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Abstract It is well-known that three-family supersymmet-
ric Pati–Salam models from intersecting D6-branes, where
either one or both of the U(2) gauge factors are replaced by a
USp(2) group, are quite scarce. In order to construct all such
kind of models with generic additional gauge symmetries, we
fix the observable sectors and study all the possible hidden
sectors. Thus, we are able to completely determine all types
of such kind of the inequivalent models on a T6/(Z2 × Z2)

orientifold from IIA string theory. We find the gauge cou-
pling relations to be highly sensitive to the variations in the
hidden sector. One of the models exhibits the gauge cou-
pling unification for a particular solution at the string scale.
In addition, we perform scan on the hidden sector variations
for the models presented in arXiv:2112.09632, whose gauge
coupling relations are still preserved. Thus, we fix the gap in
the previous study and complete the model building for all
the inequivalent models.

1 Introduction

Intersecting D6-branes in type IIA string theory have been
extremely useful to geometrically understand the standard
model (SM) from a certain Calabi-Yau compactification of
extra dimensions. The gauge structures, the chiral spectra and
the various couplings arise from the D-brane configurations.
For example, the four-dimensional gauge couplings depend
on the volume of the cycles wrapped by the D-branes and the
gravitational coupling is determined by their total internal
volume. Similarly, the cubic Yukawa couplings depend expo-

a e-mail: wulina@xatu.edu.cn (corresponding author)

nentially on the triangular areas of open worldsheet inter-
sections. The general flavor structure and selection rules for
intersecting D-brane models has been investigated in [1,2].

The SM fermions belong to the chiral representations of
the gauge group SU(3)C × SU(2)W × U(1)Y such that all
gauge anomalies are canceled. Simply placing parallel D-
branes in flat space does not yield chiral fermions. Instead,
to realize the chiral fermions we need to either place D-
branes on orbifold singularities [3] or else consider inter-
secting D-branes on generalized orbifolds called orientifolds
[4,5]. In orientifolds, both the discrete internal symmetries
of the world-sheet theory and the products of internal sym-
metries with world-sheet parity reversal become gauged.

The N = 1 supersymmetric three-family Pati–Salam
models in the IIA string theory on T6/(Z2 × Z2) orien-
tifold with intersecting D6-branes have been constructed in
Ref. [6], where the wrapping number is up to 3. Recently,
utilizing machine learning algorithm in Ref. [7] several new
models with the wrapping number up to 5 were constructed.
The phenomenology of models up to the wrapping number of
3 was first studied in Ref. [8] while the phenomenology of a
newly found model with a wrapping number 5 was explored
in [9]. In Refs. [10,11], a mathematical search algorithm was
used to possibly obtain the complete landscape of supersym-
metric Pati–Salam models, where again the highest wrapping
number turned out to be 5 as already indicated from the ran-
dom search in [7]. However, an interesting variation of the
Pati–Salam gauge symmetry U (4)C ×U (2)L ×U (2)R that
was not taken into account in previous searches [6,7,10,11]
is the U(4)C × USp(2)L × U(2)R or U(4)C × USp(2)L ×
USp(2)R where either one or both of the usual U (2)s are
replaced by USp(2) groups. The construction of USp(2)
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groups can be readily achieved by taking the corresponding
stacks of D6-branes parallel to any of the O6-planes or their
Z2 images as exemplified in Refs. [12,13]. The choice of
USp(2) is simpler to deal with since there is no associated
global anomalousU (1) group which is generic in the unitary
groups.

In this paper, we fix the visible sector stacks a, b and c of
the supersymmetric Pati–Salam models with the USp(2)L ,R
group and vary the hidden sector to search for all possible
gauge group factors consistent with the four-dimensional
N = 1 supersymmetry conditions and tadpole cancella-
tion conditions. This systematic search further pins down
the allowed number of gauge group factors for the super-
symmetric Pati–Salam Models from intersecting D6-branes
[14]. Taking the two new models as examples, we show the
string-scale gauge coupling relations can be realized through
two-loop level renormalization group equation (RGE) run-
ning by introducing vector-like particles. In [15], the addi-
tional vector-like matters are introduced to push GUT scale
unification up to string scale for the N = 1 supersymmet-
ric Pati–Salam models. The unification of three independent
gauge interactions into a single one has been extensively
studied previously from various physical perspectives [16–
28]. Moreover, to complete the model building, the machine
learning is performed to scan on the hidden sector variations
for the models listed in Ref. [10] with the fixed visible sector.

The plan of the paper is as follows. In Sect. 2, we briefly
review the model building rules for N = 1 supersymmet-
ric Pati–Salam models with the gauge group SU(4)C ×
USp(2)L × USp(2)R on a T6/(Z2 × Z2) orientifold. In
Sect. 3, we discuss the salient phenomenological features
of the newly engineered models under the variation of the
hidden sector gauge group and list the perturbative particle
spectra of the models. In Sect. 4, we investigate the RGE
running for the gauge couplings at two-loop level and obtain
the gauge coupling relations at string-scale. We also perform
machine learning in Sect. 5 to scan on the hidden sector vari-
ations for the models. Finally, we conclude in Sect. 6.

2 Pati–Salam model building from T6/(Z2 ×Z2)

orientifold

The basic rules to construct the supersymmetric Pati–Salam
models from Type IIA T6/(Z2 ×Z2) orientfolds with inter-
secting D6-branes have been discussed in Ref. [6]. We con-
struct the Pati–Salam models with at least one symplatic
group by following the conventions in similar fashion as dis-
cussed in Ref. [13].T6 is a factorisable six-dimensional torus
i.e T6 = T2 × T2 × T2 in the T6/(Z2 × Z2) orientifolds,
and θ and ω are the generators of orbifold group (Z2 × Z2)

which act on the complex coordinates zi as,

θ : (z1, z2, z3) → (−z1,−z2, z3),

ω : (z1, z2, z3) → (z1,−z2,−z3). (1)

Orientifold projection is implemented by gauging the �R
symmetry, where � is world-sheet parity, and R acts on the
complex coordinates as,

R : (z1, z2, z3) → (z̄1, z̄2, z̄3). (2)

This leads to the appearance of four different kinds of ori-
entifold 6-planes (O6-planes) corresponding to �R, �Rθ ,
�Rω, and �Rθω respectively. There are two different kinds
of complex structures which are consistent with orientifold
projection i.e rectangular, and tilted. In order to construct
three families of the SM fermions, it is required to have at
least one two-torus to be tilted. So, in our model building
setup, the last tow-torus is tilted i.e β3 = 1, and, β1,2 = 0.
So, the homology three-cycles wrapped by stack a of Na D6-
branes with the cycle (nia, l

i
a) and their �R images a′ take

the form as follows,

[�a] =
3∏

i=1

(
nia[ai ] + 2−βi l ia[bi ]

