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Abstract In this article, cracking technique is developed
for spherically symmetric compact sources in the framework
of f (R, T ) gravity, where R denotes Ricci scalar and T
stands for trace of energy momentum tensor. The charac-
teristics of a star with anisotropic pressure stresses are inves-
tigated by utilizing the Tolman–Kuchowicz spacetime solu-
tions. Modified field equations are developed for a particular
model i.e., f (R, T ) = R + 2γ T , where γ is constant, that
are further used to develop expressions for matter density,
radial and tangential pressures. A generalized form of the
Tolman Oppenheimer Volkoff (TOV) equation is developed
for the modified field equations. The consequence of the local
density perturbation scheme, as presented by Biswas et al.
(Eur Phys J C 80:175, 2020) is considered. The mathemati-
cal framework for cracking has been tested on five realistic
stars namely, Vela X-1, Cen X-3, SMC X-1, PSR J1614-
2230 and PSR J1903+327. The graph of forces distribution of
these stars have been observed to check the stability regions.
The results of cracking/overturning for various values of the
parameters involved in this model are observed by checking
the instability regions in the form intervals.

1 Introduction

Expansion and density fluctuation among galaxies character-
ize the vast structure of the universe. In our galaxy, there exist
billions of white dwarfs, a few hundred million neutron star
clusters, and millions of black holes. Only a tiny percentage
of these white dwarfs, neutron stars, and black holes have
been observationally detected by astronomers. It is observed
by scientists that every center of a galaxy has super-massive
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black holes [2]. The main ingredients of galaxies are stars,
gas, dust, dark matter, and dark energy that are held together
by gravity. Ordinary matter is made up of protons, neutrons,
and electrons. Everything, we can see or detect with tele-
scopes is normal matter. Approximately 95 percent of the
total matter content is attributed to dark matter, making it
the dominant force in the mass budget. Galaxies come in an
abundance of patterns and sizes, and they can be generally
described into three main categories based on their shape:
elliptical galaxies, spiral galaxies, and irregular galaxies [3].

Albert Einstein introduced general relativity (GR) as the
geometric theory of gravitation [4]. There are three funda-
mental postulates that constitute a framework for Einstein’s
theory that are the principle of general covariance, the rela-
tivity principle, and the equivalence principle. The theory of
GR is most effective in explaining weak gravitational fields,
but it lacks a comprehensive detail of strong field regimes [5].
The set of Einstein field equations (FEs) is a direct conse-
quence of GR. The gravitational interaction between compact
objects is described by these FEs which helps us to explain
the light propagation and motion of particles.

General relativistic FEs are significant in the description
of the dynamics of the universe. Although GR gives accurate
results for small distances, it has some limitations when it
comes to to explain the behavior of the universe at later times
[6]. The constituents of the universe, dark matter and dark
energy have been extensively combined through modified
gravity theories. There are many theories related to modified
gravity have been presented and some of these are f (G),
f (T ), f (R), f (G, T ), f (R, T ) gravity, etc. f (R) gravity is
the extension of GR in which R be the Ricci scalar and it is
introduced by the Sotiriou and Faraoni [7–12].

By extending the concept of f (R), Harko [13] introduced
f (R, T ) gravity. In f (R, T ) gravity, the action covers a func-
tion that is arbitrary with respect to the Ricci scalar R and the
trace of the energy–momentum tensor T , allowing for the for-
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mation of exotic matter. This theory explains that matter and
geometry both have equally proportioned in celestial objects.
After its introduction a lot of work have been done by authors
who explain various properties including energy conditions,
dynamical implication, galaxy clustering, and weak lensing.
The f (R, T ) theory has been suggested as another descrip-
tion for the identified quick extension of the universe, which
is described by the presence of dark energy [14–17].

