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Abstract We investigate the Zb, Zc and Zcs states within
the chiral effective field theory framework and the S-wave
single channel molecule picture. With the complex scaling
method, we accurately solve the Schrödinger equation in
momentum space. Our analysis reveals that the Zb(10610),
Zb(10650), Zc(3900) and Zc(4020) states are the reso-
nances composed of the S-wave (B B̄∗ + B∗ B̄)/

√
2, B∗ B̄∗,

(DD̄∗ + D∗ D̄)/
√

2 and D∗ D̄∗, respectively. Furthermore,
although the Zcs(3985) and Zcs(4000) states exhibit a sig-
nificant difference in width, these two resonances may origi-
nate from the same channel, the S-wave (Ds D̄∗+D∗

s D̄)/
√

2.
Additionally, we find two resonances in the S-wave D∗

s D̄
∗

channel, corresponding to the Zcs(4123) and Zcs(4220)

states that await experimental confirmation.

1 Introduction

In the past decade, ongoing experimental efforts have led
to the discovery of a series of heavy quarkonium-like states
known as the XY Z states. The charged Z states like Zc(3900)

and Zc(4020) provide strong evidence of the exotic states, as
they involve the light quarks to explain their non-zero electric
charge. Experimental advancements in the Zb sector can be
traced back to 2011 when the Belle collaboration reported
two charged exotic candidates, Zb(10610) and Zb(10650)

[1], which were later confirmed in subsequent studies [2,3].
Multiple hidden-charm tetraquark candidates of the Zc states
have been observed by the BESIII, Belle and CLEO col-
laborations in electron-positron annihilation, including the
charged and neutral Zc(3900) and Zc(4020) states [4–13].
These states, with their masses near the thresholds of B(∗) B̄∗

a e-mail: jbcheng@pku.edu.cn (corresponding author)
b e-mail: blhuang@pku.edu.cn
c e-mail: lzy_15@pku.edu.cn
d e-mail: zhusl@pku.edu.cn

and D(∗) D̄∗, have been widely interpreted as the molecule
states in the papers [14–29]. Additionally, the existence of the
strange partners with the QQ̄sq̄ ′ (q, q ′ = u, d) configura-
tions is predicted by the SU(3)-flavor symmetry, and indeed
they have been discovered in recent years.

In 2021, the BESIII collaboration observed an exotic
hadron near the mass thresholds of D−

s D∗0 and D∗−
s D0 in

the processes e+e− → K+D−
s D∗0 and K+D∗−

s D0 [30].
The corresponding mass and width fitted with a Breit-Wigner
line shape are

M[Zcs(3985)] = 3982.2+1.8
−2.6 ± 2.1 MeV and

�[Zcs(3985)] = 12.8+5.3
−4.4 ± 3.0 MeV. (1)

Last year, they observed a neutral Zcs(3985)0 in the pro-
cesses e+e− → K 0

S D
+
s D∗− and K 0

S D
∗+
s D− [31]. The mass

and width of the neutral Zcs(3985)0 have been determined
to be (3992.2 ± 1.7 ± 1.6) MeV and (7.7+4.1

−3.8 ± 4.3) MeV,
respectively. Its mass, width and cross section are similar to
those of the charged Zcs(3985)+, which suggests that the
neutral Zcs(3985)0 is the isospin partner of the Zcs(3985)+.
Furthermore, in 2021, the LHCb collaboration reported a
series of distinct Zcs states. In the hidden charm decay pro-
cess B+ → J/ψφK+, they observed two Zcs states with
J P = 1+ [32]. One of these Zcs states is the Zcs(4000)+,
which is discovered with high significance. Its mass and
width are measured to be

M[Zcs(4000)] = 4003 ± 6+4
−14 MeV and

�[Zcs(4000)] = 131 ± 15 ± 26 MeV, (2)

respectively. Additionally, the other Zcs state, Zcs(4220)+,
has a mass of 4216±24+43

−30 MeV and a width of 233±52+97
−73

MeV. The LHCb collaboration considers the Zcs(4000)+ and
Zcs(3985)+ to be distinct states due to their apparently dif-
ferent widths, despite their close mass.

This discovery of the exotic Zcs hadrons inspired various
theoretical interpretations, including the compact tetraquark

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12199-y&domain=pdf
http://orcid.org/0000-0003-1202-4344
http://orcid.org/0000-0003-1202-4475
http://orcid.org/0000-0001-7887-9391
http://orcid.org/0000-0002-4055-6906
mailto:jbcheng@pku.edu.cn
mailto:blhuang@pku.edu.cn
mailto:lzy_15@pku.edu.cn
mailto:zhusl@pku.edu.cn


1071 Page 2 of 11 Eur. Phys. J. C (2023) 83 :1071

picture [33–35], the molecule picture [36–43], the mixing
scheme [44–48] and the cusp effect [49]. When examin-
ing the BESIII and LHCb observations of the Zcs states,
some authors of the Refs. [40,50,51] proposed that the
Zcs(3985) and Zcs(4000) are the same entity, whereas the
Refs. [33,34,38,43,46,47] considered them to be distinct
hadrons. Moreover, one can gain further insights from the
comprehensive reviews published in recent years [52–65].

In Refs. [34,38], the authors considered the Zcs(3985)

and Zcs(4000) as the SU(3)-flavor partners of Zc(3900),
whose neutral nonstrange members have opposite C parity.
The authors suggested the Zcs(4000)/Zcs(3985) is the pure
molecular state composed of (|D̄∗

s D〉 + / − |D̄s D∗〉)/√2.
In addition, they also predicted the existence of a molecule
composed of D̄∗

s D
∗ which may be confirmed by the BESIII

in the subsequent experiment [66]. However, the huge differ-
ence of their widths seems still hard to interpret.

