
Eur. Phys. J. C (2023) 83:1078
https://doi.org/10.1140/epjc/s10052-023-12165-8

Regular Article - Theoretical Physics

Probing gluon saturation via diffractive jets in ultra-peripheral
nucleus-nucleus collisions

E. Iancu1,a, A. H. Mueller2,b, D. N. Triantafyllopoulos3,c, S. Y. Wei4,d

1 Institut de physique théorique, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
2 Department of Physics, Columbia University, New York, NY 10027, USA
3 European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler,

Strada delle Tabarelle 286, 38123 Villazzano, TN, Italy
4 Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of frontier and interdisciplinary science, Shandong University,

Qingdao 266237, Shandong, China

Received: 1 June 2023 / Accepted: 20 October 2023 / Published online: 25 November 2023
© The Author(s) 2023

Abstract We argue that semi-inclusive photo-production
of a pair of hard jets via coherent diffraction in nucleus-
nucleus ultra-peripheral collisions at high energy is a golden
channel to study gluon saturation. The dominant contribu-
tion is the diffractive production of three jets in an asymmet-
ric configuration. Two of the jets are hard and propagate at
nearly central pseudo-rapidities. The third jet is semi-hard,
with transverse momentum comparable to the nuclear satu-
ration momentum, and is well separated in pseudo-rapidity
from the hard dijets. The emission of the semi-hard jet
allows for strong scattering, thus avoiding the “higher-twist”
suppression of the exclusive dijet production due to colour
transparency. We compute the trijet cross-section using the
diffractive TMD factorisation which emerges from the CGC
effective theory at high energy. The cross-section is con-
trolled by gluon saturation, which leaves its imprints on the
structure of the final state, notably on the rapidity distribu-
tion.

1 Introduction

For sufficiently high energies, hadronic interactions are
expected to probe a dense and weakly coupled form of glu-
onic matter, known as the colour glass condensate (CGC),
which is made with “small–x gluons” (i.e. gluons which carry
small fractions x � 1 of the hadron longitudinal momen-
tum) and whose main characteristic is gluon saturation –
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the fact that gluon occupation numbers are limited to val-
ues of order 1/αs by the gluon mutual interactions [1–4].
The most direct way to experimentally study this form of
matter would be through strong scattering in the vicinity of
the “black disk” limit (the unitarity limit for the scattering
amplitudes). In the CGC picture at weak coupling, unitar-
ity corrections are depicted as multiple scattering off strong
colour fields representing the saturated gluons. These cor-
rections are particularly important if the scattering probes
sufficiently large transverse separations in the hadronic tar-
get, r ∼ 1/Qs , with Qs the target saturation momentum
– the typical transverse momentum of the saturated gluons.
Conversely, a small hadronic projectile with transverse size
r � 1/Qs scatters only weakly, by colour transparency,
and probes the tail of the gluon distribution at large trans-
verse momenta k⊥ � Qs . The saturation momentum Qs

rises rapidly with 1/x , due to the abundant production of
soft gluons via bremsstrahlung, and also with the nuclear
mass number A for a nuclear target with A � 1: roughly,
Q2

s (x, A) ∼ Aδ/xλ with λ ∼ 0.2 and δ ∼ 1/3. For A � 200
(lead or gold nuclei) and x � 10−2, one expects a semi-
hard value Q2

s (x, A) � 2 GeV2, for which perturbative QCD
should be (at least marginally) applicable.

The simplest hadronic probe that one can think of,
is the quark-antiquark (qq̄), colour-dipole, fluctuation of
the exchanged photon in photon-mediated processes, like
electron-nucleus deep inelastic scattering (DIS) and nucleus-
nucleus (AA) ultra-peripheral collisions (UPCs). By properly
selecting the structure and the kinematics of the final state,
one can adjust the spatio-temporal resolution of the colour
dipole. In DIS, the transverse size of the qq̄ pair is con-
trolled by the photon virtuality, r2 ∼ 1/Q2, whereas the
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Bjorken variable xBj = Q2/(2P · q) fixes the gluon longi-
tudinal momentum fraction: x = xBj . In UPCs, the photon
is quasi-real (Q2 ≈ 0), yet the dipole size r can be forced
to be small by measuring a pair of hard jets in the final state
– those initiated by the original qq̄ pair. These jets propa-
gate nearly back-to-back in the transverse plane and their
transverse relative momentum P⊥ fixes r2 ∼ 1/P2⊥.