There exist a extensive works in literature in the field of
cosmology regarding the applications of f (R, T ) gravity.
Jamil et al. [18] have developed some cosmological frame-
works in f (R, T ) gravity by using f (R, T )=R2 + f (T ).
Shabani and Farhoudi [19] explained the results of f (R, T )

gravity models by using the Hubble parameter, weight func-
tion and equation of state (EoS) parameters. The authors
in [20,21] discussed the evolution of axially symmetric
anisotropic sources and shear-free condition and dynamical
instability in f (R, T ) gravity. Zubair et al. [22] also dis-
cussed the stability of cylindrically symmetric object with
anisotropic fluid in f (R, T ) gravity.

The stability analysis of stellar models holds significant
importance in gravitational theories. If the opposing forces of
inward and outward attraction are balanced, a compact object
reaches a stable condition. Neutron stars, white dwarfs, stel-
lar mass, and super-massive black holes can be formed
through the gravitational collapse of compact objects [23].
No developed model can be employed to describe stars unless
stability is thoroughly discussed. The astronomical bodies
remain stable if they show resistance against fluctuations. The
first step towards establishing the stability of gravitating com-
pact objects through the criteria of the adiabatic index was
presented by Bondi [24]. Chandrasekhar [25] conducted pre-
liminary investigations on the dynamical stability of spheri-
cal bodies at a primary level. He points out that the condition
of instability of compact object having radius r and mass
M by a component gamma � consideration to the inequality
� ≥ 4

3 + n M
r .

The stability of the gravitating system can be well
explained by some suitable perturbation approach. In sta-
bility analysis of mathematical models of stars, perturbation
plays a critical role [26]. It estimates the complete structure
of the phases of stars that explain the stability and instability
range of compact objects. Regge and Wheeler [27] stated a
metric perturbation approach using the stability criteria for
the relativistic objects. Local density perturbation (LDP) is
also used to investigate the stability of compact objects in
which all parameters are examined to be density dependent.
Noureen et al. [28] introduced f (R) model of dynamical
instability that demonstrates a greater chance for correcting
higher-order curvatures.

Herrera and his coworker [29,30] introduced the cracking
technique as an alternate method to analyze the instabilities
that occurs in compact objects. Whenever there is a change

in the sign of perturbations within radial forces, cracking
takes place in gravitating compact objects due to the evo-
lution of these forces. When the equilibrium condition of
compact objects is disturbed, the inner fluid distribution of
compact objects shows cracking. It contributes significantly
to the improvement of the stability regions of the compact
star model.

Gonzalez et al. [31] studied the physical characteristics
that depend on density and included local density LDP
to both isotropic and anisotropic matter distributions. By
adding changes to the physical parameters, Azam and Mar-
dan [32,33] observed cracking in charged spherical poly-
tropes. Sharif and Sadiq [34] explored how density fluc-
tuations affect both isotropic and anisotropic matter con-
figurations using a barotropic equation of state within the
framework of general relativity. Malik et al. [35] explain the
cracking techniques by using local density perturbation in
the framework of f (R, T ) gravity.

The authors in [36–39] explained the structure of stellar
models of compact objects in the modified gravities. The
internal structure such as mass–radius relationship of neu-
tron stars and other structural properties in f (R) gravity are
studied in [40,41]. The rotation of neutron stars in the mod-
ified gravities such as f (R), R, R2 -gravity and also scalar
tensor theories gives the description of compact objects in
[42–47]. The structure of compact objects such as neutron
star, white dwarf in the framework of modified gravity theo-
ries is discussed in [48–50].

This work is devoted to study the levels of stabil-
ity/instability in compact objects via cracking technique in
modified f (R, T ) theory of gravity. The arrangement of
manuscript is as follows: modified FEs and generalized TOV
equation are constructed in Sect. 2. Section 3 covers assump-
tion of density dependent perturbations of physical parame-
ters and their application to generalized TOV equation that
leads to mathematical expression for distribution of forces.
Analysis of stability regions is presented with the help of
graphical representation of forces for five different realistic
stars in Sect. 4. The findings of research conducted are sum-
marized in Sect. 5. The bibliography is given at the end of
last section.

