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Abstract We study single-image super-resolution algo-
rithms for photons at collider experiments based on gen-
erative adversarial networks. We treat the energy deposi-
tions of simulated electromagnetic showers of photons and
neutral-pion decays in a toy electromagnetic calorimeter as
2D images and we train super-resolution networks to gen-
erate images with an artificially increased resolution by a
factor of four in each dimension. The generated images are
able to reproduce features of the electromagnetic showers
that are not obvious from the images at nominal resolution.
Using the artificially-enhanced images for the reconstruc-
tion of shower-shape variables and of the position of the
shower center results in significant improvements. We addi-
tionally investigate the utilization of the generated images as
a pre-processing step for deep-learning photon-identification
algorithms and observe improvements in the case of training
samples of small size.

1 Introduction

The interaction of high-energy particles with matter results
in complex signatures in the detectors at particle colliders,
such as the LHC [1]. The reconstruction and identification
of particles from the detector signatures are crucial to carry
out physics analyses. An important particle is the photon,
which appears for example in the diphoton decay of the Higgs
boson at the ATLAS and CMS experiments [2,3], as a probe
of heavy-ion collisions at the ALICE experiment [4] or as a
decay product of rare B-meson decays at the LHCb experi-
ment [5]. The main signature of a high-energy photon is an
electromagnetic shower in the calorimeter.

At hadron colliders, a main background source for pho-
tons are electromagnetic decays of high-energy mesons, most
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prominently, the decay π0 → γ γ , as neutral pions are copi-
ously produced in the fragmentation of quarks and gluons.
The signature of such a high-energy meson decay often pro-
duces a “fake single photon”, because the large Lorentz boost
leads to a small average distance between the photons from
its decay. This results in a signature that is very similar to the
signature of a real single photon. Distinguishing real from
fake single photons is hence challenging and an important
design consideration for electromagnetic calorimeters. Key
to distinguishing these two signatures is a high spatial reso-
lution that is achieved by segmenting the calorimeter along
pseudorapidity1 η and azimuthal angle φ.

In this work, we study how single-image super resolu-
tion (SR) [6] based on deep neural networks [7] can help in
the reconstruction of photon and π0 signatures. Such deep-
learning algorithms were pioneered [8] in the field of image
processing and further developed [9] using the concept of
generative adversarial networks (GAN) [10]. They aim at
learning an SR version of a low-resolution (LR) image based
on its high-resolution (HR) counterpart, where the number of
pixels is identical for the SR and HR images. We use a neural
network inspired by the Enhanced Super-Resolution Gener-
ative Adversarial Networks (ESRGAN) [11]. While the gen-
erator of the GAN produces artificial SR images from input
LR images, the discriminator of the GAN aims to distinguish
SR and HR images. By combining the generator and discrim-
inator loss into a common loss term, the generated SR images
are expected to become more and more realistic during the
GAN training.

We treat the calorimeter signatures of photons and neutral
pions as the LR images, i.e. the LR images correspond to the
granularity of an actual calorimeter. We use simulations of
LR images and their corresponding HR counterparts, which

1 The pseudorapidity is defined as η = − ln (tan (θ/2)), where θ is the
polar angle.
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have a finer calorimeter segmentation, to train the ESRGAN.
Previous applications of super resolution in the field of parti-
cle physics focussed on energy and directional reconstruction
of charged and neutral pions [12], on the reconstruction of
jet substructure [13], and recently, on refining fast calorime-
ter simulations [14]. We focus on the particularly relevant
use case of photon identification and reconstruction. We use
a toy calorimeter inspired by the electromagnetic calorime-
ter of the CMS detector [15] with a realistic simulation of
the particle interaction with matter using Geant4 [16]. We
study whether the generated SR images provide advantages
compared to only using their LR counterparts for benchmark
applications in photon–neutral-pion separation and in the
directional reconstruction of the photons. The latter applica-
tion is especially important for the reconstruction of invari-
ant masses from photon signatures, such as in H → γ γ .
We comment on useful strategies for a stable GAN training
and on how the additional physics information from the HR
images may help in stabilizing photon classifier trainings in
case of limited number of training samples.