In this study, we employ the chiral effective field theory
(ChEFT) to investigate the properties of the Zb, Zc and Zcs

states in the molecular picture. To explore the existence and
relationships of the possible resonances, we utilize the com-
plex scaling method (CSM) [67,68], which is a powerful
tool that provides a consistent treatment of the bound states
and resonances. We focus on the S-wave open-charm inter-
action, while neglecting the possible contributions from the
hidden charm. As illustrated in our previous works [69,70],
we consider the cross diagram DD̄∗ ↔ D∗ D̄ of the one-
pion-exchange (OPE) contribution. This contribution intro-
duces a complex potential arising from the three-body decay
effect, which we take into account when investigating the
widths of the resonances.

This paper is organized as follows. In Sect. 2, we introduce
our framework explicitly. In Sect. 3, we present the effective
Lagrangians and potentials. In Sect. 4, we solve the complex
scaled Schrödinger equation and give the results of the Zb,
Zc and Zcs . The last Sect. 5 is a brief summary.

2 Framework

In this study, we consider the Zb, Zc and Zcs states as the
molecular systems with the quantum numbers I G(J PC ) =
1+(1+−), I G(J PC ) = 1+(1+−) and I (J P ) = 1/2(1+),
respectively. The specific molecule systems under investi-
gation are (B B̄∗ + B∗ B̄)/

√
2, B∗ B̄∗, (DD̄∗ + D∗ D̄)/

√
2,

D∗ D̄∗, (Ds D̄∗ + D∗
s D̄)/

√
2 and D∗

s D̄
∗.

In the earlier work [16], the Zb states were proposed as the
bound states of

[
B B̄∗ + B∗ B̄

]
/
√

2 and B∗ B̄∗. The authors
considered the D-wave channel and found that the S − D
wave mixing effect could contribute significantly. Recent
experiments [2,3] have uncovered additional evidence sup-
porting the interpretation of the Zb states as the resonances.
These findings show that the masses of the Zb states are

Table 1 The masses of the charmed, bottomed and pion mesons, which
are taken from Ref. [71]

Mesons Mass (MeV) Mesons Mass (MeV)

D+ 1869.66 B∗ 5324.70

D0 1864.84 D+
s 1968.34

D∗+ 2010.26 D∗+
s 2112.2

D∗0 2006.85 π± 139.57

B+ 5279.34 π0 134.98

B0 5279.65

higher than the threshold of the B(∗) B̄∗ pairs, and they can
decay into the B(∗) B̄∗ channel with the partial widths in the
range of tens of MeV. These findings strongly favor the res-
onance interpretation over the bound state scenario.

In this CSM framework, we firstly assume that the influ-
ence of the D-wave channel on the mass and width of the
resonances is negligible. And in the last Sect. 4.3 located just
before the summary, we provide a brief discussion of the case
including the D-wave channel, and confirm the assumption.

On the other hand, we find that the coupled channel effect
between (B B̄∗ + B∗ B̄)/

√
2 and B∗ B̄∗ is negligible for the

near threshold states. In addition, there are inelastic chan-
nels in the final decay process, like ϒ(nS)π , that could be
the constituents of the Zb states as well. However, the cou-
plings strength between the Zb and the hidden-bottom chan-
nels is apparently smaller than that between Zb and the open-
bottom channels. Therefore, the influence of the correction
from the hidden-bottom channels should not be significant.
Furthermore, for the Zc and Zcs systems, we adopt the same
assumption that the inelastic hidden-heavy channels are not
the primary constituents. As a result, we focus on the sim-
plest case, considering only the S-wave open-heavy single
channel.

The masses of the charmed meson and exchanged light
mesons are collected in Table 1. We take the isospin average
masses to deal with the isospin conserving process.

2.1 A brief discussion on the CSM

We first provide a brief overview of the CSM proposed by
Aguilar, Balslev and Combes in the 1970s [67,68], com-
monly known as the ABC theorem. The CSM is a powerful
approach that allows for the treatment of resonances in a
manner similar to the bound states. The transformation of
the radial coordinate r and its conjugate momentum k in the
CSM are defined by:

U (θ)r = reiθ , U (θ)k = ke−iθ . (3)

After the complex scaling operation, the Schrödinger equa-
tion
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p2

2m
φl(p) +

∫
p′2dp′

(2π)3 Vl,l ′(p, p
′)φl ′(p

′) = Eφl(p) (4)

in the momentum space becomes

p2e−2iθ

2m
φ̃l(p) +

∫
p′2e−3iθdp′

(2π)3 Vl,l ′(pe
−iθ , p′e−iθ )φ̃l ′(p

′)

= E φ̃l(p), (5)

with the normalization relation

e−3iθ

(2π)3

∫ ∞

0
φ̃l(p)

2 p2dp = 1, (6)

where l, l ′ are the orbital angular momenta, and p represents
the momentum in the center-of-mass frame. The potential
Vl,l ′ after partial wave decomposition can be expressed as

Vl,l ′ =
∫

d�′
∫

d�

l ′∑

ml′=−l ′
〈l ′,ml ′ ; s,m j − ml ′ | j,m j 〉

×
l∑

ml=−l

〈l,ml; s,m j − ml | j,m j 〉Y∗
l ′,ml′ (θ

′, φ′)

×Yl,ml (θ, φ)〈s,m j − ml ′ |V|s,m j − ml〉, (7)

where s and j represent the total spin and total angular
momentum of systems, ml is the corresponding magnetic
quantum number. The Yl,ml (θ, φ) represents the spherical
harmonics associated with the angular coordinates θ , φ. The
potential operator V acts on the states |s,m j − ml ′ 〉 and
|s,m j − ml〉.

