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Abstract Recently, a class of static spherically symmetric
power law corrected Lorentz violating (LV) Schwarzschild
black holes in the Kalb–Ramond model have been derived
and studied in the specific range of LV parameters (0 < λ ≤
2, ϒ ≥ 0) that correspond to energy condition preserving
(ρ > 0) source. On the other hand, there exist well known
black holes that do not preserve the energy conditions. In this
paper, we shall therefore relax energy conditions and numer-
ically explore the horizon patterns of the enlarged class of
LSMA black holes. Four generic types of LV corrected black
holes emerge, which interestingly include the analogue of the
braneworld black hole (ρ < 0) lending to ϒ a new interpre-
tation of “tidal charge” known as an imprint from the 5d
bulk in the Randall–Sundrum scenario. We shall then show
that Thorne’s hoop conjecture, H ≤ 1, where H is the Hod
function, consistently holds for three types and their gen-
eralizations. However, intriguingly, it turns out that, for the
remaining type (viz., Schwarzschild–de Sitter and its gen-
eralizations), the hoop conjecture does not hold. It is also
shown that braneworld tidal charge black holes increases the
LV correction to planetary perihelion advance in contrast to
the decrease due to ordinary black holes thereby providing a
qualitative distinction between them.
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1 Introduction

In previous papers [1,2], it was shown how the Hod function
H could be used to determine the status of Thorne’s hoop
conjecture [3] for the existence of black hole horizons in
static spherically symmetric solutions belonging to general
relativity or modified theories. There have been numerous
useful works on this famous conjecture in various contexts
– it is impossible to list them all here (nevertheless, see e.g.,
[4–19]).1

The methodology developed in [1,2] can be applied to a
new class of power law modified Lorentz violating (LV) static
spherically symmetric hairy Schwarzschild black holes in the
Kalb–Ramond model recently derived by Lessa, Silva, Maluf
and Almeida (hereinafter LSMA) [23], which is the object of
this paper. LSMA analyzed the effects of the LV parameters λ

and ϒ mainly within the range (0 < λ ≤ 2, ϒ ≥ 0) in order
that the corresponding matter source satisfied the energy con-
ditions. However, for arbitrary choices of these parameters
beyond the preceding range, the source of the black hole
could very well be violating the energy conditions. We might
call them “exoticized” Schwarzschild black hole spacetimes
to distinguish them from the ordinary ones having space-
times satisfying the energy conditions (ρ > 0) or traversable
wormholes that necessarily require exotic matter (ρ < 0)
as their sources.2 Exotic black hole spacetimes do exist in

1 Hod [20] showed that the conjecture, though it holds for static black
holes, does not hold for the spinning ones. He proposed an entirely new
geometric conjecture for spinning black holes [21] that has also been
supported by various spinning solutions across theories of gravity [22].
2 Exotic matter is defined as the matter violating the Null Energy Con-
dition (NEC) defined by ρ + pr ≥ 0 [24] It takes only a uniformly
moving observer to see the Weak Energy Condition (WEC) violation
(ρ < 0) as NEC violation, i.e., ρ + pr < 0 [25].
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the literature. A well known example is the Schwarzschild-
Anti de Sitter (SAdS) black hole [λ = −1, p = +1, ρ < 0,
see Eq. (12) below] having a wormhole-like topology since
Ricci scalar R < 0. Another example is the braneworld tidal
charge black hole (λ = 1, p = −1, ρ < 0, R = 0), in
which the tidal charge is not electric but is a correction to
the Schwarzschild black hole, just as the LV corrections are,
except that the tidal corrections appear as an imprint from
the 5d bulk onto the 3d brane in the Randall–Sundrum sce-
nario [26,27]. The LSMA class of black holes include the
above two examples as special cases. One can recover the
Schwarzschild black hole when the LV corrections are set to
zero.

Since here we are going to deal with Lorentz violating
black holes, it makes sense to specify the physical moti-
vation for considering such a violation. In fact, the moti-
vation comes from the deficiencies of the standard model
of particle physics. Although the model agrees very well
with experiment, many important questions still remain
unanswered, e.g., it does not account for the existence of
dark matter and dark energy, which make up most of the
energy density of the universe but are not composed of any
known particles covered by the standard model. The mini-
mal SU (3) × SU (2) × U (1) standard model is believed to
be the low-energy limit of an extended theory that can also
provide a plausible theory of quantum gravity. To obtain a
general extension of the minimal standard model (see e.g.,
[28]) yielding the low-energy limit, the idea of spontaneous
Lorentz violation (LV) has been used. The violation in the
gravity sector can be caused by the presence of nonzero tensor
expectation values in the vacuum. In the present case, it’s the
background Kalb–Ramond field providing the nonzero vac-
uum expectation value and contributing parameters or hairs
(λ,ϒ) to the LSMA solution modifying the Schwarzschild
black hole.

