
Eur. Phys. J. C (2023) 83:1011
https://doi.org/10.1140/epjc/s10052-023-12176-5

Regular Article - Experimental Physics

Extraction of the strong coupling with HERA and EIC inclusive
data

Salim Cerci1,a, Zuhal Seyma Demiroglu2,3, Abhay Deshpande2,3,4, Paul R. Newman5, Barak Schmookler6,
Deniz Sunar Cerci1, Katarzyna Wichmann7

1 Department of Physics, Faculty of Arts and Sciences, Adiyaman University, Adiyaman, Turkey
2 Center for Frontiers in Nuclear Science, Stony Brook University, Stony Brook, NY 11764, USA
3 Stony Brook University, Stony Brook, NY 11794-3800, USA
4 Brookhaven National Laboratory, Upton, NY 11973-5000, USA
5 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
6 Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
7 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany

Received: 16 July 2023 / Accepted: 21 October 2023 / Published online: 7 November 2023
© The Author(s) 2023

Abstract Sensitivity to the strong coupling αS(M2
Z ) is

investigated using existing Deep Inelastic Scattering data
from HERA in combination with projected future measure-
ments from the Electron Ion Collider (EIC) in a next-to-next-
to-leading order QCD analysis. A potentially world-leading
level of precision is achievable when combining simulated
inclusive neutral current EIC data with inclusive charged and
neutral current measurements from HERA, with or without
the addition of HERA inclusive jet and dijet data. The result
can be obtained with substantially less than one year of pro-
jected EIC data at the lower end of the EIC centre-of-mass
energy range. Some questions remain over the magnitude of
uncertainties due to missing higher orders in the theoretical
framework.

1 Introduction

Of the coupling strengths of the fundamental forces, the
strong coupling αs is by far the least well constrained. At the
same time, it is an essential ingredient of Standard Model
cross section calculations, as well as constraints on new
physics and grand unification scenarios [1,2]. It has previ-
ously been measured in a wide range of processes [3,4]. In
Deep Inelastic Scattering (DIS), recent studies from HERA
have shown limited sensitivity when using only inclusive data
[5], but much more competitive precision when addition-
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ally including jet production cross sections [5–7]. In recent
years, the advances in QCD theory from next-to-leading
order (NLO) to next-to-next-to-leading order (NNLO) have
resulted in a substantial reduction in the uncertainties on αs

extractions due to missing higher order corrections, usually
expressed in terms of a QCD scale uncertainty, though they
remain by far the largest single source of uncertainty in the
best HERA extractions.

The Electron Ion Collider (EIC) [8], currently under
preparation at Brookhaven National Laboratory in partner-
ship with the Thomas Jefferson National Accelerator Facil-
ity is expected to begin taking data around 2030. The EIC
will collide highly polarised electrons with highly polarised
protons and light/heavy nuclei. In ep mode, the expected
luminosity is of order 1033 − 1034 cm−2 s−1 and the centre-
of-mass energy

√
s will range from 29 GeV to 141 GeV. As

part of the extensive program of EIC physics [9], inclusive
DIS cross sections will be measured to high precision in a
phase space region that will be complementary to HERA, in
particular improving the sensitivity to the large Bjorken-x
kinematic region. In this work, the expected experimental
uncertainty on the strong coupling at the scale of the Z -
pole mass αs(M2

Z ) is estimated when adding simulated EIC
inclusive data to analyses very similar to those performed on
HERA data. An earlier study of the impact of inclusive EIC
data on αs precision can be found in [9].
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2 Analysis method

2.1 Data samples

The HERA data used in this analysis are the final combined
H1 and ZEUS inclusive DIS neutral current (NC) and charged
current (CC) cross sections [5] and, where appropriate, the
H1 and ZEUS inclusive and dijet measurements used in a
recent study of parton distribution function (PDF) sensitivity
at NNLO, as summarised in Table 1 of [6]. The HERA cross
sections correspond to unpolarised beam configurations at
proton beam energies of 920, 820, 575 and 460 GeV and an
electron beam energy of 27.5 GeV. The data correspond to
an integrated luminosity of about 1 fb−1 and span six orders
of magnitude in the modules of the four-momentum-transfer
squared, Q2, and in Bjorken x .

