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Abstract The trilinear Higgs coupling λhhh of the detected
Higgs boson is an important probe for physics beyond the
Standard Model. Correspondingly, improving the precision
of the theoretical predictions for this coupling as well as the
experimental constraints on it are among the main goals of
particle physics in the near future. In this article, we present
the public Python code anyH3, which provides precise
theoretical predictions for λhhh . The program can easily be
used for any renormalisable model, where for the input the
UFO format is adopted. It allows including corrections up to
the full one-loop level with arbitrary values of the external
squared momenta and features a semi-automatic and highly
flexible renormalisation procedure. The code is validated
against known results in the literature. Moreover, we present
new results for λhhh in models which so far have not been
investigated in the literature.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 2
2 A generic approach to the trilinear Higgs coupling . 4

2.1 Renormalisation . . . . . . . . . . . . . . . . . 4
2.2 Tadpole contributions . . . . . . . . . . . . . . 5
2.3 External leg corrections . . . . . . . . . . . . . 5
2.4 Interpretation of the result for λhhh . . . . . . . 5

3 User- and program-flow . . . . . . . . . . . . . . . 6
4 Program tutorial . . . . . . . . . . . . . . . . . . . 7

4.1 Installation . . . . . . . . . . . . . . . . . . . 7
4.2 Basic syntax . . . . . . . . . . . . . . . . . . . 8

a e-mail: hbahl@uchicago.edu
b e-mail: johannes.braathen@desy.de (corresponding author)
c e-mail: martin.gabelmann@desy.de
d e-mail: georg.weiglein@desy.de

4.2.1 Python package mode . . . . . . . . . 8
4.2.2 Command line mode . . . . . . . . . . . 9
4.2.3 Mathematica mode . . . . . . . . . . 9

4.3 Setting parameters . . . . . . . . . . . . . . . 9
4.4 Renormalisation . . . . . . . . . . . . . . . . . 10
4.5 Evaluation modes and output formats . . . . . 11
4.6 Getting help . . . . . . . . . . . . . . . . . . . 11

5 Built-in models and cross-checks . . . . . . . . . . 11
5.1 Cross-checks using analytical computations . . 12
5.2 Numerical cross-checks . . . . . . . . . . . . . 12

5.2.1 SSM . . . . . . . . . . . . . . . . . . . . 12
5.2.2 TSMY=1 . . . . . . . . . . . . . . . . . 12
5.2.3 MSSM . . . . . . . . . . . . . . . . . . 13
5.2.4 Recovering the SM result in the decou-

pling limit . . . . . . . . . . . . . . . . . 13
6 Example applications . . . . . . . . . . . . . . . . . 15

6.1 Estimation of uncertainties in the computation
of λhhh . . . . . . . . . . . . . . . . . . . . . . 15
6.1.1 Uncertainty from missing higher-order

corrections in the SM . . . . . . . . . . . 15
6.1.2 Parametric uncertainties . . . . . . . . . 16
6.1.3 Uncertainty from missing higher-order

corrections in a BSM model: the exam-
ple of the IDM . . . . . . . . . . . . . . 17

6.2 Comparison of renormalisation scheme choices
for the TSMY=0 . . . . . . . . . . . . . . . . . 17

6.3 Comparison of BSM effects arising from mass
splittings . . . . . . . . . . . . . . . . . . . . . 19

6.4 Phenomenological results for λhhh in the NTHDM 21
6.5 Momentum-dependent effects in λhhh . . . . . 21
6.6 Use of anyH3 together with a spectrum gener-

ator: an example in the MSSM . . . . . . . . . 24
6.7 Non standard couplings . . . . . . . . . . . . . 24

7 Conclusions . . . . . . . . . . . . . . . . . . . . . 25

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12173-8&domain=pdf
http://orcid.org/0000-0002-1045-751X
mailto:hbahl@uchicago.edu
mailto:johannes.braathen@desy.de
mailto:martin.gabelmann@desy.de
mailto:georg.weiglein@desy.de


1156 Page 2 of 47 Eur. Phys. J. C (2023) 83 :1156

Appendix A: Definitions and conventions for the generic
results implemented in anyBSM . . . . . . . . . . . 26
A.1 Conversion between different conventions . . . 26
A.2 Available topologies and generic diagrams . . . 28

Appendix B: Implementing new models . . . . . . . . 28
Appendix C: Models currently provided in anyH3 . . 29

C.1 The Standard Model (SM) . . . . . . . . . . . . 30
C.1.1 Equivalence of different tadpole renormal-

isation
schemes . . . . . . . . . . . . . . . . . . 31

C.1.2 Vacuum expectation value renormalisa-
tion from OS quantities . . . . . . . . . . 34

C.2 The SM with a real singlet (SSM) . . . . . . . . 35
C.2.1 Alignment . . . . . . . . . . . . . . . . . 35
C.2.2 Renormalisation . . . . . . . . . . . . . . 35

C.3 The Two-Higgs-Doublet Model (THDM) . . . . 37
C.3.1 Alignment . . . . . . . . . . . . . . . . . 37
C.3.2 Renormalisation . . . . . . . . . . . . . . 37

C.4 The Inert-Doublet Model (IDM) . . . . . . . . . 38
C.4.1 Alignment . . . . . . . . . . . . . . . . . 38
C.4.2 Renormalisation . . . . . . . . . . . . . . 38

C.5 The THDM with a real singlet (NTHDM) . . . . 39
C.5.1 Alignment . . . . . . . . . . . . . . . . . 39
C.5.2 Renormalisation . . . . . . . . . . . . . . 39

C.6 The SM with a real triplet (TSMY=0) . . . . . . 39
C.6.1 Alignment . . . . . . . . . . . . . . . . . 40
C.6.2 Renormalisation . . . . . . . . . . . . . . 40

C.7 The SM with a complex triplet (TSMY=1) . . . 40
C.8 The Georgi–Machacek model (GM) . . . . . . . 40

C.8.1 Alignment . . . . . . . . . . . . . . . . . 41
C.8.2 Renormalisation . . . . . . . . . . . . . . 41

C.9 A simpleU (1)B−L extension of the SM (BmLSM) 41
C.9.1 Alignment . . . . . . . . . . . . . . . . . 41
C.9.2 Renormalisation . . . . . . . . . . . . . . 42

C.10 Minimal supersymmetry (MSSM) . . . . . . . 42
C.10.1 Renormalisation . . . . . . . . . . . . . 42

Appendix D: Additions to the UFO standard . . . . . . 42
Appendix E: Caching in anyBSM . . . . . . . . . . . 43
Appendix F: pyCollier . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . 44

1 Introduction

The discovery of a Higgs boson at the CERN LHC [1,2]
has confirmed that the Higgs potential plays a crucial role
in the electroweak symmetry breaking (EWSB). While the
measured properties of this Higgs boson are so far compati-
ble with the predictions of the Standard Model (SM) within
the experimental and theoretical uncertainties, the structure
of the Higgs sector and of its potential remain to be deter-
mined. Furthermore, in spite of the successes of the SM, it is
clear that new, Beyond-the-Standard-Model (BSM) physics

is needed to address deficiencies of the SM – such as for
instance the lack of an explanation for the baryon asymme-
try of the Universe.

In this context, a key quantity to investigate is the trilinear
Higgs coupling λhhh . This coupling determines the shape of
the Higgs potential away from the electroweak (EW) mini-
mum and in turn controls the nature and strength of the EW
phase transition (EWPT). For instance, a strong first-order
EWPT, which is a requirement [3] for the scenario of EW
baryogenesis [4,5], is typically associated with a sizeable
deviation of λhhh from its SM prediction, as was discussed
first in Refs. [6,7] (see also Ref. [8] for a more recent exam-
ple). Even beyond its crucial role in the context of the EWPT,
λhhh provides a unique opportunity to find signs of BSM
physics arising from extended Higgs sectors. In particular,
the loop contributions in models with additional scalars can
cause the trilinear Higgs coupling to deviate by up to sev-
eral hundred percent from its prediction in the SM if there
is a substantial mass splitting between the BSM mass scales.
This was found first at the one-loop level for the case of a
Two-Higgs-Doublet Model (THDM) in Refs. [9,10] but is
now known to occur for a wide range of BSM models. The
genuine physical nature of these effects was confirmed in
Refs. [11,12], where next-to-leading order (NLO), i.e. two-
loop, corrections to those large one-loop effects were investi-
gated and found to obey the expected perturbative behaviour.
Unlike what is the case for most couplings of the SM-like
Higgs boson at 125 GeV, large deviations in λhhh are possi-
ble even in scenarios where all its couplings are very close to
the SM values at tree level, such as in aligned scenarios [13].
Meanwhile, it has recently been shown in Ref. [14] that the
experimental limits (discussed in further detail below) have
become sufficiently strong to probe these potentially large
loop effects, and thus the comparison of the predictions for
λhhh with the latest experimental bounds constitutes a power-
ful new method for constraining the parameter space of BSM
theories (probes of BSM parameter space using the di-Higgs
production cross-section directly have also been discussed in
e.g. Ref. [15]). In this context it is important to keep in mind
that λhhh cannot be directly measured experimentally. The
crucial experimental quantity where λhhh enters at leading
order is the process of Higgs pair production. The computa-
tion of the trilinear Higgs coupling λhhh constitutes a neces-
sary intermediate result for the prediction of di-Higgs boson
production. In fact, for the case where λhhh receives large
loop corrections, the additional contributions to the di-Higgs
production process may be of sub-leading order [14]. More
generally, computations of trilinear Higgs couplings are also
important for investigating decays of BSM Higgs bosons and
BSM decays of the SM-like Higgs boson.

The present experimental information on the trilinear
Higgs coupling λhhh is by far not as precise as what has been
achieved for other couplings of the Higgs boson [16,17].
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Indeed, the current best limits on λhhh were obtained by
the ATLAS collaboration using a combination of data from
searches for (non-resonant) di-Higgs production and from the
experimental results for single-Higgs production processes;
they bound the ratio κλ, defined as

κλ ≡ λhhh

(λSM
hhh)

(0)
, (1)

to be within the range −0.4 < κλ < 6.3 at the 95% confi-
dence level (CL) [18,19]. In Eq. (1), (λSM

hhh)
(0) denotes the

tree-level prediction for the trilinear coupling in the SM. The
CMS collaboration has obtained similar results [17], namely
−1.24 < κλ < 6.49. The quoted limits were obtained under
the assumption that besides a variation of κλ all other cou-
plings entering the analyses are fixed to their SM values. The
current experimental limits leave ample room for BSM devi-
ations, which would so far remain unobserved, but could
be accessed in the foreseeable future, given the expected
prospects for probing λhhh at the LHC and future colliders –
see Ref. [20] for a review. Specifically, at the high-luminosity
upgrade of the LHC (the HL-LHC), the projection for κλ at
95% CL is 0.1 < κλ < 2.3 [21]. At a future e+e− linear col-
lider and a 100-TeV hadron collider it is expected that κλ can
be determined at the level ofO(10%) [20,22–26]. It should be
noted that these projections were obtained under the assump-
tion that κλ = 1 is realised in nature and may significantly
change if the actual value of κλ is different. In particular,
for an enhanced value of κλ the prospects for extracting λhhh
from the process e+e− → Zhh at a linear collider with about
500 GeV would improve, while as a consequence of destruc-
tive interference contributions the prospects at the HL-LHC
would deteriorate, see e.g. Refs. [27–29].

As stressed above, the most direct probe of the trilinear
Higgs coupling are searches for di-Higgs production, because
this process involves λhhh already at the leading order (LO).
Single-Higgs production involves contributions of the tri-
linear Higgs coupling starting at the next-to-leading order
(NLO) and EW precision observables at the next-to-next-to-
leading order (NNLO) – see for instance Refs. [30,31]. Of
course, a general analysis should not be restricted to the case
where BSM contributions enter exclusively via the trilinear
Higgs coupling. On the other hand, in scenarios where large
loop corrections to λhhh constitute the leading contributions
to di-Higgs production, an effective coupling approach where
the dominant corrections are incorporated into κλ provides
a convenient framework to efficiently constrain BSM mod-
els with available experimental results, as discussed e.g. in
Refs. [14,32]. We will discuss in this paper in more detail
the applicability of experimental constraints set on λhhh .

A number of computations of the trilinear Higgs cou-
plings in BSM theories have been carried out in the liter-
ature. At one-loop order, corrections were first computed in
the SM and the Minimal Supersymmetric Standard Model

(MSSM) in Refs. [33–35] (see also Refs. [36,37] for the case
of the MSSM with complex parameters). One-loop calcula-
tions of λhhh have since also been performed in the Next-to-
MSSM (NMSSM) in Ref. [38] as well as for various non-
supersymmetric extensions of the SM: with singlets [32,39–
41], additional doublets [9,10,41–45], and triplets [46–48].
For some of these models, specific results for λhhh are avail-
able in the public programs H-COUP [49,50] and BSMPT
[51,52]. At two-loop order, Refs. [11,53] obtained the two-
loop O(αtαs) and O(α2

t ) corrections to λhhh in the SM.
In supersymmetric theories, Refs. [54,55] investigated the
O(αtαs) corrections to λhhh in the MSSM and the NMSSM,
respectively, and recently Ref. [56] extended the NMSSM
calculation to include also O(α2

t ) effects. Regarding non-
supersymmetric models, the leading two-loop BSM contri-
butions to λhhh (arising from BSM scalars and, potentially,
top quarks) are known for the Inert Doublet Model (IDM)
[11,12,53], THDMs [11,12], O(N )-symmetric real-singlet
extensions of the SM [12,57], and for various models with
classical scale invariance [57].

In this work, we present the Python package anyH3,
which takes a big step forward in facilitating the predic-
tion of λhhh .1 anyH3 allows the analytic and/or numeri-
cal computation of the trilinear Higgs coupling for general
renormalisable theories to full one-loop order. For user con-
venience, the model definitions needed in anyH3 in order
to enable the application of generic results to specific the-
ories can be provided in the form of the widely-employed
UFO format [58,59]. anyH3 also offers a high level of flex-
ibility in the renormalisation schemes used in calculations
– with pre-defined commands for standard scheme choices
and the additional possibility for the user to define other
choices of counterterms. Furthermore, the tool allows the
user to modify the treatment of tadpole contributions (for
recent discussions see e.g. Refs. [60–63], Appendix A of
Ref. [64], and section 4 of Ref. [65]). anyH3 is part of the
wider anyBSM framework, where developments for further
(pseudo-)observables are foreseen in the future. An addi-
tional anyBSM feature that is already available is the module
anyPerturbativeUnitarity, which allows efficient
and reliable verifications of perturbative unitarity constraints
(at leading order, and in the high-energy limit).

This paper is organised as follows: we start by discussing
in Sect. 2 the main elements of our automated computation
of λhhh , as well as the interpretation of the obtained results.
Next, we present in Sect. 3 the workflow of anyH3 before
presenting a brief tutorial of the program in Sect. 4. In Sect. 5,
we discuss the cross-checks that were performed for the var-
ious models that are installed along with anyH3. Finally, we

1 We note that for the remainder of this paper λhhh is defined to refer
specifically to the renormalised one-loop corrected trilinear coupling of
the SM-like Higgs boson at 125 GeV.
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present in Sect. 6 examples of applications of anyH3 with
an emphasis on new results. We summarise our results in
Sect. 7. A number of Appendices provide additional details
on the program and the considered models: Appendix A
contains our conventions for general renormalisable mod-
els and for the generic expressions included in anyH3 as
well as the conventions or restrictions on UFO model files;
Appendix B discusses the various ways of generating com-
patible UFO models for new BSM theories; Appendix C
presents the different models discussed in this paper, includ-
ing details on renormalisation prescriptions and the treat-
ment of tadpole contributions; Appendix D lists modifica-
tions of the UFO standard that are applied by anyBSM inter-
nally; Appendix E explains the caching that is available in
anyH3, while Appendix F describes the Python interface
pyCollier to the Fortran library COLLIER employed
for computing loop functions numerically.

2 A generic approach to the trilinear Higgs coupling

In the following we outline the steps for the calculation of the
trilinear Higgs coupling where the SM-like Higgs boson h
appears at each of the three external legs. A generalisation to
trilinear Higgs couplings involving one or more BSM Higgs
boson(s) is left for future work.

All calculations performed in the program are based on
results for general renormalisable theories. These generic
results were obtained by the following steps:

• For the different types of contributions entering the calcu-
lation, as specified in Eq. (2) below, all possible Feynman
diagram topologies were identified.

• For each of these topologies, all possible insertions of
generic fields (scalars, fermions, vector bosons, ghosts)
were processed.

• Each of these generic diagrams was calculated using a
generic Lagrangian with the help of FeynArts [66–68]
and FormCalc [69].

The resulting generic expressions were hard-coded into the
Python program code to be applied to a specific model upon
run-time.

The steps described above include the introduction of sev-
eral conventions in how the generic Lagrangian and its result-
ing Feynman rules are written. For instance, all fermion-
fermion-scalar operators, F1F2S3, are written in terms of
left- and right-handed projectors, (c123

L PL+c123
R PR)F1 F̄2S3,

where the explicit form of c123
L ,R (depending on the cor-

responding operator within the considered model) is yet
unspecified. A detailed description of all used conventions
is given in Appendix A. The generic results, which are
expressed in terms of generic couplings, have been imple-
mented into the Python code. Upon run-time of the pro-

gram, the couplings of the specified model are mapped onto
the generic Lagrangian allowing one to directly obtain results
for all contributing Feynman diagrams. A similar approach
is followed for example in SARAH [70–74] and TLDR [75].

Currently anyBSM contains generic results for the scalar
three-point function (where in the present implementation the
three external scalars are assumed to be identical), the scalar
two-point function, the scalar one-point function, the vector-
boson two-point function, and the vector-boson–scalar two-
point function. An overview of all topologies can be found
in Appendix A.2. Making use of these building blocks, the
trilinear Higgs coupling λhhh is calculated by the sub-module
anyH3 at the one-loop level,

λhhh = − �̂hhh(p
2
1, p

2
2, p2

3)

= λ
(0)
hhh + δ

(1)
genuineλhhh + δ

(1)
tadpolesλhhh

+ δ
(1)
WFRλhhh + δ

(1)
CTλhhh , (2)

where �̂hhh is the renormalised Higgs-boson three-point
function. The superscripts indicate the loop order, namely
λ

(0)
hhh denotes the tree-level result for the trilinear Higgs

coupling, while δ
(1)
genuineλhhh, δ

(1)
tadpolesλhhh, δ

(1)
WFRλhhh, and

δ
(1)
CTλhhh are one-loop contributions. Specifically δ

(1)
genuineλhhh

denotes the genuine vertex corrections, while δ
(1)
tadpolesλhhh

and δ
(1)
WFRλhhh correspond to contributions involving tadpole

insertions and external-leg corrections, respectively. The last
term of Eq. (2) denotes the counterterm contribution (see
below), while the second-last term encodes the contribution
from external leg corrections. As indicated in Eq. (2),anyH3
is able to handle arbitrary external momenta. For all the one-
loop pieces appearing in Eq. (2), we work inanyH3only with
UV-finite parts, unless otherwise specified. Explicit checks
of UV-finiteness can be performed in anyH3, but have been
done separately.

We also note that anyH3 allows independent calculations
of self-energies and tadpoles. The necessary generic results
were derived following the same steps as described above.

2.1 Renormalisation

Renormalisation is a fundamental ingredient of loop calcula-
tions. Minimal subtraction schemes like MS are arguably the
easiest schemes to automate since their implementation basi-
cally boils down to setting the divergent parts of the appearing
loop integrals to zero.

However, for many processes it is known that MS schemes
may result in undesirable features like artificially large loop
corrections or gauge dependencies. Also in the specific con-
text of the trilinear Higgs coupling it has been observed that
a potentially large part of the one-loop corrections can be
absorbed into the Higgs-boson mass, which appears at the
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tree level, for instance by renormalising it in the on-shell
(OS) scheme [12,34,35].

For this reason, anyH3 allows the specification of differ-
ent renormalisation schemes. All bosonic (i.e., of particles
with spin zero or spin one) masses appearing in the tree-level
expression for the trilinear Higgs coupling can optionally
be renormalised in the OS scheme. Moreover, also the vac-
uum expectation value (VEV) entering at lowest order can be
renormalised in the OS scheme (see Appendix C.1.2 for more
details). In addition, anyH3 allows the user to define custom
counterterms, which are then included in the calculation of
the trilinear Higgs coupling. In summary, the counterterm
contribution to λhhh reads

δ
(1)
CTλhhh =

∑

i

∂

∂m2
i

λ
(0)
hhh · δ

(1)
CTm

2
i + ∂

∂v
λ

(0)
hhh · δ

(1)
CTv

+δ
(1)
custom-CTλhhh, (3)

where h is used to denote the SM-like Higgs boson, mi

denotes all scalar or vector boson masses appearing in λ
(0)
hhh,

and v is used to denote the electroweak VEV. The notations
δ
(1)
CTx denote the one-loop counterterms for the parameters x .