Turning now to the investigation of hoop conjecture for
such black holes, the mass-circumference ratio describing
it can be generically rephrased in terms of a Hod function
H based on the Misner–Sharp quasi-local mass M(r) that
includes all sorts of mass-energy within a radius r in any static
spherically symmetric spacetime (this mass is a direct result
of Einstein’s field equations, see [29–31]). But M(r) does not
lead to asymptotic ADM mass M∞ in the non-flat spacetimes
in which horizons may nevertheless exist. In such cases, it
is more appropriate to use Hayward quasi-local energy E(r)
in the extended global coordinate chart and define the appar-
ent horizons as trapped surfaces (see, for details, the pivotal
paper [32]). However, the Hod function, dedicated to defin-
ing only the hoop conjecture, involves the quasi-local mass
M(r) enclosed within a finite hoop radius in standard coordi-
nates. In these coordinates, black hole thermodynamics have
also been studied in the literature in the asymptotically non-
flat single horizon spacetimes like the SAdS (see Hawking

and Page [33]) or the double horizon Schwarzschild–de Sitter
(SdS) discussed by Roy Choudhury and Padmanabhan [34].
The latter work concludes that there is no single invariant
global Hawking temperature associated with SdS spacetime
and that the situation is not as straightforward as with a single
horizon spacetime. We shall show that the hoop conjecture
does not hold in SdS, which might not come as a surprise
given the problematic thermodynamic picture of SdS.

The purpose of the present paper is to numerically study,
following the methodology developed in [1,2], the generic
pattern of the appearance of horizons and the status of the
hoop conjecture in the LSMA black holes for different values
of the LV parameters not necessarily restricted to the specific
range (0 < λ ≤ 2, ϒ ≥ 0). We shall also briefly discuss the
LV contribution to the precession of planetary orbits in the
braneworld type black hole. Hereafter, we add the qualifi-
cation “type” to the LV corrected black holes to distinguish
them from the well known general relativistic ones despite
their formal resemblance because the Kalb–Ramond stress
properties sourcing the LV black holes are different from
those of general relativity. However, for arbitrary values of
λ except 1,−1, the resulting solutions do not even resem-
ble those of general relativity thereby lending novelty to the
present work since we shall choose λ arbitrarily.

The plan of the paper is as follows: Sect. 2 introduces
Thorne’s hoop conjecture in terms of Hod function with a
glimpse into its global definition. In Sect. 3, we briefly sketch
the Kalb–Ramond field equations and its solution follow-
ing [23] and in Sect. 4, the conjecture is implemented for
numerical analyses of LSMA black hole horizons. Section 5
presents the results of the analyses. Section 6 summarizes
the work with two speculative remarks. We take units such
that G = 1, c = 1.

2 Thorne’s hoop conjecture, Hod function, trapped
surfaces

The hoop conjecture, proposed by Thorne [3], states that an
imploding object forms a black hole when, and only when, a
circular hoop with a specific critical circumference could be
placed around the object and rotated about its diameter in all
directions. Symbolically, horizons exist when and only when
a mass M gets compacted into a region whose circumference
C in every direction is bounded by C ≤ 4πM , giving the
circumference-mass ratio as

C

4πM
≤ 1 (1)

An alternative statement of the hoop conjecture is that any cir-
cumference C on the horizon is bounded by C ≤ 4πM [35].
However, the mass in the above ratio was not clearly speci-
fied that gave rise to counter-examples [36,37] contradicting
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the conjecture. If the mass M is considered to be the asymp-
totic ADM mass M∞ of a horizonless charged spacetime, it
might be so arranged as to yield an inequality C

4πM∞ < 1
implying the occurrence of a horizon, while the spacetime
is horizonless by construction. It was proven in [36] that the
hoop conjecture can be contradicted in charged fluid sphere
spacetimes.