The detailed experimental apparatus configurations for the
EIC are currently under intense development. However, the
broad requirements are well established, as documented for
example in [9]. In this paper, the simulated EIC data are taken
from the studies performed in the framework for ATHENA
detector proposal [10]. The ATHENA configuration has since
been combined with ECCE [11] in the framework of a new
and fast-evolving ePIC design. Whilst the details of the appa-
ratus are different, the overall kinematic range and achievable
precision are expected to be very similar.

As summarised in Table 1, neutral current EIC simulated
measurements (‘pseudodata’) are produced with integrated
luminosities corresponding to expectations for one year of
data taking with each of the five different beam configu-
rations expected at the EIC. Charged current pseudodata
are also available at the highest

√
s. The neutral current

pseudodata are produced in a grid of five logarithmically-
spaced x and Q2 values per decade over the range1 0.001 <

y < 0.95, which is well-justified by the expected resolu-
tions. The central values are taken from predictions using
HERAPDF2.0NNLO [5],2 randomly smeared based on
Gaussian distributions with standard deviations given by the
projected uncertainties as estimated by the ATHENA collab-
oration and as previously used to study collinear PDF sensi-
tivities in [10,12]. The systematic precision is based on expe-
rience from HERA and further considerations in [9] and is
rather conservative in the context of the more modern detec-
tor technologies and larger data sets at the EIC. Most data
points have a point-to-point uncorrelated systematic uncer-
tainty of 1.9%, extending to 2.75% at the lowest y values.
An additional normalisation uncertainty of 3.4% is ascribed,
which is taken to be fully correlated between data at each

√
s,

and fully uncorrelated between data sets with different
√
s.

1 Here, y is the usual inelasticity variable, y = Q2/(sx).
2 The variant with αS(M2

Z ) set to 0.116 is taken, most-closely matching
the recent HERA NNLO estimation of 0.1156 [6].

Table 1 Beam energies, centre-of-mass energies and integrated lumi-
nosities of the different configurations considered for the EIC

e-beam
energy
(GeV)

p-beam energy
(GeV)

√
s (GeV) Integrated lumi

(fb−1)

18 275 141 15.4

10 275 105 100

10 100 63 79.0

5 100 45 61.0

5 41 29 4.4

For the purposes of the QCD fits (Sect. 3), the point-to-point
systematic uncertainties are added in quadrature with the sta-
tistical uncertainties and the normalisation uncertainties are
treated as nuisance parameters, as in [5].

The kinematic plane of the inclusive data used in this anal-
ysis is shown in Fig. 1. The EIC pseudodata overlap in their
coverage with the HERA data and extend the kinematic reach
in the high x , moderate Q2 region. Their impact at large x is
significant since the large x HERA data are relatively impre-
cise due to their kinematic correlation with large Q2, the
1/Q4 photon propagator term in the cross section and the
limited integrated luminosity.

2.2 Theoretical framework and Fitting Procedure

The analysis is based on a QCD fit that follows the
HERAPDF [5] theoretical framework, PDF parameterisa-
tions and model parameter choices. In the fit, the proton
PDFs and αS(M2

Z ) are constrained simultaneously in a χ2-
minimisation procedure in which the Q2 evolution is per-
formed according to the NNLO DGLAP evolution equa-
tions [13–22]. The xFitter framework [23–25] is used, with
the light quark coefficient functions calculated to NNLO as
implemented in QCDNUM [26]. The MINUIT program [27]
is used for the minimisation.