If one of the masses mi is chosen to be renormalised in the
OS scheme, its counterterm is determined via

δ
(1)
CTm

2
i = −Re�(1)

i i (p2 = m2
i ), (4)

where �i i is the self-energy of the scalar/vector particle i
(with mass mi ), which is defined according to the conven-
tions of e.g. Refs. [75,76].2 For the determination of the elec-
troweak VEV counterterm, we refer to Appendix C.1.2. We
note, finally, that if no default or user-defined schemes are
provided for a certain parameter, then an MS renormalisation
is employed.

2.2 Tadpole contributions

Besides the renormalisation of the masses and the elec-
troweak VEV appearing at the tree level, also tadpole con-
tributions need to be taken into account. Since the UFO stan-
dard does not provide a unified notation to store informa-
tion about the minimisation of the Higgs potential,3 we use
as default setting the Fleischer–Jegerlehner tadpole scheme
of Ref. [77] (using MS tadpole counterterms). As a conse-
quence, all tadpole diagrams have to be calculated explicitly
– see Appendix C.1.1 for a detailed discussion. This does not
only include explicit tadpole contributions to λhhh, denoted

2 We note that this is also the sign convention employed by anyH3
internally. For separate calculations of self-energies a flag can be used
to switch the overall sign convention for the results, see the online
documentation for more details.
3 The dependence of masses and vertices on tadpole terms is at present
not stored in the UFO model files.

as δ
(1)
tadpolesλhhh, but also to δ

(1)
CTλhhh and δ

(1)
WFRλhhh . It should

be stressed that the treatment of the tadpole contributions can
be adapted by the user. In particular, it is possible to avoid
the explicit appearance of tadpole diagrams by an appropri-
ate choice of δ

(1)
custom-CTλhhh using e.g. OS tadpole countert-

erms.4

2.3 External leg corrections

anyH3 also includes external leg corrections to ensure the
proper normalisation of the external scalars. These correc-
tions are given by

δ(1)λWFR
hhh =

∑

i

⎛

⎝1

2
�′

hh(p
2
i )λ

(0)
hhh+

∑

j,h j �=h

�hh j (p
2
i )

p2
i −m2

h j

λ
(0)
h j hh

⎞

⎠

≡
∑

i

⎛

⎝1

2
δ(1)Zh(p

2
i )λ

(0)
hhh +

∑

j,h j �=h

δ(1)Zhh j (p
2
i )λ

(0)
h j hh

⎞

⎠ ,

(5)

where the prime indicates a derivative with respect to the
external momentum squared. The second line of this equa-
tion serves to define the notations δ(1)Z(p2), which we will
employ later in this paper. For the on-shell case, p2

i = m2
h,

the first term on the right-hand side yields the usual LSZ fac-
tor as it occurs for the case without mixing between different
Higgs bosons, while the second term accounts for the con-
tributions from possible scalar mixing effects on the exter-
nal legs. As explained above, the self-energies appearing in
Eq. (5) are meant to contain only the UV-finite contribu-
tions. It should be noted that anyH3 by default evaluates the
external leg corrections at the same momenta as the vertex
corrections. In order to implement different choices of the
field renormalisations together with their appropriate wave
function normalisation contributions, one can alternatively
choose to turn off the automatic calculation of external-leg
corrections and re-introduce the corresponding contributions
in δ

(1)
custom-CTλhhh . This is in particular needed for the case

where the result for the trilinear Higgs coupling obtained
with anyH3 is meant to be incorporated into the prediction
for the cross section for di-Higgs production. In the di-Higgs
production process the trilinear Higgs coupling enters with
two on-shell external legs, while the third leg is an off-shell
internal line of the amplitude for di-Higgs production, see
Sect. 6.5 and Appendix C.2 below for more details.

2.4 Interpretation of the result for λhhh

The trilinear Higgs coupling λhhh itself is not a physical
observable. Its experimental determination from a physical

4 Note that δ
(1)
custom-CTλhhh can be defined in terms of one-, two-, or

three-point functions (and derivatives thereof), which are computed
automatically by the code.
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Fig. 1 Schematical workflow
for the calculation of λhhh

process (typically di-Higgs production, but via higher-order
contributions also single-Higgs production provides some
sensitivity) relies on assumptions on the other couplings and
particles involved in the processes. The current limits on λhhh
from ATLAS [18] and CMS [17] were obtained under the
assumption that all other Higgs couplings that are relevant
for the respective processes have the SM values and that no
other BSM particles contribute to these processes. Moreover,
λhhh has been treated as a constant which does not depend
on the inflowing momenta. When comparing the predictions
obtained with anyH3 in the considered model to the exper-
imental limits, the user of anyH3 should ensure that these
assumptions are fulfilled sufficiently well.

Alternatively, the output of anyH3 can be used as input for
other codes calculating di-Higgs production cross sections.
In this case, the user can choose to include the momentum
dependence and switch-off the external-leg corrections for
the internal Higgs propagator (an explicit example for this
case is discussed in Fig. 13 and also in Appendix C.2).

3 User- and program-flow

The main objective of this work is to provide one-loop cor-
rections to the trilinear Higgs coupling in wide classes of
BSM models. A typical work-flow of how this is organised
is shown in Fig. 1. We distinguish two major sections for
demonstrative purposes: (A) User input and (B) the actual
program flow. User input is required in section (A). In addi-
tion, it is also possible to control each of the steps discussed in
(B) by using theanyBSM library. The latter will be discussed
in more detail below.

At the user level (A) several inputs are required:

• (A.1) The model-specific information such as particle
content and Feynman rules relies on the UFO standard. In
order to obtain a UFO description of the model of interest
one can use SARAH, FeynRules, or UFO files obtained
with any other tool. For the latter two cases, we provide
a converter, which is discussed in Appendix A.1, while
in the case of SARAH the conventions for all relevant
Lorentz structures match the anyBSM conventions. A
detailed description of the UFO format can be found in
Refs. [58,59].

• (A.2) In order to renormalise the relevant input param-
eters consistently, the tool needs to know which of the
particles defined in the UFO model correspond to the SM
particles. This information is specified in an auxiliary file
called schemes.yml.

• (A.3) Once the SM parameters and particles (along with
their masses) are identified, one needs to specify in which
renormalisation scheme they are given. This is also done
in the file schemes.yml. An example specification of
this file is shown in Sect. 4.4.

• (A.4) Numerical values for all input parameters. Addi-
tionally, the UFO model may provide analytic relations
between input parameters (so called “external” param-
eters) and e.g. Lagrangian parameters or mixing angles
(so called “internal” parameters). The program automat-
ically resolves these dependencies and writes all internal
parameters in terms of external parameters. The numeri-
cal values are required for the numerical evaluation of the
analytically obtained results for λhhh and are by default
read from the UFO model. Moreover, one can change the
default parameter values individually or all at once by
specifying e.g. a SLHA [78,79] input file (see Sect. 4.3
for examples).
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It should be stressed that the relations between internal
and external parameters given via the UFO model in (A.4)
are essential for the renormalisation procedure. In particu-
lar Eq. (3) will be evaluated once all parameter dependen-
cies have been applied. Thus, if any of the Higgs masses
is not defined as an input parameter in the UFO model, it
cannot be renormalised in the OS scheme automatically.
Instead, the corresponding counterterm contribution would
need to be provided manually via the custom counterterm
δ
(1)
custom-CTλhhh . It is, therefore, recommended to align the

chosen parametrisation for input parameters in the UFO
model along with the chosen renormalisation schemes.

The following steps are performed automatically using the
information gathered before:

• (B.1) The UFO model is loaded and several checks are
performed:

– Whether all relevant couplings are present (espe-
cially quartic scalar couplings which are sometimes
excluded in UFO outputs).

– Whether all relevant couplings are defined through
the same Lorentz structures that are also used by
anyBSM. Otherwise, one can use the model converter
discussed in Appendix A.1.

• (B.2) Definition of the SM-like particles and param-
eters based on the inputs made in (A.2) in the file
schemes.yml. The program is also capable of find-
ing the SM particles and parameters automatically based
on their PDG codes and numerical (mass) values. This
functionality is also used to cross-check the user-input in
order to avoid erroneous configurations.

• (B.3) and (B.4) All possible field-insertions into the
generic diagrams are determined. The corresponding
couplings and masses are inserted into the generic results.
The calculation of any n-point function involved in the
counterterm contributions follows the same procedure.
Finally, the result for every n-point function is stored on-
disk for caching/later use (see Appendix E).

• (B.5) Collection of the individual results and construction
of the expression for the renormalised λhhh .

• (B.6) Numerical or analytical evaluation. For diagrams
with non-zero external momentum, the loop functions are
evaluated usingpyCollier (see Appendix F), which is
a Python interface for COLLIER [80]. The analytical
evaluation can be simplified/modified usingSymPy [81].

We want to stress that this particular strategy for obtaining a
prediction for λhhh in a given model has a number of ingre-
dients in common with the calculation of many other observ-
ables. For this reason, the code anyH3 for calculating λhhh
is embedded into a larger program called anyBSM. The pro-
gram anyBSM provides many utilities capable of performing

the steps described above to set up the calculation of a par-
ticular observable. Utilities of this kind are for instance the
interface to UFO or the insertion of UFO particles and Feyn-
man rules into generic Feynman diagrams. These ingredients
are used in submodules – of which anyH3 is the first one that
has been implemented – to define actual quantities to com-
pute. In fact, anyH3 only takes care of (B.5) of the program
points mentioned above while all other steps are taken care
of in decoupled classes/modules of the program anyBSM.

This class and module structure is depicted in Fig. 2. The
class anyModel encodes all information about the used
model (Feynman rules, particles, interactions, etc.). This
information is then inherited by the anyProcess class,
which is used to calculate generic quantities like two- or
three-point functions. This class makes use of various inter-
nal and external modules to derive the necessary diagrams
and loop functions. The generic results of the anyProcess
class are then used by the anyH3 class to specifically cal-
culate the trilinear Higgs coupling. Future extensions of
anyBSM featuring the calculation of new observables can
be built on the basis of the anyProcess class (indicated
by the ellipsis). In the end, the anyBSM class collects the
classes for the different observables into a single object.

4 Program tutorial

In this section, we describe the basic features of anyBSM
and anyH3. As explained above anyH3 is part of anyBSM,
which provides a flexible Python framework for precision
calculations (not only of λhhh). This section is not meant
to be a detailed manual but instead is intended to give an
overview of the overall functionality. A detailed description
of all available methods and options is available in the online
manual, which can be found at

https://anybsm.gitlab.io/anybsm.

4.1 Installation

The anyBSM source code is hosted at

https://gitlab.com/anybsm/anybsm.

Running the code requires at least Python version 3.5.
The code is most easily used by installing the corresponding
Python package by running

pip install anyBSM

which will automatically download and install anyBSM as
well as all necessary dependencies. One necessary require-
ment not handled automatically by pip is the presence
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Fig. 2 Class and module
structure of anyBSM. The
ellipsis denotes additional
observables which can be
implemented in the future

of a Fortran compiler (required for the compilation
of COLLIER for the pyCollier dependency) such as
gfortran or CLANG which can be installed from the sys-
tems package repository. Upon the first run of anyBSM, the
model repository will be downloaded and saved into a user-
specified location.5 The model repository is available online
at

https://gitlab.com/anybsm/anybsm_models

and can be updated using the version control system git.
The model repository will be expanded over time, and com-
munity contributions, in particular git merge requests, for
tested models are welcome.

4.2 Basic syntax

anyBSM can either be integrated into Python scripts as
a Python package or run directly from the command
line. In addition, a Mathematica interface exists as
well.

4.2.1 Python package mode

After starting a newPython session and importinganyBSM
via

5 The path to this location is defined in the config file which can be found
at ˜/.config/anyBSM/anyBSM_config.yaml (Linux) or
˜/Library/Preferences/anyBSM/anyBSM_config.yaml
(Mac OS). By default, it is set to the folder models at the same
location as the config file (e.g., ˜/.config/anyBSM/models for
Linux.

from anyBSM import anyBSM

a model – here for instance the SM – can be initialised
via

SM = anyBSM('SM')

Alternatively, a path to a UFO model directory can also be
given. As an overview, the dictionary anyBSM.built_in
_models contains a list of all pre-installed UFO models and
their installation directories. During the initialisation step,
anyBSMwill try to automatically identify the SM-like Higgs
boson, for which λhhh is calculated, as well as all other SM
particles.

After the model initialisation, λhhh can be calculated by
running

SM.lambdahhh()

which returns

{'total': (176.22855628707978+0j),
'treelevel': (187.28177740658242-0j),
'genuine': (-16.63170122055135-0j),
'wfr': (3.8805860322813865-0j),
'tads': (-10.63364669685712-0j),
'massren': (20.994575921900807+0j),
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'vevren': (-8.663035156276381+0j),
'customren': 0}

Here, “total” denotes the total value for λhhh in GeV;
“treelevel”, the tree-level value; “genuine”, the genuine one-
loop contribution; “wfr”, the contribution from external-leg
corrections (diagonal and off-diagonal); “tads”, the contribu-
tion from tadpole diagrams; “massren”, the contribution from
mass renormalisation; “vevren”, the contribution from the
renormalisation of the electroweak vev; and, “customren”,
the contribution from a custom counterterm. It should be
noted that by default λhhh is evaluated for vanishing external
momenta. The option for using non-zero external momenta
is described in Sect. 4.3.

4.2.2 Command line mode

As an alternative to using anyBSM as a Python package, it
can also be called directly from the command line. A simple
example is

anyBSM SM

which returns

\lambda_hhh = 176.22855628707978
( tree-level = 187.2818;

one-loop-genuine = -16.6317;
one-loop-WFRs = 3.8806;
tadpoles = -10.6336;
counterterm (masses) = 20.9946;
counterterm (VEV) = -8.6630;
counterterm (custom) = 0.0000)

An overview of the available options for the command line
can be displayed by running

anyBSM -h

To view more options and details about a specific model
one can also add the -h flag to the model name. For exam-
ple

anyBSM SM -h

lists the particle content of the SM and the options for setting
numerical values of all parameters (such as the top-quark
mass) and their default values from the UFO model.

It should be noted that the command line tool provides
access only to the basic functionalities of theanyBSM library,
unlike the Python package mode and the Mathematica
mode discussed below.

4.2.3 Mathematica mode

The Mathematica interface can be conveniently installed
as follows:

Import["https://gitlab.com/anybsm/\\
anybsm/-/raw/main/install.m"]
InstallAnyBSM[]

which checks for all requirements and adds the anyBSM
interface to Mathematica’s $Path variable. Afterwards,
the interface can be used as follows:

<<anyBSM`
LoadModel["SM"]
lambda = lambdahhh[]

The result lambda is a Mathematica Association
object similar to the Pythondictionary object obtained
in Sect. 4.2.1 using the Python library. However, by default
the analytical rather than numerical results are returned,
after conversion to valid Mathematica expressions. A
list of all available functions (such as for e.g. the calcula-
tion of self-energies and tadpoles) within Mathematica
is stored in the variable $AnyFunctions. More informa-
tion is given in the online documentation. Furthermore, com-
prehensive Mathematica notebooks that demonstrate the
use of anyBSM’s Mathematica mode are provided in the
examples repository.

The Mathematicamode has access to the full function-
alities of thePython backend (i.e. theanyBSM library). For
the sake of clarity, we will restrict ourselves to a description
of the Python package in the next sections.

4.3 Setting parameters

anyBSM uses the default parameters defined in the respec-
tive UFO model. To change e.g. the value of the top-quark
mass in the example SM calculation discussed above, we can
run
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SM.setparameters({'Mu3': 165})

where in this example an effective (running) top-quark mass
of 165 GeV is used. Alternatively, a LHA file can be used as
input,

SM.setparameters('/path/to/LHA_file')

The program also defines a few additional UFO parameters
in case they are not found in the UFO model. For instance,
if the model does not define an external parameter named
Qren (used for the renormalisation scale Qren.), the code
introduces it internally with a default value of Qren =
172.5 GeV. The full list of additionally introduced param-
eters is discussed in Appendix D as well as in the online
documentation.

The external momenta entering the computation of λhhh
can be specified by passing the momenta attribute to the
lambdahhh function, e.g.

SM.lambdahhh(momenta = [500**2, 'Mh**2',
'Mh**2'])

where Mh is the Higgs mass parameter defined in the SM
UFOmodel file and is automatically replaced by its numerical
value. By default, momenta = [0, 0, 0] is chosen.

4.4 Renormalisation

Information about the renormalisation is saved in the file
schemes.yml in the model directory. A simple example
file for the SM is

# default names for SM fields and
# parameters
SM_names:
Top-Quark: u3
W-Boson: Wp
Z-Boson: Z
Higgs-Boson: h
VEV: vvSM

default_scheme: OS

renormalization_schemes:
OS:

mass_counterterms:

h: OS
VEV_counterterm: OS

MS:
mass_counterterms:

h: MS
VEV_counterterm: MS

Here, the first SM_names block defines the names of var-
ious SM fields and parameters. The renormalization
_schemes block can be used to define different renormali-
sation schemes. In the present example, the scheme OS is
defined such that the mass of the field h as well as the
VEV counterterm are renormalised in the OS scheme. This
scheme is set as default scheme via the default_scheme
directive. In addition, the scheme MS is defined so that the
mass of the field h as well as the VEV counterterm are
renormalised in the MS scheme. It should be stressed that
this does not mean that all inputs are converted from OS
to MS parameters but rather that the physical interpretation
of these parameters is changed from OS to MS. However,
for a consistent conversion of the parameters, all ingredi-
ents (i.e. two-point functions) are provided by the program.
A proper conversion between the schemes will be demon-
strated in Sect. 6.1.

If a non-default scheme should be used, this can e.g. be
specified during the model initialisation:

SM = anyH3('SM', scheme = 'MS')

As an alternative to using schemes predefined in schemes.
yml, renormalisation schemes can also be generated inter-
actively during the run time by using a new name that is
not yet used in the schemes.yml file for the scheme
directive during the model initialisation or by calling e.g.
SM.add_renormalization_scheme('MS') after
wards. The new scheme will then be saved into theschemes.
yml file. It is also possible to change the renormalisation
scheme, e.g. between two calls of SM.lambdahhh(),
using the appropriate method:

SM.load_renormalization_scheme('OS')

If no schemes.yml file is present in the UFO model direc-
tory, it will be generated automatically upon the first creation
of a renormalisation scheme which automatically searches
for all SM-like parameters (particles) based on their numer-
ical (mass) values (and PDG identifiers), cf. Sect. 3.
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4.5 Evaluation modes and output formats

anyBSM supports three different evaluation modes:

• abbreviations: all results are given in analyti-
cal form using the UFO coupling abbreviations (GC_1,
GC_2, etc.);

• analytical: all results are given in analytical form
using the full analytical form for all couplings;

• numerical: the numerical values for all parameters are
inserted, and a numerical result is returned.

The evaluation mode can be set e.g. via

SM.set_evaluation_mode('analytical')

if using anyBSM as a Python package. The default evalu-
ation mode is numerical.

A detailed breakdown of the results (including results for
individual diagrams) in the form of a PDF document can
be produced by using draw = True as an additional argu-
ment for thelambdahhh function or via the-t option when
using the command line interface

SM.lambdahhh(draw = True)

The individual results listed along with the diagrams are rep-
resented in a way which depends on the chosen evaluation
mode (e.g. numerical or analytical/using abbreviations). The
resulting PDF file is saved to the current working directory
as well as the model directory. In order to make use of this
feature, LATEX needs to be installed.

In addition to the Mathematica mode, analytical
expressions can be exported from within a Python session
to Mathematica with the help of SymPy

from sympy import mathematica_code
mathematica_code(<sympy_expression>)

Note that anyBSM includes a caching system which auto-
matically saves the analytic results into json files (into the
cache directory located in the model directory). This leads
to a significant speed-up of consecutive runs, see Appendix E.

4.6 Getting help

All Python classes and methods defined in anyBSM and
anyH3 have meaningful doc-strings which can be issued by
e.g.

from anyBSM import anyH3
help(anyH3)
help(anyH3.lambdahhh)

or directly using existing class instances (such ashelp(SM.
lambdahhh) in the examples above). In addition, the
online documentation makes use of these doc-strings and
provides a search functionality.