2 Modified field equations

In this article, we deal with f (R, T )gravity model to workout
instability problem for anisotropic physically viable model.
Harko et al. [13] describes the modified action for f (R, T )

gravity as follows:

S =
∫ [ 1

16π
f (R, T ) + £m

]√−gd4x . (1)
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Here energy momentum tensor is denoted by Tμυ , £m rep-
resents the Lagrangian density and gμυ represents the deter-
minant of the metric g. The following spherically symmetric
line element explains the geometry in curvature coordinates
(t, r, θ, φ).

ds2 = eυdt2 − eξdr2 − r2dθ2 − r2 sin2 θdϕ2. (2)

Here υ(r) and ξ(r) be the metric potentials. To represent the
energy–momentum tensor Tμυ , we use the anisotropic fluid
form with four velocity uμ = (e

υ
2 , 0, 0, 0). Assuming the

anisotropic nature of the matter, we can express the corre-
sponding energy–momentum tensor as follows,

Tμυ = (Pt + ρ)uμuυ + (Pr − Pt )υμυυ + Pt gμυ, (3)

where uμ∇υuμ = 0 and uμuυ = 1. Here υμ, Pt (r), Pr (r)
and ρ(r) be the radial four-vector, tangential pressure, radial
pressure and energy density respectively. The equation below
represents the field equations of f (R, T ) gravity, which cor-
respond to action (1).

∂ f (R, T )

∂R
Rμυ − 1

2
gμυ f (R, T )

+(gμυ� − ∇μ∇υ)
∂ f (R, T )

∂R

= 8πTμυ − ∂ f (R, T )

∂T
(Tμυ + �μυ). (4)

Here ∇υ shows the covariant derivative linked with the Levi-
Civita connection of gμυ , � = 1√−g

∂μ(
√−ggμυ∂v) shows

the D’ Alembertian operator, Rμυ represent the Ricci tensor,

� = gαβδTαβ

δgμυ and Tμυ = gμυ£m − 2 ∂£m
∂gμυ .

T = gμυTμυ provides the value of the trace of the energy
momentum tensor. By applying the covariant divergence to
Eq. (4), we can derive the divergence of the energy momen-
tum tensor Tμυ as follows:

∇μTμυ = fT (R, T )

8π − fT (R, T )
[(Tμυ + �μυ)∇μ ln fT (R, T )

−1

2
gμυ∇μT + ∇μ�μυ ]. (5)

It is clear from Eq. (5), ∇μTμυ �= 0 and fT (R, T ) �= 0. We
have another condition � = −2Tμυ − ρgμυ . By following
Harko et al. [13], the selected f (R, T ) model has form,

f (R, T ) = R + 2γ T . (6)

The coupling constant γ represents the interaction strength
between matter and geometry. For the line element Eq. (2),
we can derive the modified FEs as,

8πρe f f = ξ ′

r
e−ξ + 1

r2 (1 − e−ξ ), (7)

8π Pef f
r = 1

r2 (e−ξ − 1) + υ ′

r
e−ξ , (8)

8π Pef f
t = 1

4
e−ξ (2υ ′′ + υ ′2 − ξ ′ + 2

r
(υ ′ − ξ ′)), (9)

where, Pef f
r , Pef f

t and ρe f f are respectively the effective
pressures and energy density, given by

ρe f f = ρ + γ

8π
(ρ − Pr − 2Pt ), (10)

Pef f
t = Pr + γ

8π
(ρ + 3Pr + 2Pt ), (11)

Pef f
r = Pt + γ

8π
(ρ + Pr + 4Pt ). (12)

Here, (′ = ∂
∂r ). The FEs provide information on the curvature

of space-time in the presence of matter and energy, allow-
ing us to understand gravitational interaction within com-
pact objects. We assume that the density and radial pressure
have a linear relationship to determine the field equations in
modified gravity.