After performing the complex scaling operation, the reso-
nance pole crosses the branch cut into the first Riemann sheet
when the rotation angle θ reaches a sufficiently large value,
as depicted in Fig. 1. Consequently, the wave functions of
the resonances become square-integrable, similar to those of
the normalizable bound states. Further information on this
technique can be found in Refs. [72,73].

2.2 Analyticity of the OPE potentials for the DD∗ system

In our previous works [69,70], we investigated the double-
charm tetraquark system using the CSM method. Notably, we
found that the DD̄∗ system exhibits a unique characteristic
where the zeroth component of the transferred momentum
of the exchanged pion exceeds the pion mass. This leads to
an imaginary part in the OPE potential. If a pole is obtained
in this system, it would correspond to an energy with an
imaginary part, which can be interpreted as its half-width. In
the current study, we encounter this situation when examining
the OPE potential in the (DD̄∗ + D∗ D̄)/

√
2 system with

1+(1+−).

Fig. 1 The eigenvalue distribution of the complex scaled Schrödinger
equation for the two-body systems

When considering the process DD̄∗ → D∗ D̄, one can get
the OPE potential as follows

Vπ ∝ g2

2 f 2
π

(ε∗ · q)(ε · q)

q2 + m2
π − q2

0

, (8)

where q represents the transferred momentum of the pion,
and q0 is its zeroth component. Since q0 ≈ mD∗ − mD >

mπ , the poles of the OPE potential are located on the real
transferred momentum axis. However, when performing the
integral along the real p′ axis in Eq. (4), we encounter a
numerical divergence. Fortunately, the CSM can resolve this
divergence issue without altering the analyticity of the OPE
potential. Through a complex scaling operation, the pole of
the OPE potential is rotated away from the real momentum
axis in the momentum plane. As a result, the integral along the
real momentum axis bypasses the pole, effectively avoiding
divergence.

As shown in Fig. 2, we denote the total energy of the
DD̄∗/D∗ D̄ system as E and assume the D meson to be
on-shell. In this case, the expression for q0 is given by

q0 = E −
√
m2

D + p2 −
√
m2

D̄
+ p′2. With the heavy quark

approximation, we neglect the kinetic energy contribution to
q0 and introduce an energy shift E → E + mD + mD∗ . As
a result, we obtain q0 = E + mD∗ − mD .

In other processes, the three-body effect vanishes, and we
should consider the different values of q0 in the OPE poten-
tial. The specific values of q0 for each case are summarized
in Table 2.

3 Lagrangians and potentials

For the interaction of two heavy mesons, the chiral effective
Lagrangians are constructed based on the heavy quark sym-
metry and SU(3)-flavor symmetry. The explicit expressions
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Fig. 2 Three-body intermediate diagram in the process DD̄∗ →
D∗ D̄. The total energy of the DD̄∗/D∗ D̄ is E , and the mesons which
are cut by the red dashed line are on shell

Table 2 The q0 is the zeroth component of the transferred momentum.
E is the total energy relative to the corresponding threshold. The other
cases not listed all give q0 = 0

Process DD̄∗ → D∗ D̄ D∗ D̄∗ → D∗ D̄∗ B B̄∗ → B∗ B̄

q0 E + mD∗ − mD 0 mB∗ − mB

are given by

L = −i〈H (Q)
b v · (δba∂ + i�ba)H̄

(Q)
a 〉 + g〈H (Q)

b A
μ
baγμγ5 H̄

(Q)
a 〉

−i〈 ¯̃H (Q̄)
b v · (δba∂ + i�ba)H̃

(Q̄)
a 〉 + g〈 ¯̃H (Q̄)

b A
μ
baγμγ5 H̃

(Q̄)
a 〉 (9)

where H (Q) is defined as

H (Q)
a = 1 + /v

2

[
P∗μ
a γμ − Paγ5

]
. (10)

And H̄ (Q)
a , H̃ (Q̄) and ¯̃H (Q̄)

a are

H̄ (Q)
a = γ0H

(Q)†
a γ0 =

[
P∗†μ
a γμ + P†

a γ5

] 1 + /v

2
,

H̃ (Q̄) =
[
P̃∗μ
a γμ + P̃aγ5

] 1 − /v

2
and

¯̃H (Q̄)
a = γ0 H̃

(Q̄)†γ0 = 1 − /v

2

[
P̃∗†μ
a γμ − P̃†

a γ5

]
, (11)

respectively, with P(∗)
a =

(
D(∗)0, D(∗)+, D(∗)+

s

)
and P̃(∗)

a =
(
D(∗)−, D̄(∗)0, D̄(∗)−

s

)
.

The light meson concerned parts are given that

Aμ = i

2
[ξ†(∂μξ) + (∂μξ)ξ†], �μ = i

2
[ξ†(∂μξ) − (∂μξ)ξ†],

ξ = exp[ iM
fπ

] and (12)

M =

⎛

⎜
⎜⎜
⎝

π0√
2

+ η√
6

π+ K+

π− π0√
2

+ η√
6

K 0

K− K̄ 0 − 2√
6
η

⎞

⎟
⎟⎟
⎠

, (13)

where the pion decay constant fπ is equal to 132 MeV. The
coupling constant associated with theπ exchange is g = 0.59
[74].