This contradiction was first resolved by Hod [38], who
interpreted that the mass in the denominator in (1) should be
the mass M(r ≤ R) contained within a hoop of minimum
circumference C (≡ 2πR) and not the total asymptotic mass
M∞, i.e., the ratio (1) be replaced by

H = C

4πM(r ≤ R)
≤ 1 ⇒ existence of horizon, (2)

where we had called H the Hod function in [1], R the cir-
cumferential areal radius of the smallest hoop engulfing the
mass in all azimuthal directions. For the charged spacetime
with charge Q, the concerned mass should be, according to
Hod [38],

M(r ≤ R) = M∞ − Q2

2R
. (3)

This redefined mass resolves the contradiction posed in [36].
Generically, the mass M in (2) for any static spacetime with
stress tensor Tμν should be defined by [1,29]

M(r ≤ R) = M∞ −
∫ ∞

R
T 0

0 4πr2dr. (4)

The hoop conjecture can be simply expressed as a
circumference-mass ratio as

H ≤1 ⇒ R

2M(r ≤ R)
≤1. (5)

It was shown in [2] that the definition of physical mass M(r ≤
R) within the ball of radius R defined in (3), viz., M∞− Q2

2R is
exactly the same as the Misner–Sharp geometric quasi-local
mass M(r ≤ R) in the Reissner–Nordström spacetime. For a
generic static spherically symmetric spacetime, the Misner–
Sharp quasi-local mass M(r ≤ R) is defined by [31]

M(r ≤ R) = R

2

(
1 − grr

∣∣
r=R

)
, (6)

where grr is the contravariant rr−component of the met-
ric tensor of the spacetime. The definition (6) reduces to
the ADM mass M∞ at spatial infinity only in the asymp-
totically flat spacetimes. In the non-flat spacetimes, the grr

diverges at infinity but here we take M(r ≤ R) being defined
only within a hoop radius r = R. Thus, it is convenient to
adopt the geometric definition (6) that can be equally used
for asymptotically flat or non-flat spacetimes as long as we
are focused only on the finite hoop radius.

Nevertheless, a glimpse of the global definition of hori-
zon might be informative as to how it could be related to the

functionH. The LSMA solutions are asymptotically non-flat
depending on the nonzero LV parameters and in such cases,
it is most appropriate to define an apparent horizon by the
global concept of trapped surfaces in extended spacetimes,
which requires that the mass M be replaced by the Hayward
energy E . Kodama [39] proved that E is the conserved total
energy flux of matter and gravitational field. The extended
static spherically symmetric metric is defined, up to a diffeo-
morphism, by the null coordinates (ξ+, ξ−) as

ds2 = r2d�2 − 2e f dξ+dξ, (7)

where r and f are functions of (ξ+, ξ−) and � is the met-
ric on a unit sphere, r is the area radius defined by 4πr2.
Define the expansions by θ± = 2

r ∂±r , where ∂± are the
derivatives along the coordinate directions ξ±. The Hayward
energy E(r) can be rewritten in terms of these expansions as
[32]

E = r

2
(1 − grr ) = r

2
+ e f r∂+r∂−r = r

2
+ 1

4
e f r3θ+θ−.

(8)

A metric sphere is said to be trapped if θ+θ− < 0,
untrapped if θ+θ− > 0 and marginal if θ+θ− = 0. Restated,
it means that a metric sphere is trapped if and only if r

2E < 1,
marginal if and only if r

2E = 1 and untrapped if and only if
r

2E > 1. Future and past trapped spheres occur in black and
white holes respectively [12,32,39]. Thus the central quan-
tity is r

2E , which controls the existence of trapped spheres and
it is the same as in (6) defining H in standard coordinates but
now expressed in terms of global expansions θ±.

3 Kalb–Ramond theory: a brief outline

It is assumed that the Lorentz violation (LV) is driven by a
self-interacting antisymmetric second rank tensor, Bμν , the
so-called Kalb–Ramond (KR) field [40]. Assuming that the
potential V has a nonzero vacuum expectation value (VEV)
bμν , we are interested in modifying the spherically symmet-
ric black holes driven by the Lorentz violating KR VEV. The
Kalb–Ramond field non-minimally coupled to gravity yields
a hairy black hole that deforms the Schwarzschild event hori-
zon.