The general-mass variable-flavor-number scheme [28,29]
is used for the contributions of heavy quarks. The renormal-
isation and factorisation scales are taken to be μr = μ f =√
Q2 for the inclusive DIS data, while μ2

r = μ2
f = Q2 + p2

T

is used for inclusive jet data and μ2
r = μ2

f = Q2+ < pT >2
2

for dijets, where < pT >2 is the average of the transverse
momenta of the two jets. The charm and beauty quark masses
(Mc, Mb) follow the choices in [5]. The minimum Q2 of the
inclusive data included in the fits is Q2

min = 3.5 GeV2. As
well as avoiding complications associated with low Q2, this
requirement also reduces the possible influence of ln(1/x)
resummation [30]. An additional cut is applied on the squared
hadronic final state invariant mass, W 2 = Q2(1 − x)/x >

10 GeV2, which removes data points with low Q2 and high
x that are most likely to be influenced by power-like higher
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Fig. 1 The locations in the
(x, Q2) plane of the HERA and
EIC neutral current inclusive
DIS data points included in the
analysis
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twist or resummation effects. This cut influences the EIC
data sets at the lowest

√
s. For the central fit, the PDFs

are parameterised at a starting scale for QCD evolution of
μ f 0 = 1.9 GeV2, as in the HERAPDF2.0 fits [5].

The PDFs are parameterised at the starting scale in terms
of the gluon distribution (xg), the valence quark distribu-
tions (xuv , xdv), and the u-type and d-type anti-quark distri-
butions (xŪ , x D̄), where xŪ = xū corresponds to anti-up
quarks only and x D̄ = xd̄ + xs̄ is the sum of anti-down and
anti-strange quarks. Symmetry is assumed between the sea
quarks and antiquarks for each flavour. Strange quarks are
suppressed relative to light quarks through a factor fs = 0.4
whereby xs̄ = fs x D̄ for all x . The nominal parameterisation
is

xg(x) = Agx
Bg (1 − x)Cg − A′

gx
B′
g (1 − x)25; (1)

xuv(x) = Auv x
Buv (1 − x)Cuv

(
1 + Euv x

2
)

; (2)

xdv(x) = Adv x
Bdv (1 − x)Cdv ; (3)

xŪ (x) = AŪ x
BŪ (1 − x)CŪ

(
1 + DŪ x

) ; (4)

x D̄(x) = AD̄x
BD̄ (1 − x)CD̄ . (5)

The parameters Auv and Adv are fixed using the quark count-
ing rules and Ag is fixed using the momentum sum rule. The
requirement xū = xd̄ is imposed as x → 0 through corre-
sponding conditions on AŪ , AD̄ , BŪ , BD̄ and fs . There are
thus a total of 14 PDF free parameters.

The experimental, model, and parameterisation uncertain-
ties on αs(M2

Z ) are evaluated as described in [6]. The mod-
elling uncertainties are obtained through variations of Q2

min,
fs , Mc and Mb as shown in Table 2; the parameters are altered
independently and the changes relative to the central value

Table 2 Central values of model input parameters and their one-sigma
variations. It was not possible to implement the variations marked ∗
because μf0 < Mc is required, see Ref. [6]. In these cases, the uncer-
tainty on the PDF obtained from the other variation was symmetrised

Parameter Central value Downwards variation Upwards variation

Q2
min (GeV2) 3.5 2.5 5.0

fs 0.4 0.3 0.5

Mc (GeV) 1.41 1.37∗ 1.45

Mb (GeV) 4.20 4.10 4.30

of αs(M2
Z ) are added in quadrature. For the PDF parameter-

isation uncertainties, the procedure of [6] is followed, based
on variations resulting from the addition of further D and E
parameters to the expressions in Eqs. 1–5 and changes in the
starting scale μ2

f 0 by ±0.3 GeV2. The fits are repeated with
each of these variations and the largest difference relative to
the nominal αs(M2

Z ) is taken to be the uncertainty. The model
and parameterisation uncertainties are added in quadrature in
quoting the final results. For the jet data, the uncertainties in
the hadronisation corrections are treated in the same manner
as the experimental correlated systematic uncertainties.