Pr (r) = 1

3
[ρ(r) − 4Bg], (13)

where,

Bg = 12(a − B)π − 5B + a

64π2 + 64π + 12
. (14)

By putting υ(r) = Br2 + lnC and ξ(r) = ln(1+ar2 +br4),
which are Tolman–Kuchowicz metric potentials [51] in Eqs.
(7)–(9)

8πρe f f = 2a + 4br2

(1 + ar2 + br4)2 + a + br2

(1 + ar2 + br4)
, (15)

8π Pef f
r = 2B

(1 + ar2 + br4)
− a + br2

(1 + ar2 + br4)
, (16)

8π Pef f
t = 1

(1 + ar2 + br4)

×
[
B(2 + Br2) − (a + 2br2)(1 + Br2)

(1 + ar2 + br4)

]
. (17)

Solving Eqs. (10)–(12), the final expression for matter den-
sity, radial pressure and tangential pressure in modified grav-
ities as,

ρ = 3

4(γ + 4π)(1 + ar2 + br4)

×
[ a + 2br2

1 + ar2 + br4 + B
]

+ Bg, (18)

Pr = 1

4(γ + 4π)(1 + ar2 + br4)

×
[ a + 2br2

1 + ar2 + br4 + B
]

− 4Bg, (19)

Pt = 1

(6γ + 8π)

[
(24π − 2γ )

×
{

1

4(γ + 4π)(1 + ar2 + br4)

(
a + 2br2

1 + ar2 + br4

+B

)}
+ (8π + 2γ )Bg − 1

(1 + ar2 + br4)
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×
[ (a + 2br2)(3 + Br2)

1 + ar2 + br4 +a+br2 − B(2+Br2)
]]

.

(20)

We derive hydrostatic equilibrium equation by anisotropic
fluid distribution as follows:

� = P ′
r

[
1 + (64π − 6γ )γ

8π(8π − 2γ )

]

+ρ′
[

64π − 6γ

8π(8π − 2γ )

]
+ P ′

t

[
64π − 6γ

8π(8π − 2γ )

]

+ 2γρ

8π − 2γ

(
r3{ρ(8π + γ ) − γ Pr − 2γ Pt } − 2M

r2 − 2Mr

)

+4(16π2 + 8γπ − γ 2)

8π(8π − 2γ )

×
[(

r3{Pr (8π + 3γ ) + γ Pr + 2γ Pt } + 2M

r2 − 2Mr

)

×(ρ + Pr ) − 2

r
(Pt − Pr )

]
. (21)

3 Local density perturbation scheme (LDP)

LDP scheme refers to a small fluctuation in the density of a
physical system over a small spatial region. It can be caused
by various factors such as the presence of a nearby object
or a change in the temperature or pressure of the system. In
Eq. (21), we incorporated the LDP into all relevant physical
quantities, including mass, radial pressure, tangential pres-
sure, and their derivatives respectively.

Pt (ρ + δρ) = Pt (ρ) + dPt
dρ

δρ, (22)

dPt
dr

(ρ + δρ)= dPt
dr

(ρ)+
[ d

dr

(dPt
dρ

)
+ dPt

dρ

d2ρ

dr2

dr

dρ

]
δρ,

(23)

Pr (ρ + δρ) = Pr (ρ) + dPr
dρ

δρ, (24)

dPr
dr

(ρ + δρ)= dPr
dr

(ρ)+
[ d

dr

(dPr
dρ

)
+ dPr

dρ

d2ρ

dr2

dr

dρ

]
δρ,

(25)

M(ρ + δρ) = M(ρ) + dM

dρ
δρ. (26)

The tangential and radial sound speed are defined as

V 2
t = dPt

dρ
, V 2

r = dPr
dρ

. (27)

The Eq. (21) in its perturbed form is given by

� = �◦(M, ρ, Pt , Pr , ρ
′, P ′

t , P
′
r ) + δ�, (28)

where,

δ� = ∂�

∂M
δM + ∂�

∂ρ
δρ + ∂�

∂Pr
δPr + ∂�

∂P ′
r
δP ′

r

+ ∂�

∂Pt
δPt + ∂�

∂P ′
t
δP ′

t , (29)

which can also be written as

δ�

δρ
= ∂�

∂ρ
+ ∂�

∂ρ′
(ρ′′

ρ′
)