Guided by the gravitational sector of the standard model
of particles, a self-interacting potential for the Kalb–Ramond
field is introduced in the form V = V (BμνBμν ± bμνbμν)

with a non-vanishing VEV
〈
Bμν

〉 = bμν , which defines a
background tensor field with the spontaneous breaking of
Lorentz symmetry. The LSMA black holes are then derived
by assuming that bμν has a constant norm b2 = bμνbμν .
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the action for a self-interacting Kalb–Ramond field non-
minimally coupled to gravity has the form [41]

SKR =
∫ √−gd4x

[
R
2

− 1

12
HλμνH

λμν

−V
(
BμνB

μν ± bμνb
μν

)

+1

2

(
ξ2B

λνBμ
ν Rλμ + ξ3B

μνBμνR
)]

, (9)

where Hλμν = ∂[λBμν] and ξ2ξ3 are non-minimal coupling
constants with dimension |ξ | ∼ [L]2. The assumed con-
stancy of b2converts the term ξ3BμνBμνR into ξ3b2R so that
it can be absorbed in the pure Ricci term. By varying the met-
ric, one then has the full field equations Gμν = 8πGT (ξ2)

μν

(we omit the lengthy expression for T (ξ2)
μν , see [23]). Assum-

ing a metric ansatz of the form

dτ 2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdϕ2), (10)

the field equations yield, for dimensionless λ = |b|2 ξ2 	= 2,
the two equations A(r) = 1

B(r) and

r2λ

2
A′′ + (λ + 1)r A′ + A − 1 = 0, (11)

where prime denotes derivatives with respect to r0. The solu-
tion is in the power law black hole hole metric [23]

A(r) = 1 − 2M∞
r

+ ϒ

r
2
λ

, (12)

where rS = 2M∞ is the Schwarzschild radius, ϒ is a con-
stant. The metric has two LV parameters λ and ϒ (hairs),
the latter having dimension |ϒ | ∼ [L]2/λ, that control the
Lorentz violation effect on the Schwarzschild black hole.

4 The LSMA black holes: the algorithm for hoop
conjecture

We define two major characteristics of a classical black hole:
it has to have at least one horizon and should satisfy the
hoop conjecture since the latter is widely believed to reflect
a fundamental aspect of classical general relativity.3 For our
convenience, we slightly redefine the LSMA metric function
A(r) in [23] by introducing a sign flipper p as follows:

dτ 2 = −Ap(r)dt
2 + Ap(r)

−1dr2 + r2(dθ2

+ sin2 θdϕ2), (13)

Ap(r) = 1 − 2M∞
r

+ pϒ

r
2
λ

, (14)

3 Despite this belief, its formulation has its limitations, see Hod [20].
Also, of all its various formulations, only some are correct, see Tod
[42]. We do not go into these discussions in this paper.

where M∞ > 0 is the usual Schwarzschild mass in the
absence of LV corrections, p = ±1 such that we shall main-
tain ϒ > 0 throughout the analysis, while λ can have any
sign and value. Note that all of the LSMA black holes have
the same Schwarzschild black hole mass M∞. The parame-
ter ϒ is a pseudo-electric charge since it does not have the
physical attribute of a genuine electric charge for which the
stress tensor is traceless, whereas the Kalb–Ramond vacuum
expectation value of the pseudo-electric charge is not trace-
less. For p = +1 and λ = 1 belonging to the ranges of LV
parameters (0 < λ ≤ 2, ϒ ≥ 0), LSMA [23] studied geo-
metrical features, Hawking temperature and the perihelion
advance of planets, the last yielding a tiny value of ϒλ=1

(∼ 10−3 km2).
The Ricci scalar for the metric (13) is given by

R = −2pϒ(λ − 1)(λ − 2)

λ2 r− 2(1+λ)
λ . (15)

The stress components in the orthonormal frame are

ρ =
(

2

λ
− 1

)
pϒ

r
2
λ
+2

, (16)

pr = −ρ, (17)

pθ = pϕ = ρ

2
. (18)

For convenience, let us define dimensionless quantities x, s
as

x = r2/λ

ϒ
> 0, (19)

s = ϒλ/2

2M∞
> 0, (20)

then the metric function becomes

Ap(x, s; λ) = 1 − 1

sxλ/2 + p

x
. (21)

The algorithm is to first choose some arbitrary value of λ, say
λ0, and then numerically solve the two simultaneous equa-
tions yielding critical values xc, sc such that

Ap(xc, sc; λ0) = 0, ∂x Ap(x, s; λ0)
∣∣
(xc,sc)

= 0. (22)

Corresponding to p = ±1, which give A±, the two Hod
functions, defined in (5) together with (6) and (14) with grr =
Ap(r), respectively become

Hp(x, s; λ0) = sx

x1− λ0
2 − ps

(23)

H−(x, s; λ0) = sx

x1− λ0
2 + s

(24)

H+(x, s; λ0) = sx

x1− λ0
2 − s

. (25)