The influence on the extracted αs(M2
Z ) of missing orders

in the perturbation series beyond NNLO is estimated via a
scale uncertainty, in which the the renormalisation μr and
factorisation μ f scales are varied up and down by a factor
of two. Combinations are considered in which μr and μ f

are changed together or separately and the largest resulting
positive and negative deviations on αs(M2

Z ) (with the exclu-
sion of the two extreme combinations of the scales) is taken
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as the scale uncertainty. As is currently customary in global
QCD fits,3 no scale variations are made in the treatment of the
inclusive data. This topic is further discussed in Sect. 3.4.2.

3 Results

3.1 Fits with EIC inclusive data and HERA inclusive and
jet data

A simultaneous NNLO fit to extract the PDFs and αs(M2
Z )

from HERA inclusive and jet data and EIC simulated inclu-
sive data at all five

√
s values is performed as described in

Sect. 2. The result is

αs(M
2
Z ) = 0.1160 ± 0.0004 (exp) +0.0003

−0.0002

(model + parameterisation) ± 0.0005 (scale).

By construction of the EIC simulated data, αs(M2
Z ) must be

close to 0.116. As expected, the PDF parameters obtained in
the fits are also fully compatible with those from the HER-
APDF2.0 set. The uncertainties from the joint fit to HERA
and EIC data can be compared with those from the HERA-
PDF2.0Jets NNLO result [6]:

αs(M
2
Z ) = 0.1156 ± 0.0011 (exp) +0.0001

−0.0002

(model + parameterisation) ± 0.0029 (scale).

The results and uncertainties with and without the inclusion
of EIC data are shown in the form of a χ2 scan as a function
of αs(M2

Z ) in Fig. 2. Each point in the figure corresponds to
a full QCD fit, with all 14 PDF parameters free and a fixed
strong coupling value. The result without EIC data corre-
sponds exactly to the most recent HERA result [6].

Adding the simulated inclusive EIC data leads to a remark-
able improvement in the estimated experimental and scale
uncertainties. The source of the improvement in experimental
precision is discussed in Sect. 3.4.1. The scale uncertainty is
reduced to a similar level to the combined model and parame-
terisation uncertainties and becomes smaller than the exper-
imental uncertainty. This is a consequence of the reduced
dependence of the fit on the jet data. The scale uncertainty is
not yet evaluated for the inclusive data, as further discussed
in Sect. 3.4.2.

3.2 Fits with EIC and HERA inclusive data only

The very significant impact of the EIC inclusive data on the
αs(M2

Z ) precision naturally raises the question of whether a

3 Scale variations are typically applied to all hadronic final state observ-
ables, including jet data from ep collisions.

similar result can be obtained without the HERA jet data, i.e.
using only inclusive DIS measurements. A further question
of interest is how important a role is played by the multiple√
s values available at the EIC. Correspondingly, further fits

are performed to the following inclusive data sets with the fit
procedures otherwise unchanged:

• HERA inclusive data only, as already published in the
HERAPDF2 paper [5];

• HERA inclusive data and the EIC simulated inclusive
data described in Sect. 2.1, including all five different√
s values in Table 1;

• HERA inclusive data and the EIC simulated inclusive
data, separately for each of the five

√
s values.

Figure 3 shows the results of this investigation. The fits to
HERA data alone show only a limited dependence of the
fit χ2 on the strong coupling αs(M2

Z ), corresponding to a
relatively poor constraint [5]. In contrast, the χ2 minimum
around αs(M2

Z ) = 0.116 is very well pronounced for fits
that additionally include EIC data. Although the best result
is obtained when including all EIC

√
s values together, the

precision degrades only slightly when restricting the EIC data
to only one EIC

√
s value. In the latter case, the precision

improves as the
√
s value of the chosen EIC data decreases.