2 Simulated samples

We simulate a toy calorimeter that is inspired by the elec-
tromagnetic barrel calorimeter of the CMS detector. We
use the framework of the CaloGAN paper [17] based on
Geant4 10.6.2 to simulate PbWO4 scintillating crystals
with a length of 230 mm and a front face of 22×22 mm2. The
front of the calorimeter is placed at a distance of 1.29 m from
a Geant4 particle gun. The particle gun produces mono-
energetic photons and neutral pions with their direction per-
pendicular to the calorimeter front face. In order to avoid that
all particles are directed at the exact center of the calorime-
ter, the position of the source is smeared in the plane paral-
lel to the calorimeter front using a Gaussian distribution of
width 44 mm, which corresponds to the size of two crystals.
Two different energies of 20 GeV and 50 GeV are simulated,
which are chosen to be at the lower end of reconstructable
photon energies at the LHC and of the order of typical photon
energies from Higgs-boson decays. The π0 mesons decay
into a pair of photons with an angular separation between
them as shown in Fig. 1. In both setups, the majority of pion
decays produces photons closer to each other than 1 deg,
which results in a separation at the calorimeter front of less
than one crystal width. Due to the larger Lorentz boost, the
decays at an energy of 50 GeV are more collimated on aver-
age than in the 20 GeV case. We remove simulated pions
where the angle between the photons exceeds 2 deg, because
their decays often lead to two well-separated photons even in
the LR case. This angular selection retains around 94% and
99% of the simulated pions with an energy of 20 GeV and
50 GeV, respectively. We did not simulate the calorimeter

Fig. 1 Normalized distributions of the angle between the photons of
the π0 → γ γ decays at 20 GeV and 50 GeV in the lab frame. The
overflow is not included. For both energies, the majority of pions decay
into photons that are closer to each other than 1 deg, which corresponds
to a separation at the calorimeter front of less than one crystal width in
the LR case

noise, a magnetic field or material upstream of the calorime-
ter.

The LR images consist of a grid of 24 × 24 crystals. The
HR images have a segmentation that is 4×4 finer, i.e. 96×96
smaller crystals. In order to maintain a one-to-one correspon-
dence between LR and HR images, only HR images are sim-
ulated. The LR images are then derived by down-sampling
the HR images, wherein the energy sum of each 4 × 4 HR
patch is assigned as the corresponding LR crystal’s energy.

Before being passed to the networks, the calorimeter
images are pre-processed. The two pre-processing steps are
visualized in Fig. 2 for a HR pion image and its correspond-
ing LR counterpart. In a first step (going from the first to the
second row in the figure), the size of the images is reduced in
order to decrease the computational complexity of the super-
resolution networks. The width of 2.2 cm of the LR calorime-
ter crystals corresponds to approximately one Molière radius
in PbWO4, causing photons to deposit most of their energy
within a small number of crystals. Therefore, we select the
6×6 sub-image that contains the largest sum of energy within
our LR simulation of 24×24 crystals. For the HR images, the
corresponding sub-image is selected. This procedure keeps
on average approximately 99% of the total simulated energy.
In a second step (going from the second to the third row in the
figure), each energy deposition is crystal-wise divided by the
sum of the energy falling into the selected part of the image,
and a power-scaling of E p is applied to the normalized crystal
energies to reduce the sparsity of the images. As in Ref. [13],
choosing p = 0.3 leads to a notable improvement in our net-
work performance, while other values in the range [0.1, 1]
were tested as well in the hyperparameter optimization.
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Fig. 2 Visualization of the pre-processing of the calorimeter images,
shown for a 20 GeV pion example. In the first row, the simulated image
is shown in HR (left) and in LR (right) with a logarithmic colorbar.