The next step is to plot the metric function Ap(x, s; λ0).
If the dimensionless quantities xc, sc are positive and real,
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then keeping x = xc fixed, the transition between “no hori-
zon” and “horizon” regimes is demarcated by the plot of
Ap(x, s; λ0) of (21) for ranges of s either by [43]:

s > sc ⇒ no horizon (26)

s = sc ⇒ coincident horizon (27)

s < sc ⇒ double horizons (28)

or by its reverse

s < sc ⇒ no horizon (29)

s = sc ⇒ coincident horizon (30)

s > sc ⇒ double horizons. (31)

The validity of the conjecture is then verified in the fol-
lowing cases based on the admissible ranges of s yielding
horizons obtained from plotting Ap(x, s; λ0) = 0:

(i) Double horizon: If the inequalities are indicated by the
double horizon of Ap(x, s; λ0) according to (26)–(28),
then we say that the hoop conjecture will be satisfied in
that spacetime if Hp(x, s ≤ sc; λ0) ≤ 1 for the ranges
of s below the transition point s = sc.

(ii) Double horizon: If the reverse inequalities are indi-
cated by the double horizon of Ap(x, s; λ0) according
to (29)–(31), then we say that the hoop conjecture will
be satisfied in that spacetime if Hp(x, s ≥ sc; λ0) ≤ 1
for the ranges of s above the transition point s = sc.

(iii) Single horizon: If any of xc, sc is either negative or
imaginary, they are ruled out as x > 0, s > 0 by def-
inition. In this case, each plot of the metric function
shows a single horizon x = xh obtained by solving for
any s, say, sh the equation Ap(x, sh; λ0) = 0, and if
Hp(x, s ≤ sh; λ0) ≤ 1 holds like (i) above, we say that
the hoop conjecture is satisfied.

5 Results

With the above algorithm at hand, we then plot the metrics,
A+ and A− for any fixed λ0, and look for real critical values,
if they exist. Then we shall graphically find the horizons,
whether double or single, and plot the Hod functions to see
if they satisfy the hoop conjecture Hp ≤ 1. Once again, we
recall that ϒ > 0 throughout the paper. Note that it is not
possible to find analytic roots x = xh(s) for just any value
of λ0 by solving A(x, sh; λ0) = 0 since roots beyond quartic
algebraic equations are to be found only numerically, which
is what we did in this paper.

Our results about the LSMA solutions are as follows:
There appears four generic types of horizons for arbitrary
values of λ0 and ϒ > 0 with the corresponding Hod func-
tions developed in Eq. (19):

(A) Reissner–Nordström type: This type shows the exis-
tence of real critical values (xc, sc) and for the condition
s ≤ sc, there appears double horizons on either side of the
coincident horizon at x = xc. There is a “no horizon regime”
for s > sc as indicated by the conditions (26)–(28) from the
plots of A+(x, s; λ0) vs x . The examples are asymptotically
flat Reissner–Nordström type black holes (λ0 = 1, p = +1)

for which ρ > 0, R = 0 (Fig. 1a) or its generalization
(λ0 = 2/3, p = +1) for which ρ > 0, R < 0 (Fig. 2b). We
verified that the conjecture holds for both choices of λ0 in
accordance with (i) of Sect. 4, i.e., H+(xc, s ≤ sc; λ0)≤
1 and H+(xc, s > sc; λ0)> 1 occurs in the no horizon
regime as indicated by (26)–(28) (Figs. 1b, 2b). This was
the method adopted also in Refs. [1,2], where the behavior
of H+ depending on ranges of s described the status of the
conjecture.

(B) SdS type: This is an exceptional type, where real
critical values (xc, sc) do exist, but the inequalities on s
resulting from the plots of A−(x, s; λ0) vs x for the occur-
rence of horizon regimes are exactly reverse to the condi-
tions (29)–(31). The examples are the SdS type black holes
(λ0 = −1, p = −1) for which ρ > 0, R > 0 (Fig. 3a)
or its generalization (λ0 = −4, p = −1) for which again
ρ > 0, R > 0 (Fig. 4a). There appear double horizons but it
follows from Figs. 3b, 4b that the mass-circumference ratio
is H−(xc, s ≥ sc; λ0)≥ 1 in complete violation of (ii) of
Sect. 4, thereby violating the hoop conjecture with H− given
by Eq. (24).