The usage of the command line tool anyBSM is returned
by the command anyBSM -h. For a given model, one
can obtain further help by issuing the command anyBSM
<model name> -h from the command line. The
Mathematica interface of anyBSM also provides doc-
umentation for all its functions by issuing ?<function
name> such as e.g. ?lambdahhh. Furthermore, it pro-
vides a list of available functions stored in the variable
$AnyFunctions.

In addition, the anyBSM examples repository provides
basic and concrete examples for all three interfaces and for
the generation of new model files.

5 Built-in models and cross-checks

The models currently distributed alongside anyH3 are

• the Standard Model (SM);
• the real-singlet extension of the SM (SSM);
• the Two-Higgs-Doublet Model (THDM) – all four

Yukawa types;
• the Inert-Doublet Model (IDM);
• the Next-to-Two-Higgs-Doublet Model (NTHDM) – i.e.

the real-singlet extension of the THDM;
• triplet extensions of the SM with either a real triplet with

hypercharge Y = 0 or a complex triplet with Y = 1.

The two theories are denoted respectively TSMY=0 and
TSMY=1;

• the Georgi–Machacek model (a general version, as well
as an aligned version);

• a U (1)B−L extension of the SM (BmLSM);
• the Minimal Supersymmetric Standard Model (MSSM).
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These models, and associated conventions, are described
in more detail in Appendix C. We emphasise again that addi-
tional models can also be included by the user in a convenient
and fast way, as described in Appendix B. In this section, we
present details about a variety of analytical and numerical
cross-checks we performed to validate anyH3.

5.1 Cross-checks using analytical computations

To cross-check the routines implemented inanyH3, we com-
pared the analytical results to calculations performed using
FeynArts and FormCalc. We found full agreement for
the following pieces of the calculation performed in anyH3:

• Higgs and Goldstone boson self-energies (and momen-
tum derivatives thereof) including self-energies with two
distinct external scalars as well as charged scalar self-
energies;

• Higgs tadpoles;
• vector boson self-energies including mixing self-energies

(e.g. γ − Z mixing);
• genuine one-loop corrections to scalar three-point func-

tions;
• one-particle-reducible contributions to scalar three-point

functions.

These checks have been performed in the SM, meaning that
all contributions to the renormalised trilinear Higgs coupling
arising in the SM have been cross-checked. Contributions
that do not exist in the SM (e.g. scalar-mixing self-energies)
have been cross-checked in the THDM.

As an additional cross-check, we have verified the cancel-
lation of ultraviolet divergences in the SM, the THDM, the
SSM, the TSMY=0, and the TSMY=1. Moreover, we have
found full agreement for the overall one-loop result for λhhh
with independent calculations in the SM and the THDM, per-
formed with FeynArts and FormCalc, as well as with the
results for the TSMY=1 from Ref. [48] (see Appendix C for
a more detailed description of the models).

5.2 Numerical cross-checks

In addition to analytical cross-checks, we have performed a
series of numerical cross-checks by reproducing results from
the literature.

5.2.1 SSM

As a first check, we reproduced the SSM results for κλ derived
in Ref. [40] (following the choice made in this reference
and for the sake of comparison, we set the mixing between
the CP-even states to zero). This reproduction is shown in

Fig. 3 which is to be compared with Fig. 6 and 7 (upper-
right) of Ref. [40]. In this figure, the momentum of two of
the three external Higgs boson legs is always set on-shell√
p2

1 =
√
p2

2 = mh1 = 125 GeV. In the left plot of Fig. 3,
the momentum of the third external Higgs leg is fixed at√
p2

3 ≡ √
p2 = 251 GeV and κλ is shown as a function of

the singlet mass. In the right plot, the singlet mass is fixed
to 200 GeV and the external momentum of the third Higgs
boson leg is varied.

The behaviour of both plots reproduces the behaviour
found in Ref. [40]. However, the exact numerical values in
the left panel are shifted due to different treatments of the
external-leg corrections. The different treatments of external
momenta also lead to a slightly different peak structure in
the right plot. However, at p2 = m2

h1
the different treatments

coincide. To show this equality we use the shift to κλ caused
by the BSM sector, δ

(1)
hhh = κλ − λ

(1), SM
hhh /λ

(0), SM
hhh , which was

introduced in Eq. (25) of Ref. [40]. The external leg contri-
bution to δ

(1)
hhh in the two different treatments reads

δ
(1)
hhh(p

2)

∣∣∣
anyH3

ext. leg
= 1

2

(
δ(1)Zh1(p

2)︸ ︷︷ ︸
off-shell leg

+ 2δ(1)Zh1(m
2
h1

)
︸ ︷︷ ︸

on-shell legs

)

= −λ2
SHv2

16π2

⎛

⎝∂B0(p2)

∂p2

+2
∂B0(p2)

∂p2

∣∣∣∣
p2=m2

h1

⎞

⎠

δ
(1)
hhh(p

2)

∣∣∣
Ref. [40]

ext. leg
= −λ2

SHv2

16π2

⎛

⎝2
B0(p2) − B0(m2

h1
)

p2 − m2
h1

+ ∂B0(p2)

∂p2

∣∣∣∣
p2=m2

h1

⎞

⎠ , (6)

where B0(p2) ≡ B0(p2,m2
h2

,m2
h2

) is the one-loop Passarino–
Veltman two-point function [82,83]. Thus, the two approaches
yield the same external leg correction factors in the limit of
p2 → m2

h1
. We made use of this relation to cross-check the

full analytical result obtained with anyH3 with the result
derived in Ref. [40] and found full agreement at p2 = m2

h1
.

For demonstrative purposes, we provide this cross-check
using the Mathematica interface of anyBSM (cf. Sect. 4)
as an example usage in the anyBSM examples repository.

5.2.2 TSMY=1

As a further verification of anyH3, we reproduced results in
the literature for the TSMY=1 model [46]. Fig. 11 of Ref. [46]
shows deviations of λhhh from the SM prediction in the plane
of the coupling λ4 and the mass difference between the light-
est and second-lightest BSM states (see Appendix C.7 for fur-
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Fig. 3 κλ in the SSM as a function of the singlet mass (left) and one off-shell external momentum (right). The results match those of Ref. [40]
Fig. 6 and 7 (upper-right), respectively

Fig. 4 Reproduction of Fig. 11 of Ref. [46] showing results for κλ for
the Y = 1 triplet model. Left: κλ contours are shown in the (λ4,�m)

parameter plane with �m = mD± − mD±± and mD±± = 300 GeV.

Right: κλ contours are shown in the (λ4,�m) parameter plane with
�m = mD± − mD0 and mD0 = 300 GeV

ther details about the model). Our reproduction of this figure
is shown in Fig. 4. In the left panel, the lightest BSM states
are the doubly-charged Higgs bosons; in the right panel, the
lightest BSM states are the two neutral BSM Higgs bosons.
Overall, we observe a very good agreement between our
results and the results presented in Ref. [46]. The remaining
small differences can be traced back to different SM input
parameters used in Ref. [46].

5.2.3 MSSM

As a cross-check of the MSSM implementation, we repro-
duced the results of Ref. [34]. In this work, the leading
O(m4

t ) corrections to the trilinear Higgs coupling originating
from scalar top quarks were calculated in the limit of van-
ishing electroweak gauge couplings. Setting the SUSY (and
SM) parameters as in Ref. [34] (i.e., setting MQ̃ = MŨ =

15 TeV, μ = |At | = 1.5 TeV), we find very good agree-
ment with their results (see our Fig. 5 in comparison to Fig. 2
of Ref. [34]).

5.2.4 Recovering the SM result in the decoupling limit

As an additional non-trivial cross-check of anyH3 (and also
of the model files distributed alongside it), we have verified
that the BSM contributions decouple if the masses of the
BSM scalars are increased in a uniform way (see below for
details), so that the SM result for λhhh is recovered in this
limit.

This verification is shown in Fig. 6, where κλ is displayed
as a function of the BSM mass scale MBSM. All BSM masses
in each model have been chosen to be degenerate with each
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Fig. 5 Reproduction of Fig. 2 of Ref. [34] showing results for O(m4
t )

one-loop corrections �λhhh to the trilinear Higgs coupling (normalised
to the tree-level coupling) in the MSSM. Left:�λhhh as a function of MA

for tan β = 5 (blue curve), tan β = 10 (orange curve), and tan β = 30
(green curve). Right: �λhhh as a function of tan β for MA = 1 TeV

Fig. 6 For the shown models all masses have been chosen to be degen-
erate with the value MBSM. Soft symmetry-breaking parameters are set
to

√
MBSM − (250 GeV)2. Individually the relevant model parameters

are fixed as follows. SSM: α = 0, κS = κSH = −800 GeV and vS =
300 GeV. IDM:

√
M2

BSM − μ2
2 = 250 GeV and mA,H,H+ = MBSM.

THDM-II:
√
M2

BSM − M2 = 250 GeV, tan β = 2, sin(β − α) = 1

and mA,h2,H+ = MBSM. NTHDM-II: as in the THDM-II with
vS = MBSM, α1 + α3 = β − π/2, α2 = π/2. TSMY=0: λT = 2.5
and M+

H = MBSM. TSMY=1: λ4 = 2.5 and mD+ = mD++ = MBSM.

GeorgiMachacek:
√
M2

BSM − M2
η = 250 GeV, M5 = M3 = MBSM

and sin(H) = 0. See Appendix C for details about the various models

other with the mass value MBSM. The results for κλ are
shown in the SSM (green), the IDM (light blue), the THDM-
II (dark blue), the NTHDM-II (stars), the TSMY=0 (red),
the TSMY=1 (orange), and the Georgi–Machacek model
(brown). In all models we chose appropriate input param-
eters such that the lowest-order couplings of the SM-like
Higgs boson to the other SM states are exactly as in the SM.
This setting is referred to as aligned scenario in the following.
Further details about the chosen parameters of the models are
specified in the caption. As a reference, the SM result for κλ is

indicated as a black line. It is clearly visible that for increas-
ing MBSM κλ quickly approaches the SM result for the chosen
parameter settings. For MBSM � 1 TeV, the deviations from
the one-loop SM result are below ∼ 0.05. We note that, as
will be seen in Sect. 6.4, values below the SM prediction are
also possible in BSM models. Additionally, the details of the
decoupling patterns in the different models strongly depend
on the chosen parameters. Therefore, from the shown exam-
ple no general conclusions can be drawn about how quickly
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decoupling occurs with increasing BSM mass scale in the
various models.

6 Example applications

After having discussed cross-checks for validation, we
present here a series of example applications. We first discuss
estimates of the remaining theoretical uncertainties and then
provide examples of results that go beyond existing studies
in the literature.

6.1 Estimation of uncertainties in the computation of λhhh

When comparing predictions for an observable (or a pseudo-
observable) with experimental measurements or limits, an
important consideration to ensure the reliability of the com-
parison is to estimate the theoretical uncertainty associated
with the obtained prediction. We devote this section to dis-
cussing different contributions to the theoretical uncertainty
associated with computations of the trilinear Higgs coupling:
on the one hand, uncertainties due to missing higher-order
terms, and on the other hand, parametric uncertainties due
to the limited precision with which quantities entering the
calculation of λhhh are known experimentally.

6.1.1 Uncertainty from missing higher-order corrections in
the SM

Focusing at first on the calculation of λhhh in the SM, we
begin by investigating the possible size of missing higher-
order contributions. While in the SM two-loop corrections
of O(αtαs) and O(α2

t ) are known [11,12,53], we refer here
to all higher-order corrections that go beyond the full one-
loop result that is obtained with anyH3 (see below for a
discussion of the impact of the known two-loop corrections).
Since calculations that are carried out at a given order in
different renormalisation schemes differ by contributions that
go beyond the calculated order, the comparison of different
results of this kind for the same parameter point can be used as
an estimate for the size of missing higher-order corrections
– provided that the perturbative behaviour in the different
schemes is of similar quality. We employ this method and
compare the result obtained with anyH3 in the OS scheme
with the one in the MS scheme.

In the SM, we use for the quantities that enter the tree-
level expression of λhhh — i.e., the Higgs-boson mass, the
W - and Z -boson masses, and the electromagnetic coupling
αem (the latter three quantities are in turn used to compute
the Higgs VEV, see the discussion in Appendix C.1.2) – the
following OS input values

Mh = 125.1 GeV, MW = 80.379 GeV

MZ = 91.187 GeV

α−1
em (0) = 137.035999679, (7)

where the notation Mi indicates the OS mass of particle i
(we deviate here from the lower-case notation mh employed
for the Higgs mass in the rest of the paper in order to avoid
ambiguities between OS and MS masses). This yields for
the tree-level prediction of the trilinear coupling a value of
λ

(0)
hhh = 187.3 GeV. For the full one-loop predictions of λhhh

in the on-shell scheme (where the tadpoles are renormalised
in the OS scheme) we obtain for the two cases of vanishing
external momenta and for the choice p2

1 = (200 GeV)2 and
p2

2 = p2
3 = M2

h

λ
(1), OS
hhh (0, 0, 0) = 176.2 GeV,

λ
(1), OS
hhh ((200 GeV)2, M2

h , M
2
h ) = 180.8 GeV. (8)

In order to compare these values with those in the MS scheme,
we must first convert the OS input parameters Mh, MW ,

MZ , αem to the MS scheme – this conversion (and all other
scheme conversions in this paper) will be performed at one-
loop order. Working at Q = 172.5 GeV, and employing
again an OS renormalisation of the tadpoles (see the discus-
sion in Appendix C.1.1 for further details), we find after the
one-loop conversion

mMS
h = 121.4 GeV,

mMS
W = 80.1 GeV,

mMS
Z = 91.6 GeV,

(αMS
em )−1 = 128.34. (9)

Using now these values as inputs for the calculation of λhhh
in the MS scheme, we obtain at Q = 172.5 GeV (again at
full one-loop order, and with the same two choices of external
momenta as above)

λ
(1), MS
hhh (0, 0, 0) = 175.8 GeV,

λ
(1), MS
hhh ((200 GeV)2, M2

h , M2
h ) = 180.5 GeV. (10)

The difference of about 0.3−0.4 GeV between the results
obtained in the OS and the MS schemes constitutes a first
estimate of a part of the unknown higher-order corrections;
in relative size, the obtained shifts correspond to a difference
of less than 0.2%. We note that if we had chosen to convert
also the value of the squared Higgs mass used for the exter-

nal momenta, the result for λ
(1),MS
hhh ((200 GeV)2, (mMS

h )2,

(mMS
h )2) would have decreased by 0.2 GeV, giving rise to

only a slight change of our uncertainty estimate.
Concerning the interpretation of the uncertainty estimates

obtained so far, it should be emphasised that the scheme
comparison done above in fact does not capture correc-
tions to λhhh involving the strong coupling αs, because
the performed scheme conversions of the quantities Mh,
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MW , MZ , αem do not involve this coupling at one-loop
order. Such effects can on the other hand be estimated
by converting the input value used for the top-quark mass
(in contrast to the quantities entering the prediction of the
trilinear Higgs coupling at tree-level, converting the top-
quark mass entering at the one-loop level from the OS
to the MS scheme directly gives rise to a two-loop effect
in the prediction for λhhh). Starting from the OS value
of Mt = 172.5 GeV, a conversion including the lead-
ing O(αs) and O(αt ) contributions to the top-quark self-
energy (involving the strong gauge and top Yukawa cou-
plings) yields an MS value of mMS

t (Q = 172.5 GeV) =
166.3 GeV. Using this MS value in the computation of λhhh ,
we obtain

λ
(1), MS
hhh (0, 0, 0)

∣∣mMS
t = 178.3 GeV,

λ
(1), MS
hhh ((200 GeV)2, M2

h , M
2
h )

∣∣mMS
t = 182.7 GeV,

(11)

which corresponds to a total deviation of about 2 GeV com-
pared to the OS results above where Mt was used as input
value. For the sake of comparison, we note that employ-
ing the OS computation of λhhh using Mh, MW , MZ , and
α−1

em (0) from Eq. (7) but with the MS value of mt , we
obtain

λ
(1), OS
hhh (0, 0, 0)

∣∣mMS
t = 178.6 GeV,

λ
(1), OS
hhh ((200 GeV)2, M2

h , M2
h )

∣∣mMS
t = 182.8 GeV. (12)

As explained above, the dominant two-loop O(αtαs) and
O(α2

t ) corrections to λhhh are in fact known [11,12,53],
and amount to about +3 GeV (specifically, the O(αtαs)

corrections amount to +4.1 GeV, while those of O(α2
t )

amount to −1.1 GeV). Thus, our above estimates of higher-
order corrections that are not included in the computa-
tion of anyH3 turn out to be close to the actual size
of the known higher-order corrections. While for the case
of the SM those two-loop corrections could be incorpo-
rated into the anyH3 prediction, in many other models for
which anyH3 can be employed the corresponding correc-
tions are not fully known. For reasons of uniformity we
also restrict the SM prediction for λhhh in anyH3 to the
full one-loop level. An extension of the code providing the
incorporation of higher-order contributions is left for future
work.

6.1.2 Parametric uncertainties

Another source of theoretical uncertainty in the prediction of
λhhh arises from the experimental errors of the input param-
eters. In order to investigate the impact of these paramet-

Table 1 Theoretical uncertainties in the calculation of λhhh arising
from the experimental errors of the input parameters

Parameter Exp. uncertainty Impact on λhhh

Mh 0.17 GeV 0.53 GeV

MW 0.012 GeV 0.048 GeV

MZ 0.0021 GeV 0.011 GeV

αem(0) 2.1 × 10−8 1.1 × 10−8

Mt 1 GeV 0.4 GeV

ric uncertainties, we take into account the 1 σ ranges of the
experimental input parameters as given in Ref. [84],

�Mexp.
h = ±0.17 GeV,

�Mexp.
W = ±0.012 GeV,

�Mexp.
Z = ±0.0021 GeV,

�(α
exp.
em (0))−1 = ±2.1 × 10−8, (13)

while for the top-quark mass we use

�Mt = ±1 GeV. (14)

It should be noted that the variation of ±1 GeV for Mt is
indicated for illustration. The parametric uncertainty of the
top-quark mass receives a contribution both from the experi-
mental error of the measured mass parameter of ±0.30 GeV
at the 1 σ level [84] and from the systematic uncertainty aris-
ing from relating the measured quantity to a theoretically
well-defined top-quark mass. The parametric uncertainties
that are induced by the masses of the other quarks and the
leptons are negligible. We furthermore note that we do not
consider a parametric uncertainty from the strong gauge cou-
pling because it does not enter the expression of λhhh at the
one-loop level.

Varying each of the indicated experimental errors inde-
pendently, we find the theoretical uncertainties induced in
λhhh shown in Table 1. As expected, the largest effect on
λhhh , with an induced uncertainty of ±0.5 GeV, originates
from the experimental error of the mass of the detected Higgs
boson. Indeed the Higgs-boson mass enters the prediction for
λhhh already at the tree level, and while it is already known to
a high level of accuracy its experimental error is still larger –
by more than an order of magnitude – than the experimental
errors of MW and MZ (and much larger than the parametric
uncertainty associated with αem). The theoretical uncertain-
ties that are induced by the gauge-boson masses have only
effects at the level of some tens of MeV or less. On the other
hand, the experimental uncertainty of the top-quark mass
has a stronger impact on λhhh even though it only enters at
the one-loop level. It should be noted that if in the future
BSM parameters are measured, the parametric uncertainties

123



Eur. Phys. J. C (2023) 83 :1156 Page 17 of 47 1156

in the prediction forλhhh induced by their experimental errors
should also be taken into account.

6.1.3 Uncertainty from missing higher-order corrections in
a BSM model: the example of the IDM

When considering the computation of λhhh in BSM theories,
BSM parameters can enter the tree-level expressions. This
is not the case in aligned scenarios, like the IDM, where the
tree-level prediction for the trilinear coupling is the same as
in the SM and only the mass of the detected Higgs boson and
the associated vacuum expectation value enter the lowest-
order prediction. It should be noted that also in this case a
comparison between the OS and MS results for λhhh com-
puted at one-loop order with anyH3 with a one-loop con-
version of Mh and v would not be sensitive to the type of
contributions that can give rise to the largest effects at the
two-loop level. For the specific case of the IDM one can infer
from simple arguments of dimensional analysis that the lead-
ing two-loop corrections to λhhh are of O(g5

h/M4
) and

O(λ2g3
h/M2

) (which were computed in Ref. [11]), where
 denotes either of the BSM scalars of the IDM, gh is a
coupling between the Higgs boson at 125 GeV and two BSM
scalars, and λ2 is the Lagrangian self-coupling of the inert
doublet (c.f. Appendix C.4 for more details). These types of
contributions are not generated by a one-loop conversion of
Mh or v.