)
,

[�a′ ] =
3∏

i=1

(
nia[ai ] − 2−βi l ia[bi ]

)
, (3)

where βi = 0 or βi = 1 for the rectangular or tilted i th two-
torus, respectively. And the homology three-cycles wrapped
by the four O6-planes take the form,

�R : [��R] = 23[a1] × [a2] × [a3],
�Rω : [��Rω] = −23−β2−β3 [a1] × [b2] × [b3],
�Rθω : [��Rθω] = −23−β1−β3 [b1] × [a2] × [b3],
�Rθ : [��Rθ ] = −23−β1−β2 [b1] × [b2] × [a3]. (4)

Therefore, the intersection numbers can be written as,

Iab = [�a][�b] = 2−k
3∏

i=1

(nial
i
b − nibl

i
a),

Iab′ = [�a] [�b′ ] = −2−k
3∏

i=1

(nial
i
b + nibl

i
a),

Iaa′ = [�a] [�a′] = −23−k
3∏

i=1

(nial
i
a),

IaO6 = [�a][�O6] = 23−k

(
−l1al

2
al

3
a + l1an

2
an

3
a + n1

al
2
an

3
a + n1

an
2
al

3
a

)
, (5)
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where k = ∑3
i=1 βi and [�O6] = [��R] + [��Rω] +

[��Rθω] + [��Rθ ].

2.1 The RR tadpole cancellation and supersymmetry
conditions

Since, the sources of RR fields, D6-branes, and O6-planes
need to satisfy the Gauss’s law i.e the total RR charges must
vanish as the RR field flux lines are conserved [29],
∑

a

Na[�a] +
∑

a

Na [�a′ ] − 4[�O6] = 0, (6)

where the contribution of last term comes from the O6-
planes, which have −4 RR charges in D6-brane charge units.
The SU(Na)

3 cubic non-Abelian anomaly is cancelled by RR
tadpole cancellation conditions, while U(1) mixed gauge and
gravitational anomaly or [SU(Na)]2U(1) gauge anomaly can
be cancelled with the Green–Schwarz mechanism [30].

Let us simplify the notations by defining the following
products of wrapping numbers,

Aa ≡ −n1
an

2
an

3
a, Ba ≡ n1

al
2
al

3
a , Ca ≡ l1an

2
al

3
a ,

Da ≡ l1al
2
an

3
a,

Ãa ≡ −l1al
2
al

3
a , B̃a ≡ l1an

2
an

3
a,

C̃a ≡ n1
al

2
an

3
a, D̃a ≡ n1

an
2
al

3
a . (7)

In order to cancel the RR tadpoles, the contribution from an
arbitrary number of D6-branes wrapped along the orientifold
planes, the so called “filler branes”, can also be added which
trivially satisfy the four-dimensional N = 1 supersymmetry
conditions. Thus, the tadpole conditions take the form,

− 2k N (1) +
∑

a

Na Aa = −2k N (2) +
∑

a

Na Ba

= −2k N (3) +
∑

a

NaCa = −2k N (4) +
∑

a

NaDa = −16,

(8)

where 2N (i) denotes the number of filler branes wrapped
along the i th O6-plane as shown in Table 1.

If the rotation angle of any D6-brane with respect to the
orientifold-plane is an element of SU(3), the 4-dimensional

Table 1 The wrapping numbers for four O6-planes

Orientifold Action O6-Plane (n1, l1) × (n2, l2) × (n3, l3)

�R 1 (2β1 , 0) × (2β2 , 0) × (2β3 , 0)

�Rω 2 (2β1 , 0) × (0,−2β2 ) × (0, 2β3 )

�Rθω 3 (0,−2β1 ) × (2β2 , 0) × (0, 2β3 )

�Rθ 4 (0,−2β1 ) × (0, 2β2 ) × (2β3 , 0)

Table 2 General spectrum for intersecting D6-branes at generic angles,
where M is the multiplicity, and a and a denote respectively

the symmetric and antisymmetric representations of U(Na/2). Positive
intersection numbers in our convention refer to the left-handed chiral
supermultiplets

Sector Representation

aa U(Na/2) vector multiplet

3 adjoint chiral multiplets

ab + ba M( Na
2 ,

Nb
2 ) = Iab( a, b)

ab′ + b′a M( Na
2 ,

Nb
2 ) = I ′

ab( a, b)

aa′ + a′a M(a ) = 1
2 (Iaa′ − 1

2 IaO6)

M(a ) = 1
2 (Iaa′ + 1

2 IaO6)

N = 1 supersymmetry (SUSY) can be preserved after com-
pactification from ten-dimensions or SUSY condition take
the form,

θa1 + θa2 + θa3 = 0 mod 2π, (9)

with θaj = arctan(2−β j χ j laj /n
a
j ). θi is the angle between

the D6-brane and orientifold-plane in the ith 2-torus and
χi = R2

i /R
1
i are the complex structure moduli for the ith

2-torus. The SUSY conditions can also be written as,

xA Ãa + xB B̃a + xCC̃a + xD D̃a = 0,

Aa

xA
+ Ba

xB
+ Ca

xC
+ Da

xD
< 0, (10)

where xA = λ, xB = 2β2+β3 · λ/χ2χ3, xC = 2β1+β3 ·
λ/χ1χ3, xD = 2β1+β2 · λ/χ1χ2.

Orientifolds also have discrete D-brane RR charges clas-
sified by the Z2 K-theory groups [31–34], which imply [35],
∑

a

Ãa =
∑

a

Na B̃a =
∑

a

NaC̃a

=
∑

a

Na D̃a = 0 mod 4 . (11)

In Pati–Salam models, we can avoid the nonvanishing torsion
charges by taking an even number of D-branes, i.e., Na ∈ 2Z.

The general particle representations for intersecting D6-
branes models at angles are shown in Table 2. Following
the convention of [6] the N number of D6-brane stacks cor-
responds to U(N/2) and USp(N ) respectively. A positive
intersection number in our convention refers to the left-chiral
supermultiplet.