+ ∂�

∂Pr
(Vr )

2 + ∂�

∂P ′
r

(
(V 2

r )′ + (Vr )
2
(ρ′′

ρ′
))

+ ∂�

∂Pt
(Vt )

2 + ∂�

∂P ′
t

(
(V 2

t )′ + (Vt )
2
(ρ′′

ρ′
))

+4πr2 ∂�

∂M

( ρ

ρ′
)
. (30)

This equation is utilized to find out the impact of LDP on the
cracking of an anisotropic fluid. For various parameter values
in the model, we shall show graphical representation of δ�

δρ

as a function of the radius ‘r ’ for different stars. Making use
of using Eq. (21), we found the derivatives involved in above
Eq. (30) is given by

∂�

∂ρ
= 1

(8π − 2γ )(r2 − 2Mr)

×
[

2γ [r3{ρ(8π + γ ) − γ Pr − 2γ Pt } − 2M]

+2γρr3(8π + γ )

+4(16π2 + 8γπ − γ 2)

2(8π)
×

[
r3

{
(ρ + Pr )γ

+Pr (8π + 3γ ) + γρ + 2γ Pt

}
+ 2M

]]
, (31)

∂�

∂Pr
= 1

(8π − 2γ )(r2 − 2Mr)

×
[

− 2γ 2r3ρ + 4(16π2 + 8γπ − γ 2)

2(8π)

×
[
r3{(8π + 3γ )Pr + γρ + 2γ Pt } + 2M

+r3(ρ + Pr )(8π + 3γ ) + 4(r − 2Mr)

]]
, (32)

∂�

∂Pt
= 1

(8π − 2γ )(r2 − 2Mr)

×
[

− 4γ 2r3ρ + 4(16π2 + 8γπ − γ 2)

2(8π)

×{(ρ + Pr )γ r
3 − 2(r − 2M)}

]
, (33)

∂�

∂ρ′ = 1 + (64π − 6γ )γ

8π(8π − 2γ )
, (34)
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Table 1 Determination of
model parameters a, b, B, Bg ,
radius R (km), mass M (Mq )

for stars under consideration

Star M (Mq ) R (km) a (km)−2 b (km)−2 B (km)−2 Bg

Star 1 1.97 10.3 0.00459 0.000018 0.00292 0.0000626808

Star 2 1.77 9.99 0.0044 0.000011 0.00275 0.0000625695

Star 3 1.667 9.82 0.0043 0.0000106 0.00267 0.0000620321

Star 4 1.49 9.51 0.0042 0.0000099 0.00252 0.0000648814

Star 5 1.29 9.13 0.00397 0.0000091 0.00236 0.0000624321

Fig. 1 A graphical illustration

of δ�
δρ

for PSR J1614-2230

a = 0.00459 (km)−2,
b = 0.000018 (km)−2,
B = 0.00292 (km)−2,
R = 10.3 km

∂�

∂P ′
r

= (16π − 2γ )γ

8π(8π − 2γ )
, (35)

∂�

∂P ′
t

= (16π − 2γ )2γ

8π(8π − 2γ )
, (36)

∂�

∂M
= 1

(8π − 2γ )(r2 − 2Mr)

×
[

2γρ

(
− 2(r2 − 2Mr) + 2r

[
r3

{
ρ(8π + γ )

−γ Pr − 2γ Pt

}
− 2M

])

+4(16π2 + 8γπ − γ 2)

16π
(ρ + Pr )

(
2(r2 − 2Mr) + 2r

[
r3

{
(8π + 3γ )Pr

+γ Pr + 2γ Pt

}
+ 2M

])]
. (37)

Above derivatives shall be used in Eq. (30) to plot graph of
forces distribution for considered realistic stars.