Instead, the size of these contributions can be estimated
via a one-loop conversion of the BSM scalar masses, which
affect the size of the dominant one-loop corrections to λhhh
of O(g3

h/M2
). In the following, we investigate for four

different example benchmark points – labelled BP1, BP2,
BP3, and BP4 (defined in Table 2) – the potential size of
these leading two-loop effects. We choose BP1 and BP2 with
small splittings between the BSM scalar masses and the BSM
mass parameter μ2, so that the couplings gh (which are
proportional to the difference M2

 −μ2
2) remain small, while

we choose larger splittings for BP3 and BP4. Additionally,
we set λ2 to zero in BP1 and BP3, in order to investigate only
terms of the form O(g5

h/M4
), while for BP2 and BP4 we

set λ2 = 2 to also include effects of O(λ2g3
h/M2

). We
present the results obtained with the code anyH3 for the
one-loop conversions of the scalar masses and for λhhh in
Table 2 (note that for the computation of (λ

(1)
hhh)

OS and for
the scheme conversion of the BSM scalar masses, the tadpole
contributions are renormalised on-shell).

As could be expected, we find that the OS and MS results
are in very good agreement – differing only by 1.4% and
2.5% for the two choices of λ2 – for the scenarios with
small mass splittings (BP1 and BP2). For BP3 and BP4
featuring larger splittings, the discrepancy between the two
results increases to about 5–6%. This confirms the known fact
that the inclusion of two-loop corrections to λhhh is increas-

ingly important for parameter regions with larger splittings
between the different BSM masses. Finally, we observe that
the relative size of the O(λ2g3

h/M2
) pieces compared to

the O(g5
h/M4

) ones decreases for larger mass splittings,
which simply follows from the lower power dependence on
gh ∝ (M2

 − μ2
2).

6.2 Comparison of renormalisation scheme choices for the
TSMY=0

Choosing a suitable renormalisation scheme is a crucial step
for the calculation of κλ. We illustrate this in Figs. 7 and 8
for the Y = 0 triplet extension of the SM (see Appendix C.6
for details about the model and its implementation).

In Fig. 7, κλ is shown for different renormalisation
schemes as a function of the quartic interaction between the
SM Higgs doublet and the BSM triplet (λHT ) with fixed
MH+ = 1 TeV and λT = 1.5. In the left plot, the tadpoles
are treated in the FJ prescription, and therefore enter both
the calculation of λhhh and the parameter conversion explic-
itly, while in the right plot an OS renormalisation is used
for the tadpoles. If the mass of the SM-like Higgs boson
and the EW VEV are renormalised in the on-shell scheme
(red curve, identical in both plots), the dependence of κλ on
λHT is very small. This is expected since the BSM masses
are chosen at the TeV scale implying that all BSM correc-
tions should be small as a consequence of decoupling. If
the mass of the SM-like Higgs boson and the EW VEV are
renormalised in the MS scheme (blue curves), the result for
κλ depends strongly on the choice of the renormalisation
scale, as well as on the chosen treatment of the tadpoles. For
all curves, mOS

h = 125.1 GeV and vOS � 250.7 GeV are
used as input which are then converted in the first step to
the MS scheme. Then, these MS quantities are used to cal-
culate κλ. For the considered scenario, the conversion can
lead to very large shifts between the OS and MS quanti-
ties if the renormalisation scale is not chosen appropriately.
If for example μR = mt is chosen (solid blue curve), we
encounter artificially large corrections to κλ for large positive
λHT when employing FJ tadpoles. We note that this is due
exclusively to the impact of the tadpoles on the MS parame-
ters obtained from OS inputs, because the tadpole contribu-
tions in the calculation of λhhh itself are the same indepen-
dently of the employed scheme, as shown in Appendix C.1.1.
Moreover, for this scale choice the MS mass of the SM-
like Higgs boson quickly becomes tachyonic for negative
λHT in the case with FJ tadpoles, and for positive λHT in
the case with OS tadpoles. Similar issues appear for the
choice of μR = MH+ (blue dotted curve) for which the
MS mass of the SM-like Higgs boson becomes tachyonic
for λHT � 1 (λHT � −1/2) when using FJ (OS) tadpoles.
For μR = (mt + MH+)/2 (blue dashed curve), however, the
corrections are quite well-behaved, and a result close to the
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Table 2 One-loop predictions for λhhh in the IDM for different exam-
ple scenarios in the OS and the MS scheme, as well as the relative
difference �. For the conversion of masses from the OS to the MS
scheme, as well as the MS calculation of λhhh , the renormalisation

scale is chosen to be Q = 300 GeV. The values of the MS masses are
also given. For all four benchmark scenarios we set the OS masses to
MH = 400 GeV, MA = 410 GeV, MH± = 415 GeV, while the other
free IDM parameters are given in the “Inputs” columns

Inputs MS masses (at Q = 300 GeV) anyH3 results

BP μ2 λ2 mMS
H mMS

A mMS
H± (λ

(1)
hhh)

OS (λ
(1)
hhh)

MS �

[GeV] − [GeV] [GeV] [GeV] [GeV] [GeV] [%]

1 250 0 403.7 413.8 418.6 220.6 223.7 1.4

2 250 2 406.7 416.7 421.4 220.6 226.2 2.5

3 0 0 409.9 419.9 424.6 356.1 373.9 4.8

4 0 2 412.9 422.7 427.4 356.1 379.4 6.1

Fig. 7 κλ in the Y = 0 triplet extension of the SM as a function of
λHT , comparing the OS (red curves) and MS (blue curves) renormali-
sation schemes for the Higgs-boson mass and the EW VEV. For the MS
case, we consider different choices of the renormalisation scale, shown

by the solid, dashed and dotted curves. The charged Higgs mass is set
to MH+ = 1 TeV, while λT = 1.5. Left: Results using the FJ scheme
for the tadpoles. Right: Results using OS-renormalised tadpoles

Fig. 8 κλ in theY = 0 triplet extension of the SM. Left: κλ as a function
of λHT , comparing results employing the OS- and MS-renormalised
charged Higgs mass. The OS scheme is used for the Higgs mass, the

EW VEV, and the tadpoles. Right: Results for κλ (calculated in the OS
scheme) shown in the (λHT , MH+ ) parameter plane
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OS curve is obtained – although in the case of OS tadpoles,
the Higgs mass once again becomes tachyonic for λHT � 3.

Overall, the choice of OS tadpoles leads to more moderate
effects in κλ, and appears to be (if implemented) a prefer-
able option for calculations in which scheme conversions of
parameters are performed.

In the left plot of Fig. 8, we next present results for κλ

using OS inputs for the Higgs mass and EW VEV (and OS-
renormalised tadpoles), but with the charged Higgs boson
mass in the OS (red curve) and the MS scheme (orange
curve). As in Fig. 7, we compare here results for the same
parameter point, defined by λT = 1.5 and an OS charged
Higgs mass of MOS

H+ = 500 GeV (which for the MS curve
is converted to the MS scheme). Because MH+ only enters
the prediction for λhhh at the one-loop order, the difference
between the red and orange curves is formally of two-loop
order and, as was discussed for the IDM in Sect. 6.1.3, can
serve as an estimate of the size of the unknown higher-order
contributions to λhhh . We can observe, as expected, that the
results in the two schemes remain very close for small values
of |λHT � 2|, and only differ for larger couplings. Finally,
additional results for κλ, calculated in the OS scheme, are
shown the (λHT , MH+) parameter plane (for fixed λT = 1.5)

in the right panel of Fig. 8.6 It is clearly visible that large cor-
rections to κλ are obtained for low MH+ and large |λHT |. The
solid black contour lines indicate the parameter region that
is excluded by the current LHC bounds on κλ [18],7 while
the dashed black contour lines show the region that will be
probed with the projected sensitivity based on the full HL-
LHC dataset [21].

6.3 Comparison of BSM effects arising from mass
splittings

In Sect. 5.2.4 we showed for various models that the BSM
contributions to λhhh vanish once all BSM states are decou-
pled simultaneously in an appropriate way. This behaviour
is in accordance with the decoupling theorem [85] which
states that, in the case of heavy new physics, all BSM contri-
butions can be incorporated into coefficients C(n)

i of higher-
dimensional SM operators,

Ld>4 =
∞∑

n=5

C(n)
i

Mn−4
BSM

O(n)
i , (15)

6 We checked that perturbative unitarity is preserved at the tree level
throughout the shown parameter plane.
7 Since we work in the limit where the triplet VEV is zero, the couplings
of the Higgs boson at 125 GeV are SM-like. This limit also implies that
no BSM scalars will contribute to the pair production of the SM-like
Higgs boson at the tree level. This means that the existing experimental
constraints on κλ can be applied for the Y = 0 triplet model.

such that all BSM effects vanish for MBSM → ∞. A crucial
requirement for this decoupling behaviour is that the C(n)

i
are small and do not increase with MBSM. Mass splittings
between the BSM particles can modify this behaviour. This
can happen for instance if some of the masses of the heavy
BSM states φBSM are mostly generated via the comparably
small SM VEV,

1

2

(
λXH

†
SMSM + M2

L

)
φ2

BSM

SSB−−→ 1

2

(
1

2
λXHv2 + M2

L

)
φ2

BSM = M2
BSM

2
φ2

BSM, (16)

where φ2
BSM schematically stands for the quadratic term of

some BSM scalar, and SM is the SM-like doublet. Thus,
φBSM receives mass contributions both from the quartic cou-
pling λXH and the mass parameter ML . For the case of
ML ∼ v a large scalar mass MBSM 
 v can be realised
via λXH 
 1. The quartic interaction of BSM scalars to
SM-like Higgs bosons can lead to large contributions in this
case,

chhφBSMφBSM ∝ λXH = 2
M2

BSM − M2
L

v2 . (17)

Another way of understanding the origin of such large
contributions is related to the symmetry argument of the
decoupling theorem i.e. that the decoupling of a heavy par-
ticle must not break any symmetries of the resulting effec-
tive theory (EFT). To demonstrate this we consider the states
Xi of some irreducible SU (2)L multiplet X with masses
MXi �=L ≡ MBSM and MXL ≡ ML � MBSM. Taking the limit
MBSM → ∞ leads to an EFT which is not SU (2)L -invariant
anymore as XL cannot be incorporated into a smaller SU (2)L
multiplet. As a consequence, portal couplings as in Eq. (16)
between the SM- and the BSM-Higgs bosons become large
for a large mass splitting. In fact, for all models implemented
in anyH3 with additional states charged under SU (2)L we
found the couplings chhXi X j to behave as in Eq. (17), pro-
vided that appropriate parameterisations for the input masses
are assumed. Note that the above discussion applies not only
to the SU (2)L gauge symmetry but more generally to global
and gauge symmetries of the BSM theories.

It should be noted that there can be regions in parameter
space where the splitting of the mass parameters M2

BSM−M2
L

is relatively large compared to the electroweak scale while the
model can still be described perturbatively. From the THDM
it is known that such large couplings can be constrained by the
current experimental bounds on κλ while being in agreement
with all other experimental and theoretical constraints [14].
With the help of anyH3 one can easily go beyond the THDM
and study the effect of couplings determined by Eq. (17) onto
κλ in other SM extensions. To demonstrate this, we use the
example of the different SU (2)L extensions from Sect. 5.2.4
and fix one of the BSM scalar masses to ML = 400 GeV
rather than having all masses degenerate at MBSM. Figure 9
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Fig. 9 In all shown models the mass of the lightest BSM state which
is charged under the SU (2)L gauge group is set to ML = 400 GeV. For
the different models the following parameter choices have been made:
IDM: MH = μ2 = ML . THDM-II: M = MH = ML . TSMY=1:

mD++ = ML . GeorgiMachacek: Mh2 = Mη = ML . All other param-
eters are chosen as in Fig. 6. In particular, the other BSM masses are
degenerate with a mass value of MBSM

Fig. 10 Predictions for κλ (red, blue, and black lines) and for κt (green
line) in the NTHDM and THDM, as a function of the NTHDM mixing
angle of the CP-even scalar sector α2. Results for κλ are shown at tree
level (dashed curves) and at one loop (solid lines). The masses of the
BSM scalars are taken to be degenerate at 300 GeV, while the BSM mass

scales – μ̃, defined by μ̃2 = m2
12/(cos β sin β), for the NTHDM and

M for the THDM – are chosen to be 100 GeV, and tan β = 2. For the
singlet vev in the NTHDM we consider two scenarios: vS = 300 GeV
in blue and vS = 3 TeV in red
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shows the resulting κλ prediction as a function of MBSM

for the IDM (light blue), the THDM (blue), the TSMY=1

(orange) and the Georgi–Machacek model (brown). We want
to emphasise again that all shown parameter points are chosen
to be in the alignment limit, i.e. they have a tree-level pre-
diction of κ

(0)
λ = 1. In agreement with Eq. (17), we observe

in all models that κλ ≈ κSM
λ for MBSM ≈ ML = 400GeV .

For increasing values of MBSM, corrections proportional to
couplings of the form of Eq. (17) lead to a large increase of κλ

so that it can become close to or even larger than the current
experimental constraint (red horizontal line). The projection
for the sensitivity on κλ at the HL-LHC (grey horizontal line)
shows that it will be possible to probe mass splittings down to
150–200 GeV in the displayed examples. We explicitly ver-
ified, using the anyPerturbativeUnitarity module
of anyBSM, that all models fulfil the tree-level perturbative
unitarity constraint in the high-energy limit for all shown
values of κλ.

It is also important to stress that this discussion is not
restricted to the SU (2)L gauge symmetry of the SM but also
applies to any other symmetry within or beyond the SM.8

6.4 Phenomenological results for λhhh in the NTHDM

In this section we discuss an example of phenomenological
results for λhhh in the NTHDM (other investigations of λhhh
in the NTHDM have also been performed with BSMPT in
Ref. [87]). The scalar sector of this model contains three CP-
even scalars, which can mix, and in turn three mixing angles
are required to diagonalise the 3 × 3 CP-even scalar mass
matrix (see model definitions and details in Appendix C.5). It
is of interest in this context to investigate the potential impact
of mixing on the prediction for the trilinear Higgs coupling.

As a brief illustration of phenomenological studies made
possible with anyBSM, we present in Fig. 10 results for κλ

as a function of the second CP-even mixing angle α2. We
choose a scenario of the NTHDM where h2 is identified with
the detected Higgs boson at 125 GeV, so that the alignment
limit is reached for α1 + α3 → β − π/2 and α2 → π/2.

We consider in Fig. 10 scenarios of the NTHDM and THDM
were the BSM scalars (h2, h3, A, H± for the NTHDM; h2,

A, H± for the THDM) are mass-degenerate with a mass
value of 300 GeV. We fix the BSM mass scales of both mod-
els (μ̃ for the NTHDM and M for the THDM) to 100 GeV,
resulting in a sizeable mass splitting giving rise to a signif-
icant contribution to κλ. Additionally, we set tan β = 2 and
α1 + α3 = β − π/2, while for the singlet VEV, vS, we
adopt two values: vS = 300 GeV (blue curves) and vS = 3
TeV (red curves). Regarding our choice of renormalisation
scheme, we employ here an OS renormalisation of all scalar

8 See e.g. Ref. [86] for a discussion of contributions to trilinear Higgs
couplings caused by BSM fermions in split-SUSY models.

masses and of the Higgs VEV, while the other parameters
are renormalised in the MS scheme. Note that this scenario
is devised as a simple setting in which to demonstrate cal-
culations that are made possible by anyBSM. The range of
parameters shown in Fig. 10 is not allowed in its entirety,
however, we do not explicitly indicate the exclusion limits
since we are not aiming at a thorough phenomenological
analysis here.

The solid curves in Fig. 10 show the full one-loop results
for κλ, while the dashed lines correspond to the tree-level
results. For α2 → π/2, we observe – as expected – that we
recover the alignment limit, and for both possible values of vS
the tree-level and one-loop predictions for κλ converge to the
results in the THDM, indicated by the black horizontal lines.
In this limit, the additional singlet decouples entirely, and
the dependence of κλ on vS vanishes. A sizeable BSM con-
tribution remains in this limit, yielding a value of κλ ∼ 1.25,

which arises from the corrections involving the THDM-like
scalars (h2, A, and H±). On the other hand, away from the
alignment limit, and for α2 � π/4, the relative importance of
the loop corrections to λhhh decreases significantly. It should
be pointed out here, for completeness, that deviations of κt
from the SM are already constrained by experimental data to
be below O(20%) (see for instance Ref. [16]). This implies
that values of α2 � π/4 are already excluded in this scenario.

Furthermore, we can observe the interesting feature that
the prediction for κλ becomes negative as α2 decreases – i.e.
as one departs from the alignment limit. At this point, it is
however important to remark that the sign of λhhh is not a
physical observable. A quantity that is of physical relevance
is the relative sign between the trilinear Higgs coupling and
other couplings of the Higgs boson, e.g. its coupling to top
quarks. For this reason, we also present in Fig. 10 results
(green line) for the coupling modifier of the top Yukawa inter-
action, which we denote κt , at tree level. We find that for the
entire range of α2, κ

(0)
t remains positive, so that a change in

the relative sign between the trilinear Higgs coupling and the
top Yukawa does occur – this can in principle lead to a signif-
icant increase in the Higgs pair production cross-section, as
the destructive interference between the box and triangle dia-
grams occurring in the SM is avoided in this case. We leave
a more thorough investigation of scenarios with negative tri-
linear Higgs couplings in the NTHDM for future work.

6.5 Momentum-dependent effects in λhhh

By default, anyH3 evaluates the trilinear Higgs coupling
setting the momentum of all external legs to zero. The
code, however, also allows the evaluation of λhhh for finite
momenta (via the argument momenta of the lambdahhh
function).
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Fig. 11 Upper panel: Momentum dependence of κλ in the THDM of type-I, with M = mh2 = 400 GeV,mA = mH± = 700 GeV, and tan β = 2.

Lower panel: Same as upper panel but the imaginary part of λhhh is shown

Fig. 12 Upper panel:
Momentum dependence of κλ in
the THDM of type-I, with
M = mh2 = 600 GeV,

mA = mH± = 1000 GeV, and
tan β = 2. Lower panel: Same
as upper panel but the imaginary
part of λhhh is shown

We demonstrate this for the THDM of type I (see
Appendix C.3) and for the Y = 1 triplet extension of the
SM (TSMY=1, see Appendix C.7) in Figs. 11, 12 and 13. In
all three scenarios, κλ = 1 at the tree level. For the THDM-I
(Figs. 11 and 12), we present results for two scenarios, with
M = mh2 = 400 GeV, mA = mH± = 700 GeV for the first
and M = mh2 = 600 GeV, mA = mH± = 1000 GeV for the
second, and with tan β = 2 for both. Next, for the TSMY=1

(Fig. 13), we set mD±± = 400 GeV, mD± = 500 GeV, and

λ4 = 4. All three scenarios are chosen such that significant
BSM effects occur in the trilinear Higgs coupling, and addi-
tionally the second THDM-I scenario is devised specifically
to obtain a value of κλ larger than the current upper experi-
mental bound of 6.3.

In the upper panels of Figs. 11, 12 and 13, we show κλ

as a function of a varying external momentum scale
√
p2.

The orange dashed line denotes the κλ value if all squared
external momenta p2

i are set to zero. For the blue curve, two
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Fig. 13 Upper panel: Momentum dependence of κλ evaluated in the TSMY=1 with mD±± = 400 GeV, mD± = 500 GeV, and λ4 = 4. Lower
panel: Same as upper panel but the imaginary part of λhhh is shown

of the external momenta are set equal to the mass of the SM-
like Higgs boson, while the momentum of the third leg is
kept general and set to p2. For this off-shell leg, we also
do not include an external wave-function renormalisation,
see also Sect. 2.3. This means that the result shown in blue
corresponds precisely to the quantity that enters the evalua-
tion of the triangle diagram contributing to di-Higgs produc-
tion. Comparing the solid blue and the orange-dashed curves,
we observe that, for low to intermediate ranges of

√
p2, the

momentum effects are small in comparison to the overall size
of the BSM effects, which shift κλ to about 2.95, 7.9, and 3.3
respectively for the three figures. It is only for larger values
of

√
p2 – namely

√
p2 � 600 − 700 GeV for the THDM-I

scenarios and
√
p2 � 1.2 TeV for the TSMY=1 – that the

momentum effects become sizeable and cause a significant
decrease in κλ.