Clearly, such processes are sensitive to gluon saturation
whenever the controlling scales Q2 and/or P2⊥ are semi-hard,
of the order of the target saturation momentum Q2

s (x, A).
Yet, this is not the most interesting situation in practice.
As already mentioned, the scale Q2

s is only marginally per-
turbative, hence larger dipoles with size r � 1/Qs (that
would contribute to inclusive DIS when Q2 ∼ Q2

s ) are not
under control in perturbation theory. Also, semi-hard jets
with P⊥ ∼ Qs cannot be reconstructed as genuine jets in the
calorimeters of the Large Hadron Collider (LHC). So, it is
important to also envisage the possibility to study saturation
via harder processes, with Q2, P2⊥ � Q2

s .
In a couple of recent papers [5,6], we have argued that

the semi-inclusive photo-production of a pair of hard jets via
coherent diffraction is a promising channel in that sense. By
“coherent diffraction” we mean elastic processes in which the
target nucleus is not broken by the collision. Elastic scatter-
ing is indeed well suited for a study of gluon saturation since
particularly sensitive to unitarity corrections. It is generally
revealed by the presence of large rapidity gaps in the final
state. By “semi-inclusive” we refer to events where the hard
qq̄ dijets, with relative momentum P⊥ � Qs , are accompa-
nied by (at least) one semi-hard jet – a gluon with transverse
momentum K⊥ ∼ Qs – whose emission by either the quark
or the antiquark plays an essential role in the economy of
the process: it re-distributes colour over a large transverse
separation R ∼ 1/Qs , thus allowing for strong scattering.
Without this third jet, the cross-section for the exclusive pro-
duction of the hard dijets would be strongly suppressed, by
a factor Q2

s/P
2⊥, due to colour transparency (see Appendix

A below for an explicit calculation).
The analysis in [5,6] also led to interesting conceptual

clarifications: the cross-section for diffractive “(2+1)-jet pro-
duction” (two hard jets accompanied by a semi-hard one)
admits transverse-momentum dependent (TMD) factorisa-
tion: it can be written as the product between a “hard fac-
tor” describing the hard dijet production and a “semi-hard”
factor, representing the unintegrated gluon distribution of the
“Pomeron” (the colourless exchange between the nuclear tar-
get and the three jets produced in the final state), also known
as (a.k.a.) the gluon diffractive TMD. Whereas the emergence
of collinear factorisation for diffraction from the dipole pic-
ture was anticipated in the early works [7–13], the TMD
factorisation exhibited in [5,6] is nevertheless remarkable in
several respects. First, it holds at the “unintegrated” level,

that is, for a fixed value of the transverse momentum K⊥
of the gluon jet (see also [14,15] for recent developments).
Second, the gluon diffractive TMD is shown to be controlled
by the “semi-hard” physics of gluon saturation (K⊥ ∼ Qs),
hence it can be computed from first principles. This is partic-
ularly important for applications to heavy nuclei, for which
the diffractive parton distributions are only poorly known and
previous studies based on collinear factorisation had to resort
on models [16,17].

Our original analysis focused on the DIS processes to
be studied at the electron-ion collider (EIC) [18–20]. In the
present paper we extend this analysis to diffractive (2+1)-jet
production in AA UPCs [21–23], with emphasis on the kine-
matical conditions at the LHC. While most of the previous,
theoretical and experimental, efforts have been devoted to
vector meson photo-production (see e.g. [24,25] and refer-
ences therein), there are also recent measurements of diffrac-
tive dijets in Pb+Pb UPCs at the LHC [26–29].