The corresponding OPE potential in momentum space can
be expressed as follows

V DD̄∗/B B̄∗ = − g2

2 f 2
π

(ε∗ · q)(ε · q)

q2 + m2
π − q2

0

,

V D∗ D̄∗/B∗ B̄∗ = − g2

2 f 2
π

(T 1 · q)(T 2 · q)

q2 + m2
π − q2

0

, (14)

where T 1 and T 2 represent the spin 1 operator with the
forms T 1 = −iε†

3 × ε1 and T 2 = −iε†
4 × ε2. Since we

focus solely on the S-wave interactions, we can replace the
above spin-dependent operator with (ε∗ · q)(ε · q) → 1

3q
2

and (T1 · q)(T2 · q) → 1
3q

2T1 · T2.
Regarding the contact term interaction, we adopt the form

derived in Ref. [27]. Upon performing the partial wave
decomposition, one can obtain the S-wave contact potential
as

[Vct ]l,l ′ = C̃s + Cs(p
2 + p′2),

where C̃s and Cs represent the partial wave low energy con-
stants (LECs). We restrict our analysis to the lowest-order
interaction and do not consider higher-order effects, such as
the one-loop contribution.

To obtain the effective potentials, we introduce a Gaussian
regulator to the potentials as follows

Vl,l ′ = Vl,l ′ exp

(
− p′2


2 − p2


2

)
, (15)

where 
 is the cutoff parameter. The parameters 
, C̃s and
Cs can be adjusted while keeping the coupling constants in
the OPE potential fixed.

4 Numerical results

During the numerical calculation process, we discretize the
Schrödinger Eq. (4) in momentum space using the Gaussian
quadrature approach. We approximate the integral over the
potential as a weighted sum over N integration points for
p = k j ( j = 1, N ):

∫ ∞

0
dp′ p′2V (p, p′)φ(p′) �

N∑

j=1

ω j p
2
j V (p, p j )φ(p j ),

p2

2m
φ(p) + 1

(2π)3

N∑

j=1

ω j p
2
j V (p, p j )φ(p j ) = Eφ(p),

(16)

where p j and ω j represent the Gaussian quadrature points
and weights, respectively. Furthermore, for clarity, we will
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omit the orbital angular momentum subscript from this point
onward. In Eq. (16), we have N unknowns φ(k j ) and an
unknown φ(k). To avoid the need to determine the entire
function φ(k), we restrict the solution to the same values of
ki used to approximate the integral. This lead to N coupled
linear equations:

p2
i

2m
φ(pi ) + 1

(2π)3

N∑

j=1

ω j p
2
j V (pi , p j )φ(p j ) = Eφ(pi ).

(17)

Therefore, the Schrödinger equation can be expressed in
matrix form as

[H ][φ] = E[φ], (18)

with explicit matrices form

⎛

⎜⎜⎜
⎜⎜⎜
⎝

p2
1

2m + 1
(2π)3 ω1 p2

1V (p1, p1)
1

(2π)3 ω2 p2
2V (p1, p2) · · · 1

(2π)3 ωN p2
NV (p1, pN )

1
(2π)3 ω1 p2

1V (p2, p1)
p2

2
2m + 1

(2π)3 ω2 p2
2V (p2, p2) · · ·

...

1
(2π)3 ω1 p2

1V (pN , p1) · · · · · · p2
N

2m + 1
(2π)3 ωN p2

NV (pN , pN )

⎞

⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

φ(p1)

φ(p2)
...

φ(pN )

⎞

⎟
⎟⎟
⎠

= E

⎛

⎜
⎜⎜
⎝

φ(p1)

φ(p2)
...

φ(pN )

⎞

⎟
⎟⎟
⎠

,

(19)

where the wave function φ(k) on the grid can be represented

as the N × 1 vector [φ(pi )] = (
φ(p1) φ(p2) · · · φ(pN )

)T
.

Then, we can effectively solve Eq. (4). To find solutions for
the complex Schrödinger Eq. (5), we can simply make the
substitutions pi → pi e−iθ , ωi → ωi e−iθ and φ(pi ) →
φ̃(pi ).

4.1 The Zb and Zc system

In this subsection, we investigate the exotic hadrons Zb and
Zc using ChEFT. A similar study has been performed in
Ref. [27], where the Zc(3900) and Zc(4020) (Zb(10510)

and Zb(10650)) are interpreted as
[
DD̄∗ + D∗ D̄

]
/
√

2 and
D∗ D̄∗ (

[
B B̄∗ + B∗ B̄

]
/
√

2 and B∗ B̄∗) molecule with J P =
1+(1+−), respectively. However, in our present work using
CSM„ we neglect the S − D mixing effect and solely focus
on the S-wave channel in this section. And in the following
Sect. 4.3, we provide a brief discussion on the case including
the D-wave constituents.

In our analysis, as shown in Table 3, we perform a fit
of the LECs for the two Zb and Zc states. Comparing our
results with those in Ref. [27], we find a similar cutoff value

 within a reasonable range. However, the LECs C̃s and
Cs exhibit some variations, which could be attributed to our
omissions of the D-wave channel and the higher order con-
tribution. Additionally, we calculate the root-mean-square
(RMS) radii, as shown in Table 3, and find that the sizes of

the Zb states are smaller than those of the Zc states. Interest-
ingly, the sizes of the two Zb (Zc) states are nearly identical.
Moreover, the corresponding wave functions, as depicted in
Fig. 3, exhibit a striking resemblance. This phenomenon is
reasonable since our analysis in this work does not account
for the higher-order spin-dependent correction terms. The
satisfaction of the heavy quark spin symmetry justifies the
similarities in the energy, decay width, size and wave func-
tion observed in the Zb and Zc states.