Finite external momenta can also induce imaginary parts
for λhhh (for the calculation of κλ, we take the real part of
λhhh). These are shown in the lower panels of Figs. 11, 12
and 13. Several particle thresholds are visible (correspond-
ing to what can be seen in the upper panels of the corre-
sponding figures): e.g., the di-Higgs threshold around

√
p2 ∼

250 GeV, the di-top threshold around
√
p2 ∼ 350 GeV, and

for instance for the TSMY=1 (Fig. 13), also the D±±D∓∓
threshold (

√
p2 ∼ 800 GeV) and the D±D∓ threshold

(
√
p2 ∼ 1000 GeV). Note that for the THDM-I (Figs. 11

and 12), there are no h2h2 thresholds, because the λh1h2h2

coupling vanishes (due to the equality M = mh2) and hence

diagrams with internal CP-even scalars h2 do not contribute
to λhhh . In Fig. 11, the AA/H+H− threshold is visible, as
expected, at

√
p2 = 1.4 TeV.

The results shown in Figs. 11, 12 and 13 can directly be
applied to di-Higgs boson production by treating λhhh as
a momentum-dependent quantity entering the cross-section
calculation. In this context, it is important to note that the
di-Higgs invariant mass distribution typically peaks around√
p2 ∼ 400 GeV (see e.g. Ref. [88]) and then quickly falls

off (by several orders of magnitude) as
√
p2 increases. This

implies that the sizeable momentum dependence found for
larger values of

√
p2 only has a small impact on the total di-

Higgs boson production cross section. For the representative
value of

√
p2 = 400 GeV, i.e. around the peak of the di-

Higgs differential cross-section, the momentum-dependence
contributes positive shifts of 3.4% for the first THDM-I sce-
nario, 1.0% for the second THDM-I case, and 3.6% for the
TSMY=1 scenario. Furthermore, we observe that, in all three
considered scenarios, the imaginary part of λhhh remains
minute until

√
p2 � 350 − 400 GeV (i.e. until the di-top

threshold), and only reach sizeable values for
√
p2 well above

400 GeV, and thus far from the peak of the di-Higgs invari-
ant mass distribution. Consequently, we find that evaluating
λhhh at zero external momenta is a good approximation of the
full result for the scenarios considered here. We leave a more
detailed investigation of the impact of non-zero momenta in
di-Higgs production for future work. Moreover, we observe
that for the points with the most sizeable BSM deviations in
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Fig. 14 Left: Mass of the SM-like Higgs boson computed with SARAH/SPheno [74,89] at the one- and two-loop levels in the CMSSM as a
function of the SUSY scale parameter m0. Right: Same as the left panel, but results for the trilinear Higgs coupling are shown

κλ – such as the second THDM-I scenario – the relative mag-
nitude of the momentum-dependent effects are the smallest,
compared to the overall value of κλ. Similarly, the magnitude
of the imaginary part of λhhh , which originates dominantly
from the SM-like loop contributions, remains approximately
the same in Figs. 11 and 12 (apart from the additional thresh-
old at 1.4 TeV in Fig. 11). Thus, its relative size compared
to its real part diminishes for scenarios with larger κλ.

6.6 Use of anyH3 together with a spectrum generator: an
example in the MSSM

anyBSM can easily be interfaced with spectrum generator
tools. This is demonstrated in Fig. 14 for the constrained
Minimal Supersymmetric Standard Model (CMSSM). For
this example, we use SARAH/SPheno to generate the mass
spectrum for different values of the SUSY scale parameter
m0 (fixing the other BSM parameters via m0 = m1/2 =
−A0, tan β = 10, sgn(μ) = 1). The resulting predictions
for the mass of the SM-like Higgs boson are shown in the
left panel of Fig. 14: the solid curve shows the two-loop
results, while the dotted curves corresponds to the one-loop
result. The experimental value of ∼ 125 GeV is reached for
m0 ∼ 4.4 TeV in this example.

The loop-corrected mass spectrum computed withSARAH/
SPheno is then passed to anyH3 using the SLHA interface
(see Sect. 4.3). The resulting prediction for the trilinear Higgs
coupling is shown in the right panel of Fig. 14. The orange
curve shows the tree-level prediction, which is given in terms
of the tree-level Higgs mass (M2

h,tree � M2
Z cos2 2β) divided

by the electroweak VEV. The finite part of the genuine one-
loop corrections to the trilinear Higgs coupling, represented
by the green curve, is roughly of the same size as the tree-

level prediction. Adding both contributions (together with
the additional counterterm, external-leg, and tadpole contri-
butions), the full one-loop result is obtained (blue curve).
For m0 ∼ 4.4 TeV, for which M (2)

h ∼ 125 GeV, we find
λhhh � 180 GeV. This result is very close to the one-loop
SM value of ∼ 176 GeV. For comparison, we also show
in red the result of the effective lowest-order contribution
3M2

h/v, where Mh incorporates the corrections to the mass of
the SM-like Higgs boson up to the one-loop (red dotted curve)
or the two-loop level (red solid curve). These results, which
are quite close to the full one-loop result (within ∼ 10 GeV),
indicate that the bulk of the corrections toλhhh in the CMSSM
enters via the loop-corrected prediction to the mass of the
SM-like Higgs boson.

6.7 Non standard couplings

While Sect. 2 discusses specifically the calculation of the tri-
linear coupling of the SM-like Higgs boson, the program
anyH3 is in general able to calculate any trilinear self-
coupling λhi hi hi where the three external Higgs bosons are
the same. To demonstrate this feature we again consider the
real singlet extension of the SM, the SSM, and compute both
the SM-like Higgs coupling λhhh and the singlet coupling
λsss . For simplicity, we set the singlet–doublet mixing angle
to zero, α = 0, which leads to the tree-level expressions

λ
(0)
hhh = 3m2

h

v
, and (18a)

λ(0)
sss = 3m2

s

vS
− κS + 3

2

v2

v2
S

κSH , (18b)

where we fix the mass of the SM-like Higgs boson to mh =
125 GeV and allow the singlet mass ms to be either larger or
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Fig. 15 One-loop corrections to trilinear scalar self-couplings in the
SSM as a function of the tree-level singlet mass. Left: The SM-like
Higgs self-coupling. Right: The scalar singlet coupling for a fixed renor-
malisation scale, μR = mt (dash-dotted), and a dynamically chosen

scale, μR = (mt + ms)/2 (solid). Tree-level couplings are shown in
orange (dashed). Lower panels: Relative difference between one-loop
and tree-level predictions in percent

smaller than mh (see Appendix C.2 for more details about
the model). In this case the renormalisation of λhhh at the
one-loop order is identical to the SM. For the trilinear singlet
coupling, we choose to renormalise κS and κSH in the MS
and ms in the OS scheme. The renormalisation of the singlet
VEV vS involves contributions from the singlet tadpole ts .
anyH3 provides the necessary ingredients to compute the
one-loop prediction for λsss in the considered scenario.

Figure 15 shows the prediction for λhhh (left) and λsss
(right) for κS = 0, κSH = −400 GeV and vS = 200 GeV as
a function of the singlet mass ms in the interval 80 GeV ≤
ms ≤ 200 GeV. This corresponds to the scenario λS = 1
that has been studied in Ref. [40].9 The corrections to λhhh
reach up to 20% for small values of ms in this scenario.
For increasing ms the prediction for λhhh approaches the
one of the one-loop SM result. We find corrections to λsss
between −50 to +25% in the considered singlet mass range.
For non-zero soft-Z2-breaking parameters the result for λsss
depends on the chosen renormalisation scale (while λhhh
does not depend on the renormalisation scale since the MS
parameters κS and κSH do not enter the prediction for λhhh
at the tree-level). In order to demonstrate the dependence
on the renormalisation scale we calculate λsss for the two
options of using a fixed scale μR = mt and a dynamical
scale μR = (mt + ms)/2. We find that the difference in the
λsss prediction for these two scale choices is at least about
a factor 3 smaller than the overall size of the corrections for
most of the considered ms range. We have explicitly veri-
fied (besides the UV-finiteness of the result obtained with
anyH3) that λsss is independent of the renormalisation scale
for κSH = κS = 0.

9 In contrast to Ref. [40], we use vanishing external momenta in
this example. The theoretical constraints checked in Ref. [40] are not
affected by this choice.

7 Conclusions

Obtaining information about the trilinear Higgs coupling
λhhh is crucial for determining the shape of the Higgs poten-
tial and for gaining a better understanding of the nature of
the electroweak phase transition. BSM contributions to λhhh
can be large even for cases where all the couplings of the
detected Higgs boson to gauge bosons and fermions are very
close to the SM predictions. Thus, the comparison of the
theoretical predictions for λhhh in different models – taking
into account contributions at the quantum level – with the
available experimental constraints on λhhh plays an impor-
tant role for discriminating between the SM and extensions
or alternatives of it.

It is therefore the main purpose of the public Python
code anyH3, which we have presented in this paper, to pro-
vide precise predictions for λhhh in a wide variety of models.
anyH3, which is part of the broader anyBSM framework,
calculates the trilinear Higgs coupling in the SM and renor-
malisable BSM extensions of it at the one-loop level. For the
model input, the code supports the widely used UFO format.
This allows the user to easily extend the library of models
shipped alongside the code. Already 14 models are provided
in this library.

The code implements generic one-loop corrections which
are mapped to the respective UFO model. For renormalisa-
tion, semi-automatic routines allow the user to easily imple-
ment different renormalisation schemes. Besides calculating
the trilinear Higgs coupling, anyBSM also supports the cal-
culation of other quantities like scalar and vector boson self-
energies.

We have validated the results of anyH3 by explicit analyt-
ical cross-checks, various consistency checks (such as can-
cellation of UV divergences and decoupling of BSM contri-
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butions), and numerical cross-checks against known results
in the literature. Besides comparing with known results, we
have also presented new results for various models. In this
context we have investigated different aspects like renormali-
sation scheme dependence, non-decoupling effects, momen-
tum dependence, and negative trilinear Higgs couplings.

anyH3 can be used in the form of a Python mod-
ule, called from the command line, or accessed via a
Mathematica interface. All output quantities can either
be evaluated analytically or numerically. To evaluate the
required loop functions, anyH3 employs a link to the
COLLIER library, which is available as the independent
Python module pyCollier. Besides detailed examples
(including scripts to reproduce all plots in this paper), we
also provide an extensive online documentation.

The code base of anyBSM is not restricted to the calcula-
tion of λhhh , but can be easily extended to support the calcu-
lation of other observables like trilinear Higgs couplings with
different external scalars (i.e. of the form λi jk) or electroweak
precision observables. We leave this for future work.
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Appendix A: Definitions and conventions for the generic
results implemented in anyBSM

This appendix discusses the conventions employed in the
generic expressions within anyBSM (and anyH3) and how

to convert the conventions of an already existing UFO model
to match these. For generic vertices, which are used to obtain
general results for Feynman diagrams, the program closely
follows the conventions introduced in SARAH/SPheno [90],
which are equivalent to the definitions used by the option
InsertionLevel->{Generic} of FeynArts [68].
The UFO format, however, is much more general in the sense
that every vertex V defined by a list of fields consists of
two concurrent lists: a set of arbitrary Lorentz structures Li

and a set of arbitrary couplings C i . The decomposition of
V = L · C, however, is not unique and can differ between
different specificUFOmodels. The explicit choice of Lorentz
structures Li (which in turn fixes C for a given generic V ) for
all renormalisable couplings used within anyBSM is shown
in Table 3. If one wants to use anyBSM with a UFO model
which does not obey the conventions of Table 3, the com-
mand line tool anyBSM_import (cf. next section) can be
used to re-write all vertices of a given UFO model in terms
of the Lorentz structures in Table 3.

A.1 Conversion between different conventions

As an illustrative example of how to handle different con-
ventions, we consider the UFO implementation of the Inert-
Doublet-Model (IDM) that is available at the FeynRules
webpage as well as the UFO implementation which is
included in anyBSM and was generated with the help of
SARAH. The coupling between the neutral Goldstone boson
and the top/anti-top quarks is defined in the FeynRules
model as V = L ·C = [γ5 · −mt

v
]. This is obviously not com-

patible with the anyBSM conventions, in which all fermion
couplings are written in terms of left/right-handed projectors,
and anyBSM therefore would expect the vertex in the form
V = L · C = [PL · mt

v
, PR · −mt

v
]. Thus, running anyBSM

from within the directory of theFeynRules-generatedUFO
model will show the error message:

anyBSM ./InertDoublet_UFO
>> Take model from absolute path.
>> ERROR:unexpected lorentz structure
for vertex V_112 ([T, t, G0])!

In order to still make use of that UFO model, one can run the
converter:

anyBSM_import ./InertDoublet_UFO -s -o
./IDMconverted

which takes the path of the UFO model that should be con-
verted as first argument. The option-o ./IDMconverted
specifies the path the converted UFO model should be saved
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Table 3 UFO Lorentz structures
used in anyBSM for vertices
involving scalars Si , fermions
Fi , vectors Vμ

i , and ghosts Ui .

The four-momentum
p

μ j
i = ’P(j,i)’ in the

second and third columns is
carried by the field with the
label i in the first column. In this
table, γ μ denotes Gamma
matrices, gμν the metric tensor,
and PL ,R the left-/right-handed
projectors defined as
PL ,R = (1 ∓ γ5)/2

UFO vertex type V Lorentz structure(s) Li expected UFO Lorentz structure by anyBSM

S1S2S3 1 '1'

S1S2S3S4 1 '1'

F1F2S3 PL 'ProjM(2,1)'

PR 'ProjP(2,1)'

F1F2V
μ
3 γ μPL 'Gamma(3,2,-1)*ProjM(-1,1)'

γ μPR 'Gamma(3,2,-1)*ProjP(-1,1)'

S1V
μ
2 V ν

3 gμν 'Metric(2,3)'

S1S2V
μ
3 V ν

4 gμν 'Metric(3,4)'

S1S2V
μ
3 pμ

1 − pν
2 'P(3,1)-P(3,2)'

Vμ1
1 Vμ2

2 Vμ3
3

[
gμ2μ3 (pμ1

3 − pμ1
2 )

+gμ1μ3 (pμ2
1 − pμ2

3 )

+gμ1μ2 (pμ3
2 − pμ3

1 )
]

'-Metric(2,3)*P(1,2)+Metric(2,3)*P(1,3)
+Metric(1,3)*P(2,1)-Metric(1,3)*P(2,3)
-Metric(1,2)*P(3,1)+Metric(1,2)*P(3,2)'

Vμ1
1 Vμ2

2 Vμ3
3 Vμ4

4 gμ1μ2gμ3μ4 'Metric(1,2)*Metric(3,4)'

gμ1μ3gμ2μ4 'Metric(1,3)*Metric(2,4)'

gμ1μ4gμ2μ3 'Metric(1,4)*Metric(2,4)'

S1U2U3 1 '1'

U1U2V
μ
3 pμ

1 'P(3,1)'

pμ
2 'P(3,2)'

to. The option -s skips the conversion of vertices that are
not supported by anyBSM such as e.g. effective gluon-Higgs
couplings or other non-renormalisable couplings. The tool
will also write a tabular file into the new model directory con-
taining a mapping of vertices/couplings between the original
and the newly created UFO model, which can be printed to
the command line using the option -v. In the example of the
Goldstone-top coupling the output looks like:

+-------------+--------------------------------------------------+-----------------------------------------------------------+
| Vertex-Type | Old model [couplings(lorentz)] | New model [couplings(lorentz)] |
+-------------+--------------------------------------------------+-----------------------------------------------------------+
| ... | ... | ... |
+-------------+--------------------------------------------------+-----------------------------------------------------------+
| (T,t,G0) | V_112 ['GC_92(-ProjM(F2, F1) + ProjP(F2, F1))'] | V_109 ['GC_101(ProjP(F2, F1))', 'GC_102(ProjM(F2, F1))'] |
| | GC_92 = -(MT/v) | GC_102 = MT/v |
| | | GC_101 = -MT/v |
+-------------+--------------------------------------------------+-----------------------------------------------------------+

Note that in the original model the vertex (V_112) was
defined by only one coupling/Lorentz structure, while in the
new model it consists of a list of length two defining the left-
/right-handed couplings. A similar procedure is also applied
for couplings involving e.g. vector bosons (not shown here).

For a variety of models, we checked explicitly that the
prediction for λhhh obtained with anyH3 is numerically
identical when using the UFO model generated with SARAH
(which can directly be used with anyH3) as well as with
FeynRules after the use of the importer.10 For instance,

10 In most cases one still needs to adjust the (SM) input parameters
accordingly since both tools use different default values/relations for
them.

the U (1)B−L extended SM from the FeynRules model
database can be converted in the following way:

wget https://feynrules.irmp.ucl.ac.be
/raw-attachment/wiki/B-L-SM/B-L-N-4_UFO.2.zip
unzip B-L-N-4_UFO.2.zip
anyBSM_import B-L-N-4_UFO -o BmL -vv
anyBSM ./BmL

We have verified that the result obtained for λhhh with this
“converted” UFO model agrees with the one obtained with a
version of the UFO model that was generated with the help
of SARAH and built into anyBSM (cf. Appendix C.9), after
adjusting all input parameters.11

11 A detailed discussion on this comparison is contained in the online
documentation of the U (1)B−L model.
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A.2 Available topologies and generic diagrams

Diagrammatically, the calculation of λhhh (see Eq. (2)) can
be expressed in the form

λhhh =

︸ ︷︷ ︸
tree-level: λ

(0)
hhh

+ +

︸ ︷︷ ︸
one-particle irreducible: δ

(1)
genuineλhhh

+ +

︸ ︷︷ ︸
external leg corrections: δ

(1)
WFRλhhh

+

tadpoles: δ
(1)
tad. WFRλhhh+δ

(1)
tadpolesλhhh︷ ︸︸ ︷

+ +

︸ ︷︷ ︸
renormalisation: δ

(1)
CTλhhh

(19)

where the solid internal lines are meant to be placeholders
that are populated with all possible field-insertions (spin 0, 1/2

and 1) from a given UFO model upon running anyBSM. The
model-specific results are obtained in anyBSM by insert-
ing the Feynman rules into the result of the corresponding
generic diagram. It should be noted that the tadpole contri-
bution appears in both δ

(1)
tadpolesλhhh and δ

(1)
tad. WFRλhhh, and

that the tadpoles as well as the external-leg corrections can
optionally be turned off separately and instead be included
in δ

(1)
CTλhhh (see Appendices C.1.1 and C.2.2 for detailed dis-

cussions). Finite contributions from non-minimal countert-
erms, δ

(1)
CTλhhh, have been discussed in Sect. 2.1 and will

be discussed in more detail in Appendices C.1.1 and C.1.2.
One crucial input for the renormalisation are scalar one-point
functions,

tS = , (20)

as well as all bosonic two-point functions

�XY (p2) = +

+ , (21)

where S can be any scalar, and X, Y any scalar or vector
boson. The internal solid lines are analogous to those in (19).

Thus,anyBSM is at the moment able to calculate the scalar
one-, bosonic two-point, and scalar three-point functions of

any renormalisable QFT.

Appendix B: Implementing new models

In this Appendix, we briefly describe the different possibili-
ties and general strategies to createanyBSM-compatibleUFO
models. For detailed instructions and examples we refer to the
online documentation and the examples repository, respec-
tively.

Models in anyBSM are fully described using the UFO
standard [58,59]. The code requires the following UFO files
to be present in the model directory:

• particles.py – specifying the fields present in the
model,

• parameters.py – specifying all input parameters
(called “external” parameters) and “internal” parameters
which are computed in terms of the input parameters,

• lorentz.py– specifying all Lorentz structures appear-
ing in the model,

• couplings.py – specifying all couplings in terms of
the model parameters,

• vertices.py – specifying all vertices along with their
corresponding Lorentz structures and couplings.

Additional Python files which are normally distributed for
UFO models (e.g. function_library.py) are directly
incorporated into anyBSM and are therefore not
needed/ignored, cf. Appendix D.
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UFOmodels for anyBSM can be created using e.g.SARAH
[70–74] or FeynRules [58,91–93]. However, the anyBSM
package uses a specific convention for the Lorentz struc-
tures that are used in the derivation of generic results, cf.
Appendix A. These conventions are identical to those of
SARAH. For UFO models from other sources it is, however,
not guaranteed that all vertices are expressed in terms of the
Lorentz structures used in anyBSM. In such cases the tool
anyBSM_import, which is discussed in Appendix A.1, can
be used to test a given UFO model for compatibility with
anyBSM and to perform a conversion, if required.