A priori, the LHC looks better suited than the EIC for
a study of gluon saturation, due to the much higher avail-
able energies. In UPCs though, this advantage is somewhat
diminished by the limitation on the energy of the exchanged
photon (which is only a small fraction of that of its parent
nucleus) and by the fact that the measured jets are quite hard,
P⊥ ≥ 20 GeV, and hence cannot access very small values
of x . (The relevant x-variable in this diffractive context is
the longitudinal momentum fraction xP lost by the nuclear
target and taken by the Pomeron.) The smallest values of xP
explored by the dijet measurements in [26–29], in the ball-
park of xP = 0.01, are only marginally favourable for satu-
ration – for instance, they do not allow one to test the high-
energy evolution in QCD, as described by the BK/JIMWLK
equations [30–37]. That said, for xP = 0.01 and a large
target nucleus like Pb (A = 208), one may still expect sat-
uration effects in the sense of the semi-classical McLerran–
Venugopalan (MV) model [38,39]. This is the scenario that
we shall privilege in this paper.

The highly asymmetric structure of the (2+1)–jet final
state introduces both experimental and conceptual chal-
lenges. A semi-hard jet with transverse momentum K⊥ of
the order of Qs is rather hard to measure – e.g., it is too soft
to be reconstructed in a calorimeter at the LHC. As a mat-
ter of fact, no such a jet was reported by the recent analysis
by CMS [28,29]. Yet, as we shall argue in this paper, the
actual observation of this jet (say, via its hadronic descen-
dants) would be highly beneficial. First, it would allow one
to unambiguously distinguish the nucleus which emitted the
photon from that which acted as a target. Second, it would
permit to measure the diffractive gap, which (in our calcu-
lation at least) is the rapidity gap between the gluon jet and
the nuclear target. So it is important to understand where to
look for this third jet in the final event. Our analysis demon-
strates that the hard dijets are predominantly produced at
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relatively central pseudo-rapidities (|η| � 1) and that they
are separated from the semi-hard jet by a rather large interval
�ηjet ∼ ln(P⊥/Qs) (2–3 units of pseudo-rapidity). Hence,
the third jet is likely to propagate at large pseudo-rapidities,
which may explain why it was not detected by CMS. Since
controlled by the target saturation momentum Qs , this large
rapidity separation �ηjet brings direct evidence for gluon
saturation.

But the most important evidence in favour of saturation
is the very fact that the coherent (diffractive) production of
a pair of hard dijets has a large cross-section, which is of
leading-twist order at large P⊥ and proportional to A (the
mass number of the target nucleus), and hence of the same
order as the cross-section for inclusive dijet photo-production
via inelastic processes. By contrast, the cross-section for
exclusive dijets is of higher twist order (see Appendix A); for
the experimental conditions at the LHC, it should be down
by 2–3 orders of magnitude compared to the semi-inclusive
cross-section corresponding to the (2+1)-jet channel.

2 Diffractive dijets in UPCs

We shall study the diffractive production of three jets via
γ A interactions in coherent ultra-peripheral nucleus-nucleus
collisions (UPCs). Ultra-peripheral means that the impact
parameter of the collision is larger than the sum RA + RB

of the two nuclear radii, while by “coherent” we mean that
both nuclei survive in the final state. Although usually the
nuclei are identical, we will use different labels to distin-
guish the nucleus which propagates in the +z direction
(“right-mover”), denoted as B, from the left-mover, denoted
as A. The nuclei are ultra-relativistic, so that the center-of-
mass energy squared for a nucleon-nucleon collision reads
sNN = 2P+

B P−
A = 4E2

N , where EN � MN is the energy
of a nucleon with mass MN , while P+

B = √
2EN is the

large longitudinal momenta of a nucleon in nucleus B and
P−
A = √

2EN the respective momentum for a nucleon in
nucleus A. For quantitative estimates we shall take

√
sNN = 5

TeV and thus EN = 2.5 TeV, like for Pb+Pb collisions at the
LHC.

One of the nuclei acts as a source for the quasi-real photon
γ and the other one is the target off which the photon scatters.
For definiteness, we will work out the case in which the pho-
ton is emitted from nucleus B and hence it is a right-mover
too. The other case (photon emitted from nucleus A) can
be trivially deduced by a symmetry operation (see below)
and the final cross section is obtained by adding the two
possibilities. The photon has a very small space-like virtu-
ality and zero transverse momentum, thus we can write its
4-momentum as qμ = (q+ � √