As discussed in Ref. [69], the DD∗/DD̄∗ system con-
sidered as the T+

cc /X (3872) state can decay into the three-
body open-charm channels DDπ/DD̄π . In the case of the
isovector DD̄∗ system, it is also necessary to consider the
influence of the three-body decay. The numerical results in
the scheme we adopt, shown in Table 3 (row ”Adopt”), are
very close to the results under the instantaneous approxima-

tion q0 = 0. This implies that the mass, width and size have
minimal changes. The reason why the choice ofq0 matters for
the T+

cc system but not for the Zc system can be understood
as follows. The mass of the T+

cc state is below the thresh-
old of the DD∗ system, making the two-body decay pro-
cess kinetically forbidden. Therefore, the three-body decay
becomes the dominant decay modes, and the value of q0,
which partly reflects the three-body decay width, becomes
important. On the other hand, the Zc(3900)+ state is clearly
above the threshold of the DD̄∗ system, allowing for the two-
body decay process. Since the contribution from the three-
body decay is significantly smaller (Table 3 row “Inst”) in
this case, the choice of q0 does not significantly alter the
results. For DD∗ system, we also consider the case without
OPE, as shown in Table 3 (row “CT”). We find the influence
of OPE potential on the Zc system is not significant.

4.2 The Zcs system

In Refs. [34,38], the Zcs(3985) and Zcs(4000) states are
discussed as the SU(3)-flavor partners of Zc(3900), with
their neutral nonstrange members having opposite C par-
ity. The authors suggest that the Zcs(4000)/Zcs(3985) state
can be described as a pure molecular state composed of
(|Ds D̄∗〉 + / − |D∗

s D̄〉)/√2. Furthermore, they also pre-
dicted the existence of a D∗

s D̄
∗ molecular state, which is

potentially supported by the recent work of the BESIII col-
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Fig. 3 The wave functions
φ̃(p) of the Zc state with the
I G(J PC ) = 1+(1+−). The
rotation angle θ = 35◦ and the
parameters 
 = 0.300 GeV,
C̃s = 2.86 × 102 GeV−2 and
Cs = −59.9 × 102 GeV−4. The
two diagrams correspond to
system a

[
DD̄∗ + D∗ D̄

]
/
√

2
and b D∗ D̄∗ respectively

Table 3 The extracted poles for all states are listed with the quantum
numbers I G(J PC ) = 1+(1+−). The fitted parameter for the B∗ B̄(∗)

system are 
 = 0.510+0.027
−0.041 GeV, C̃s = 0.48+0.15

−0.13 × 102 GeV−2 and

Cs = −5.4+0.63
−0.65 × 102 GeV−4. The fitted parameter for the D∗ D̄(∗)

system are 
 = 0.300+0.012
−0.013 GeV, C̃s = 2.86+0.21

−0.22 × 102 GeV−2 and

Cs = −59.9+2.8
−3.1×102 GeV−4. The RMS is the root-mean-square radius

in the CSM, which has been discussed in the Ref. [75]. Its real part is
interpreted as an expectation value, and the imaginary part corresponds
to a measure of the uncertainty in observation. The data of row Adopt
are the results we actually adopt, the q0 herein is from Table 2. The data
of row “Inst” are from the instantaneous approximation q0 = 0. The
data of row “CT” means results without OPE

System Threshold [m, �]pole (MeV) [m, �]exp (MeV) RMS (fm)

[
B B̄∗ + B∗ B̄

]
/
√

2 10604.2
[
10606.9+1.8

−1.5, 15.0+3.4
−3.2

] [
10607.2+2.0

−2.0, 18.4+2.4
−2.4

]
0.70+0.07

−0.01 − 0.15+0.09
−0.10i

B∗ B̄∗ 10649.4
[
10652.2+1.8

−1.6, 14.8+3.4
−3.2

] [
10652.2+1.5

−1.5, 11.5+2.2
−2.2

]
0.70+0.07

−0.02 − 0.15+0.09
−0.11i

[
DD̄∗ + D∗ D̄

]
/
√

2(Adopt) 3875.8
[
3884.3+0.6

−0.6, 26.0+1.4
−1.4

] [
3881.7+2.3

−2.3, 26.6+3.0
−3.4

]
1.21+0.06

−0.05 + 0.12+0.03
−0.03i

[
DD̄∗ + D∗ D̄

]
/
√

2(Inst) 3875.8
[
3884.8+0.6

−0.6, 25.8+1.4
−1.4

] [
3881.7+2.3

−2.3, 26.6+3.0
−3.4

]
1.20+0.06

−0.05 + 0.13+0.03
−0.03i

[
DD̄∗ + D∗ D̄

]
/
√

2(CT) 3875.8
[
3885.6+0.6

−0.6, 26.9+1.4
−1.4

] [
3881.7+2.3

−2.3, 26.6+3.0
−3.4

]
1.21+0.06

−0.05 + 0.15+0.03
−0.03i

D∗ D̄∗ 4017.1
[
4025.8+0.6

−0.6, 24.0+1.3
−1.4

] [
4025.5+3.7

−5.6, 26.0+6.0
−6.0

]
1.20+0.06

−0.05 + 0.13+0.03
−0.03i

Table 4 The poles are all listed with the number I (J P ) = 1/2(1+).
The fitted parameter for the D∗

s D̄
(∗) system are 
 = 0.192+0.012

−0.013 GeV,

C̃s = 6.8+2.8
−2.7 × 102 GeV−2 and Cs = −186.9+50.4

−64.4 × 102 GeV−4.
The RMS is the root-mean-square radius in the CSM, which has been
discussed in the Ref. [75]. Its real part is interpreted as an expectation

value, and the imaginary part corresponds to a measure of the uncer-
tainty in observation. The Res|S(E)|∣∣E=ER

is the residue of the S or T
matrix, which has been discussed in the Ref. [76]. The states labeled
as “1*” and “2*” correspond to the input states. The symbol “-” indi-
cates that the width of the Zcs(4123) state has not been confirmed by
experiment yet