The second lowest
√
s value, corresponding to Ee × Ep =

5 × 100 GeV, is shown in Fig. 3.
The strong coupling extracted from the simultaneous fit

for the PDFs and αs(M2
Z ), using the full set of EIC pseudo-

data together with the HERA inclusive data, is

αs(M
2
Z ) = 0.1159 ± 0.0004 (exp) +0.0002

−0.0001

(model + parameterisation), (6)

corresponding to a total precision of better than 0.4%. As
discussed in Sect. 2.2, no scale uncertainty is quoted here. It
is expected to be significantly reduced in a fit to inclusive data
only relative to the result quoted in Sect. 3.1. Section 3.4.2
contains a discussion of possible ways of estimating the scale
uncertainties in this case.

The fit using inclusive data only is further extended to
investigate the influence of the integrated luminosity of the
EIC data on the αs(M2

Z ) precision. The statistical uncer-
tainties of the EIC data are scaled such that the pseudodata
samples at each beam energy correspond to 1 fb−1, approxi-
mately matching the integrated luminosity of the HERA data.
This results in only a small change compared with the results
shown in Fig. 3.

The relative importance of the different EIC beam energy
configurations has also been investigated. When including
only a single EIC data set with

√
s = 45 GeV, the experimen-

tal uncertainty is approximately ±0.0010, only slightly more
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Fig. 2 �χ2 = χ2 − χ2
min vs.

αs(M2
Z ) for the NNLO fits to

HERA inclusive and jets data in
addition to the simulated EIC
inclusive data (top) and without
the EIC data as published in [6]
(bottom). The experimental,
model, parameterisation, and
scale uncertainties are displayed
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than a factor of two larger than that obtained when including
all EIC

√
s values and significantly better than current results

from DIS data. Given that the earliest EIC data are expected
to be at low

√
s, this result might be obtainable after sig-

nificantly less than one year of EIC data taking. If only the
very lowest energy EIC dataset (

√
s = 29 GeV) is used, the

uncertainty grows considerably, due to the influence of the
W 2 cut.

To further test the influence of the EIC systematic uncer-
tainty assumptions, the fit is repeated with the correlated
systematic uncertainties increased by a factor of two. The
uncertainty on the extracted αs(M2

Z ) is barely influenced.
Conversely, if the uncorrelated systematic uncertainties are
increased by a factor of two, the uncertainty on αs(M2

Z )

increases to around 1.7%. The uncorrelated systematic uncer-
tainties are thus the most closely correlated with the precision
on αs(M2

Z ).

3.3 Variations in analysis procedure

The robustness of the extracted αs(M2
Z ) and PDF results and

their uncertainties is tested by varying the details of the fits
in a number of ways. The relative sensitivity to αs of differ-
ent kinematic regions within the simulated EIC data is also
investigated.

To check for a possible bias from the data simulation
procedure, the HERA data were replaced with pseudodata
obtained using the same method as for the EIC samples.
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Fig. 3 �χ2 = χ2 − χ2
min vs. αs(M2

Z ) for the NNLO fits to HERA
data on inclusive ep scattering only (black), and also with the addition
of simulated EIC inclusive data for all five

√
s values together (red) or

for only
√
s = 45 GeV (blue). The black full points are taken from [5]

The αs(M2
Z ) scan using the HERA pseudodata alone (Fig. 3)

closely follows that of the real HERA data, with no distinct
minimum observed.

The established technique for including correlated sys-
tematic uncertainties in global QCD fits treats each source of
correlated uncertainty separately, whereas the EIC estimate
is in terms of only a single normalisation uncertainty for each√
s, corresponding to the sum of all such sources. Studies are

therefore conducted in which the correlated EIC systematic
uncertainty is decomposed into the separate sources, follow-
ing Table 10.5 in the EIC Yellow Report [9]. The changes to
the results are negligible.