2ω, q− = −Q2/2q+, 0⊥),
with |q−| � q+. The process which we are interested in is

Fig. 1 Diffractive photo-production of 2+1 jets (a hard quark-
antiquark pair with large relative transverse momentum P⊥ and a semi-
hard gluon with semi-hard K⊥ ∼ Qs(A, YP)) in the coherent ultrape-
ripheral collision

the following: first the photon decays to a quark-antiquark
pair and then a gluon is emitted either from the quark or the
antiquark (see Fig. 1 for a pictorial representation). Then the
three partons elastically scatter off the nucleus A and emerge
in the final state with 4-momenta kμ

i = (k+
i , k−

i , ki⊥), where
k−
i = k2

i⊥/2k+
i and the labels i = 1, 2, 3 refer to the quark,

the antiquark and the gluon respectively. It is useful to define
the longitudinal fractions ϑi = k+

i /q+ with respect to (w.r.t.)
the photon and similarly xi = k−

i /P−
N w.r.t. the struck

nucleon. We clearly have ϑ1 + ϑ2 + ϑ3 = 1, whereas the
sum

xP = x1 + x2 + x3 (1)

is the fraction of P−
N transferred from the target nucleus A

to the produced jets via the “Pomeron” (cf. the detailed dis-
cussion at the end of the current section). In diffraction there
shouldn’t be any net color flow between the projectile par-
tons and the nuclear target, or in other words the Pomeron
must be colorless. Then one should observe a pseudo-rapidity
gap, i.e. an angular region between the target nucleus and the
produced jets, which is void of particles. The value �ηgap

of this diffractive gap is close (but not exactly equal) to the
rapidity interval YP = ln 1/xP relevant for the high energy
evolution of the target nucleus A. We are interested in the case
where the Pomeron longitudinal momentum fraction is small
enough, say xP � 0.01, in order to probe gluon saturation
in the perturbative regime; that is, we require the saturation
momentum Qs(YP) of the target nucleus A to be semi-hard.
The condition xP � 1 is also needed to allow for coherent
scattering, that is, to ensure that nucleus A emerges unbroken
from the collision.

As explained in the Introduction, we are interested in
asymmetric 3-jet configurations, where two of the jets, here
chosen as the qq̄ pair, are much harder than the third (gluon)
jet. (The case where one of the two hard jets is the gluon
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will be addressed in a further study.) Specifically, the trans-
verse momenta k1⊥ and k2⊥ of the quark and the anti-
quark are assumed to be large compared to the saturation
momentum Qs(YP) and their longitudinal momentum frac-
tions ϑ1 and ϑ2 take generic values of the order of one half.
Then, as explained in [5,6], the gluon jet is dynamically
selected to be semi-hard, i.e. k3⊥ ∼ Qs(YP), and soft, namely
ϑ3 � k2

3⊥/k2
1⊥. The first condition on the transverse momen-

tum makes sure that the gluon’s distance R ∼ 1/k3⊥ from
the qq̄ pair is large enough to allow for strong scattering,
while the upper limit on the fraction ϑ3 guarantees that the
gluon formation time does not exceed the qq̄ pair lifetime. If
any of these two constraints is not satisfied, the cross section
of interest is strongly suppressed.

For the coherent process under consideration, the total
transverse momentum �⊥ transferred from the target to the
jets is very small, �⊥ ∼ 1/RA � 30 MeV (we used RA �
6 fm for a Pb nucleus). This is much smaller than any of
the transverse momenta of the three jets. Accordingly, the
momentum imbalance between the hard jets is determined
by the gluon, |k1⊥ + k2⊥| � k3⊥, and is much smaller then
their individual momenta k1⊥ and k2⊥. This makes it clear
that the two hard jets propagate nearly back-to-back in the
transverse plane. It is then convenient to introduce the relative
(P) and total (K ) momenta of the hard dijet according to

P ≡ ϑ2k1 − ϑ1k2

ϑ1 + ϑ2
, K ≡ k1 + k2 (2)

and the kinematic regime of interest can be summarised as
k1⊥ � k2⊥ � P⊥ � K⊥ � k3⊥ � Qs(YP) and ϑ1 ∼ ϑ2 �
1 − ϑ1 � ϑ3.