(C) SAdS type: In this type, the critical values, instead of
being real, become negative and/or imaginary, which are to be
ruled out as unphysical by definition, x > 0 and s > 0. There
is then no restriction on s and it turns out that only single hori-
zons appear corresponding to values of s. Thus, we arbitrarily
choose any value of s, say, sh , and from A+(x, sh; λ0) = 0,
find numerically the corresponding root x = xh . Examples
are SAdS type (λ0 = −1, p = +1) for which ρ < 0,
R < 0 (Fig. 5a) or its generalization (λ0 = −5, p = +1)

for which ρ < 0, R < 0 (Fig. 6a). We then verify that
the conjecture holds in accordance with (iii) of Sect. 4, i.e.,
H+(xh, s ≤ sh; λ0)≤ 1. Likewise, H+(xh, s > sh; λ0)> 1
indicates no horizon regime (Figs. 5b, 6b).

(D) Braneworld type: The metric formally resembles
asymptotically flat Reissner–Nordström spacetime but with
a negative charge [44]. We should clarify that this nega-
tive charge is not the electric charge of the usual Reissner–
Nordström spacetime but a tidal imprint onto the 3d-brane
of the 5d-bulk mediated by the conformal bulk Weyl ten-
sor according to the Randall–Sundrum string model [26,27].
This imprint is called “tidal charge” and its role is to intro-
duce corrections to the Schwarzschild potential, similar to
the corrections obtained by LSMA [23] in the Kalb–Ramond
model [40]. However, there is a major difference as to how
the two corrections alter the horizon radii. While in the Kalb–
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Fig. 1 a The chosen values in the metric function (21) are λ0 = 1,
p = +1 giving an asymptotically flat LV corrected Reissner–Nordström
type metric A+(x, s; λ0) with double horizons straddling the coincident

horizon radius x = xc on either side. b Shows that the hoop conjecture
holds: H+(xc, s ≤ sc; λ0)≤ 1 respecting the ranges dictated by the
conditions (26)–(28) for the occurrence of horizons

Fig. 2 a The chosen values in the metric function (21) are λ0 = 2/3,
p = +1 giving what we called an asymptotically flat LV corrected gen-
eralization of Reissner–Nordström type metric A+(x, s; λ0) with dou-
ble horizons straddling the coincident horizon radius x = xc on either
side. b Shows that the hoop conjecture holds: H+(xc, s ≤ sc; λ0)≤

1 respecting the ranges dictated by the conditions (26)–(28) for the
occurrence of horizons. Any other value λ0 > 0 could be chosen at will
and it can be verified that the horizon patterns and the hoop conjecture
continue to be preserved

Fig. 3 a The chosen values in the metric function (21) are λ0 = −1,
p = −1 giving what we called an asymptotically non-flat LV corrected
SdS type metric A−(x, s; λ0) with double horizons straddling the coin-
cident horizon radius x = xc on either side. b Shows that the hoop

conjecture does not hold in the SdS type spacetime. The reason is that
the conjecture H− ≤ 1 does not respect the ranges dictated by the con-
ditions (29)–(31) indicating the occurrence of horizons in the metric
A−(x, s; λ0) since H−(xc, s ≥ sc; λ0)≥ 1 contrary to (ii) of Sect. 4
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Fig. 4 a The chosen values in the metric function (21) are λ0 = −4,
p = −1 giving a generalized version of the SdS-type metric. b Shows
once again that the hoop conjecture does not hold in this generalized
SdS type spacetime since the conjecture H−(xc, s ≥ sc; λ0) ≤ 1 does
not hold respecting the ranges of s as in (29)–(31) indicating the occur-

rence of horizons dictated by the plot of the metric A−(x, s; λ0). Any
other value λ0 < 0 could be chosen at will and it can be verified that
the horizon patterns and the violation of the hoop conjecture continue
to be preserved

Fig. 5 a The chosen values in the metric function (21) are λ0 = −1,
p = +1 giving a single horizon SAdS-type metric. b shows once again
that the hoop conjecture holds since H+(xh, s ≤ sh; λ0) ≤ 1 for any

horizon radius xh corresponding to a choice sh . The point P bifurcates
the spacetime into horizon and no-horizon regimes such that in the latter
H+(xh, s > sh; λ0) > 1 holds