4 Physical analysis

Here, we have considered an already developed logical MIT
bag model [51] to identify refinements in stability criterion.
For this purpose variation in force distribution defined math-
ematically as δ�

δρ
has been plotted with variation in ‘r ’. Five
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Table 2 Analysis of cracking/overturning points and singularities for
γ in PSR J1614-2230

Intervals Cracking/overturning points (r (km))

For γ = 0.001, cracking occurs at r = 9.67

Whereas singularities found at r = 3.74 and r = 4.13

[0, 12.9] For γ = 2, cracking occurs at r = 5.935

For γ = 10, cracking occurs at r = 4.14

(12.9, 30.2] No cracking point

(30.2,∞) For γ = 30.4, overturning at r = 4.43

strange stars have been studied in this regard namely Star 1:
PSRJ1614-2230, Star 2: Vela X-1, Star 3: PSRJ1903+327,
Star 4: Cen X-3 and Star 5: SMC X-1. Values for various
physical parameters are list in the Table 1 given below.

4.1 Star 1: PSRJ1614-2230

The Parkes Radio Telescope detected PSRJ1614-2230 dur-
ing a radio survey aimed at identifying unknown EGRET
gamma-ray sources. Later on, X-ray emission from Newton

XMM and gamma rays emission from Fermi Gamma Ray
Large Area Space Telescope was observed. The PSRJ1614-
2230, a millisecond pulsar with a mass 1.97M

⊙
and 95-day

orbital period in binary star systems. It is an important com-
pact object for studying the behavior of matter under high
pressure and the emission of radiation from highly magne-
tized objects [52]. For this star, we have plotted δ�

δρ
from Eq.

(30) by taking different value of γ given in Fig. 1. The Fig. 1a
describes certain disruptions in the form of cracking and sin-
gularities for γ ∈ [0, 12.9]. The Fig. 1b shows stability for
γ ∈ (12.9, 30.2]. After that the overturning occurs when
we increase value of γ , we can see that in Fig. 1c. Regions
pertaining cracking are summarized in Table 2.

4.2 Star 2: Vela X-1

Sako et al. [53] presented the initial design for the Vela X-1’s
global X-ray emission line spectrum. Vela X-1 is the high
mass X-ray binary (HMXB), consisting of a massive com-
panion star and neutron star. Since its discovery, it gained
a lot of attention among the compact objects in this field
of study. The massive companion star in Vela X-1 is a blue

Fig. 2 A graphical illustration

of δ�
δρ

for Vela X-1 a = 0.0044

(km)−2, b = 0.000011 (km)−2,
B = 0.00275 (km)−2,
R = 9.99 km
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Table 3 Analysis of cracking/overturning points and singularities for
γ in Vela X-1

Intervals Cracking/overturning points (r (km))

For γ = 0.01, cracking occurs at r = 9.37

Whereas singularities found at r = 3.34 and r = 3.71

[0, 13] For γ = 1, cracking occurs at r = 6.86

For γ = 5, cracking occurs at r = 4.14

(13, 30.2] No cracking point

(30.2,∞) For γ = 30.5, overturning at r = 3.88

supergiant, which has a mass of approximately 30M⊙ and
a radius of about 16M⊙. The companion star is so massive
that it loses material through its outer layers, which is then
captured by the neutron star [54]. We have plotted δ�

δρ
through

Eq. (30) for different value of γ which is illustrated in Fig. 2.
We have seen that the instabilities in the form of singular-
ities and cracking for the values of γ ∈ [0, 13] in Fig. 2a.
Plot of δ�

δρ
and ‘r’ for γ ∈ (13, 30.2] shows stable behavior

as shown in Fig. 2b. The above values of γ shows unstable
behavior due to overturning also summarized in Table 3.

4.3 Star 3: PSR J 1903+327

In (2006), a Millisecond pulsar PSR J1903+0327 was discov-
ered in the ongoing Arecibo L-band Feed Array (ALFA) pul-
sar survey. The pulsar has a mass of approximately 1.67M⊙,
but its diameter is only about 20 kms, making it incredibly
dense. It rotates at a very high speed, completing a full rota-
tion in just 2.15 ms, or over 460 times per second. It has 95
days orbital motion for the binary companion pulsar [55].