The effective gauge symmetry of supersymmetric Pati–
Salam models can be further broken down to the standard
model gauge symmetry via brane splitting. The relevant
details and the formulae of computing gauge kinetic func-
tions and the gauge coupling relations are given in [9,12,13].
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Table 3 Model 1A represents the hidden sector variation of model 14 (T-dual) in Ref. [10]. D6-brane configurations and intersection numbers of
Model 1A, and its MSSM gauge coupling relation is g2

a = g2
b = 1

3 g
2
c = 5

11 ( 5
3 g

2
Y ) = 16π

5
√

3
eφ4

Model 1A U(4) × U(2)L × U(2)R × U(2) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b b′ c c′ d d′ 1 2 3 4

a 8 (0,−1) × (1, 1) × (1, 1) 0 0 3 0 −3 0 0 0 0 0 0 0

b 4 (3, 1) × (1, 0) × (1,−1) 2 −2 – – 0 4 −3 0 0 0 0 −3

c 4 (1, 0) × (1, 4) × (1,−1) −3 3 – – – – 3 0 0 0 0 −1

d 4 (0, 1) × (−1,−1) × (1, 1) 0 0 – – – – – – 0 0 0 0

4 2 (0,−1) × (0, 1) × (2, 0) β
g
d = 0, β

g
4 = −2,

xA = xB = 12xC = 3xD = 1

Table 4 Model 2A represents the hidden sector variation of model 44 in Ref. [10]. D6-brane configurations and intersection numbers of Model 2A,

and its MSSM gauge coupling relation is g2
a = g2

b = g2
c = ( 5

3 g
2
Y ) = 4

√
2
3 πeφ4

Model 2A U(4) × U(2)L × U(2)R × U(2) × USp(2) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b b′ c c′ d d′ 1 2 3 4

a 8 (1, 0) × (1,−1) × (1, 1) 0 0 0 3 0 −3 0 0 0 0 −1 1

b 4 (−1,−3) × (0,−1) × (−1,−1) −2 2 – – 0 0 3 0 0 0 −1 0

c 4 (1,−3) × (−1, 0) × (−1,−1) 2 −2 – – – – −3 0 0 0 0 1

d 4 (1, 0) × (1, 1) × (1,−1) 0 0 – – – – – – 0 0 1 −1

3 2 (0,−1) × (1, 0) × (0, 2) β
g
d = 0, β

g
3 = −2, β

g
4 = −2,

4 2 (0,−1) × (0, 1) × (2, 0) xA = xB = 3xC = 3xD = 1

Table 5 Model 3A represents the hidden sector variation of model 29 (T-dual) in Ref. [10]. D6-brane configurations and intersection numbers of

Model 3A, and its MSSM gauge coupling relation is g2
a = 13

5 g2
b = 3 g2

c = 5
3 ( 5

3 g
2
Y ) = 16

√
3π

5 eφ4

Model 3A U(4) × U(2)L × U(2)R × U(2) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b b′ c c′ d d′ 1 2 3 4

a 8 (0,−1) × (−1,−1) × (−1,−1) 0 0 1 2 0 −3 0 0 0 0 0 0

b 4 (1,−1) × (−1, 0) × (−3,−1) 2 −2 – – −4 −8 2 −1 0 0 0 1

c 4 (1, 0) × (−1, 4) × (−1,−1) 3 −3 – – – – −3 0 0 0 0 1

d 4 (0,−1) × (−1, 1) × (1, −1) 0 0 – – – – – – 0 0 0 0

4 2 (0,−1) × (0, 1) × (2, 0) β
g
d = −1, β

g
4 = −4,

xA = xB = 4
3 xC = 1

3 xD = 1

3 Pati–Salam models under the variation of the hidden
sector

One of the main objectives of our paper is to emphasize that a
complete search of such three family models should not only
focus on the observable sector but also take into account the
variations under the hidden sector. Because, it is possible
to find inequivalent models with the same observable sector
while a completely different hidden sector of the D6-brane
stacks and O6-planes. In the following, we discuss the mod-
els with one USp(2) group and the models with two USp(2)

groups, and the models without symplectic gauge group sep-
arately (Tables 3, 4, 5).

Three family supersymmetric Pati–Salam models from
symplectic groups where either one or both of the SU(2)
gauge factor is replaced by USp(2) groups are of special
interest because unlike the U(2) stacks the USp brane stacks
are parallel to either of the O6-planes. This fact explains
the relative scarcity of such models as compared to the
usual models strictly arising from the unitary gauge group
stacks.
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Table 6 The chiral spectrum in the open string sector of Model 1A

Model 1A SU (4) × SU (2)L × SU (2)R × SU (2)d ×USp(2) Q4 Q2L Q2R Qem B − L Field

ab 3 × (4, 2, 1, 1, 1) 1 −1 0 − 1
3 , 2

3 , −1, 0 1
3 , −1 QL , LL

ac 3 × (4, 1, 2, 1, 1) −1 0 1 1
3 , − 2

3 , 1, 0 − 1
3 , 1 QR, LR

bc′ 4 × (4, 2, 2, 1, 1) 0 −1 −1 −1, 0, 0, 1 0 H ′

bd 3 × (1, 2, 1, 2, 1) 0 −1 0 ± 1
2 0

b4 3 × (1, 2, 1, 1, 2) 0 −1 0 ∓ 1
2 0

cd 3 × (1, 1, 2, 2, 1) 0 0 1 ± 1
2 0

c4 1 × (1, 1, 2, 1, 2) 0 0 −1 ± 1
2 0

b 2 × (1, 3, 1, 1, 1) 0 2 0 0,±1 0

b 2 × (1, 1, 1, 1, 1) 0 −2 0 0 0

c 3 × (1, 1, 3, 1, 1) 0 0 −3 0,±1 0

c 3 × (1, 1, 1, 1, 1) 0 0 3 0 0

Table 7 The chiral spectrum in the open string sector of Model 2A

Model 2A SU (4) × SU (2)L × SU (2)R × SU (2)d ×USp(2)2 Q4 Q2L Q2R Qem B − L Field

ab′ 3 × (4, 2, 1, 1, 1, 1) 1 1 0 − 1
3 , 2

3 , −1, 0 1
3 , −1 QL , LL

ac′ 3 × (4, 1, 2, 1, 1, 1) −1 0 −1 1
3 , − 2

3 , 1, 0 − 1
3 , 1 QR, LR

a3 1 × (4, 1, 1, 1, 2, 1) −1 0 0 − 1
6 , 1

2 − 1
3 , 1

a4 1 × (4, 1, 1, 1, 1, 2) 1 0 0 1
6 , − 1

2
1
3 , −1

bd 3 × (1, 2, 1, 2, 1, 1) 0 1 0 ± 1
2 0

b3 1 × (1, 2, 1, 1, 2, 1) 0 −1 0 ∓ 1
2 0

cd 3 × (1, 1, 2, 2, 1, 1) 0 0 −1 ± 1
2 0

c4 1 × (1, 1, 2, 1, 1, 2) 0 0 1 ± 1
2 0

d3 1 × (1, 1, 1, 2, 2, 1) 0 0 0 ± 1
2 0

d4 1 × (1, 1, 1, 2, 1, 2) 0 0 0 ± 1
2 0

b 2 × (1, 3, 1, 1, 1, 1) 0 −2 0 0,±1 0

b 2 × (1, 1, 1, 1, 1, 1) 0 2 0 0 0

c 2 × (1, 1, 3, 1, 1, 1) 0 0 2 0,±1 0

c 2 × (1, 1, 1, 1, 1, 1) 0 0 −2 0 0

3.1 Pati–Salam models with the gauge group
U(4)C × U(2)L × U(2)R

Pati–Salam models with the gauge group U(4)C × U(2)L ×
U(2)R have been recently discussed in Refs. [10,11]. It turns
out that there are only 33 independent models with differ-
ent gauge coupling relations. We fix the visible sector, and
perform scan on the hidden sector which gives rise to the
inequivalent models, and thus, fix the gap in their study. In
this way, we clean up the search for Pati–Salam models with
gauge group U(4)C ×U(2)L ×U(2)R . Since, the visible sec-
tor is fixed, the gauge coupling relations will remain same.
These new models are listed as Model 1A, Model 2A, and
Model 3A, while their detailed particle spectra are given in
Tables 6, 7, and 8 respectively.