Fig. 6 a The chosen values in the metric function (21) are λ0 = −5,
p = +1 giving a single horizon generalized SAdS-type metric. b Shows
once again that the hoop conjecture holds sinceH+(xh, s ≤ sh; λ0) ≤ 1

for any horizon radius xh corresponding to a choice sh . Any other value
λ0 < 0 could be chosen at will and it can be verified that the horizon
patterns and the hoop conjecture continue to be preserved
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Fig. 7 a The chosen values in the metric function (21) are λ0 = 1,
p = −1 giving a single horizon tidal charge-type metric. b Shows once
again that the hoop conjecture holds since H−(xh, s ≤ sh; λ0) ≤ 1

for any horizon radius xh corresponding to a choice sh . The point P
bifurcates the spacetime into horizon and no-horizon regimes such that
in the latter H−(xh, s > sh; λ0) > 1 holds

Fig. 8 a The chosen values in the metric function (21) are λ0 = 7/2,
p = −1 giving a single horizon generalized tidal charge-type metric.
b Shows once again that the hoop conjecture holds since H−(xh, s ≤
sh; λ0) ≤ 1 for any horizon radius xh corresponding to a choice sh . The

point P bifurcates the spacetime into horizon and no-horizon regimes
such that in the latter H−(xh, s > sh; λ0) > 1 holds. Any other value
λ0 > 0 could be chosen at will and it can be verified that the horizon
patterns and the hoop conjecture continue to be preserved

Ramond model, one has p = +1 yielding double horizons
[type (A) above]; in the tidal case, on the other hand, one has
p = −1 yielding only single horizons of A−(x, s; λ0) cor-
responding to the chosen values of s, say sh . The braneworld
tidal charge black hole has (λ0 = 1, p = −1) for which
ρ < 0, R = 0 (Fig. 7a) or its generalization (λ0 = 7/2, p =
−1) for which ρ > 0, R > 0 (Fig. 8a). We verify that
the conjecture holds in accordance with (iii) of Sect. 4, i.e.,
H−(xh, s ≤ sh; λ0)≤ 1. Likewise, H−(xh, s > sh; λ0)> 1
indicates no horizon regime (Figs. 7b, 8b).

In all the above four cases, the point P on the plots of
the Hod function (Figs. 1b, 2b, 3b, 4b, 5b, 6b, 7b, 8b) dis-
play the point of transition between horizon and no hori-
zon regimes thus radially bifurcating the spacetime into two
regions across the point P . Also, while the signs of λ and
p are preserved in each category, the behavior of the source
stresses and the Ricci scalar R can differ drastically, but the

number of horizons (double or single) and the behavior of
the Hod function remain the same. Values of λ0 have been
changed at will in the displayed plots but any other different
value could as well be chosen with the resulting qualitative
features falling into one of the above four mutually exclusive
categories determined by the combinations of λ = 1,−1
and p = +1,−1. So long as signs are maintained, different
numerical values of λ are allowed maintaining the number
of (λ, p) combinations to only 22 = 4.

The analytic expressions for horizon radii in the sim-
plest Reissner–Nordström type (λ0 = 1, p = +1), SdS-type
(λ0 = −1, p = −1), SAdS-type (λ0 = −1, p = +1) and
Braneworld-type (λ0 = 1, p = −1) black holes can be found
in the literature and needless to say that the corresponding
profiles indicated in the Figs. 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a con-
form to those analytic expressions. For generalized versions,
however, one has to find the horizons only numerically.
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6 Summary and remarks

The enlarged class of LSMA black holes, studied here numer-
ically, offers interesting examples of black holes with single
or double horizons for arbitrary values of LV parameters -
only a few examples are given here but the conclusions are
quite generic as can be verified on a case by case basis since
analytic roots giving horizon radii are not available beyond
quartic algebraic equations. The status of Thorne’s hoop con-
jecture illuminates the nature of concerned spacetimes, in
particular, the SdS black hole, in which horizons do exist but
the conjecture does not hold. The details are as follows.

If a static spherically symmetric metric has only one con-
stant parameter, say, M∞ with a single horizon, such as the
Schwarzschild black hole, then the hoop conjecture holds
in its extreme form with the circumference-mass ratio on
the horizon being given by H = R

2M∞ = 1. But if the single
horizon spacetime has, apart from M∞, another indepen-
dent parameter ϒ , then the ratio H can no longer hold in its
extreme form but should include also the values of ϒ since
the horizon radii are shifted by it, as analytically exemplified
by LSMA for the case λ = 1 [23]. In the present work, the
two parameters, M∞ and ϒ , were equivalently described by
two dimensionless parameters (x, s) in the metric (21) for
any arbitrarily chosen λ. The (x, s) enter into the quasi-local
mass (6) used in defining the conjecture. Then, for every
horizon radius at x = xh , there will be a range of admissible
values of s such that the conjecture would be satisfied, i.e.,
H(xh, s ≤ sh)≤ 1 would hold according to (iii) of Sect. 4.
The extreme equality holding only at s = sh .The same argu-
ments apply also to double horizon spacetimes as stated in
(i) and (ii) of Sect. 4 except that there is now (xc, sc) instead
of (xh, sh).