System Threshold [m, �]pole (MeV) [m, �]exp (MeV) RMS (fm) Res|S(E)|∣∣E=ER

[
Ds D̄∗ + D∗

s D̄
]
/
√

2(1*) 3976.1
[
3982.4+2.2

−2.1, 14.1+3.7
−3.6

] [
3982.5+2.8

−3.3, 12.8+6.1
−5.3

]
1.89+0.13

−0.11 + 0.43+0.09
−0.14i 5.3

[
Ds D̄∗ + D∗

s D̄
]
/
√

2(2*)
[
4010.7+6.3

−6.2, 119.6+14.5
−14.7

] [
4003+7.2

−15.2, 131+30.0
−30.0

]
1.78+0.18

−0.14 + 1.31+0.08
−0.07i 10.0

D∗
s D̄

∗(1) 4119.1
[
4125.2+2.2

−2.1, 13.2+3.5
−3.4

] [
4123.5+1.3

−1.3,−
]

1.89+0.13
−0.11 + 0.43+0.09

−0.14i 4.8

D∗
s D̄

∗(2)
[
4152.7+6.1

−6.0, 115.0+14.0
−14.2

] [
4216+49

−38, 233+110
−90

]
1.78+0.18

−0.14 + 1.31+0.08
−0.07i 10.1

laboration [66]. These studies provide interesting insights
into the nature and composition of the Zcs states under the
molecule picture.

However, an issue that remains unresolved is the signif-
icant difference in the widths between the Zcs(3985) and
the Zcs(4000). To address this difference, we propose an
alternative explanation where these two states are consid-
ered as two resonances associated with the same system,
namely (Ds D̄∗ + D∗

s D̄)/
√

2. According to our proposal,
the Zcs(3985) corresponds to the resonance with a narrower

width, while the Zcs(4000) corresponds to the resonance with
a broader width, as illustrated in Fig. 4. This interpretation
differs from the prevailing viewpoints in literature.

In the previous Sect. 4.1, we found that the
[
DD̄∗ + D∗ D̄

]

/
√

2 and D∗ D̄∗ systems, associated with the two Zc states,
exhibit similar outcomes due to the heavy quark spin sym-
metry. Thus, it is feasible to employ the same parameters
for them. Following this scheme, we use the same parame-
ters for both the (Ds D̄∗ + D∗

s D̄)/
√

2 and D∗
s D̄

∗ systems.
By adopting the available experimental data of Zcs(3985)
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Fig. 4 The eigenvalue distribution of the Zcs with the I (J P ) =
1/2(1+). The parameters 
 = 0.192 GeV, C̃s = 6.8 × 102 GeV−2 and
Cs = −186.9 × 102 GeV−4.The orange (green) points (square points)
and lines correspond to the complex rotation angle θ = 35◦ (40◦). The
two diagrams correspond to system: a

[
Ds D̄∗ + D∗

s D̄
]
/
√

2, b D∗
s D̄

∗

and Zcs(4000), we determine the central values and errors of

, C̃s and Cs , and perform calculations for the D∗

s D̄
∗ sys-

tem. The corresponding parameter values, masses, widths
and sizes can be found in Table 4.

Besides, we also give the residue of S or T matrix in the
following form:

Res|S j (E)|∣∣E=ER
= ∣∣μ j kR, j

4π2 〈kR, j |V̂ |φ〉2
∣∣. (20)

Here, the ER and kR, j is the energy and momentum of j-
th channel. One could get the concrete discussion in our
another work [76]. In brief, we could obtain the coupling
between the pole and the j-channel with this residue formula.
For the Ds D̄∗/D∗

s D̄ system, we calculate the residues of the
two poles (corresponding to the Zcs(3985) and Zcs(4000)),

and find that their ratio,
Res|S|

∣∣
Zcs (4000)

Res|S|
∣∣
Zcs (3985)

, is approximately

2. As a result, these two poles, characterized by signifi-
cantly different widths, exhibit comparable couplings with
the Ds D̄∗/D∗

s D̄ system.

In the framework of ChEFT, it is generally expected that
the cutoff region should exceed the pion mass mπ while not
significantly exceeding 0.5 GeV, as the higher-mass mesons
(σ , ρ, ω, etc.) are integrated out. Consequently, the 
 adopted
in this study, 0.3 ∼ 0.5 GeV, is reasonable for the Zc and Zb

cases. However, in the case of Zcs , the OPE and one-kaon-
exchange are both forbidden for the quark flavor in tree level.
By the way, when dealing with the double-charm tetraquark
DsD∗/D∗

s , the one-kaon-exchange is allowed. As a result,
the contact term becomes the only interaction that needs to
be considered. This can be viewed as effectively integrating
out the pion and kaon fields. Therefore, we adopt a smaller
value of 
 ≈ 0.2 GeV for the Zcs cases.

According to the results in Table 4, the newly reported
Zcs(4123) by BESIII collaboration [66] could correspond to
the narrower D∗

s D̄
∗ state, although the experimental width

is yet to be confirmed. Its estimated mass is around 4125.2
MeV and width is approximately 13.2 MeV. Furthermore, the
Zcs(4220) is anticipated to correspond to a broader resonance
with its central values of the mass and width at 4152.7 MeV
and 115.0 MeV. Indeed, the mass and width of Zcs(4220)

both fall within the two-standard-deviation region of the
experimental data. As shown in Fig. 5 and Table 4, the nar-
row (or broader) resonances exhibit remarkably similar wave
functions and sizes.