The selected sub-images are marked in red and displayed in the second
row with a linear colorbar. The third row shows the normalized and
power-scaled images with a linear colorbar
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Fig. 3 Structure of the RRDB blocks used in this study, consisting of three dense blocks, which each contain five convolutional layers with Swish
activation. The residual connections are scaled by a free parameter β

3 Super resolution network

A successful application of GANs to the SR task was
achieved by the SRGAN [9]. It uses a deep convolutional
neural network based on residual learning [18] as genera-
tor and showed the capability of restoring realistic textures
with an upsampling factor of four from downsampled LR
images with the help of a new perceptual loss term [19].
Our network architecture builds upon the architecture of the
ESRGAN [11]. The ESRGAN is an enhanced version of
the SRGAN, which uses a relativistic loss in the discrimina-
tor, a more effective perceptual loss and a deeper generator
network constructed with residual-in-residual dense blocks
(RRDBs) as its fundamental component. The RRDBs, shown
in Fig. 3, consist of three dense blocks [20] connected by
residual connections. Additionally, a residual connection is
used to link the input of the RRDB to its output. The dense
blocks comprise five convolutional layers, where each layer
incorporates the outputs of all preceding layers within the
block as its inputs.

The architecture of our generator network is illustrated in
Fig. 4. The LR input images are first processed by a convolu-
tional layer, after which they are passed through five RRDBs
and another convolutional layer to extract high-level features.
The output of this layer is then combined with the output of
the first layer via a skip connection [21]. In contrast to the
original design, we use Swish [22] instead of Leaky ReLU as
activation functions inside the RRDBs, as this improved the
training stability. The upsampling of the LR images is done
with two upsampling blocks, each containing an upsampling
layer that doubles the number of pixels along the x- and
y-axes using nearest-neighbor interpolation, followed by a
convolutional layer with Swish activation. As in the original
ESRGAN architecture, two additional convolutional layers
are employed after the upsampling blocks, the first is acti-
vated using Swish and the latter using ReLU, which avoids
the generation of negative energies.

Each convolutional layer in the generator consists of 32
filters with 3 × 3 kernels. The striding is set to one and zero-
padding is used to preserve the resolution of the images when

applying convolutions. In total, the generator network has
around 2.1 million trainable parameters.

We train the generator to perform realistic upsampling
using the Wasserstein-GAN (WGAN) approach [23], which
aims to minimize the Wasserstein-1 distance between the
probability distributions P of the real HR images and the
generated SR images. We can write the Wasserstein distance
between these distributions as

W (PHR,PSR) = sup
|| f ||L≤1

(
Ex ∈PHR [ f (x)] − Ex̃ ∈PSR

[
f (x̃)

])
,

(1)

with || f ||L ≤ 1 denoting the set of Lipschitz continuous
functions applied to our calorimeter images and E denoting
the expectation value. The function f that maximizes the
expression in Eq. (1) is approximated by training the critic
network while at the same time forcing it to fulfill the Lip-
schitz condition. Several techniques exist to constrain the
critic to be Lipschitz continuous, and we use the gradient
penalty (GP) proposed in Ref. [24]. The GP introduces an
additional term in the critic loss that penalizes the network to
obtain gradient norms, with respect to its inputs, that deviate
from one. In this setup, the loss function for a critic network
C can be written as

LC = Ex̃ ∈PSR

[
C(x̃)

] − Ex ∈PHR [C(x)] + λGP

×Ex̂ ∈Px̂

[ (||∇x̂C(x̂)||2 − 1
)2

]
. (2)

The last term describes the gradient penalty with strength
parameter λGP and is calculated along straight lines x̂ that
are randomly sampled between given pairs of HR images x
and SR images x̃ as x̂ = x + α(x̃ − x), where α is randomly
sampled from a uniform distribution between 0 and 1.