Nevertheless, there are currently some limitations on the
models that can be used with anyBSM. The model

• must not contain any non-renormalisable couplings (i.e.,
they are ignored),

• needs to obey the conventions for Lorentz structures
listed in Appendix A (otherwise the model-converter
should be used), and

• should define all SM-like particles, either via their PDG
code as defined in Refs. [84,94,95] or by defining at least
one renormalisation scheme in the schemes.yml file
(see Sect. 4.4).

Additional current limitations are:

• no external coloured states for the calculation of λhi hi hi
are supported (i.e., the scalar state under consideration
must not be charged under SU (3)C ).

• No colour representations beyond 1, 3, 3̄, 8 are supported
for particles on internal lines.

• The automatic OS renormalisation of the electroweak
VEV (VEV_counterterm: OS in theschemes.yml)
is only implemented for models with an electroweak ρ

parameter that does not differ from one at lowest order,
see the discussion in Appendix C.1.2.

• For the caching (cf. Appendix E) to work, the couplings
defined in the filecouplings.py need to be in ascend-
ing order (GC_1, GC_2, …, GC_23, GC_24). Other-
wise only the caching of insertions should be used (set
anyBSM.caching = 1).

New models can be added simply by including the cor-
responding UFO model files (run through the converter
described above if necessary) in the models repository of
anyBSM. The location of this directory is specified in the
anyBSM configuration file which is written at the first start
of anyBSM after the installation, cf. Sect. 4.1. Both loca-
tions, the config-path and the models-path, can be issued as
follows

import anyBSM
from os import path

print('anyBSM config file: '
, path.join(

anyBSM.config.appdirs.
user_config_dir('anyBSM'),

'anyBSM_config.yaml'))
print('anyBSM model directory: ',
anyBSM.anyBSM.models_dir)

To get an up-to-date list of known models contained in
the model directory one can issue anyBSM -l within the
command-line. For a list of built-in models, one can also con-
sult the online documentation or visit the model repository
which contains more information about the specific models
and their implementation details. We also note that all under-
lyingSARAH or FeynRulesmodels, which have been used
to generate the built-in UFO models, are publicly available
in the examples repository.

Alternatively, new models that are unknown to anyBSM
(i.e. stored outside of the models directory) can be used
by providing the absolute/relative path to the UFO direc-
tory rather than just providing the model name (which is
determined by the name of the model directory) at the ini-
tialisation step or as the first argument of the command-line
tool.

For more information on how to implement a new model,
we refer to the online documentation.

Appendix C: Models currently provided in anyH3

In the following we review the models that are shipped along-
side anyBSM and anyH3 in the UFO format. However, it
should be stressed that the program is not restricted to this set
of BSM models (and the SM) but works with all UFO models
that fulfill the requirements described in Appendix B.

This appendix is organised as follows: In the first part
addressing the SM, Appendix C.1, we in particular discuss
the renormalisation of the trilinear Higgs coupling. In this
context we describe the renormalisation of the tadpole and
the VEV as well as the OS renormalisation of the mass of the
Higgs boson. An OS mass renormalisation is also used as the
default scheme in most of the BSM models discussed below
(explicit examples on how to implement other schemes will
also be given). In Appendices C.1 to C.10 we briefly describe
the models in terms of their Lagrangian densities and chosen
parametrisations as well as necessary conditions to achieve
the alignment limit (i.e., the limit in which the tree-level
couplings of the SM-like Higgs boson are identical to the
respective SM couplings). More detailed information about
the individual models can be found in the online documenta-
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tion and in the references therein. We emphasise once again
that throughout this appendix the quantity λhhh refers to the
trilinear Higgs coupling of the detected Higgs boson with a
mass of about 125 GeV.

C.1 The Standard Model (SM)

The SM Lagrangian used to generate the UFO model with
SARAH is given by:

LSM = Yd † · QLdR + Y e † · LLeR

+ Yu  · QLuR + h.c − V (0)
SM, (22)

V (0)
SM = μ2† + λ

2
|†|2. (23)

The Yukawa matrices Y i are assumed to be diagonal for sim-
plicity (i.e. the CKM matrix is unity). Their entries are traded
for the measured lepton and quark masses used as inputs in
the UFO model.

We continue with the discussion of the tree-level scalar
potential and its renormalisation. Assuming μ2 < 0, the
Higgs doublet of the SM obtains a VEV and is parametrised
at the minimum of the potential in terms of the physical Higgs
field h, the neutral (charged) Goldstone(s) G (G±) and the
VEV v,

 = 1√
2

( √
2G+

v + h + iG

)
. (24)

Dropping all terms involving G± or G, we can expand the
tree-level potential as

V (0)
SM ⊃ 1

2
μ2(v + h)2 + 1

8
λ(v + h)4

= 1

2
μ2v2 + 1

8
λv4 +

(
μ2 + 1

2
λv2

)
vh

+ 1

2

(
μ2 + 3

2
λv2

)
h2 + 1

2
λvh3 + 1

8
λh4. (25)

We choose to replace μ2 and λ by defining the tree-level
minimum th as well as the squared tree-level mass m2

h as
follows

th ≡ ∂V (0)
SM

∂h

∣∣∣∣∣
h=0

=
(

μ2 + 1

2
λv2

)
v,

m2
h ≡ ∂2V (0)

SM

∂h2

∣∣∣∣∣
h=0

= μ2 + 3

2
λv2. (26)

In terms of m2
h and th, the potential becomes

V (0)
SM ⊃ thh + 1

2
m2

hh
2 + m2

h − th/v

2v
h3 + m2

h − th/v

8v2 h4.

(27)

We introduce counterterms at one-loop order for the different
parameters and the Higgs field entering the tree-level scalar
potential as

th → th + δ
(1)
CTth,

m2
h → m2

h + δ
(1)
CTm

2
h,

v → v + δ
(1)
CTv,

h → Z1/2
h h = h

(
1 + 1

2
δ
(1)
CTZh

)
. (28)

Turning now to the trilinear Higgs coupling, we find at the
tree level that

λ
(0)
hhh = ∂3V (0)

SM

∂h3

∣∣∣∣∣
h=0

= 3(m2
h − th/v)

v
. (29)

Correspondingly, the vertex counterterm (including field
renormalisation) is given by

δ
(1)
CT, vertexλhhh = 3

v
δ
(1)
CTm

2
h − 3

v2 δ
(1)
CTth

−3

(
m2

h

v2 − 2th
v3

)
δ
(1)
CTv + 3

2

3(m2
h − th/v)

v
δ
(1)
CTZh .

(30)

At the one-loop order we use the parametrisation

λhhh = 3(m2
h − th/v)

v
+ δ

(1)
diag.λhhh + δ

(1)
CTλhhh, (31)

where δ
(1)
diag.λhhh contains the one-loop diagrammatic cor-

rections to the trilinear coupling (see the first two lines of
Eq. (19)), and

δ
(1)
CTλhhh ≡ δ

(1)
CT, vertexλhhh − 3

v2 δ
(1)
CTth . (32)

The second term in Eq. (32) arises from the counterterms that
are associated with the diagrammatic tadpole contributions as
described in Eq. (34) below. It turns out to have the same form
as the tadpole counterterm contribution in Eq. (30) arising
from the parametric dependence of λ

(0)
hhh on th .

The diagrammatic one-loop corrections in Eq. (31) are
decomposed as

δ
(1)
diag.λhhh = δ

(1)
genuineλhhh + δ

(1)
WFRλhhh + δ

(1)
tadpolesλhhh,

(33)

where δ
(1)
tadpolesλhhh refers to diagrams where a one-loop tad-

pole is attached to a Higgs-quartic coupling, i.e.

δ
(1)
tadpolesλhhh = λ

(0)
hhhh

(−1)

m2
h

δ(1)th = − 3

v2 δ(1)th . (34)
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Rather than expressing λhhh in terms of the tree-level Higgs-
boson mass and the VEV, we want to express it in terms
of physical inputs – namely the pole masses of the Higgs,
W, and Z bosons (Mh, MW and MZ ) as well as the fine-
structure constant αem(0) (and �α, see Eq. (58) below). In
practice, this can be done, either by performing conversions
of mass parameters or by applying the OS scheme to fix the
counterterms, with pole-mass relations of the form (using
here the sign conventions of anyBSM)

M2
h = m2

h + Re�(1),no tad.
hh (p2 = m2

h) + δ
(1)
CT,no tad.m

2
h

− 3

v
(δ(1)th + δ

(1)
CTth)

≡ m2
h + Re�(1)

hh (p2 = m2
h) + δ

(1)
CTm

2
h (35)

M2
V = m2

V − Re�T,(1)
VV (p2 = m2

V )

+ δ
(1)
CTm

2
V , (V = W, Z) (36)

where we distinguish between a self-energy �no tad., which
does not contain one-loop tadpole insertions, and the full one-
particle-irreducible (1PI) self-energy �. The transverse part
of the gauge-boson self-energies is defined from the general
decomposition

�
μν

VV ′(p) =
(
gμν − pμ pν

p2

)
�T

V V ′(p2) + pμ pν

p2 �L
V V ′(p2).

(37)

Demanding that the tree-level input masses equal the pole
masses, m2

i = M2
i , fixes the mass counterterms entering

δ
(1)
CTλhhh and δ

(1)
CTv in the OS scheme (see Appendix C.1.2

below). However, it is important to stress that, until this point,
we have not yet specified the renormalisation of the tree-level
minimum th and of the electroweak VEV. In the following
two sections we describe different possible treatments of the
tadpoles and the VEV.

C.1.1 Equivalence of different tadpole renormalisation
schemes

We now investigate different approaches for treating the tad-
poles in the SM. The general tadpole contribution to λhhh
including all possible sources of tadpoles in Eq. (31) reads:

λ
tadpoles
hhh = −3th

v2 − 6

v2 δ
(1)
CTth + δ

(1)
tadpolesλhhh

+ 3

v
δ
(1)
CT,tadpolesm

2
h

− 3m2
h

v2 δ
(1)
CT,tadpolesv − 3

2

3m2
h

v
δ
(1)
CT,tadpolesZh .

(38)

The first term in Eq. (38) originates from the tree-level tad-
pole contribution, cf. Eq. (29), the second term arises from
the vertex counterterm and the counterterms of the tadpole
diagrams as described above, the third term contains the one-
loop diagrammatic contributions to λhhh of tadpoles (see the
last diagram in the second line of Eq. (19)), cf. Eq. (34),
and the fourth term arises from possible tadpole contribu-
tions in the mass counterterm. The next-to-last term denotes
tadpole contributions to the VEV counterterm, while the last
term vanishes since tadpole contributions to the field renor-
malisation (which is purely diagonal in the SM) drop out in
the derivative w.r.t. the squared momentum. With Eq. (38) at
hand, we can now discuss different choices of renormalisa-
tion schemes which amount to different relations/identities
of/for the individual parts in Eq. (38). In the following, we
restrict the discussion to the UV-finite parts of the various
counterterms since UV-divergences are universal, and the
UV-finiteness is not affected by the following discussions.12

Tadpole-free MS scheme (TMS)
A popular convention in e.g. Refs. [76,96,97] (this is

for instance the default choice for loop calculations in
SARAH/SPheno) is to employ MS renormalisation for the
tadpoles, δ(1)

CTth = 0, and to work at the minimum of the loop-
corrected potential, which is realised by demanding that the
total tadpole at one-loop order must vanish, i.e.

Th ≡ th + δ(1)th + δ
(1)
CTth = th + δ(1)th = 0, (39)

from which we can write

th = −δ(1)th = −∂V (1)

∂h

∣∣∣∣
min.

, (40)

where V (1) denotes the one-loop contributions to the effec-
tive potential. We note that this means that th is formally of
one-loop order. In addition, the VEV v is taken to be the
true minimum of the loop-corrected potential. Using this in
Eq. (38), we find at one-loop order the following total tadpole
contribution to λhhh,

λ
tadpoles
hhh

∣∣∣
TMS

(m2
h, v

2) = −3th
v2 + δ

(1)
tadpolesλhhh = 0, (41)

where we made use of Eqs. (34) and (40) in the last step. The
absence of the explicit dependence on any of the tadpoles
is why this scheme is frequently called the tadpole-free MS
renormalisation scheme (TMS).

However, to compare the result in this prescription with
the results obtained in a different renormalisation scheme, we
need to express λhhh(m2

h) – especially the tree-level piece –
in terms of physical observables (i.e., λhhh(M2

h )), sincem2
h is

12 We explicitly checked for UV finiteness separately.
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not at the pole of the propagator in this scheme. The relation
between the tree-level Higgs mass m2

h and the pole mass M2
h

in this scheme reads

m2
h = M2

h + δ(1)th
v

− �
(1),no tad.
hh (m2

h). (42)

Once inserted into the tree-level expression of λhhh this gives
an additional shift

3m2
h

v
= 3M2

h

v
+ 3

v2 δ(1)th − 3

v
�

(1),no tad.
hh (m2

h)

⇒λ
tadpoles
hhh

∣∣∣
TMS

(M2
h ,v

2)= λ
tadpoles
hhh

∣∣∣
TMS

(m2
h,v

2)
︸ ︷︷ ︸

=0

+ 3

v2 δ(1)th .

(43)

It should be noted that the counterterm contribution that is
associated with the Higgs VEV, which is assumed to be the
loop-corrected VEV in this scheme, does not explicitly intro-
duce any tadpole contribution to λhhh because no self-energy
diagrams with tadpole insertions are included in this scheme.

OS tadpole renormalisation (tOS)
An alternative treatment of the tadpoles was e.g. proposed

in Refs. [98–100], where the one-loop tadpole corrections to
the minimum of the tree-level potential (i.e., th = 0) are
required to be canceled by the tadpole counterterm such that
the one-loop corrected minimum corresponds to the tree-
level minimum (this is also often referred to as “OS tad-
pole condition” or “parameter renormalised tadpole scheme”
(PRTS)),

δ
(1)
CTth = −δ(1)th . (44)

This has e.g. the advantage that no tadpole contributions
explicitly contribute to the conversion between the MS and
OS pole masses and that in general all diagrammatic tadpole
contributions to any process are cancelled by the correspond-
ing tadpole-counterterm diagrams (but tadpole counterterms
furthermore appear in some other counterterms).

Using these ingredients in Eq. (38) (together with Eq. (34))
we find

λ
tadpoles
hhh

∣∣∣
t
OS(M2

h , v
2) = δ

(1)
tadpolesλhhh

− 6

v2 δ
(1)
CTth = + 3

v2 δ(1)th, (45)

which is identical to the result obtained in the TMS scheme,
cf. Eq. (43).

Note that we did not specify the scheme used for δCTv.

However, a cancellation of the one-loop genuine and coun-

terterm tadpole contributions will occur separately therein
due to the on-shell renormalisation of the tadpoles.

MS tadpole renormalisation at the tree-level minimum
(FJ)

Finally, we consider another scheme in which we again set
th = 0, but now renormalise the tadpoles in the MS scheme.
Concretely, we require that δCTth cancels (only) the divergent
part of δ(1)th but is zero otherwise. This scheme is equivalent
to the one known as the Fleischer-Jegerlehner (FJ) scheme
[77]. Returning to the master expression, Eq. (38), of λhhh
we have in this scheme

λ
tadpoles
hhh

∣∣∣
FJ

(m2
h, v

2) = δ
(1)
tadpolesλhhh

+ 3

v2 δ
(1)
CT,tadpolesm

2
h − 3m2

h

v2 δ
(1)
CT,tadpolesv. (46)

In this scheme we need to properly extract m2
h as well as the

VEV from their relation to physical observables including
tadpole contributions (since they are not cancelled by their
OS counterterms), which are then finally inserted into the
tree-level expression for λhhh . For simplicity, let us assume
now that we extract the VEV from its relation to the OS pole
mass of the Z boson MZ using MS values of the EW gauge
couplings,13

v(MZ ) ≡ 2√
g2

2 + g2
Y

MZ . (47)

With the FJ treatment of tadpoles, this results in a tadpole
contribution to the VEV counterterm that reads

δ
(1)
CT,tadpolesv = v(MZ )

2

δ(1)M2
Z

M2
Z

∣∣∣∣∣
tadpoles

. (48)

with

δ(1)M2
Z = Re�T,(1)

Z Z (MZ ) ⊃ 2

v

M2
Z

m2
h

δ(1)th . (49)

This yields for the tadpole contribution from the VEV coun-
terterm to the trilinear Higgs coupling

−3m2
h

v2 δ
(1)
CT,tadpolesv = − 3

v2 δ(1)th . (50)

In addition, we again need to make sure to expressm2
h in terms

of the pole mass M2
h , which we achieve by renormalising

it on-shell. With MS-renormalised tadpoles, the finite shift
relating the lowest-order Higgs boson mass to the pole mass

13 This is just for demonstration purposes. The default treatment of the
electroweak VEV in anyH3 is discussed in Appendix C.1.2.
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contains a tadpole contribution of the form +3/vδ(1)th . Thus
we find a shift to λhhh of the form +9/v2δ(1)th .

Summing all contributions involving the tadpoles, we find
a total of

λ
tadpoles
hhh

∣∣∣
FJ

(M2
h , v(MZ )) = (−3 − 3 + 9)δ(1)th

v2

= + 3

v2 δ(1)th, (51)

which is again in agreement with the two previous schemes.
In conclusion, the three tadpole schemes discussed here

yield the same finite contribution (up to higher-orders) to the
renormalised λhhh of the form +3/v2δ(1)th

∣∣
UV-finite, once we

take into account that for a proper comparison we need to
express all parameters in terms of physical observables. This
result is expected since the relation between the input param-
eters that are expressed in terms of physical observables and
the process of Higgs pair production corresponds to a relation
between physical observables for which the actual treatment
of the tadpoles must not matter.

Comparison of tadpole schemes and implementation in
anyH3

Given the equivalence of the tadpole schemes demon-
strated above, we are free to choose the most convenient
treatment. Since the UFO format in general does not contain
any information about the (tree-level) tadpoles, we choose the
FJ treatment per default, since here we have th = 0. While in
the equivalence proof above we re-wrote all tadpole-inserted
contributions in terms of tree-level couplings and propagators
multiplied by the one-loop one-point function, in the actual
code implementation we cannot automatically perform this
re-organisation of the calculation but instead we generate and
calculate all tadpole-inserted diagrams separately.

However, the aim of anyH3 is to be very flexible regard-
ing the choice of renormalisation schemes. Therefore, the
FJ scheme is only the default choice but the program easily
allows the user to restrict to genuine loop diagrams and to
add the tadpole contributions using a custom user-defined
counterterm.

For example, in the SM the default FJ and the alterna-
tive tOS scheme can be defined in the following way in the
schemes.yml file:

renormalization_schemes:
OS: # corresponds to FJ scheme

mass_counterterms:
h: OS

VEV_counterterm: OS

OStadpoles:
# corresponds to tOS scheme

mass_counterterms:
h: OS

VEV_counterterm: OS
tadpoles: False # do not compute

# tadpole-inserted diagrams
custom_CT_hhh: |

dTad = Tadpole('h')
self.custom_CT_hhh = f'-3*({dTad})
/(vvSM**2)'

where the “OS” scheme corresponds to the standard FJ
scheme while the “OStadpoles” scheme corresponds to
the tOS scheme and makes use of a custom counterterm
“custom_CT_hhh” which is precisely the tadpole contri-
bution that was derived above.14 In addition “tadpoles:
False” is used in the “OStadpoles” scheme to switch
off all tadpole contributions in the calculation of the other
counterterms, of self-energies, and of the loop correc-
tions to λhhh . The switch “VEV_counterterm: OS”
refers to the calculation of the VEV counterterm con-
tribution as described in the next section. It should be
stressed that both, the “VEV_counterterm” and the
“mass_counterterms” options, are compatible with
the “tadpoles: False/True” option. In the example
above this means that all 1PI self-energy diagrams, includ-
ing tree-level propagators with one-loop tadpole insertions,
are automatically taken into account in the scheme “OS”
but not in the scheme “OStadpoles” where, because of
the setting “tadpoles: False”, �no tad. is used for all
self-energies. Therefore, all tadpole contributions have to be
added manually when using “tadpoles: False” via the
“custom_CT_hhh” directive.

The two different schemes can easily be compared numer-
ically as follows:

from anyBSM import anyH3
SM = anyH3('SM', scheme_name='OS')
lam_tMS = SM.lambdahhh()['total']
SM.load_renormalization_scheme('OStadpoles')
lam_tOS = SM.lambdahhh()['total']
print(lam_tMS-lam_tOS)
>>(-2.842170943040401e-14+0j)

which shows perfect agreement within the numerical accu-
racy. We note that all other parameters in this example are
renormalised in the OS scheme. If this is not the case, then a
conversion has to be performed, resulting in numerical dif-
ferences – see the discussion in Sect. 6.1.