The LSMA solutions represent LV corrected black holes
with Schwarzschild mass M∞ for arbitrary values of the LV
parameters λ and ϒ . Combinations of arbitrary values of LV
parameters may as well lead to exotic source matter (i.e., ρ <

0) and there is no a priori reason to rule out such black holes.
Some well known basic examples of this kind are the SAdS
black hole having wormhole-like topology (ρ < 0, R < 0)
and the braneworld “tidal charge” black hole (ρ < 0, R =
0), both formally belonging to the LSMA class of solutions
for λ = −1 and 1 respectively (Figs. 3, 4). The example
for λ = 1 (Fig. 4) is particularly intriguing since the LV
parameter ϒ > 0 can now be interpreted to play the role of
a tidal charge, an imprint from the 5d bulk onto the 3d brane
in the Randall–Sundrum scenario [26,27].

While Schwarzschild horizon itself satisfies the extreme
form of the conjecture, it is not obvious if its LV corrected
version would satisfy the conjecture for arbitrary values of
λ and ϒ . To investigate this question, we first graphically
found the horizon patterns (i.e., coincident/double or single)
for some arbitrary values of LV parameters. The horizons

have been classified into four mutually exclusive generic
types (A,B,C,D) based on the combinations of λ = 1,−1
and p = +1,−1. In addition to these values, some other
illustrative numerical values of λ were also chosen and the
metric functions plotted as indicated in Figs. 1a, 2a, 3a, 4a,
5a, 6a, 7a, 8a. Next, we verified the status of the conjecture
for these spacetimes by plotting the relevant Hod function
H developed in the generic format for arbitrary (x, s). It has
been found that, while the hoop conjecture H ≤ 1 holds for
three types (A,C,D), it is violated in the spacetime type B,
i.e., in the SDS type black holes (Figs. 3b, 4b).

We point out that the braneworld tidal charge type of
LSMA black hole increases the LV correction to planetary
perihelion advance in contrast to the decrease due to ordinary
black holes (λ = 1, p = +1, ρ > 0) providing a qualitative
distinction between them. The general relativistic leading
order perihelion precession of planets in the Schwarzschild
field is known as δ�GR = 6πM∞

�
(where � is the semi-

latus rectum of the Keplerian orbit) and the LV correction
calculated in [23] is given by ��λ=1

LV = − 2πpϒ
M∞�

< 0,
which for p = +1 shows that the LV correction decreases
δ�GR . On the other hand, for tidal charge braneworld black
holes (λ = 1, p = −1, ρ < 0), one has the LV correc-
tion ��λ=1

p=−1 = 2πϒ
M∞�

> 0 implying an increase in the
GR precession value. This phenomenon qualitatively distin-
guishes non-exotic from “exoticized” black holes. For the
latter black hole of a given Schwarzschild mass M∞, the
physical condition δ�GR >> ��λ=1

p=−1 yields a constraint
on the shift of the horizon for a black hole of mass, say,
10 times more massive than the solar mass M∞ given by

ϒ

(2×10M∞)2 << 7.5 × 10−3. This constraint is independent

of the orbit size and is consistent with but weaker than the
constraint ϒ

(2×10M∞)2 ≈ 2 × 10−6 obtained in [23] from the

comparison of planetary precession data.
Finally, we make a couple of speculative remarks: First,

it is indeed thought provoking that Kalb–Ramond model
[23,40], Randall–Sundrum braneworld scenario [26,27,44]
or even massive gravity [45,46] yield formally similar
power law modifications although the parent theories are
ideologically very different. It should be quite rewarding
to examine in the future whether or not there could be
some deeper connection between these fundamental the-
ories or the similitude of the solutions is merely a PPN
type power law coincidence. Second, we found that the
hoop conjecture is violated in the double horizon asymp-
totically non-flat SdS type black holes or in its general-
ized versions. It is quite tempting to speculate that this
violation could be a generic feature of any multi-horizon
asymptotically non-flat spacetimes (see Figs. 3b, 4b). This
violation seems consistent with the problematic thermody-
namic picture in the SdS spacetime discussed in detail in
[34].
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