It is standard to use (pseudo-)rapidities to characterise the
jets longitudinal momenta. For massless particles there is no
difference between pseudo-rapidities and rapidities, so we
will use the common notation η for both. For an on-shell
particle with 4-momentum kμ we have

η = − ln tan
θ

2
= 1

2
ln

k+

k− = ln

√
2k+

k⊥
= − ln

√
2k−

k⊥
, (3)

where θ is the propagation angle w.r.t. the z-axis. We shall say
that a particle moves in the forward direction when its rapidity
is positive, i.e. when it propagates in the same hemisphere as
the nucleus B and the photon emitted by the latter.

We are now in a position to write down the general expres-
sion for the cross section for 2+1 jet production in AB UPCs:

dσ
AB→qq̄gAB

2+1

dη1dη2d2Pd2KdYP

=
∫ ∞

0
dω

[
dNB

dω

dσ
γ A→qq̄gA
2+1

dη1dη2d2Pd2KdYP
+ (A ↔ B)

]
,

(4)

where the first (second) term in the square brackets refers to
the case in which the photon is emitted by nucleus B (respec-
tively, A). As already mentioned, we will focus on the first
case – photon emitted by B and which scatters with A –,
for which we shall use the label BA → γ A. The contribu-
tion of the other case (AB → γ B) can then be obtained by
changing the signs of the pseudo-rapidities η1 and η2. Each
of these terms is the product of two factors which describe
the two stages of the process: the photon emission and the
photon-nucleus collision.

The quantity dNB/dω is obtained by integrating the pho-
ton flux generated by nucleus B over impact parameters
b ≥ RA + RB . A computation in classical electrodynam-
ics gives [21–23,40]

dNB

dω
= 2Z2

Bαem

πω

{
ζK0(ζ )K1(ζ ) − ζ 2

2

[
K 2

1 (ζ ) − K 2
0 (ζ )

]}
,

(5)

with αem the fine structure constant and where we have
defined the dimensionless parameter

ζ = ω(RA + RB)

γL
= 2xγ MN RA. (6)

Here γL = EN/MN is the nucleon Lorentz boost factor,
whereas in writing the second equality we assumed identi-
cal nuclei. We also introduced the fraction xγ = q+/P+

B =
ω/EN of the longitudinal momentum of a nucleon (from
nucleus B) that is carried by the photon. We show the inte-
grated photon flux as a function of both ω and ζ in the left
panel of Fig. 2. Since the Bessel functions vanish exponen-
tially for ζ � 1, it becomes clear that the photon flux is
substantial only for energy fractions up to

x∗
γ ≡ 1

2MN RA
. (7)

With MN = 1 GeV and RA = 6 fm, one finds x∗
γ � 0.016,

which in turn implies a critical value ω∗ = x∗
γ EN � 40 GeV

for the photon energy. We would like to stress that higher
photon energies are not kinematically forbidden and it would
be very welcome if experiments could trigger on such rare
events. The fact that ω∗ is much smaller than the nucleon
energy EN means that, although the photon is a right mover,
the jets will not be constrained to move in the forward direc-
tion as we will discuss in a while.

The integration over ω in Eq. (4) can be trivially performed
by using the conservation of the plus component of the longi-
tudinal momentum in theγ A collision:q+ = k+

1 +k+
2 +k+

3 �
k+

1 + k+
2 , where we have used the fact that the gluon is soft.

Hence ω is determined by the final state kinematics of the
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Fig. 2 Left panel: double logarithmic plot of the photon spectrum
produced by an ultra-relativistic nucleus with charge Z = 82, radius
RA = 6 fm and Lorentz factor γL = 2500, passing a same target
nucleus at an impact parameter b ≥ 2RA, either as a function of the

photon energy ω or as a function of the dimensionless parameter ζ

(cf. Eq. (6)). Right panel: logarithmic plot of the same spectrum as
a function of the common rapidity y = η1 = η2 = ln(ω/P⊥) of a
symmetric dijet pair with transverse momenta k1⊥ = k2⊥ = P⊥

hard pair according to (we recall that q+ � √
2ω)

ω = 1√
2

(k+
1 + k+

2 ) = 1

2
(k1⊥eη1 + k2⊥eη2)

� P⊥
2

(eη1 + eη2). (8)