The structure of our critic network is shown in Fig. 5
and is similar to the discriminators used in the original
SRGAN and ESRGAN. The network receives either HR or
SR images as input and outputs a single number discriminat-
ing between these image classes. It consists of six convolu-
tional layers and two dense layers. The convolutional layers
are placed in an alternating structure with strides of s = 1 and
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Fig. 4 Schematic representation of the generator architecture. The
low-resolution input images are fed into a convolutional layer. The
extracted features are passed into a block of five RRDBs followed by
a convolutional layer. A residual connection adds the output of the first

convolutional layer. The upsampling takes place in the two upsampling
layers, each of which doubles the number of pixels along the x- and y-
axis of the images, which is followed by two additional convolutional
layers

Fig. 5 Illustration of the critic architecture, consisting of six convolu-
tional layers, each followed by Layer Normalization and Swish activa-
tion function, and two dense layers. The number of filters nf and the

striding parameters s of the convolutional layers are given, as well as
the number of nodes of the dense layers

s = 2. Each layer with stride convolutions (s = 2) halves the
dimension in the x- and y-direction of its input. The num-
ber of filters is doubled in the third and fourth convolutional
layer (64 filters) and again doubled in the fifth and sixth layer
(128 filters). All convolutional layers use 3 × 3 kernels and
zero-padding. After each convolutional layer, we use Layer
Normalization [25], as recommended in Ref. [24], instead
of the originally proposed Batch Normalization [26], and we
use the Swish activation function. The output of the last con-
volutional layer is flattened and passed to a dense layer with
64 nodes and Swish activation function, followed by the last
layer with a single node.

In addition to the adversarial loss, which uses the critic’s
output to improve the generated images, we use the concept
of perceptual loss [19] to train the generator. In contrast to
a crystal-wise comparison of energy depositions between a
SR calorimeter image and the reference HR image, the fea-
ture representations extracted from a hidden layer of a pre-
trained convolutional neural network (CNN) are compared
between image pairs. The ESRGAN uses the VGG19 net-
work [27] trained on the ImageNet [28] dataset and calculates
the Euclidean distance between the features extracted from
the last convolutional layer. Since our calorimeter images
strongly differ from the ImageNet examples, we use a CNN
trained to separate single-photon from neutral-pion-decay
calorimeter images for the perceptual loss. This network is
discussed in more detail in Sect. 5. Similar to the ESRGAN,
we use the features extracted from the last (third) convolu-

tional layer, corresponding to a high-level representation of
the input images. The generator is hence trained to retain
features of the images that are important for the classifica-
tion as photon or pion. The full generator loss is the sum of
the adversarial loss and the perceptual loss, weighted by the
parameters λadv. and λper.,

LG = λadv.
(
Ex̃ ∈PSR

[
C(x̃)

]) + λper.

( ∑

(x, x̃)

(
(x) − 
(x̃))2
)

,

(3)

where 
 denotes the feature representations of SR images x̃
and HR images x .

4 Network training

The super-resolving GANs are trained using 100,000 photon
and 100,000 neutral pion images. We adapt several recom-
mendations from Ref. [24] for the training of the WGAN:
we use the Adam optimizer [29] with learning rate 10−4

and decay parameters β1 = 0 and β2 = 0.9 and train the
critic for five mini-batches before training the generator for
one mini-batch. We use a batch-size of 32. In the 20 GeV
setup, the perceptual loss is scaled by λper. = 3 · 10−2, while
λper. = 3·10−1 is used for the 50 GeV network. The adversar-
ial term of the generator loss is scaled by λadv. = 10−5. The
critic networks are trained with a gradient-penalty strength of
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λGP = 1. The networks are implemented using TensorFlow
2.10.0 [30] and trained for approximately 10 days on an
NVIDIA A40 GPU.

The hyperparameters are optimized in a grid-search as
follows: in a first step, the capacities of the networks are
varied, in particular the number of RRDBs in the generator.
At the same time, different values for the scaling parame-
ters of the generator and critic loss terms, λadv. and λGP are
studied. These parameters are fixed to the above mentioned
values taking in particular the training stability and conver-
gence together with the visual quality of the SR images into
account. In order to decrease the complexity of the hyper-
parameter optimization, the perceptual loss is not included
in these first studies, i.e. λper. = 0 is used. The performance
depends only marginally on the generator capacity in the
tested range of 1–10 RRDBs, hence an intermediate value
of 5 is chosen. The smaller dimension of our HR and SR
images requires a reduction of the number of convolutional
layers in the critic compared to the architecture used in the
original ESRGAN from eight to six, since the layers with
strided convolutions (s = 2) each halve the number of pix-
els along both image axes. In addition, the number of nodes
in the first dense layer in the critic is reduced from 1024 to
64, which significantly reduces the training time while no
differences in the performance are found. With this setup,
the GAN trainings run stably for both particle energies and
produce realistic SR images where no obvious artefacts are
observed.