For numerical studies, a possible drawback of the FJ
scheme is that is can suffer from numerical instabilities due

14 Note that the function Tadpole(’h’) computes the 1-point func-
tion, −δ(1)th, in the notations of the discussion above.
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to large numerical cancellations. In Appendix C.3, we show
with a THDM example that the code is not affected by this
issue in the phenomenologically relevant parameter region.
However, as discussed in Sect. 6.2, if conversions of param-
eters are performed, we recommend to use an OS scheme for
the tadpoles, whenever this is technically feasible, in view of
the better behaviour of the perturbative series that this choice
exhibits.

C.1.2 Vacuum expectation value renormalisation from OS
quantities

In the previous discussion we used MS gauge couplings in the
context of the extraction of the VEV within the FJ scheme.
However, for practical reasons a direct determination of v in
terms of measured quantities is desirable. Solving the tree-
level relation between the electromagnetic charge e, the vec-
tor boson masses MZ/W , the weak mixing angle sθw ≡ sin θw

and the VEV v,

e = √
4παem = gY g2√

g2
Y + g2

2

= 2MW

v
sθw

= 2MW

v

√

1 − M2
W

M2
Z

, (52)

for the electroweak VEV v, we can define the VEV in terms
of the measured OS values of αem(0) (with e = √

4παem(0)),
MW , and MZ as

vOS ≡ 2MW

e

√

1 − M2
W

M2
Z

. (53)

The counterterms for the parameters entering this relation are
defined as

δ(1)M2
V

M2
V

= Re�T,(1)
VV

M2
V

(p2 = M2
V ), (V = W, Z) , (54a)

δ(1)e

e
=

(
1

2
�(1)

γ (p2 = 0) + sng(sθw )
sθw

M2
Z cθw

�
T,(1)
γ Z (p2 = 0)

)
,

(54b)

where the term sng(sθw ) ensures that the sign convention
in the covariant derivative is taken into account correctly –
indeed a change in the sign with which the covariant deriva-
tives are defined results in a sign flip in the sign of the weak
mixing angle, and both sign conventions exist in the liter-
ature and can be employed when creating UFO model files.
The transverse part of massive vector self-energies is defined
in Eq. (37), while for the photon self-energy we have

�μν
γ (p2) = (p2gμν − pμ pν)�γ (p2)

=
(
gμν − pμ pν

p2

)
�T

γ (p2) + pμ pν

p2 �L
γ (p2). (55)

The resulting VEV counterterm in the OS scheme reads

δ(1)vOS

vOS = δ(1)M2
W

2M2
W

+ cos2 θw

2 sin2 θw

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)

−δ(1)e

e
, (56)

from which we can also relate vOS and vMS. In Eq. (54b), the
photon vacuum polarisation �γ (0) is split into three contri-
butions:

∂�T
γ (p2)

∂p2

∣∣∣∣∣
p2=0

≡ �γ (0) = �γ (0)
∣∣
heavy + �γ (0)

∣∣
light

= �γ (0)
∣∣
heavy + �γ (0)

∣∣
light −

Re�T
γ (M2

Z )

∣∣∣
light

M2
Z︸ ︷︷ ︸

≡�α

+
Re�T

γ (M2
Z )

∣∣∣
light

M2
Z

= �γ (0)
∣∣
heavy +

Re�T
γ (M2

Z )

∣∣∣
light

M2
Z

+ �α, (57)

where �γ (0)
∣∣
heavy contains contributions from heavy fermions

as well as all bosonic contributions and where Re�T
γ (M2

Z )

∣∣∣
light

is the transverse part of the photon self-energy consider-
ing only the light degrees of freedom of the SM, i.e. all
leptons and the five light quarks. The contribution of the
light fermions to the vacuum polarisation, �γ (0)|light, would
develop infra-red (IR) divergences in the limit of vanish-
ing fermion masses. Thus, its contribution is absorbed in the
quantity �α, defined as

�α = �α
(5)
had. + �αlep. = 0.02766 + 0.031497687, (58)

where �α
(5)
had is extracted experimentally [101], while �αlep.

was computed in Ref. [102]. Note that this value can also be
changed using the UFO format, cf. Appendix D. The evalu-

ation of Re�T
γ (M2

Z )

∣∣∣
light

as well as of the heavy field con-

tributions to the photon vacuum polarisation, �γ (0)|heavy, is
straightforward and numerically stable.

From Eq. (56), it can also be seen that the tadpole
contribution in this treatment of the VEV is identical to
the one chosen in the discussion of the FJ scheme in
Appendix C.1.1: the tree-level couplings between the Higgs
boson and the massive vector bosons normalised to their
squared masses are universal (i.e. the same for W and
Z) such that the tadpole contribution to δ(1)M2

W /M2
W and

δ(1)M2
Z/M2

Z are identical. Thus the tadpole shift is only
caused by v�T

WW (M2
W )/(2M2

W ) in this scheme, which is
identical to the one in Eq. (48) up to higher-order correc-
tions.
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C.2 The SM with a real singlet (SSM)

The most general potential that couples a real scalar gauge
singlet S to the SM reads

V (, S) = μ2||2 + λH

2
||4

︸ ︷︷ ︸
V

+ m2
S

2
S2 + κS

3
S3 + λS

2
S4

︸ ︷︷ ︸
VS

+ κSH S||2 + λSH

2
S2||2

︸ ︷︷ ︸
VS

. (59)

This model is implemented in the SARAH package under the
name SSM. This implementation was used to create the UFO
files after adapting the conventions for the input parameters
of the SM sector, as well as those discussed in the follow-
ing, to the anyH3 conventions. After spontaneous symmetry
breaking, the CP-even component of the Higgs doublet and
the singlet are assumed to acquire VEVs,

S = s + vS and  = 1√
2

( √
2G+

v + h + iG

)
. (60)

The fields s and h mix to two CP-even eigenstates h1,2 with
masses mh1 < mh2 :
(
m2

h1
0

0 m2
h2

)
= R−1(α)m2R(α), R(α) =

(
cα sα

−sα cα

)
,

(61)

where cx ≡ cos x and sx ≡ sin x . We eliminate the parame-
ters μ2 and m2

S using the tree-level tadpole equations

0 = ∂V

∂h
= μ2v + vvSκSH + λSH

2
vv2

S + λH

2
v3, (62a)

0 = ∂V

∂s
= v2

2
κSH + m2

SvS + v2vS

2
λSH + 2v3

SλS + v2
SκS,

(62b)

which yields the following squared mass matrix:

m2 =
(

v2λH v(κS + λSHvS)

v(κS + λSHvS) vS(4λSvS + κS) − κSv
2

2vS

)
. (63)

Furthermore, we choose to eliminate the three dimensionless
parameters λH , λS, λSH in favour of the two masses m2

h1,2
and the mixing angle α:

λH = 1

2v2

(
m2

h1
+ m2

h2
+ (m2

h1
− m2

h2
) cos(2α)

)
,

(64a)

λS = 1

8v2
S

(
κSHv2 + vS(m

2
h1

+ m2
h2

− 2vSκS)

−(m2
h1

− m2
h2

)vS cos(2α)
)

, (64b)

λSH = 1

2vvS

(
(m2

h1
− m2

h2
) sin(2α) − 2vκSH

)
, (64c)

tan(2α) = 2(m2)12

(m2)11 − (m2)22

= 4vvS(κSH + vSλSH )

v2κSH − 2vS(4v2
SλS + vSκS − v2λH )

. (64d)

Consequently, the scalar sector of the model is determined
by the following input parameters:

mh1, mh2 , κS, κSH , α, vS, MW , MZ , αem . (65)

At tree level, the expressions of the trilinear self-couplings
of the two CP-even states read

λh1h1h1 = −κSs
3
α + κSH

3vs2
α(vsα − 2vScα)

2v2
S

+ 3m2
h1

(
c3
α

v
+ s3

α

vS

)
,

λh2h2h2 = −κSc
3
α + κSH

3vc2
α(vcα + 2vSsα)

2v2
S

+ 3m2
h2

(
c3
α

vS
− s3

α

v

)
. (66)

In the limit κS, κSH → 0, the model obeys a spon-
taneously broken Z2 symmetry and only adds three BSM
parameters (the Z2 breaking VEV, one mass as well as one
mixing angle) to the SM parameters. For more detailed infor-
mation about the model file generation we refer to the exam-
ples repository.

C.2.1 Alignment

The alignment limit, in which all tree-level couplings of h1

to the SM sector (including the trilinear Higgs coupling)
become identical to those of the SM, is achieved by choosing:

α = 0. (67)

However, in this limit the coupling λSH is still non-zero and
thus the one-loop prediction for λhhh = λ

(1)
hi hi hi

can differ
from the SM prediction. Note that the SM-like Higgs boson
can in principle be either h1 or h2, see for instance the dis-
cussion of Fig. 15. In the following discussion we assume
without loss of generality that h1 = h is the SM-like and
h2 = s is the singlet-like Higgs boson.

C.2.2 Renormalisation

In the following we briefly describe the default renormali-
sation conditions in the (BSM) Higgs sector that have been
implemented in theschemes.ymlfile. It should be empha-
sised that this choice is not fixed and can be changed by the
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user. Note also that in the following (as well as for the dis-
cussion of renormalisation in other models), we omit the
superscript (1) and subscript CT on counterterms, as there
should be no risk of confusion.

δv and δm2
h1

: The mass of the SM-like Higgs boson as
well as the electroweak VEV are renormalised as in the SM.
Thus the user can choose to renormalise them OS or MS.

δm2
h2

: The mass of the singlet-like Higgs boson,m2
h2

, does
not enter the tree-level prediction of λh1h1h1 (see Eq. (66)),
and therefore is not required to be renormalised at the con-
sidered loop order.

δvS: From the one-loop RGEs one can infer that the singlet
VEV does not receive a UV-divergent counterterm at the one-
loop order. As a simple cross-check of anyH3, we diagram-
matically verified this fact. Therefore the singlet VEV coun-
terterm does not introduce a renormalisation scale depen-
dence in λ

(1)
h1h1h1

. Thus, we could choose not to renormalise
vS . However, due to the chosen default FJ renormalisation
scheme in anyH3 for all appearing tadpoles (meaning that
vS is the VEV of the tree-level potential) we can also con-
sider a finite shift to the singlet VEV which ensures that it
corresponds to the minimum of the loop-corrected potential:

δvS = cos α
δ(1)th2

m2
h2

+ sin α
δ(1)th1

m2
h1

. (68)

δα and δZh1h2 : The default choice in anyH3 is to
calculate all external leg corrections at the given external
momenta, which are set to zero by default. Thus, per default
a fully OS wave-function renormalisation which properly
removes the mixing between external states is not used.
This is the default “OS” scheme (denoted “OS” because
the SM-sector is still renormalised on-shell) defined in the
schemes.yml file:

OS:
description: OS masses and singlet VEV
SM_names:

Higgs-Boson: h1
VEV_counterterm: OS
mass_counterterms:

h1: OS
custom_CT_hhh: |

# Tadpole contribution to
# singlet vev
dvS = f"-( cos(alphaH)*({Tadpole
('h2')})/Mh2**2 \

+ sin(alphaH)*({Tadpole('h1')})
/Mh1**2 )"

dlambda_dvS = Derivative(lambdahhh_
tree, 'vS')
self.custom_CT_hhh = f'+({dlambda_
dvS})*({dvS})'

In the example above the counterterm dvS corresponds
to Eq. (68), while Derivative(lambdahhh_tree,
’vS’) takes the derivative of the tree-level prediction
for λh1h1h1 w.r.t. vS . The final result of the countert-
erm contribution again needs to be saved in the variable
self.custom_CT_hhh, since this variable is internally
used by anyH3. In this default scheme, α is renormalised in
the MS scheme.

For demonstration purposes, we also implemented a non-
minimal renormalisation scheme based on the OS scheme
used in Ref. [103] for heavy Higgs decays. This version of
the OS scheme fixes the mixing angle counterterm to

δα = 1

2

�h1h2(p
2 = m2

h1
) + �h1h2(p

2 = m2
h2

)

m2
h2

− m2
h1

. (69)

The corresponding renormalisation scheme in the schemes
.yml file is called “OSmixing”:

OSmixing:
description: OS masses, singlet
VEV and mixing angle/external legs
SM_names:

Higgs-Boson: h1
VEV_counterterm: OS
wfrs: False # turn off all
# WFR diagrams
mass_counterterms:

h1: OS
custom_CT_hhh: |

# OS counterterm contribution of the
# mixing angle
dalphaH = f"({Sigma('h1','h2',
momentum='Mh1**2')}\

+ {Sigma('h2','h1',
momentum='Mh2**2')})
/(2*(Mh2**2-Mh1**2))"
dlambda_dalpha = Derivative
(lambdahhh_tree, 'alphaH')
self.custom_CT_hhh =
f'({dalphaH})*({dlambda_dalpha})'

# OS Z-factor contribution
lam112 = self.getcoupling('h1','h1',
'h2')['c'].value
dZ21 = f"+3*({Sigma('h2','h1',
momentum='Mh1**2')})/
((Mh1**2 - Mh2**2))"
self.custom_CT_hhh +=
f'+complex(0,1)*({dZ21})*
({lam112})'
self.custom_CT_hhh += f"+3/2*
({lambdahhh_tree})*
({Sigmaprime('h1')})"
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# Tadpole contribution to singlet
# vev
dvS = f"-(cos(alphaH)*
({Tadpole('h2')})/Mh2**2 \

+ sin(alphaH)*({Tadpole(
'h1')})/Mh1**2 )"

dlambda_dvS = Derivative
(lambdahhh_tree, 'vS')
self.custom_CT_hhh +=
f'+({dlambda_dvS})*({dvS})'

Note the additional entry wfrs: False which turns
off the automatic calculation of all external-leg corrections
(which defaults to p2 = 0). Instead they have been added in
the custom_CT_hhh-section using on-shell momenta for
all three external legs.

δκS and δκSH : The soft-Z2-breaking parameters are
renormalised in the MS scheme. Thus, the trilinear Higgs
self coupling of the SM-like Higgs boson is given purely in
terms of OS parameters if we work in theZ2-symmetric limit
where κS, κSH → 0.

We have explicitly verified that in this limit the result
obtained in the “OSmixing” scheme is manifestly renormali
sation-scale independent. We also provide a Mathematica
notebook in the examples repository which explicitly demon-
strates the UV finiteness of this scheme using the
Mathematica interface of the anyBSM code.

C.3 The Two-Higgs-Doublet Model (THDM)

For the description of our implementation of the THDM we
proceed along similar lines as for the SSM. The tree-level
scalar potential of the built-in CP-conserving THDMs reads

VTHDM = μ2
1|1|2 + μ2

2|2|2 + λ1|1|4 + λ2|2|4
+λ3|1|2|2|2 + λ4|†

12|2

+
(

1

2
λ5(

†
12)

2 + m2
12

†
12 + h.c.

)
. (70)

This potential obeys a Z2 symmetry (1 → 1,2 →
−2), which is softly broken by the m2

12 term. Even though
the different types in the Yukawa sector [104–106] play only
a minor role in the prediction of λhhh, we implemented for
convenience four distinct models corresponding to type-I,
type-II, type-X and type-Y (the latter two types are also often
called type III and type IV, or flipped and lepton-specific) –
see Ref. [107] for a review.

After spontaneous symmetry breaking, the two doublets
obtain the VEVs v1,2 with v2/v1 = tan β. The mixing between
the two CP-even states is described by the parameter α. We
eliminate μ2

1 and μ2
2 using the tadpole equations and we trade

λ1,2,3,4,5 for the masses of the two CP-even Higgs masses
mh1,2 , the CP-odd Higgs mass mA, the charged Higgs mass

mH± , as well as the mixing angle α. Thus, the chosen (BSM)
input parameters are:

mh1, mh2 , mA, mH± , M, tan β, sin(β − α),

with M2 = − m2
12

cos β sin β
. (71)

For more detailed information we refer to the online docu-
mentation and the examples repository.

C.3.1 Alignment

The alignment limit of the THDM is achieved if the elec-
troweak vacuum expectation value is aligned with the SM-
like Higgs boson. If the lightest CP-even state is SM-like,
this is achieved by setting sin(β − α) = 1; if the heavier
CP-even state is SM-like, cos(β − α) = 1 corresponds to
the alignment limit.

C.3.2 Renormalisation

The renormalisation schemes provided for the THDM are
similar to the SSM. The default scheme only renormalises the
SM sector OS, while for the mixing angles the MS scheme
is used. As an additional option, which we employed for
checking UV finiteness, we provide a scheme which uses
an OS mixing angle as in the SSM, cf. Eq. (69). Further-
more, an OS counterterm for tan β can be either defined via
the charged Higgs/Goldstone self-energies or via the self-
energies of the pseudoscalar Higgs/Goldstone bosons. Since
the two schemes differ by finite contributions, we have imple-
mented both of them. The parameter M is always renor-
malised in the MS scheme.

A complete list of all renormalisation schemes defined in
the schemes.yml file can be accessed by e.g. calling the
list_renormalization_schemes() function:

from anyBSM import anyBSM
THDM = anyBSM('THDMII')
THDM.list_renormalization_schemes()

or by consulting the online documentation.
In the alignment limit (see Appendix C.3.1), the tree-level

prediction for λ
(0)
hhh is identical to the SM (cf. Appendix C.1),

which means that λhhh can be fully expressed in terms of
SM OS quantities in this case. Thus the tOS and the FJ
schemes will formally yield the same result, as discussed in
Appendix C.1.1. However, the FJ scheme is known to be per-
turbatively unstable due to large cancellations between dif-
ferent tadpole-inserted diagrams. To assess potential instabil-
ities, we also implemented the tOS scheme in the alignment
limit.
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Fig. 16 Comparison of the λhhh calculations using the tOS and FJ schemes in the THDM. Left: λhhh as a function of M for
√
m2

 − M2 = 200 GeV.

Right: Relative difference in percent of λhhh calculated in the FJ and the OS-tadpole scheme for different values of
√
m2

 − M2

In the left panel of Fig. 16, we compare the numeri-
cal prediction for λhhh in the THDM-II using the tOS and
FJ schemes for a specific scenario with sin(β − α) = 1,

tan β = 2, and mH± = mA = mh2 ≡ m = √
M2 + �2

(with � = 200 GeV) as a function of M. In this parametri-
sation, it is expected that the BSM contributions decouple
in the limit M 
 v, where the BSM states become heavy
and mass-degenerate, and that the THDM result converges
towards the SM result (black line). This is indeed observed
for both schemes near the scale M = 103 − 104 GeV. One
can see that as long as M � 105 GeV – well within the decou-
pling region – the tOS scheme (orange-dotted) agrees very
well with the FJ scheme (blue-solid line). For M � 105 GeV,

numerical instabilities start to develop in the FJ scheme.
In the right panel of Fig. 16, we show the relative differ-

ence in λhhh between the two schemes for various values of
�. Even for very large couplings close to the unitarity limit
(where the latter is reached for � � 400 GeV), implying
very large loop corrections for M ∼ v, the behaviour is very
similar. Hence, we can conclude in general that the use of the
(default) FJ scheme is not affected by numerical instabilities
as long as all scalar masses are lighter than 100–1000 TeV.
As discussed above, numerical instabilities can still appear
if a scheme conversion of the input parameters is performed.

C.4 The Inert-Doublet Model (IDM)

The IDM is a variant of the THDM in which theZ2 symmetry
is imposed exactly. Its potential is for this reason identical to
that of the THDM, with the exception that m2

12 vanishes:

VIDM = VTHDM|m2
12=0 . (72)

After spontaneous symmetry breaking we only allow the SM-
like Higgs doublet to obtain a VEV, 〈1〉 = v/

√
2, but not

the second doublet, 〈2〉 = 0, because the Z2 symmetry is
exact. We again eliminate μ2

1 using the tadpole equation as
well as write λ1,3,4,5 in terms of the scalar masses and μ2

2.

Thus, the input parameters of the scalar potential are:

mh1, mh2 , mA, mH± , μ2
2 and λ2, (73)

with

m2
h1

= λ1v
2,

m2
h2

= μ2
2 + 1

2
(λ3 + λ4 + λ5)v

2,

m2
A = μ2

2 + 1

2
(λ3 + λ4 − λ5)v

2,

m2
H± = μ2

2 + 1

2
λ3v

2. (74)

For more information about the model we refer to the online
documentation.

C.4.1 Alignment

Since the CP-even Higgs bosons do not mix in this model,
the tree-level couplings of the SM-like Higgs boson are auto-
matically equal to the respective SM couplings.