3.2 Pati–Salam models with the gauge group
U(4)C × USp(2)L × SU(2)R

Three-family supersymmetric Pati–Salam with the gauge
group U(4)C × USp(2)L × SU(2)R have been recently dis-
cussed in Ref. [13]. It was found that the number of such mod-
els is only 5. However, by fixing the visible stacks a, b and
c, and searching for all possible hidden sectors results in two
new models. The new models are Model 2.1b and Model 5b.
In appendix A we enlist all such three-family supersymmet-
ric Pati–Salam models with a single symplectic group under
the variation of the hidden sector. We refer readers to consult
Ref. [13] for the detailed particle spectra.
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Table 8 The chiral spectrum in the open string sector of Model 3A

Model 3A SU (4) × SU (2)L × SU (2)R × SU (2)d ×USp(2) Q4 Q2L Q2R Qem B − L Field

ab 1 × (4, 2, 1, 1, 1) 1 −1 0 − 1
3 , 2

3 , −1, 0 1
3 , −1 QL , LL

ab′ 2 × (4, 2, 1, 1, 1) −1 −1 0 − 1
3 , 2

3 , −1, 0 1
3 , −1 QL , LL

ac′ 3 × (4, 1, 2, 1, 1) −1 0 −1 1
3 , − 2

3 , 1, 0 − 1
3 , 1 QR, LR

bc 4 × (4, 2, 2, 1, 1) 0 −1 1 −1, 0, 0, 1 0 H

bc′ 8 × (4, 2, 2, 1, 1) 0 −1 −1 −1, 0, 0, 1 0 H ′

bd 2 × (1, 2, 1, 2, 1) 0 1 0 ± 1
2 0

bd ′ 1 × (1, 2, 1, 2, 1) 0 1 0 ± 1
2 0

b4 1 × (1, 2, 1, 1, 2) 0 1 0 ∓ 1
2 0

cd 3 × (1, 1, 2, 2, 1) 0 0 −1 ± 1
2 0

c4 1 × (1, 1, 2, 1, 2) 0 0 1 ± 1
2 0

b 2 × (1, 3, 1, 1, 1) 0 2 0 0,±1 0

b 2 × (1, 1, 1, 1, 1) 0 −2 0 0 0

c 3 × (1, 1, 3, 1, 1) 0 0 3 0,±1 0

c 3 × (1, 1, 1, 1, 1) 0 0 −3 0 0

Table 9 D6-brane configurations and intersection numbers of Model 1a, and its gauge coupling relation is g2
a = F(xB)g2

b = F(xB)g2
c =

3(3xB+8)xB+8
30xB+20

(
5
3 g2

Y

)
= 4

√
2(xB (3xB+4))3/4

4√3(3xB+2)
π eφ4

Model 1a U(4) × USp(2)L × USp(2)R × U(2) × USp(8)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c d d′ 1 2 3 4

a 8 (1,−3) × (0,−1) × (−3, 1) 0 0 3 −3 0 0 0 0 0 0

b 2 (0, 1) × (1, 0) × (0,−2) 0 0 – 0 6 −6 0 0 0 0

c 2 (1, 0) × (1, 0) × (2, 0) 0 0 – – 6 −6 0 0 0 0

d 4 (1,−3) × (1,−2) × (3, 1) −16 −56 – – – – 0 0 0 1

4 8 (0,−1) × (0, 1) × (2, 0) β
g
d = 6, β

g
4 = −5,

xA = 1 = xC , xD = 9xB + 12

χ1 = xBχ2 = 2/χ3

Table 10 The chiral and vector-like superfields, and their quantum numbers under the gauge symmetry SU(4) × USp(2)L × USp(2)R × SU(2) ×
USp(8) for the Model 1a

Model 1a Quantum Number Q4 Q2L Q2R Qem B-L Field

ab 3 × (4, 2, 1, 1, 1) 1 −1 0 − 1
3 , 2

3 ,−1, 0 1
3 ,−1 QL , LL

ac 3 × (4, 1, 2, 1, 1) −1 0 1 1
3 ,− 2

3 , 1, 0 − 1
3 , 1 QR, LR

bd 6 × (1, 2, 1, 2, 1) 0 1 0 ± 1
2 0

bd′ 6 × (1, 2, 1, 2, 1) 0 −1 0 ∓ 1
2 0

cd 6 × (1, 1, 2, 2, 1) 0 0 1 ± 1
2 0

cd′ 6 × (1, 1, 2, 2, 1) 0 0 −1 ∓ 1
2 0

d4 1 × (1, 1, 1, 2, 8) 0 0 0 0 0

d 16 × (1, 1, 1, 3 , 1) 0 0 0 0 0

d 56 × (1, 1, 1, 1 , 1) 0 0 0 0 0

bc 2 × (1, 2, 2, 1, 1) 0 −1 1 1, 0, 0, −1 0 Hu, Hd

2 × (1, 2, 2, 1, 1) 0 1 −1
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Table 11 Model 1b represents the hidden sector variation of model III (T-dual) in Ref. [12]. D6-brane configurations and intersection numbers of

Model 1b, and its gauge coupling relation is g2
a = 13g2

b
11 = 13g2

c
11 = 61

55
5g2

Y
3 = 8

11 133/4 π eφ4

Model 1b U(4) × USp(2)L × USp(2)R × U(1) × U(1)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c d d′ e e′

a 8 (1,−3) × (0,−1) × (−3, 1) 0 0 3 −3 1 2 −3 0

b 2 (0, 1) × (1, 0) × (0,−2) 0 0 0 0 0 0 12 −12

c 2 (1, 0) × (1, 0) × (2, 0) 0 0 – – 2 −2 10 −10

d 2 (0,−1) × (1,−2) × (−1, 1) 1 −1 – – – – 0 −8

e 2 (2, −5) × (−1, 2) × (−3,−1) −85 −155 – – – – – –

β
g
d = −2, β

g
e = 22,

1/χ1 = 1/(2χ2) = χ3/2 = √
13

Table 12 Model 1c represents the hidden sector variation of model III (T-dual) in Ref. [12]. D6-brane configurations and intersection numbers of