In a second step, the perceptual loss is included in the
training with the particular goal to penalize the generator for
confusing the two particle types. To evaluate and optimize its
impact, we monitor the capability of the CNNs pre-trained
on the HR images to distinguish between the SR photon and
pion examples and analyze the impact on shapes of the elec-
tromagnetic shower and the differences between photons and
pions. We determine the distribution of the shower width in
the SR images and compare it to the distribution obtained
from the HR images. In LHC experiments, similar variables
describing the shower shape are used to discriminate between
photons and other signatures from hadronic activity [31,32].
We define the width of a shower image with crystal indices
i as

W =
∑

i �Ri Ei∑
i Ei

, (4)

where Ei denotes the energy measured in a crystal and �Ri

is its angular distance to the barycenter of the shower in units
of rad. We obtain the distributions separately for photons and
pions and monitor the Kolmogorov–Smirnov (KS) statistic
between each HR and SR width distribution during the train-
ing. The values obtained for the KS statistics are shown in
Fig. 6. The epoch with the lowest mean of the KS statistic

for pions and photons is finally selected. Since the perceptual
loss uses individual CNNs in the 20 GeV and 50 GeV setups,
different values of the corresponding relative weight (λper.)
are found to yield the best performance. We observe that
including this additional loss term with the optimized weight
improves the pion rejection2 obtained from the pre-trained
CNNs applied to the SR images compared to trainings with-
out perceptual loss by up to a factor of five, depending on the
photon identification efficiency.

In Fig. 7, the evolution of the different parts of the loss
functions during training as well as several metrics are shown
for the example of the 50 GeV network. At the start of the
training, the critic network is able to discriminate between
the original HR and the generated SR images with an accu-
racy of 100%. It can be seen that during the training, the critic
accuracy approaches a value slightly above 50%, while the
critic loss – which approximates the Wasserstein distance –
tends towards zero. In addition, the evolution of pion rejec-
tions for fixed values of the photon efficiency is shown, which
is evaluated on SR images with the CNN that was pre-trained
on HR images. The pion rejections increase as the perceptual
loss decreases.

The training progress is also visualized in Fig. 8. In the
initial stages of the training, distinct artefacts are evident
in the SR images. By averaging over all images, biases in
the spatial distribution of the predicted energy depositions
become visible, which largely disappear after around 100
training epochs. Similarly, the network learns to generate
photons and pions with shower widths almost matching the
HR distributions within these initial 100 epochs. However,
we still observe improvements in the generated widths and
in other metrics like the critic accuracy or pion rejections up
to around 5000 training epochs.

5 Results

After training the SR networks, we study the properties of the
upsampled images and discuss possible use cases at hadron-
collider experiments. Example predictions of the generator
network are shown in Fig. 9 for the 20 GeV network and
in Fig. 10 for the 50 GeV network, respectively. For each
energy, two randomly picked examples for each particle type
are included, comparing the LR image, which was passed to
the SR network, to the corresponding HR image and the gen-
erated SR version. In general, we observe that the obtained
SR images have a high perceptual similarity with the HR
simulation.

Typically, the main visual properties of the HR images
are also found in the generated SR versions. In particular, we

2 The rejection is defined as the inverse of the efficiency, i.e.
1/(false positive rate).
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Fig. 6 Kolmogorov–Smirnov statistic calculated between the HR and
SR shower width distributions as a function of the training epoch, sepa-
rately for photons and pions. The 20 GeV setup is shown on the left, the
50 GeV setup is shown on the right. The stronger lines are obtained by

smoothing the original values shown with the lighter colors. We select
the epoch where the mean of the photon and pion statistics (without
smoothing) is at its minimum, indicated by the black dashed line

Fig. 7 Different parts of the loss functions and metrics during the train-
ing of the 50 GeV network, where “train.” (“val.”) refers to loss/metrics
evaluated on the training (validation) sample. Left: losses of the critic
network and its accuracy in discriminating between HR and SR images.