Furthermore, one might be curious about the underly-
ing mechanism that results in two resonance states with
nearly identical masses but significantly different widths
within the same system. Herein, we can provide a semi-
quantitative analysis. When we consider a separable poten-

tial, V (p′, p) = C × e

(
− p′2


2 − p2


2

)

, we can obtain its analytic
solution by solving the Lippmann-Schwinger Equation. The
simplified resonance solutions satisfy the form below:

− C

2
√

2

[√
π+2π

√−μEe−4μE/
2
erfc

(
2

√−μE




)]
=1.

(21)

Here, 
 is the cutoff parameter, μ is the reduced mass, and
E is the energy of the resonant pole. For simplicity, we take

 = μ = 1 GeV, and C = −2000 GeV−2. This leads
to a series of poles, as shown in Fig.6. In our work, we
employ a Gaussian-type form factor, which may yield similar
behavior. As a result, we may get additional poles with large
width. However, there is also a limitation. When the mass
difference between the pole and threshold is exceeds the typ-
ical order of ChEFT like tens MeV, its results may become
invalid. Therefore, we only take into account the first two
poles.

In the Zc cases, we select a 
 � 0.3 GeV > mπ for the
consideration of OPE contribution. In this reasonable cut off
region, the energy difference of two nearby poles is larger
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Fig. 5 The wave functions φ̃(p) of the Zcs state with the I (J P ) =
1/2(1+). The rotation angle θ = 40◦ and the parameters 
 = 0.192
GeV, C̃s = 6.8 × 102 GeV−2 and Cs = −186.9 × 102 GeV−4. The

four diagrams correspond to: a pole 1 of
[
Ds D̄∗ + D∗

s D̄
]
/
√

2 system,

b pole 2 of
[
Ds D̄∗ + D∗

s D̄
]
/
√

2 system, c pole 1 of D∗
s D̄

∗ system, d
pole 2 of D∗

s D̄
∗ system

Fig. 6 The poles for the
Gaussian type potential with the

 = μ = 1 GeV
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Table 5 The fitted parameters for the B∗ B̄(∗) system are 
 = 0.530
GeV, C̃s = 0.6 × 102 GeV−2, Cs = −5.4 × 102 GeV−4 and
Csd = 0.6 × 102 GeV−4, and for the D∗ D̄(∗) system are 
 = 0.310
GeV, C̃s = 3.0 × 102 GeV−2, Cs = −56.0 × 102 GeV−4 and
Csd = 24.0 × 102 GeV−4, and for the D∗

s D̄
(∗) system are 
 = 0.192

GeV, C̃s = 6.9 × 102 GeV−2, Cs = −187.0 × 102 GeV−4 and
Csd = 0.5 × 102 GeV−4. The “RMS” is the root-mean-square radius

in the CSM, which has been discussed in the Ref. [75]. Its real part is
interpreted as an expectation value, and the imaginary part corresponds
to a measure of the uncertainty in observation. The “Prob.” is defined as
〈ψ̃i |ψi 〉 = eiθ

∫ ∞
0 {ψi (reiθ )}2dr is the amplitude corresponding to the

i-th channel. �i is the partial width ofi-th channel, which has been dis-
cussed in the Ref. [76]. The states labeled as “1*” and “2*” correspond
to the input states

System [m, �]pole (MeV) RMS (fm) Prob. �i

[
B B̄∗ + B∗ B̄

]
/
√

2 [10607.0, 15.1] 0.74 − 0.19i [(96.5-4.5i)%,(3.5+4.5i)%] [14.8,0.3]
[
DD̄∗ + D∗ D̄

]
/
√

2 [3884.2, 26.1] 1.19 + 0.08i [(93.0-3.8i)%,(7.0+3.8i)%] [24.7,1.3]
[
Ds D̄∗ + D∗

s D̄
]
/
√

2(1*) [3983.3, 14.1] 1.90 + 0.43i [100.0%,0.] [14.0,0.]
[
Ds D̄∗ + D∗

s D̄
]
/
√

2(2*) [4012.0, 119.4] 1.79 + 1.31i [100.0%,0.] [119.4,0.]

than that obtained in the Zcs case. For instance, the second
pole in the DD∗ system has the energy 3966.6 − 147.4i .
The difference between its mass and the DD∗ threshold
is 90.7 MeV, which exceeds the typical order of ChEFT.
Consequently, we tend not consider the additional broader
states.

Besides, we make a brief discussion on the dependence
of input parameters herein. As shown in Eq. (21), we
have observed that the energy difference between nearby
poles decreases as the cutoff 
 decreases. By observing
numerical calculation results, we find that both poles would
move approximately towards the origin as the cutoff 


decreases/C̃s decreases/Cs increases. To estimate the sen-
sitivity, one can refer to the fitted parameter errors listed in
Table 4.

4.3 The Zc and Zcs results including D-wave

In our analysis, we will briefly discuss the Zb, Zc and Zcs sys-
tems with the inclusion of the D-wave channel, represented
as

[
B B̄∗ + B∗ B̄

]
/
√

2(3D1),
[
DD̄∗ + D∗ D̄

]
/
√

2(3D1) and[
Ds D̄∗ + D∗

s D̄
]
/
√

2(3D1), respectively. It’s worth noting
that the behavior of the B∗ B̄∗, D∗ D̄∗ and D∗

s D̄
∗ cases

closely resembles that of the
[
B B̄∗ + B∗ B̄

]
/
√

2(3D1),[
DD̄∗ + D∗ D̄

]
/
√

2(3D1) and
[
Ds D̄∗ + D∗

s D̄
]
/
√

2(3D1)

cases. For the sake of simplicity, we will not explore them
further.