Model 1c, and its gauge coupling relation is g2
a = 92g2

b
105 = 92g2

c
105 = 162

175
5g2

Y
3 = 32

35

( 23
3

)3/4
π eφ4

Model 1c U(4) × USp(2)L × USp(2)R × U(1) × U(1) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c d d′ e e′ 4

a 8 (1,−3) × (0,−1) × (−3, 1) 0 0 3 −3 0 3 −3 0 0

b 2 (0, 1) × (1, 0) × (0,−2) 0 0 0 0 −3 3 9 −9 0

c 2 (1, 0) × (1, 0) × (2, 0) 0 0 – – −4 4 6 −6 0

d 2 (−1,−4) × (1, 1) × (−3, 1) 6 42 – – – – 72 0 −1

e 2 (−1, 2) × (1,−3) × (−3,−1) −16 −56 – – – – – – 1

4 2 (0,−1) × (0, 1) × (2, 0) β
g
d = 73, β

g
e = 87, β

g
4 = −4,

2/χ1 = 6χ2 = χ3 = √
69

Table 13 The chiral and vector-like superfields, and their quantum numbers under the gauge symmetry SU(4)×USp(2)L ×USp(2)R×U(1)×U(1)

for the Model 1b

Model 1b Quantum Number Q4 Q2L Q2R Qem B-L Field

ab 3 × (4, 2, 1, 0, 0) 1 −1 0 − 1
3 , 2

3 ,−1, 0 1
3 ,−1 QL , LL

ac 3 × (4, 1, 2, 0, 0) −1 0 1 1
3 ,− 2

3 , 1, 0 − 1
3 , 1 QR, LR

ad 1 × (4, 1, 1,−1, 0) 1 0 0 − 1
3 , 2

3 ,−1, 0 0

ad′ 2 × (4, 1, 1, 1, 0) 1 0 0 − 1
3 , 2

3 ,−1, 0 0

ae 3 × (4, 1, 1, 0, 1) -1 0 0 1
3 ,− 2

3 , 1, 0 0

be 12 × (1, 2, 1, 0, 1) 0 1 0 ± 1
2 0

be′ 12 × (1, 2, 1, 0,−1) 0 −1 0 ∓ 1
2 0

cd 2 × (1, 1, 2,−1, 0) 0 0 1 ± 1
2 0

cd′ 2 × (1, 1, 2,−1, 0) 0 0 −1 ∓ 1
2 0

ce 10 × (1, 1, 2, 0,−1) 0 0 1 ± 1
2 0

ce′ 10 × (1, 1, 2, 0,−1) 0 0 −1 ∓ 1
2 0

de′ 8 × (1, 1, 1,−1,−1) 0 0 0 0 0

d 1 × (1, 1, 1, 2 , 0) 0 0 0 0 0

e 85 × (1, 1, 1, 0,−2 ) 0 0 0 0 0

bc 2 × (1, 2, 2, 1, 1) 0 −1 1 1, 0, 0, −1 0 Hu, Hd

2 × (1, 2, 2, 1, 1) 0 1 −1
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Table 14 The chiral and vector-like superfields, and their quantum numbers under the gauge symmetry SU(4) × USp(2)L × USp(2)R × U(1) ×
U(1) × USp(2) for the Model 1c

Model 1c Quantum Number Q4 Q2L Q2R Qem B-L Field

ab 3 × (4, 2, 1, 0, 0, 1) 1 −1 0 − 1
3 , 2

3 ,−1, 0 1
3 ,−1 QL , LL

ac 3 × (4, 1, 2, 0, 0, 1) −1 0 1 1
3 ,− 2

3 , 1, 0 − 1
3 , 1 QR, LR

ad’ 3 × (4, 1, 1, 1, 0, 1) 1 0 0 − 1
3 , 2

3 ,−1, 0 0

ae 3 × (4, 1, 1, 0, 1, 1) −1 0 0 1
3 ,− 2

3 , 1, 0 0

bd 3 × (1, 2, 1, 1, 0, 1) 0 −1 0 ∓ 1
2 0

bd’ 3 × (1, 2, 1, 1, 0, 1) 0 1 0 ± 1
2 0

be 9 × (1, 2, 1, 0,−1, 1) 0 1 0 ± 1
2 0

be’ 9 × (1, 2, 1, 0,−1, 1) 0 −1 0 ∓ 1
2 0

cd 4 × (1, 1, 2, 1, 0, 1) 0 0 −1 ∓ 1
2 0

cd’ 4 × (1, 1, 2, 1, 0, 1) 0 0 1 ± 1
2 0

ce 6 × (1, 1, 2, 0,−1, 1) 0 0 1 ± 1
2 0

ce’ 6 × (1, 1, 2, 0,−1, 1) 0 0 −1 ∓ 1
2 0

de 72 × (1, 1, 1, 1,−1, 1) 0 0 0 0 0

d4 1 × (1, 1, 1,−1, 0, 2) 0 0 0 0 0

e4 1 × (1, 1, 1, 0, 1, 2) 0 0 0 0 0

d 6 × (1, 1, 1, 2 , 0, 1) 0 0 0 0 0

e 16 × (1, 1, 1, 0,−2 , 1) 0 0 0 0 0

bc 2×(1, 2, 2, 1, 1) 0 −1 1 1, 0, 0, −1 0 Hu, Hd

2 × (1, 2, 2, 1, 1) 0 1 −1

3.3 Pati–Salam models with the gauge group
U(4)C × USp(2)L × USp(2)R

Three-family supersymmetric Pati–Salam with the gauge
group U(4)C × USp(2)L × SU(2)R were first constructed
in Ref. [12]. The authors of Ref. [12] (one of us, TL) only
obtained a single consistent model with N = 1 supersym-
metry with three generations. We reproduce the model in
Table 9 in its T-dual form [6] and its detailed particle spec-
trum is presented in Table 10.

g2
a = F(xB)g2

b = F(xB)g2
c = 5(3xB + 4)

2(3x2
B + 13xB + 6)

(
5

3
g2
Y

)

= 4
√

2(xB(3xB + 4))3/4

4
√

3(3xB + 2)
π eφ4 ,

where

F(xB) = xB(3xB + 4)

2(3xB + 2)
(12)

Choosing F(xB) = 1 by setting the value of free parameter

xB = 1
3

(√
13 + 1

)
the tree-level MSSM gauge couplings

are unified at the string scale,

g2
a = g2

b = g2
c =

(
5

3
g2
Y

)
= 4 23/4 4

√
1

3

(√
13 − 3

)
π eφ4 .