Right: perceptual loss used for the generator training and the pion rejec-
tion at several fixed photon efficiencies obtained with the pre-trained
CNN

find clear single peaks in the SR photon images and typically
two distinct peaks in the pion SR images. Furthermore, the
position and orientation of these peaks often matches the one
of the simulated HR images well, although this information
is often difficult to extract from the LR images by eye.

The main difference between the 20 GeV and 50 GeV
examples is the angle between the photons from the pion
decays. Comparing the pion examples in Figs. 9 and 10, the
20 GeV pions appear as a single merged shower in the LR
calorimeter, while they are well resolved as two photons in the
HR calorimeter. However, asymmetries in the LR calorime-

ter pion images allow the SR network to generate separate
peaks in SR images that often coincide with the peaks in
their HR counterparts. The decay products of the 50 GeV
pions typically appear as two overlapping showers even in
the HR calorimeter. Also in the case of these merged show-
ers, the SR network often reproduces the main features of the
HR images.

As an example of a “shower-shape variable”, which are
often used as features in photon identification algorithms at
LHC experiments, we show the shower width in Fig. 11, as
defined in Eq. (4). For the 20 GeV particles, the LR calorime-
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Fig. 8 Evolution of the image quality during the training of the 50 GeV
network. The top row shows the average across all photon and pion
images in the validation sample. From left to right, the average SR
image after one epoch, after 100 epochs, at the selected best epoch, and

the simulated HR average are displayed. The second row from the top
presents the difference between these SR images and the HR image.
In the third and bottom row, the corresponding SR shower widths are
compared to the HR shower widths for photons and pions, respectively

ter can resolve significant differences between photon and
pion shower widths, however, with a binning as in Fig. 11,
the fraction of overlapping area between the photon and pion
width histograms is around 52%. Comparing to the corre-
sponding HR distributions, it is clearly visible that the higher
spatial resolution allows for a better measurement of this
quantity. Hence, shower-shape variables have a much better
power to discriminate between photons and pions with the
HR calorimeter. The fraction of overlapping area reduces in
the HR histograms to approximately 0.53%. Although we
train our SR networks on mixed datasets containing photon
and pion examples, the shower width distribution obtained
from the SR photons and pions closely follow the HR dis-
tributions. Here, the overlapping area is around 0.90% and
thus heavily reduced compared to the LR case. At 50 GeV,

the LR width distributions for photons and pions become
more similar and the overlapping area increases to 85%. Here,
the typical distance between the two photons from the pion
decays is much smaller than one crystal width. Also in the HR
calorimeter, the width distributions appear closer together,
but this variable still provides a good separation with an
overlap of around 19%. The SR distributions match the HR
widths less precisely than in the 20 GeV case, because the
discrimination of the classes is more difficult. However, the
overlapping area of around 29% is still much lower than in the
LR case. Thus for both energies, the separation between pho-
tons and pions that can be achieved by such a shower shape
variable is significantly improved by using the SR image.

In addition to the identification of photon candidates, the
measurement of the photon position is a crucial step in the
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Fig. 9 Example SR images (right column) with their corresponding LR (left) and HR (middle) versions for the 20 GeV network. The first two
rows show photon examples, the bottom two rows show pion examples
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Fig. 10 Example SR images (right column) with their corresponding LR (left) and HR (middle) versions for the 50 GeV network. The first two
rows show photon examples, the bottom two rows show pion examples
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Fig. 11 Normalized distribution of the shower widths for the 20 GeV
particles (left) and for the 50 GeV particles (right). Pion shower widths
are shown with the dashed lines, while the solid lines show the photon

distributions. In addition, the ratio of the SR and the HR distribution is
shown. Arrows indicate that the value is out of the chosen y-axis range
of the ratio plot. The error bars indicate the statistical uncertainties