As indicated in Table 5, the influence of the D-wave chan-
nel on all measurements within the Zcs system is minimal,
approaching negligible levels. In the case of the Zc and Zb

systems, the D-wave makes a small contribution, while the
S-wave channel continues to dominate the system. When
we compare these results with those presented in Table 3,
it becomes evident that the inclusion of the D-wave does
not alter our conclusions. Hence, it is reasonable to focus
solely on the S-wave for the Z states within our frame-
work.

5 Summary

In this study, we employ the ChEFT to investigate the hidden-
heavy tetraquark states with I G(J PC ) = 1+(1+−) and the
hidden-charm states with a strange quark with I (J P ) =
1/2(1+) in the molecule picture. The couplings between
the S-wave open-heavy channel and other channels, such as
the D-wave channel, the S-wave channel with different con-
stituents, and the hidden-heavy channels, are expected to be
small. Therefore, we focus on the S-wave open-heavy single
channels:

[
DD̄∗ + D∗ D̄

]
/
√

2, D∗ D̄∗,
[
B B̄∗ + B∗ B̄

]
/
√

2,
B∗ B̄∗, (Ds D̄∗ + D∗

s D̄)/
√

2 and D∗
s D̄

∗.
We employ the effective Lagrangians based on heavy

quark symmetry and chiral symmetry, considering both con-
tact and OPE diagrams. To investigate the possible reso-
nances, we adopt the CSM to consistently analyze the bound
states and resonances. In contrast to our previous work
[69,77], we perform the momentum space Schrödinger equa-
tion and discretize it using the Gaussian quadrature approach.

In our investigation of the Zb system, we fit exper-
imental data to extract resonance parameters within the
molecule picture. With 
 = 0.510 GeV, C̃s = 0.48 × 102

GeV−2 and Cs = −5.4 × 102 GeV−4, we obtain the mass
and width values of 10606.9 MeV and 15.0 MeV for the[
B B̄∗ + B∗ B̄

]
/
√

2 resonance, while 10652.2 MeV and 14.8
MeV for the B∗ B̄∗ resonance. The RMS radii for these two
resonances are both approximately 0.70 − 0.15i fm. Simi-
larly, we perform calculations for the Zc system in the S-
wave 1+(1+−) channels:

[
DD̄∗ + D∗ D̄

]
/
√

2 and D∗ D̄∗.
Taking 
 = 0.300 GeV, C̃s = 2.86 × 102 GeV−2 and
Cs = −59.9×102 GeV−4, we obtain the mass and width val-
ues of 3884.3 MeV and 26.0 MeV for the former resonance,
while 4025.8 MeV and 24.0 MeV for the latter resonance.
The RMS radii for both resonances are around 1.20 + 0.13i
fm. For the isovector

[
DD̄∗ + D∗ D̄

]
/
√

2 system, we also
consider the influence of the three-body decay. However,
the numerical results under the instantaneous approximation
with q0 = 0 (as shown in the “Inst” row of Table 3) are very
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close to the results of the “Adopt” row, indicating the mini-
mal changes in the mass, width and size. Thus, we conclude
that the 2-body decay process dominates the width of this
resonance.

We consider the hidden-charm tetraquark states with a
strange quark and propose that the Zcs(3985) and Zcs(4000)

resonances correspond to the same channel (Ds D̄∗ +
D∗
s D̄)/

√
2. Taking the data of Zcs(3985) and Zcs(4000) as

input, we extract the central values and errors of the param-
eters 
, C̃s and Cs . With 
 = 0.192 GeV, C̃s = 6.8 × 102

GeV−2 and Cs = −186.9 × 102 GeV−4, we obtain the
mass and width values of 3982.4 MeV and 14.1 MeV for
the Zcs(3985), while 4010.7 MeV and 119.6 MeV for the
Zcs(4000). The corresponding RMS radii are 1.89 + 0.43i
fm and 1.78 + 1.31i fm, respectively. For the D∗

s D̄
∗ system,

we adopt the same parameters based on the heavy quark spin
symmetry and also find two resonances. The narrower reso-
nance has a mass of 4125.2 MeV and a width of 13.2 MeV,
which nicely matches the observed Zcs(4123) reported by
the BESIII collaboration [66]. Hence, we interpret it as the
Zcs(4123), although the experimental width is yet to be con-
firmed. On the other hand, the broader resonance has a mass
of 4152.7 MeV and a width of 115.0 MeV. We interpret it
as the Zcs(4220) observed by the LHCb collaboration [32],
as its mass and width fall within the two-standard-deviation
region of the experimental data.

We also we provide a brief discussion on the Zb, Zc and
Zcs cases including the D-wave constituents. For the three
systems, the influence of the D-wave channel on all mea-
surements including RMS, constituents and partial width is
minimal. It becomes evident that the inclusion of the D-wave
does not alter our conclusions. Hence, it is reasonable to focus
solely on the S-wave for the Z states within our framework.

In summary, we apply the ChEFT to investigate the Zb,
Zc and Zcs states. Our analysis suggests that the Zb(10610),
Zb(10650), Zc(3900) and Zc(4020) can be interpreted as
the molecular states formed by the S-wave B B̄∗, B∗ B̄∗,
DD̄∗ and D∗ D̄∗ constituents, respectively. Although the
Zcs(3985) and Zcs(4000) states exhibit a significant width
difference, these two resonances may originate from the same
S-wave channel (Ds D̄∗ + D∗

s D̄)/
√

2. We also find two res-
onances in the D∗

s D̄
∗ channel, which can be identified as the

Zcs(4123) and Zcs(4220). Our results provide a prediction
for the width of the Zcs(4123) that awaits experimental con-
firmation. Additionally, we offer a precise mass and width
range for the Zcs(4220), which can guide future experimen-
tal searches for the hidden-charm tetraquarks with a strange
quark.
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