C.4.2 Renormalisation

The tree-level prediction of λhhh in this model is always iden-
tical to the SM. Hence, we only need to fix the renormalisa-
tion conditions for the SM parameters at the one-loop order
as discussed in Appendix C.1.
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C.5 The THDM with a real singlet (NTHDM)

The Higgs sector of the NTHDM consists out of two SU (2)L
doublets 1,2 and a real singlet S. In the model file, the
discrete symmetries

Z2 : 1 → 1, 2 → −2, S → S, (75)

Z
′
2 : 1 → 1, 2 → 2, S → −S (76)

are imposed. Then, the most general potential reads15

V (1,2, S) = m2
11

†
11 + m2

22
†
2

− (m2
12

†
12 + h.c.)

+ λ1

2
(

†
11)

2 + λ2

2
(

†
22)

2 + λ3(
†
11)(

†
22)

+ λ4(
†
12)(

†
21) + λ5

2

[
(

†
12)

2 + h.c.
]

+ m2
S S

2 + λ6

8
S4 + λ7

2
(

†
11)S

2 + λ8

2
(

†
22)S

2.

(77)

After spontaneous symmetry breaking, the CP-even compo-
nents of the Higgs doublet ρ1,2 and the singlet ρS mix with
each other. The mixing matrix is defined as

R =
⎛

⎝
cα1cα2 sα1cα2 sα2

−sα1cα3 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

sα1sα3 − cα1sα2cα3 −cα1sα3 − sα1sα2cα3 cα2cα3

⎞

⎠ ,

(78)

where α1,2,3 are the three mixing angles. Then,

⎛

⎝
h1

h2

h3

⎞

⎠ = R

⎛

⎝
ρ1

ρ2

ρS

⎞

⎠ (79)

The mixing angle of the CP-odd and charged components
of the Higgs doublets is β (with tan β = v2/v1), like in
the THDM. The Yukawa sector of the model provided with
anyH3 is defined as a type-II Yukawa sector. For more details
about the NTHDM, see e.g. Ref. [108].

C.5.1 Alignment

One way to achieve SM-like couplings for h1 is by choosing
[65]

α1 = β, α2 = 0, and α3 = 0, (80)

15 We note that the off-diagonal mass term m2
12 is defined here with

the opposite sign compared to its counterpart in the THDM (the latter
follows the convention in the SARAH model files).

while the same limit can be obtained for h2 with

α1 + α3 = β − π/2, and α2 = π/2. (81)

C.5.2 Renormalisation

For the NTHDM, only the default renormalisation (i.e., OS or
MS conditions for the boson masses and the VEV as well as
MS for the mixing angle), is available in the in-built model so
far. However, a generalisation of the OS scheme to the mixing
angles in the NTHDM has been performed in e.g. Ref. [65]
and could in principle be implemented straightforwardly in
the schemes.yml of the model if needed.

C.6 The SM with a real triplet (TSMY=0)

The most general potential which couples a real scalar
SU (2)L triplet T with hypercharge YT = 0 to the SM reads

V (, T ) = μ2||2 + λ

2
||4 + M2

T

2
|T |2

+λT

2
|T |4 + κT†T̂ + λT

2
|T |2||2, (82)

with

T̂ = σaT
a =

⎛

⎝
t0√

2
t+

t− − t0√
2

⎞

⎠ , (83)

where σa are the Pauli matrices. After spontaneous symme-
try breaking, the neutral triplet component may acquire a
VEV t0 → t0 + 2−1/2vT analogous to the neutral doublet
component ()0 → 2−1/2(h + v). The tree-level mixing
between the fields t0 and h is solely controlled by the param-
eters vT and κT. However, since the triplet is charged under
the SU (2)L group, it contributes to the W±-boson mass via
gauge-kinetic terms,

M2
W± = g2

2

(
v2

4
+ v2

T

2

)
, (84)

but not to the Z -boson mass. Therefore the ρ parameter
already differs from one at the tree level, which tightly con-
straints the ratio vT/v. For these small values of vT/v, the
dependence of λhhh on vT is negligible. For this reason, we
consider a VEV-less triplet: vT = 0.

Considering the tadpole equations in the VEV-less limit,

2M2
T vT + λTv2vT + λT v3

T − κTv2 = 0, (85a)

μ2v + λv3

2
− κTvvT

2
+ λTvv2

T

4
= 0, (85b)

we recover the SM tadpole condition and κT = 0. Thus we
have
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κT = vT = 0. (86)

The charged Higgs boson mass matrix has a particular simple
form in the limit of Eq. (86),

m± =
(
M2

W ξW 0

0 M2
T + λTv2

2

)
=

(
m2

G+ 0
0 M2

H+

)
, (87)

such that we can eliminate M2
T in favour of the charged Higgs

boson mass

M2
T = M2

H+ − v2λT

2
. (88)

This gives an implicit bound on the input parameters λT <
2M2

H+/v2 in order to preserve the structure of the tree-level
vacuum.

The neutral Higgs boson mass matrix is also already diag-
onal in the limit of Eq. (86),

m0 =
(

λv2 0

0 M2
T + λTv2

2

)
≡

(
m2

h 0
0 M2

H+

)
. (89)

This means that the additional neutral Higgs boson is degen-
erate in mass with the charged Higgs boson. Additionally,
there is no mixing between the SM and the triplet field imply-
ing that the trilinear Higgs coupling is identical to the SM
at tree level. However, at the one-loop order the parameters
λT and MH+ induce BSM corrections to λhhh .

C.6.1 Alignment

Similar to the IDM, the VEV-less version of all triplet exten-
sions are also automatically aligned with the SM concerning
all SM-like Higgs boson interactions.

C.6.2 Renormalisation

All couplings of the SM-like Higgs boson in this model are
as in the SM at tree-level. Consequently, the renormalisation
follows the description in Appendix C.1.

C.7 The SM with a complex triplet (TSMY=1)

The discussion of the complex triplet extension closely
follows that for the real triplet extension. Instead of a
hypercharge-less triplet, we add a triplet � with Y = 1,
which leads to the following potential:

V (,�) = m2† + M2Tr(�†�)

+ λ1(
†)2 + λ2

[
Tr(�†�)

]2 + λ3
[
Tr(�†�)2]

+ λ4(
†)Tr(�†�) + λ5

†��†. (90)

We again demand that the triplet does not take part in elec-
troweak symmetry breaking. Thus, there is no mixing in the
CP-even sector. The mass parameter m2 is eliminated using

the SM-like tadpole condition. Then, the tree-level Higgs
boson masses are given by

m2
h = 2λ1v

2, (91)

m2
χ = m2

D0 = M2 + 1

2
(λ4 + λ5)v

2, (92)

m2
D± = M2 + 1

4
(2λ4 + λ5)v

2, (93)

m2
D±± = M2 + 1

2
λ4v

2. (94)

We use mD± , mD±± , and the couplings λ2,3,4 as BSM input
parameters. All couplings of the SM-like Higgs boson in this
model are as in the SM at tree-level. Therefore the renormal-
isation is treated as in the TSMY=0 and the IDM. For more
details about the Y = 1 inert triplet model, see e.g. Ref. [48].

C.8 The Georgi–Machacek model (GM)

The Georgi–Machacek model is a triplet extension of the
SM, which – in contrast to the previously discussed triplet
extensions – respects the custodial symmetry of the SM at
tree-level and therefore has a tree-level ρ parameter of one.
The model adds one complex and one real triplet, respectively
denoted ξ and η, to the SM scalar sector. The doublet and the
triplets are effectively re-written in terms of one bi-doublet 
and one bi-triplet X transforming under the custodial group
SU (2)L × SU (2)R :

 =
(

φ0∗ φ+
−φ− φ0

)
, X =

⎛

⎝
ξ0∗ η+ ξ++
−ξ− η0 ξ+
−ξ−− −η− ξ0

⎞

⎠ . (95)

The most general potential that is manifestly invariant under
SU (2)L × SU (2)R reads [109]

VGM = μ2

2
Tr † + M2

X

2
Tr X†X

+ λ1

2

(
Tr †

)2 + λ2

(
Tr †

) (
Tr X†X

)

+ λ3Tr
(
X†X

)2 + λ4

(
Tr X†X

)2

− λ5

(
Tr †σ aσ b

) (
Tr X†ta Xtb

)

−
[
M1

(
Tr †σ aσ b

)

+M2

(
Tr X†ta Xtb

)] (
UXU †

)

ab
(96)

with the rotation matrix U

U =
⎛

⎜⎝
− 1√

2
0 1√

2
− i√

2
0 − i√

2
0 1 0

⎞

⎟⎠ , (97)
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which transforms the bi-triplet X in terms of Cartesian field-
coordinates. The σi (ti ) are the SU (2) generators in the
adjoint (fundamental) representation. We provide two UFO
models which implement the two scenarios where either
M2

X < 0 or M2
X > 0.

In the first case the bi-triplet obtains a VEV vX that triggers
mixing between the doublet and the triplet states, i.e., the SM-
like Higgs will have a non-zero triplet component. We solve
the tadpole equation for the SM-like doublet to eliminate μ2.

The tadpole equation for the bi-triplet is used to eliminate M1

rather than M2
X , as

M1 = 4vX

v2
SM

[
M2

X + (2λ2 − λ5)v
2
SM

− 6M2vX + 4(λ3 + 3λ4)v
2
X

]
, (98)

which conveniently allows to take the alignment limit
M1, vX → 0 (while keeping vX/M1 finite). After spontaneous
symmetry breaking we trade λ1, λ2 and λ5 for the SM-like
Higgs mass, the triplet mass M3 and the fiveplet mass M5.

Thus, the input parameters of the BSM sector are

sin θH , M2, M3, M5, MX , λ3 and λ4,

with sin θH = 2
√

2vX
vSM

.

In the case of M2
X > 0, we have one tadpole equation

less. As a trade-off we automatically have sin θH = 0 (and
thus vX = M1 = 0) as well as M3 not being independent

anymore: M2
3 = 1

3

(
M2

5 + 2m2
h2

)
. Hence in the VEV-less

case we have

M2, M5, MX , λ2, λ3 and λ4.

as BSM input parameters. We do not trade λ2 for mh2 , but
keep λ2 as input since the parametrisation which uses mh2 as
input suffers from numerical instabilities in the decoupling
limit (see also Ref. [110] for related discussions).

For more information on the model we refer to e.g.
Refs. [109,111] and the online documentation.

C.8.1 Alignment

Alignment in this model can only be achieved with a van-
ishing triplet VEV (i.e., sin θH = 0). Since this also signifi-
cantly simplifies many tree-level relations, we provide a sepa-
rate model (GeorgiMachacekAligned) without a triplet
VEV (i.e., M2

X > 0) in addition to theUFOmodel implement-
ing the general (i.e. M2

X < 0) case (GeorgiMachacek).

C.8.2 Renormalisation

For the GeorgiMachacekAlignedUFOmodel the usual
SM-like OS/MS renormalisation procedure is sufficient. In
the general GeorgiMachacek-implementation all BSM

parameters are assumed to be MS parameters for simplicity.
Non-minimal renormalisation conditions in this model have
been proposed e.g. in Ref. [47].

C.9 A simple U (1)B−L extension of the SM (BmLSM)

We also provide a UFO model which extends the SM by a
gauged U (1)B−L symmetry that is spontaneously broken by
the VEV vX of a complex scalar S. The scalar potential reads

VB-L(, S) = μ2† + λ1

2
|†|2 + μ2

S S
∗S

+λ2

2
|S∗S|2 + λ3S

∗S†. (99)

We use the tadpole equations to eliminate μ and μS as well
as trade vx , λ1, λ2 and λ3 in favor of the Z ′ mass MZ ′ , the
two scalar masses mh1,2 , and the mixing angle α.

Right-handed neutrinos are added in order to cancel the
additional gauge anomalies:

LYukawa
B-L = −Y ν † · LLνR − Y x SνRνR + h.c. (100)

For simplicity we assume that the Yukawa matrices Y ν and
Y x are diagonal. Thus, we can diagonalise the neutrino mass
matrices, resulting in 6 eigenvalues which scale for vSM �
vX to first non-vanishing order as

mνi = v2
SM (Y2

v)i i

vx (Y2
x )i i

+ O
(

v3
SM

v2
x

)
, (101)

mνi+3 = √
2vx (Y x )i i + O

(
v2
SM

vx

)
. (i = 1, 2, 3) (102)

We choose to trade the components of Yv and Y x for the
neutrino masses. In consequence, the BSM input parameters
of the model are

mh1, mh2 , α, MZ ′, mν1...6 (103)

Kinetic mixing between the U (1)Y and U (1)B−L is not con-
sidered (i.e., set to zero at tree level) in this model implemen-
tation. For more information on the model see e.g. Ref. [112].

C.9.1 Alignment

All couplings of the SM-like Higgs boson to the SM sector
are rescaled by cos α. Thus, α = 0 is the proper alignment
limit in the Higgs sector. However, it should be noted that
in this limit the bosonic BSM sector completely decouples
from the SM and that the one-loop corrections to λhhh are
identical to the SM. Furthermore, in this limit charged lepton-
currents are still not SM-like as they get modified by factors
of O(mνi /mνi+3), i = 1, 2, 3. However, those contributions
are numerically negligible.
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C.9.2 Renormalisation

All SM parameters are renormalised using the automatic
OS/MS procedures described above. The BSM sector is
renormalised in the MS scheme. Alternatively, we provide
an OS scheme for the Z ′ mass as well as a scheme with an
OS counterterm for α along the same lines as in the SSM and
THDM.

C.10 Minimal supersymmetry (MSSM)

A minimal supersymmetric version of the SM is also pro-
vided in terms of a UFO model. The UFO files were gener-
ated for the CP-conserving but non-minimal flavor-violating
MSSM using SARAH. Therefore it is recommended to make
use of the corresponding SPheno spectrum generator in
order to calculate parameter points for this model (see e.g.
the example in Sect. 6.6). An example SLHA file produced
with SPheno is contained in the MSSM model directory
and can be used e.g. in the following way:

anyBSM MSSM \
-f ˜/.config/anyBSM/models/MSSM

/SPheno.spc.MSSM --non-interactive

using the command-line mode or

from anyBSM import anyH3
MSSM = anyH3('MSSM')
MSSM.setparameters(anyH3.built_in_models
['MSSM'] + '/SPheno.spc.MSSM')
MSSM.lambdahhh()

using the Python library.

C.10.1 Renormalisation

In contrast to the previously discussed models, the tree-level
expression for λ

(0)
hhh in the MSSM does not depend on the

Higgs boson mass, but on mZ , vSM , α, and tan β. We are
again able to automatically renormalise all SM-parameters
OS. tan β and α are renormalised in the DR scheme. Since
anyBSM by default uses dimensional regularisation (i.e., the
MS scheme), one needs to switch to dimensional reduction
(i.e., the DR scheme) in the schemes.yml of the MSSM
model file in the following way

dimensional_reduction: True

Appendix D: Additions to the UFO standard

While the UFO standard itself provides a very general strat-
egy to store detailed information about a particular QFT, we
found that several additions and adjustments in its actual
implementation are useful in order to overcome difficulties
in the renormalisation procedure as well as to improve com-
puting performance.

As a first step, anyBSM expects various input parameter
definitions to be present in the file parameters.py that
are required for the renormalisation procedure. If the param-
eters do not exist in the UFO files, the program creates them
using the UFO object library with the according default val-
ues:

• Qren is a parameter used for setting the renormalisation
scale and defaults to Qren = 172.5 GeV (i.e. the top-
quark mass).

• GFermi is used to set the Fermi constant. Alternative
parameter names that are also searched for are Gfermi,
gFermi, gF, GF and Gf. The default value is GF =
1.16637 · 10−5 GeV−2.

• Deltaalpha determines the value for �α, defined in
Eq. (57). Alternative names are dalpha, Dalpha and
deltaalpha. The default value, �α = �αhad. +
�αlep. = 0.02766 + 0.031497687, is taken from
Refs. [84,102].

• Zsignfac is a parameter which fixes sng(sin θw) (i.e.,
the sign of the weak mixing angle, cf. Eq. (54b)). If it is
not provided by the user, it is obtained automatically upon
run-time using the method getSignSinThetaW()
which determines the sign from the relative sign of the
Z-top-top and photon-top-top couplings.

In addition, models are loaded with an anyBSM-custom
object_library.py that adds some convenience and
performance features:

• The global all_<ufo object> variables are dictio-
naries instead of lists.

• Warnings appear if UFO objects with the same name
(based on the .name-attribute) are initialised.

• A nvalue-attribute was introduced, containing the
numerical value obtained with the current set of inputs.

• Similar to nvalue, a nmass-attribute for Particle-
instead of Parameter/Coupling-objects was intro-
duced. Note that a call of setparameters() (see
Sect. 4.3) automatically updates thenmass andnvalue
of all UFO objects.

• A new methodUFOBaseClass.dump(), which returns
a string representation to be interpreted by Python, was
implemented.
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• Particle.anti() now avoids creating duplicate
Particle instances on each call.

• function_library.py was completely rewritten to
avoid the call of _exec_ of functions. This yields a sig-
nificant performance boost for large models of up to 3
orders of magnitude in run-time.

It should be noted that if any of the auxiliary files mentioned
above is present in the UFO model directory, it is going to be
ignored upon the model initialisation since only the modified
anyBSM methods are used.

Appendix E: Caching in anyBSM

One advantage of theanyBSM framework compared to many
other similar tools is that it provides a sophisticated caching
mechanism. This allows us to significantly improve the run-
time of a phenomenological study. There are two levels of
caching that can be set via e.g.

from anyBSM import anyBSM
SM = anyBSM('SM', caching =
<cache-level>)

with <cache-level>=1 or 2. Alternatively one can
set SM.caching=1,2 after the initialisation. In the com-
mand line mode, caching=n is equivalent to the num-
ber of “c” options (i.e., anyBSM SM -cc corresponds to
<cache-level>=2 in the example above).

Setting caching≥1 writes the found particle inser-
tions for all generic topologies for a specific model to
disk. The insertions for all Feynman diagrams are deter-
mined using a brute-force algorithm. Therefore, this step can
take up to several minutes for models with many particles.
However, if caching≥1, this step is only required once.
The option caching=2 (default) additionally caches the
obtained analytic results to disk, such that the insertion of
Feynman rules (i.e., definitions in the vertices.py and
couplings.py) also have to be done only once. The ana-
lytic result saved to the cache is always expressed in terms of
the abbreviations for the couplings defined in the UFO model
files rather than the Feynman rules themselves.

The exact behaviour of the program depends on the cho-
sen evaluation mode. If caching=2 but evaluation_
mode=’numerical’ (’analytical’), the code inter-
nally first calculates the results usingevaluation_mode=
’abbreviation’ (if no result was found in the cache,
otherwise the cached result is read from disk), saves it to
the disk-cache and then evaluates it numerically (analyti-
cally). However, if caching<2 the individual diagrams
are evaluated directly using the representations for the cou-
plings/masses that correspond to the active evaluation mode.

One useful example choice may be if the program encoun-
ters an infra-red (IR) divergent loop function and returns a
corresponding warning message. In some cases, this may not
be critical if the loop function is multiplied by a vanishing
coupling (i.e., the diagram does actually not exist but was
computed because the information that the couplings vanish
is not manifest in the UFO model). Thus, a good cross-check
is to run the parameter point again without caching, which
should yield the same numerical result but without a warn-
ing (since anyBSM does not calculate a diagram if any of the
couplings vanish numerically).

Appendix F: pyCollier

pyCollier is a Python interface for the COLLIER
Fortran library [80]. In the current pyCollier ver-
sion, many but not all COLLIER functions are available. The
pyCollier source code is hosted at

https://gitlab.com/anybsm/pycollier.

Running the code requires at least Python version 3.5.
The code is most easily used by installing the corresponding
Python package by running

pip install pyCollier

which will automatically download and install pyCollier
as well as most necessary dependencies. One necessary
requirement which is not automatically handled bypip is the
presence of a Fortran compiler (required for the compila-
tion of the COLLIER library) such as gfortran or CLANG
which can be installed from the system’s package repository.

The pyCollier module is loaded via

import pyCollier

Loop integrals can then be evaluated e.g. via

pyCollier.set_renscale(125**2)
pyCollier.a0(125**2)

where in the first step the renormalisation scale is set to
125 GeV. In the second step, the value of the A0 scalar inte-
gral for an internal mass of 125 GeV is calculated.

A detailed documentation of all available functions can be
found at https://anybsm.gitlab.io/pycollier/pyCollier.html.
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