reconstruction chain. Often, the barycenter position of the
cluster of energy depositions is determined and taken as the
photon positions’ estimate. The precision in the localization
of the barycenter is limited by the granularity of the calorime-
ter and is important, for example, for the resolution of invari-
ant masses of diphoton decays, such as H → γ γ . To study
the effect of the SR technique on the localization of show-
ers, we compare the distances of the barycenter positions of
either the SR or LR images and the barycenters of the HR
images in Fig. 12. We observe that the localization of the
photons and pions is significantly improved in SR compared
to LR. From the HR simulation, the generator learns real-
istic interpolations between the crystals and this leads to an
improved determination of the position. The actual impact of
an improved localization of the photons on the invariant mass
resolution of diphoton decays in an experiment depends on
further quantities, which we cannot evaluate in our simplified
setup, such as the energy resolution of the individual photons
and the resolution in the determination of the position of the
primary vertex [33,34].

Since we observe that differences between the photon
and pion images are more prominent in SR than in LR, we
study the impact of using SR as a pre-processing step before
training classifiers to separate real single photons from fakes
induced by neutral-pion decays. We train CNNs on a dataset
of 100,000 examples, half photons and half pions, which are
independent from the samples used for the GAN training.

The CNNs have a comparably simple architecture, begin-
ning with three convolutional layers consisting of 32 filters
with a kernel size of 3×3. In these layers, a stride of one and

zero-padding are used to conserve the lateral dimensions of
the image. For the HR and SR case, we place a max-pooling
layer after each of these layers, which halves the number of
pixels in the x- and y-direction. In the LR case, we use only
one max-pooling layer after the last convolutional layer and
leave out the ones after the first and the second convolutional
layer, while the remaining structure is the same as in the HR
and SR CNNs. The output of the last layer is flattened and fed
to a dense layer with 10 nodes and ReLU activation, followed
by a dense layer with a single node activated by the sigmoid
function. The number of trainable parameters is identical for
the CNNs used for the HR or SR images and the LR images.
We train the CNNs using the Adam optimizer with an initial
learning rate of 10−3 and with the binary cross-entropy as
loss function. The trainings are stabilized using L2 regular-
ization with strength of O(10−4), where the exact values are
chosen in each training to achieve the best network perfor-
mance. The CNNs trained on the HR images are those that
are also used as “pre-trained CNNs” for the perceptual loss
term in the GAN training.

As expected from the opening angle distributions of the
photon from the pion decays (Fig. 1), large differences are
found between the 20 GeV and the 50 GeV setups for the
separation of photons from pions. CNNs trained on 20 GeV
images have tiny failure rates in the classification task. For a
given photon efficiency, the pion rejections factors achieved
by the 20 GeV CNNs are two orders of magnitude higher
than in the 50 GeV case. Comparing the CNNs trained on
SR images with the ones trained on LR images, we observe
that differences arise depending on the number of samples
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Fig. 12 Normalized
distribution of the distance of
the barycenter positions of the
SR and LR showers from the
HR barycenter in units of crystal
widths, for the 20 GeV (left) and
50 GeV (right) cases

available for the CNN training. This is illustrated in Fig. 13,
which shows the discrimination achieved by CNNs trained
on either the full set of 100,000 samples or reduced sets of
10,000 and 1000 samples. The evaluation is done on indepen-
dent test datasets, which were not used for the GAN or CNN
trainings.3 When training the CNN on small datasets, we
observe notable improvements when SR is used to enhance
the training data. For both energies, an improvement by a
factor of two or more is found in the achieved pion rejections
for the case of 1000 training samples, over a wide range of
photon efficiencies. In the setup with 10,000 training sam-
ples, an improvement of around 40% remains in the 50 GeV
case, while for the 20 GeV images, the SR CNNs only out-
perform the LR ones for high photon efficiencies (> 95%).
When training on 100,000 samples, the performance of the
SR and LR CNNs is similar for both energies.