The lowest Q2 data are most likely to be influenced
by missing higher orders, higher twist effects and ln(1/x)
resummation effects [30]. To check that the precision is not
dramatically altered by excluding these data, the analysis
is repeated with the Q2

min cut increased from 3.5 GeV2 to
10 GeV2 or 20 GeV2. The distinct minima shown in Figs. 2
and 3 are still observed, with only a small dependence (up to
0.2%) on Q2

min . Excluding the lowest x EIC and HERA data
such that the analysis is restricted to x > 0.001 only increases
the uncertainty on the extracted αs to 0.0005, although pre-
cision is lost in the PDF determinations. If all data below
x = 0.01 are excluded, the precision on αs remains at a
similar level, though the PDF determination becomes over-
parameterised, leading to instabilities and biases.

The restriction to W 2 > 10 GeV2 applied here is neces-
sary to avoid theoretical complications associated with higher
twists or resummations. It removes data points with the high-
est x values at low Q2 for the EIC data sets with the lowest√
s values, and has no influence on the largest

√
s EIC data

or the HERA data. When only the lowest energy EIC data√
s = 29 GeV2 are included in the fit, a systematic depen-

dence on the W 2 cut is observed, which is diluted when the

higher
√
s data are also included. Nonetheless, in the fit to the

full HERA and EIC inclusive data, the experimental uncer-
tainty increases from 0.34 to 0.52% when the restriction is
altered to W 2 > 15 GeV2. This kinematic region is therefore
observed to be important to the EIC αs sensitivity, motivating
a full understanding of the range of validity of the theoretical
framework as W becomes small.

3.4 Discussion

The precision on αs(M2
Z ) obtained in the fits using only inclu-

sive HERA and EIC data, and also additionally using HERA
jet data, are compared in Fig. 4 with results from previous
DIS studies and with extractions using a wide range of other
processes. The world average of experimental measurements
according to the Particle Data Group (PDG) [3] and an aver-
age from lattice QCD calculations [31] are also shown. The
projected results from the current analyses show a level of
precision that is significantly better than both the world aver-
age and the lattice average. This very encouraging result is
subject to the caveat that no uncertainty has been included
due to missing higher orders beyond NNLO in the QCD anal-
ysis.

3.4.1 Origin of the EIC sensitivity

The variations in the kinematic range of the fit described in
Sect. 3.3 show that the improvement in experimental pre-
cision is attributable to the addition of precise EIC pseu-
dodata in the large x , moderate Q2 region, complementing
the kinematic coverage of the HERA data. This additional
phase space coverage leads to improved precision on the Q2

dependence of the inclusive cross section, corresponding to
the logarithmic derivative of the inclusive structure function
dF2/d ln Q2. At the highest x values, this quantity is driven
primarily by the q → qg splitting, and therefore samples
the product of αs and the large x quark densities. Since F2 is
itself a measure of the quark densities and other components
of the splitting functions are known exactly at a given order,
the logarithmic Q2 derivative at large x essentially depends
only on αs . This contrasts with the scaling violations at lower
x , as well as the longitudinal structure function FL [38,39]
and DIS jet data, all of which have leading contributions that
are proportional to the product of the gluon parton distribu-
tion and αs [40–42]. The improvement in precision can thus
be traced to the decoupling of αs from the gluon density,
enabled by the high x simulated EIC data. This interpreta-
tion is supported by the correlation coefficients between αs

and the other free parameters in the fit.
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Fig. 4 Projected total
uncertainties on the strong
coupling constant αs(M2

Z )

estimated using HERA and
simulated EIC data, compared
with extractions using other data
sets and methods [6,7,32–37],
with the world average
according to the PDG [3] and
with an average from lattice
QCD calculations [31]. Scale
uncertainties are not yet
included in the treatment of
inclusive DIS data for any of the
results shown. The plotting style
follows [32]
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3.4.2 Missing higher order uncertainty