Plot of δ�
δρ

through Eq. (30) for the different value of γ

as shown in Fig. 3. The graph shows the cracking points and
singularities around the center for γ ∈ [0, 13.2] in Fig. 3a.
The graph shows stable behavior for γ ∈ (13.2, 30.2] in
Fig. 3b. The above value of γ shows again unstable behavior
and overturning occurs as shown in Fig. 3c.

4.4 Star 4: Cen X-3

The Cen X-3 was detected by JEM-X only in 4 SCWs (Sci-
ence Windows) and by ISGRI in 11 SCWs. It was observed
by integral a few times during the GPS. Its pulsation period
is 4.8 s and orbital period is 2.1 days. The companion star of

Fig. 3 A graphical illustration

of δ�
δρ

for PSR J 1903+327

a = 0.0043 (km)−2,
b = 0.000016 (km)−2,
B = 0.00267 (km)−2,
R = 9.82 km
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Fig. 4 A graphical illustration

of δ�
δρ

for star 4 (Cen X-3),

a = 0.0042 (km)−2,
b = 0.0000099 (km)−2,
B = 0.002523 (km)−2,
R = 9.51 km

Cen X-3 is a supergiant (V779) of radius 12 R⊙ and mass
17-19 M⊙. It shows spin-up and a secular decay of the orbital
period [56].

The graphical explanation of δ�
δρ

through Eq. (30) for
the different value of γ as shown in Fig. 4. There are so
many cracking points and also singularity for γ ∈ [0, 13.1]
in Fig. 4a shows unstable behavior. The value of γ ∈
(13.1, 30.3] force stability of 4th star as shown in Fig. 4b
and by increasing the value of γ overturning occurs.

4.5 Star 5: SMC X-1

An X-ray binary star system called SMC X-1, often referred
to as Small Magellanic Cloud X-1, is located within the Small
Magellanic Cloud (SMC), which is a satellite galaxy of the
Milky Way. The neutron star in SMC X-1 is a highly magne-
tized, rapidly spinning pulsar. It emits regular pulses of elec-
tromagnetic radiation as it rotates. It has mass M = 1.29M⊙
and its radius R = 9.13 km [57].

We have set the graph of δ�
δρ

through Eq. (30) for the dif-
ferent value of γ as shown in Fig. 5. there are many cracking
points and also singularity for γ ∈ [0, 13.3] that shows insta-
bility in Fig. 5a. The graph shows stable behavior of 5th star

for γ ∈ (13.3, 30.2] as shown in Fig. 5b. When we increase
the value of γ then overturning occurs shows in Fig. 5c.

5 Conclusion

In order to understand the phenomenon of cosmic accelera-
tion, it is essential to consider the significant contributions of
dark matter and dark energy, which plays a significant role
for a large fraction of the universe. Understanding cosmic
variation in terms of higher-order curvature is best accom-
plished with modified gravity theories. In this article, we have
considered a non-minimal connection of matter and geome-
try in f (R, T ) gravity. It is beneficial to consider f (R, T )

for the dynamical analysis, which includes the trace of the
energy–momentum tensor and higher order curvature [22].

Herein, we intend to generalize the concept of cracking
in considered modified theory of gravity, the mathematical
foundation to arrive at cracking criterion has been developed
for modified FEs. The LDP are taken into account for the
development of expression for forces distribution among the
compact source. The graphical representation of forces dis-
tribution with variation in radial coordinate defines cracking
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Fig. 5 A graphical illustration

of δ�
δρ

for SMC X-1

a = 0.00397 (km)−2,
b = 0.0000091 (km)−2,
B = 0.002363 (km)−2,
R = 9.13 km

or overturning in the compact source, it appears whenever
forces change their sign from negative to positive or vice
versa.