In an actual experiment, using SR as a pre-processing step
for training a photon-identification classifier can indeed be
useful. While large amounts of real single-photon signatures
can be easily found in a full simulation (for example from
H → γ γ decays), this is typically not the case for fake
single-photon candidates. Only a tiny fraction of simulated
jets leads to signatures which are photon-like, characterized
by sharp energy depositions in the ECAL, low hadronic activ-
ity close-by and no matched tracks (or a tracker signature
compatible with a photon conversion). Hence, the fraction
of simulated jets passing typical photon pre-selection crite-
ria based on shower-shape variables as well as requirements
on the photon isolation, i.e., the activity around the photon
candidate, is typically very small. Therefore, the fake single-
photon datasets that are available for the classifier trainings
are often small. However, particle-gun simulations of pho-
tons and neutral pions, such as those that we used for these
studies, can be easily produced in large amounts also with a
realistic detector simulation. If SR networks that are trained
on such particle-gun simulations are found to be universal in

3 We deploy 50,000 samples in the 50 GeV setup, equally photons and
pions, but increase the dataset to 1,000,000 pions and 100,000 photons
in the 20 GeV setup, because otherwise the statistical uncertainty in the
pion rejections is large due to the high rejection values.

the sense that they capture the main properties of the elec-
tromagnetic showers, they could be used as a pre-processing
step for the classifier trainings based on real and fake single
photons in the experiment. We hence propose further studies
in this direction.

6 Conclusions

We used simulated showers of 20 and 50 GeV single pho-
tons and neutral-pion decays to two photons in a toy PbWO4

calorimeter to train super-resolution networks based on the
ESRGAN architecture. We treated the energy depositions
in the calorimeter crystals as two-dimensional images and
created low-resolution images, corresponding to the nomi-
nal resolution, and high-resolution counterparts, which cor-
respond to an artificially increased resolution by a factor
of four in both dimensions. We made modifications to the
original ESRGAN proposal based on training properties of
Wasserstein Generative Adversarial Networks and based on
the physics properties of the images. In particular, we found
that a physics-inspired perceptual-loss term improves the
training, which we based on the features that convolutional
neural networks extracted from the high-resolution images.

We found that the super-resolution networks are able to
reproduce distinct features of the high-resolution images,
which were not apparent in the low-resolution images by
eye, such as the presence of a second energy maximum for
the pion decays. We also found that the networks are able to
upsample low-resolution images of photons and pions gener-
ally in a convincing way, although the networks are trained on
photons and pions together and the label of each image is not
explicitly passed to the networks. We then studied possible
applications of the super-resolution images at collider exper-
iments and we found that the reconstruction of the shower
width (as an example of a shower-shape variable) and of the
position of the shower center are much improved compared
to the reconstruction from the low-resolution images. We also
studied whether the super-resolution images could be used as
a pre-processing step for training photon-identification clas-
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Fig. 13 Classification performance for CNNs trained on either LR or
SR images for trainings using different numbers of samples (1k, 10k,
100k). The pion rejection is shown as a function of the photon efficiency,

for the 20 GeV (left) and the 50 GeV simulation (right). In addition, the
ratio of the SR and the LR pion rejections is shown. The error bands
represent the statistical uncertainty in the pion rejections

sifiers at collider experiments. When only a low number of
samples was available for the classifier training, the train-
ing on the super-resolution images outperformed the train-
ing on the low-resolution counterparts. We conclude that the
additional physics information that is included in the high-
resolution images, and hence also in the generated super-
resolution images, helps to extract discriminatory features
for the classification.

In general, we conclude that the application of super reso-
lution based on the proposed modified ESRGAN architecture
is promising for the analysis of photon signatures at collider
experiments. While the photons’ calorimeter signatures are
used for several different reconstruction and identification
goals, for which typically separate algorithms are trained, the
super-resolution is intrinsically multi-purpose and promises
to improve several tasks at once. As one example, we stress
the challenge in simulating a sufficient number of fake single-
photon candidates from jets at hadron-collider experiments,
and the benefits that a pre-processing with a particle-gun-
based super-resolution network could bring. Future studies
on super-resolution networks for collider experiments should
expand the energy range, use the realistic simulations that are
available at the LHC experiments, and study the performance
of particle-gun-based super resolution on full collider events.
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