Analyses that are sensitive to strong interactions commonly
include estimates of the missing higher order uncertainty
(MHOU) in the perturbative QCD framework through the
variation of the renormalisation and factorisation scales
(often referred to as a ‘scale uncertainty’). As in many other
dedicated and global analyses, the approach used for the jet
data included here is to obtain a scale uncertainty by varying
the scales by factors of two. However, in the global QCD
fits to extract PDFs [43–46], MHOUs have routinely not
been included in the treatment of inclusive DIS data, since
they are expected to be relatively small in comparison with
other PDF uncertainties. Since the present analysis adopts
a perturbative QCD treatment at NNLO, it is reasonable to
assume that it also has relatively small MHOUs, and the sit-
uation is expected to improve further as the state-of-the-art
moves towards N3LO [47]. Nevertheless, the MHOU asso-
ciated with inclusive data must clearly be finite and can-
not be ignored completely at the very high level of preci-
sion suggested in the present analysis. First studies of their
influence on PDFs have been performed by the NNPDF col-
laboration [30], though the impact on the strong coupling
was not included. There is as yet no consensus how to esti-
mate MHOUs for inclusive DIS. Some discussion of possible
methods is supplied in the following.

In a previous analysis at NLO accuracy [48], the H1
collaboration made a combined fit of inclusive-only DIS
data from HERA and from the fixed target BCDMS experi-
ment. The strong coupling was found to be well-constrained,
with the BCDMS data playing a similar role to the EIC
pseuododata here. A MHOU was obtained by varying the
factorisation and renormalisation scales in the usual way,

resulting in a large uncertainty at the level of 4%. However, as
shown in the context of PDF uncertainties in [49] (Appendix
B), applying this method in an NLO analysis results in an esti-
mate of the MHOU that is larger than the difference between
NLO and NNLO results by a factor as large as 20–50.
A similarly conservative approach might be to fit pseudo-
data simulated using QCD evolution at NNLO using an NLO
framework and vice versa, taking the MHOU on αs(M2

Z ) to
be the deviation of the extracted αs(M2

Z ) from the input.
Applying this method to the present analysis also results in
an uncertainty of around 4%, but is also likely to be a very
significant over-estimate.

A potentially promising approach is suggested by the
NNPDF group [49]. First a theory covariance matrix is com-
puted, typically using scale variations to include missing
higher order uncertainties. Including the covariance matrix
explicitly in the PDF fit ensures that the theory uncertainties
propagate properly, including those associated with αs(M2

Z )

if it is a fit parameter. However, until a consensus around a
well-developed method for including inclusive data such as
this emerges, the MHOU in the present αs(M2

Z ) extraction
remains to be evaluated.

4 Conclusions and outlook

This work shows that the strong coupling can be determined
with potentially world-leading precision in a simultaneous fit
of PDFs and αs(M2

Z ) at NNLO in perturbative QCD, using
only inclusive DIS data from HERA and simulated data from
the EIC. The estimated uncertainty on the strong coupling
when including one year’s data at each of the five expected
EIC

√
s values is better than 0.4%, substantially improving
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on the precision of the present world experimental and lat-
tice averages. If the EIC pseudodata are restricted to a small
fraction of a standard expected year of running at a centre-
of-mass energy of 45 GeV, as expected in an early phase of
operation, the estimated total uncertainty is at the level of
0.9%. The improvement in precision is traceable to the large
x , intermediate Q2 region that was not accessed at HERA,
but is well covered by the EIC. The constraint arises primar-
ily from the evolution of the quark densities in this region
and is largely decoupled from the uncertainty on the gluon
density. It still remains to assign a meaningful uncertainty
due to missing higher order contributions beyond NNLO in
the theory.

Further improvements of the αs(M2
Z ) precision may be

obtainable by adding inclusive jet and dijet EIC data to the
QCD analysis, for example using theory grids for the EIC
energies in the fastNLO framework [50]. Other observables
carrying information on the strong coupling that may be mea-
sured at the EIC include event shapes, jet substructure and jet
radius parameters. As well as a DIS-only approach, it would
also be interesting to investigate the impact of EIC data on
αs determinations in global QCD fits that also include data
from the LHC and elsewhere [43–46].

In the time before the start of the EIC, it is hoped that new
light will be shed on the issue of higher order uncertain-
ties, leading to a consensus on how they should be treated in
αs(M2

Z ) determinations relying on EIC data.
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