(13)

Even though the gauge couplings are unified, this does not fix
the actual value of the couplings as these still depend upon the
value taken by the four-dimensional dilaton φ4. In order for
the gauge couplings to have the value observed for the MSSM
(g2

unification ≈ 0.511), we must choose φ4 = −3.32221 such
that e−φ4 ≈ 27.7216, where the string scale is given by

MSt = π1/2eφ4 MPl ≈ 1.55688 × 1017 GeV, (14)

where MPl is the reduced Planck scale. Obviously, there are
one-loop threshold corrections arising from the N = 1 and
N = 2 open string sectors [36]. Additionally, there are exotic
particles charged under both observable and hidden sector
gauge groups, which are expected to pick up large masses,
but could still affect the running of the gauge couplings.

Fixing the observable sectors a, b and c of Model 1a and
varying the hidden sector we have found two additional mod-
els that are consistent with the supersymmetry conditions and
the no-tadpole constraints. These additional new models are
listed as Model 1b and Model 1c in Tables 11 and 12 respec-
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tively. The respective particle spectra of the models are also
given in Tables 13 and 14.

In particular as can be noted from the descriptions of
Tables 11 and 12 that unlike Model 1a, there is no free param-
eter in the gauge coupling relations of the models 1b and 1c.
However the gauge couplings still exhibit approximate gauge
coupling unification at the string scale.

4 String-scale gauge coupling relations

In this section, we will discuss the RGE running for the gauge
couplings in the Model 1b and Model 1c. The RGEs for the
gauge couplings at the two-loop level are given by [19,21,
25,26,37,38]

d

d ln μ
gi = bi

(4π)2 g
3
i + g3

i

(4π)4

⎡

⎣
3∑

j=1

Bi j g
2
j

−
∑

α=u,d,e

dα
i Tr

(
hα†hα

)
⎤

⎦ , (15)

where μ is the running mass scale, gi (i = 1, 2, 3) are the SM
gauge couplings and hα(α = u, d, e) are the Yukawa cou-
plings. To obtain the two-loop RGEs for SM gauge couplings,
we perform numerically calculations including the one-loop
RGEs for Yukawa couplings and taking into account the new
physics contributions and threshold. And the whole integral
is divided into three segments. The first one is from the elec-
troweak scale, i.e. Z boson mass scale MZ , up to the super-
symmetry breaking scale MS , where we consider only the
non-supersymmetric SM spectrum including a top quark pole
mass at mt = 173.34 GeV and the corresponding gauge cou-
plings at the scale MZ are

g1(MZ ) = √
kY

gem
cos θW

, g2(MZ ) = √
k2

gem
sin θW

,

g3(MZ ) = √
4παs . (16)

The mass of Z boson is fixed at its experimental value
MZ = 91.1876 GeV in the following computations. The
Higgs vacuum expectation value, strong coupling constant,
fine structure constant, and weak mixing angle at MZ are
choosen to be [39,40]

v = 174.10 GeV , sin2 θW (MZ ) = 0.23122 ,

αs(MZ )=0.1181 ± 0.0011 , α−1
em (MZ )=128.91 ± 0.02 .

(17)

Next, we perform the supersymmetric RGEs from MS scale,
and the contributions form the introduced exotic vector-like

particles are included from MV up to string scale. Thus, in
the running of the gauge couplings, there can be two bending
points corresponding to MS and MV and dividing the whole
running lines into three region. In our calculation, the free
inputs are the masses of these vector-like particles. Based on
the experimental lower limits of supersymmetry and gauge
hierarchy preservation, we have the supersymmetry breaking
scale MS at TeV scale. In our previous studies [11,13,15], we
find that MS within an order of magnitude gives a deviation
on the scale of unification MU less than 5% and that the
larger value for MS reduces the unification scale. Thus in the
following calculations, we set the supersymmetry breaking
scale at 3.0 TeV. At last, we get the gauge coupling relations
at the string scale as

g2
a = k2g

2
b = kY g

2
Y = g2

U ∼ g2
string , (18)

where ga , gb, and gY are respectively the gauge couplings for
SU(3)C , SU(2)L , and U(1)Y . k2 and kY are rational numbers.
The canonical normalization in SU(5) and SO(10) models
give k2 = 1 and kY = 5/3.

The coefficients of beta functions in Eq. (15) in SM [41–
44] and supersymmetric models [45–47] are represented by

bSM =
(

41

6

1

kY
,−19

6

1

k2
,−7

)
,

BSM =

⎛

⎜⎜⎝

199
18

1
k2
Y

27
6

1
kY k2

44
3

1
kY

3
2

1
kY k2

35
6

1
k2

2
12 1

k2
11
6

1
kY

9
2

1
k2

−26

⎞

⎟⎟⎠ , (19)

duSM =
(

17

6

1

kY
,

3

2

1

k2
, 2

)
, ddSM = 0, deSM = 0, (20)

bSUSY =
(

11
1

kY
,

1

k2
,−3

)
,

BSUSY =

⎛

⎜⎜⎝

199
9

1
k2
Y

9 1
kY k2

88
3

1
kY

3 1
kY k2

25 1
k2

2
24 1

k2
11
3

1
kY

9 1
k2

14

⎞

⎟⎟⎠ , (21)

duSUSY =
(

26

3

1

kY
, 6

1

k2
, 4

)
, ddSUSY = 0, deSUSY = 0,

(22)

where kY and k2 are general normalization factors. The gen-
eral one-loop RGEs for Yukawa couplings can be found
in [38].

Defining the parameters as

α1 ≡ kY g
2
Y /4π, α2 ≡ k2g

2
b/4π, α3 ≡ g2

a/4π, (23)
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Fig. 1 Two-loop evolution of gauge couplings for the Model 1b without (left) and with (right) 12(X A + X A) at 1.81 × 1017 GeV and 3XG at
3.8 × 1016 GeV

Fig. 2 Two-loop evolution of gauge couplings for the Model 1c without (left) and with (right) 9(X A + X A) at 2.93 × 1016 GeV and 3XG at
3.75 × 1016 GeV

the two-loop evolution of gauge couplings are shown in
Figs. 1 and 2 for the models 1b and 1c, where the string-
scale gauge coupling relation is achieved by setting α−1

U ≡
α−1

1 = (α−1
2 + α−1

3 )/2 and limiting the accuracy � =
|α−1

1 − α−1
2 |/α−1

1 ≤ 0.1%. The string-scale gauge cou-
pling relations are realized by adding the vector-like particles
X A + X A from the fundamental representation of SU (4)

gauge group and the particle XG from the adjoint represen-
tation of SU (2). The quantum numbers of these exotic par-
ticles under SU (3)C × SU (2)L × U (1)Y are X A + X A =
(1, 2, 0) + (1,2̄, 0) and XG = (8, 1, 0). For the particles
X A + X A, the non-zero coefficients of one- and two-loop
beta functions in the supersymmetric models are �b2 = 1
and �B22 = 7, which will only modify the evolution of the
electroweak coupling; while the the non-zero contributions
from particle XG are �b3 = 3 and �B33 = 54, which will
alter the evolution of the strong coupling. Thus, the adding of
these particles will bend the values of α−1

2 and α−1
3 to achieve

the unification on the right panel of Figs. 1 and 2. Based on
the intersection of D-branes, 12 and 9 pairs of X A + X A,
from the be+be′ sectors in the spectrum Tables 13 and 14, are
added in the models 1b and 1c, respectively. While, the par-
ticle XG arises from the aa sectors, and in our calculations
we introduce the particle XG with the maximum number 3.

