun-
neling particles from the horizons. Precisely speaking, we
have calculated the Kodama vector and surface gravity based
on the dynamical black hole definitions. Then, we calculated
the temperature of the cosmological LTB black hole in a
Quintom universe. We concluded that both Hamilton–Jacobi
and Parikh–Wilczek methods have the same result for the
temperature of this black hole as we expected the infinity
observer to detect a specified temperature. Besides, we have
shown the existence of a correlation between the emitted
modes and non-thermal nature of the spectrum which could
be an address to the information loss problem. Then we have
investigated the temperature of the black hole and cosmolog-
ical horizons of the LTB black hole immersed in a Quintom
universe at some cosmic time slices. We have concluded that
for both horizons in all cosmic time, there is a critical mass
in which two horizons are created, and the temperatures start
to rise from zero. Also, approximately in all the cosmic his-
tory, the temperature of the black hole’s apparent horizon
is more than the temperature of the cosmological apparent
horizon. On the other hand, in epochs closer to Big Rip, for
the cosmological LTB black hole in the Quintom universe,
higher Hawking temperatures are expected in the final stage
of evaporation. Moreover, we have illustrated the final stage
of evaporation for both horizons at some cosmic time epochs
in more detail. The remarkable result is on the final remnant’s
content of the black hole in the cosmic time close or far from
the Big Rip. Actually, we have concluded that the remnant of
the LTB black hole would be a baryonic matter in the early
universe and would be a dark energy like Quintom matter in
the epochs close to the Big Rip.
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