The limitations of the f (R, T ) form arise with non-linear
components of the trace in the analytical formulation of FEs.
This work uses cracking techniques to test the instabilities of
compact astronomical objects in the context of the modified
theory of f (R, T ) gravity. Cracking shows how fluid distri-
bution works when the equilibrium condition is disturbed by
a change in the direction of the radial forces. Using the LDP
on the hydrostatic equilibrium equation, we have developed
mathematical distribution force models for this purpose.

We have chosen f (R, T ) model of Tolman–Kuchowicz
metric that covers the expression of curvature invariant i.e.,
f (R, T ) = R + 2γ T , In which γ has a positive value. Its
occurs due to coupling between matter and geometry in mod-
ified gravity. The modified FEs are constructed in the form
of Eqs. (7)–(9) for a spherically symmetric matter config-
uration. We have constructed hydrostatic TOV generalized
equation Eq. (21) for different compact objects by applying
MIT Bag model on modified FEs.

The cracking points or intervals are identified with the
LDP scheme by perturbing the parameters involved in the

Table 4 Analysis of cracking/overturning points and singularities for
γ in PSR J 1903+327

Intervals Cracking/overturning points (r (km))

For γ = 0.01 cracking occurs at r = 9.22

Whereas singularities found at r = 3.13 and r = 3.53

[0, 13.2] For γ = 3 cracking occurs at r = 5.08

For γ = 5 cracking occurs at r = 3.97

(13.2, 30.2] No cracking point

(30.2,∞) For γ = 30.5 overturning at r = 4.07

Table 5 Analysis of cracking/overturning points and singularities for
γ in Cen X-3

Intervals Cracking/overturning points(r(km))

For γ = 0.1, cracking occurs at r = 8.734

Whereas two singularities at r = 2.80 and r = 3.15

[0, 13.1] For γ = 1.5, cracking occurs at r = 5.77

For γ = 6, cracking occurs at r = 3.47

(13.1, 30.3] No cracking point

(30.3,∞) For γ = 30.4, overturning at r = 4.05
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Table 6 Analysis of cracking/overturning points and singularities for
γ in SMC X-1

Intervals Cracking/overturning points (r (km))

For γ = 0.03, cracking occurs at r = 8.56

Whereas singularities at r = 2.38 and r = 2.71

[0, 13.2] For γ = 1.8, cracking occurs at r = 5.58

For γ = 11, cracking occurs at r = 3.13

(13.2, 30.2] No cracking point

(30.2,∞) For γ = 30.4 overturning at r = 3.75

generalized TOV equation Eq. (21). The results of LDP in
the support of GR is beneficial for anisotropic matter distribu-
tion to point out the cracking and overturning in the system.
The stability analysis for a developed model with LDP tends
to be more appropriate for compact objects. For the f (R, T )

gravity model, we have developed a density-dependent per-
turbation that is described in Eqs. (22)–(26). We use the LDP
scheme to analyze the distribution of forces that operate on
a gravitational system given by Eq. (30) and apply it to the
hydrostatic equilibrium equation that distinguishes minimal
fluctuations in the system.

To analyze the cracking of various compact objects, we
generate a plot of force distribution δ�

δρ
against radius ‘r’

by taking different values of the γ for the compact objects
in the following order: PSR J1614-2230, Vela X-1, PSR
J1903+327, SMC X-1 and Cen X-3. Tables 2, 3, 4 and 5
shows the behavior of all stars by using local density per-
turbation scheme to identify the instability region. If we
increased the value of involved parameter γ then all compact
objects have cracking points and singularities that identify the
instabilities. By further increasing the value of parameter γ

in a specific interval there are no cracking points and sin-
gularity that shows stability of these compact objects. After
that again by increasing the value of γ , overturning occurs
that shows instability. So, we conclude that the stability of
compact objects in a specific interval that are also shown in
Figs. 1, 2, 3, 4 and 5 and Tables 2, 3, 4, 5 and 6.

Extension of present work to charged compact sources is
an interesting and important problem.
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