5 Machine learning

We perform machine learning on scanned data with the help
of autoencoder to visualise the models in form of a point
in two-dimensions as depicted in Fig. 3. We choose mean
squared error (MSE) as the loss function. The gradients of
loss to the learnable parameters are evaluated on each batch of
size 500 examples and the learnable parameters are optimized
by using the ADAM optimizer [48] with learning rate of 0.01.

Since the scan over the hidden sector is performed by
fixing the visible sector, the complex structure moduli would
remain unchanged. Thus, all the gauge coupling relations
would remain same under the variation of the hidden sector
except that the USp groups from the hidden sector change
to unitary gauge groups. This leads to the generations of
phenomenologically different models, but with same gauge
coupling relations. It can also be verified from Fig. 3 where
Pati–Salam models and their corresponding hidden sector
variation (shown by green and yellow points respectively)
approximately overlap, and sit in separate regions.

We use different loss functions to train the data on autoen-
coder, and show their efficiency in Fig. 4. It is clear from the
Fig. 4 that loss is minimized through back-propagation in
case of MSE loss function.
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Fig. 3 Landscape of
Pati–Salam models where each
point corresponds to a model:
blue, and red points represent
non-MSSM models and
non-MSSM models with at least
one USp group respectively,
while green and yellow points
represent MSSM models, and
their hidden sector variation.
Black points represent models
with at least one USp group
under the hidden sector
variation. Non-MSSM models
(with or without USp group)
tend to overlap in clusters.
MSSM models (with their
hidden sector variation) overlap,
and occupy separate regions. So
is the models with USp group
under the hidden sector
variation

Fig. 4 A comparison of
different loss functions during
training of data

6 Conclusion

We have found new three-family supersymmetric Pati–Salam
models where either one or both of the SU(2)L ,R gauge fac-
tors arise from an original USp(2)L ,R group on a T6/(Z2 ×
Z2) orientifold from intersecting D6-branes at angles from
IIA string theory without fluxes. Unlike the special unitary
group, the symplectic group is a simpler choice as there is no
associated global anomalous U(1) group. The unitary sym-

plectic group arises by placing the D6-brane stack parallel to
any of the four O6-planes.

By fixing the observable sector while varying the hid-
den sector we are able to ascertain the all possible gauge
group factors consistent with the no-tadpole constraint. We
have displayed the perturbative particle spectra of these rep-
resentative models where the exotic particles are found to
be decoupled in some of the models. This seemingly minor
change from SU(2) to USp(2) group is quite restrictive and
drastically reduces the number of consistent three-family
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models. Therefore, while the number of three-family mod-
els with SU(4)C × SU(2)L × SU(2)R groups is found to be
202,752 [10,11], the similar models by replacing either one
of the SU(2) factors with a USp(2) is only 5 [13]. Interest-
ingly, three-family supersymmetric Pati–Salam model with
the specific gauge group SU(4)C × USp(2)L × USp(2)R are
even more constrained and we have only found two such
models.

Finally, we also point out a discrepancy in Ref. [10] where
a complete search of the landscape of supersymmetric Pati–
Salam models constructed from Type IIA string theory on
T6/(Z2 × Z2) orientifolds was claimed. Here, we have
demonstrated that in order to chart out the complete land-
scape the inequivalent models with similar visible sectors
but having a different hidden sector should also be taken into
account as it can not only change the number of consistent
models but also can affect the gauge coupling relations.
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Appendix A: Pati–Salammodels with a symplectic group
under the variations of the hidden sector

In this appendix, we list all representative three-family super-
symmetric Pati–Salam models with a symplectic group under
the variations of the hidden sector obtained from random
scanning method. a, b, c, d in the first column in every table
represent the four stacks of D6-branes, respectively. Simi-
larly, 1, 2, 3, 4 in the first columns is a short-handed notation
for the filler branes along the�R,�Rω,�Rθω and�Rθ O6-
planes, respectively. The second column in each table lists
the numbers of D6-branes in the respective stack. In the third
column we record the wrapping numbers of each D6-brane
configuration. The rest of the columns record the intersection
numbers between various stacks. For instance, in the b col-
umn of Table 15, from top to bottom, the numbers represent
intersection numbers Iab, Ibc, Ibd , etc. As usual, b′ and c′
are the orientifold �R image of b and c stacks of D6-branes.
We also list the relation between xA, xB , xC , xD , which are
determined by the supersymmetry conditions (10), as well as
the relation between the moduli parameter χ1, χ2, χ3. The
one loop beta functions β

g
i for each of the hidden sector stack

is also listed. The gauge coupling relations are given in the
caption of each Tables 16, 17, 18, 19, 20, 21.

Table 15 Model 1 represents the hidden sector variation of Model 1 in Ref. [13]. D6-brane configurations and intersection numbers of Model 1,

and its gauge coupling relation is g2
a = 8

7 g2
b = 4

3 g2
c = 6

5

(
5
3 g2

Y

)
= 32

7
4
√

2
3 π eφ4

Model 1 U(4) × USp(2)L × U(2)R × U(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (−1,−3) × (0,−1) × (−1,−1) −2 2 3 −3 0 4 4 0 0 0 0

b 2 (1, 0) × (1, 0) × (2, 0) 0 0 – 4 −4 2 −2 0 0 0 0

c 4 (0, 1) × (3,−4) × (1,−1) 1 −1 – – – 4 −10 0 0 0 0

d 4 (−1, 1) × (1,−2) × (−3,−1) −2 −22 – – – – – 0 0 0 0

β
g
d = 8, xA = 3

4 xB = 1
3 xC = 1

24 xD

18χ1 = 8χ2 = χ3/2 = √
6
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Table 16 Model 2a represents the hidden sector variation of Model 2 in Ref. [13]. D6-brane configurations and intersection numbers of Model 2a,

and its gauge coupling relation is g2
a = 11

36 g2
b = 1

3 g2
c = 3

5

(
5
3 g2

Y

)
= 2

√
2

9 113/4 π eφ4

Model 2a U(4) × USp(2)L × U(2)R × U(2) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (−1,−3) × (−1, 0) × (1,−1) −2 2 3 0 −3 4 4 0 0 0 0

b 2 (1, 0) × (0, 1) × (0,−2) 0 0 – −1 1 1 −1 0 0 0 0

c 4 (0, 1) × (1,−3) × (1,−1) 2 −2 – – – 4 −4 −3 0 0 0

d 4 (−1, 1) × (−1,−1) × (1,−3) 0 −12 – – – – – −3 0 0 0

1 2 (1, 0) × (1, 0) × (2, 0) β
g
d = 7, β

g
1 = 0,

xA = 1
3 xB = 1

33 xC = 1
9 xD

33χ1 = 3χ2 = 11
2 χ3 = √

11

Table 17 Model 2b represents the hidden sector variation of Model 2 in Ref. [13]. D6-brane configurations and intersection numbers of Model 2b,

and its gauge coupling relation is g2
a = 11

36 g2
b = 1

3 g2
c = 3

5

(
5
3 g2

Y

)
= 2

√
2

9 113/4 π eφ4

Model 2b U(4) × USp(2)L × U(2)R × U(2) × USp(6)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (−1,−3) × (−1, 0) × (1,−1) −2 2 3 0 −3 4 4 0 0 0 0

b 2 (1, 0) × (0, 1) × (0,−2) 0 0 – −1 1 −2 2 0 0 0 0

c 4 (0, 1) × (1,−3) × (1,−1) 2 −2 – – – −10 7 0 0 0 0

d 4 (1, 1) × (2,−1) × (−1, 3) 2 22 – – – – – 0 0 0 −1

3 6 (0,−1) × (1, 0) × (0, 2) β
g
d = 14, β

g
3 = −5,

xA = 1
3 xB = 1

63 xC = 1
9 xD

63χ1 = 3χ2 = 21
2 χ3 = √

21

Table 18 Model 3 represents the hidden sector variation of Model 3 in Ref. [13]. D6-brane configurations and intersection numbers of Model 3,

and its gauge coupling relation is g2
a = 5

18 g2
b = 1

3 g2
c = 3

5

(
5
3 g2

Y

)
= 4

√
2

9 53/4 π eφ4

Model 3 U(4) × USp(2)L × U(2)R × U(2) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (−1, 0) × (−1,−3) × (1,−3) 0 0 3 −3 0 0 0 0 0 0 0

b 2 (0, 1) × (1, 0) × (0,−2) 0 0 – 1 −1 6 −6 0 0 0 0

c 4 (1, 1) × (0, 1) × (−1,−3) −2 2 – – – 3 0 0 0 0 0

d 4 (2, 1) × (1,−3) × (1,−3) −16 −56 – – – – – 0 1 0 0

2 2 (1, 0) × (0,−1) × (0, 2) β
g
d = 3, β

g
2 = −5,

xA = 1
45 xB = 1

3 xC = 1
3 xD

χ1 = 15χ2 = 15
2 χ3 = √

5

123
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Table 19 Model 4 represents the hidden sector variation of Model 4 in Ref. [13]. D6-brane configurations and intersection numbers of Model 4,

and its gauge coupling relation is g2
a = 11

18 g2
b = 2

3 g2
c = 4

5

(
5
3 g2

Y

)
= 4

9 113/4 π eφ4

Model 4 U(4) × USp(2)L × U(2)R × U(2) × USp(4)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (−1, 0) × (−1,−3) × (1,−1) −2 2 3 −3 0 4 4 0 0 0 0

b 2 (0, 1) × (1, 0) × (0,−2) 0 0 – 2 −2 2 −2 0 0 0 0

c 4 (2, 3) × (0, 1) × (−1,−1) −1 1 – – – 8 −8 0 0 0 0

d 4 (2, 1) × (1,−1) × (1,−3) −2 −22 – – – – – 0 1 0 0

2 4 (1, 0) × (0,−1) × (0, 2) β
g
d = 12, β

g
2 = −5,

xA = 1
33 xB = 2

3 xC = 2
9 xD

3χ1 = 33χ2 = 11
2 χ3 = √

11

Table 20 Model 5a represents the hidden sector variation of Model 5 in Ref. [13]. D6-brane configurations and intersection numbers of Model 5a,

and its gauge coupling relation is g2
a = 7

22 g2
b = 1

3 g2
c = 3

5

(
5
3 g2

Y

)
= 4

√
2

11
73/4

4√3
π eφ4

Model 5a U(4) × USp(2)L × U(2)R × U(2) × USp(6)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (1, 3) × (1, 0) × (1,−1) −2 2 3 0 −3 4 4 0 0 0 0

b 2 (1, 0) × (0, 1) × (0,−2) 0 0 – −1 1 2 −2 0 0 0 0

c 4 (0,−1) × (−1, 3) × (1,−1) 2 −2 – – – 7 −10 0 0 0 0

d 4 (1,−1) × (2, 1) × (1,−3) −2 −22 – – – – – 0 0 1 0

3 6 (0, −1) × (1, 0) × (0, 2) β
g
d = 11, β

g
3 = −5,

xA = 1
3 xB = 1

63 xC = 1
9 xD

63χ1 = 3χ2 = 21
2 χ3 = √

2

Table 21 Model 5b represents the hidden sector variation of Model 5 in Ref. [13]. D6-brane configurations and intersection numbers of Model 5b,

and its gauge coupling relation is g2
a = 7

22 g2
b = 1

3 g2
c = 3

5

(
5
3 g2

Y

)
= 4

√
2

11
73/4

4√3
π eφ4

Model 5b U(4) × USp(2)L × U(2)R × U(2) × USp(2)

Stack N (n1, l1) × (n2, l2) × (n3, l3) n n b c c′ d d′ 1 2 3 4

a 8 (1, 3) × (1, 0) × (1,−1) −2 2 3 0 −3 4 4 0 0 0 0

b 2 (1, 0) × (0, 1) × (0,−2) 0 0 – −1 1 −1 1 0 0 0 0

c 4 (0,−1) × (−1, 3) × (1,−1) 2 −2 – – – −4 4 −3 0 0 0

d 4 (1, 1) × (−1, 1) × (−1,−3) 0 12 – – – – – 3 0 0 0

1 2 (1, 0) × (1, 0) × (2, 0) β
g
d = 7, β

g
1 = 0,

xA = 1
3 xB = 1

33 xC = 1
9 xD

33χ1 = 3χ2 = 11
2 χ3 = √

11
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