The second ingredient in Eq. (4) is the cross section for 2+1
jet production in γ A coherent diffraction. When P⊥ � K⊥
and ϑ1, ϑ2 � ϑ3, this factorises between a “hard” and a
“semi-hard” factor [5,6], as we now explain. By taking into
account only the first term in Eq. (4) we can write

dσ
BA→γ A
2+1

dη1dη2d2Pd2KdYP
= ω

dNB

dω
h(η1, η2, P

2⊥)

× dxGA
P
(x, xP, K 2⊥)

d2K
, (9)

where the photon energy is fixed according to Eq. (8).
The hard factor h describes the decay of a transversely

polarised quasi-real photon1 into a qq̄ pair, as well as the
coupling of the latter to the comparatively soft gluon; it reads

h(η1, η2, P
2⊥) = αemαs

(∑
e2
f

)
ϑ1ϑ2(ϑ

2
1 + ϑ2

2 )
1

P4⊥
, (10)

where αs is the strong coupling constant and e f is the frac-
tional charge of the flavor f . It is understood that ϑ2 � 1−ϑ1

1 The contribution of longitudinally polarized photons vanishes linearly
with Q2.

and ϑ1 can be expressed in terms of pseudo-rapidities as

ϑ1 = k1⊥eη1

k1⊥eη1 + k2⊥eη2
� eη1

eη1 + eη2
. (11)

The factor ϑ1ϑ2 in Eq. (10) makes clear that relatively sym-
metric jets with ϑ1 ∼ ϑ2 ∼ 1/2, hence with η1 ∼ η2, are
favored by this process. It is interesting to observe that the
hard factor (10) is identical to that appearing in the cal-
culation of inclusive dijet photo-production in the correla-
tion limit – i.e. in the regime where the two jets are hard
(P⊥ � Qs) and (weakly) scatter off the small-x gluons in
the target – and to leading order [41]. In Appendix B, we will
compare the cross-sections for these two processes.

The semi-hard factor in Eq. (9) encodes the QCD dynam-
ics of interest and represents the unintegrated gluon dis-
tribution (UGD) of the Pomeron, or the “gluon diffrac-
tive transverse momentum distribution (TMD)”: it gives the
probability to find a gluon with relative minus longitudinal
momentum fraction x and transverse momentum K⊥ inside a
Pomeron which carries a fraction xP of the target momentum
(per nucleon). Implicit in this interpretation, there is an alter-
native physical picture in which the gluon is viewed as being
part of the target nucleus wavefunction2 – more precisely,
of the “Pomeron”. The Pomeron emits two gluons in a color
singlet state: one in the s-channel (which appears in the final
state) with momentum fraction x3 and transverse momentum
k3 = −K , and one in the t-channel, with momentum fraction

2 That would be the actual physical picture if the γ A collisions was
viewed in a different frame and gauge: the Bjorken frame where the
photon has zero longitudinal momentum and the target light-cone gauge.
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xP − x3 and transverse momentum K . The t–channel gluon
is absorbed by the qq̄ pair and provides the minus momen-
tum fraction of the hard dijet, xP − x3 = x1 + x2 ≡ xqq̄ , as
well as its transverse momentum imbalance: K = k1 + k2.
The variable x appearing in the gluon diffractive TMD is the
splitting fraction of the t-channel gluon w.r.t. the Pomeron:

x = xqq̄
xP

. (12)

While xqq̄ depends only on the kinematics of the hard dijet,
namely

xqq̄ = k1⊥e−η1 + k2⊥e−η2

2EN
� P⊥

2EN

(
e−η1 + e−η2

)
, (13)

x and xP are also sensitive to the kinematics of the semi-hard
gluon jet, more precisely

xP = xqq̄ + K⊥e−η3

2EN
(14)

and x can be determined from the above equations. Notice
that, out of the three longitudinal variables η3, xP and x , only
one is independent.

3 The gluon distribution of the Pomeron

As emphasised in the Introduction, the Pomeron UGD at low
xP � 1 is determined by the physics of gluon saturation.
It is related to a particular Fourier–Bessel transform of the
amplitude Tg(R,YP) for a gluon-gluon dipole of size R to
scatter off the nuclear target. More precisely one finds [5,6]

dxGA
P
(x, xP, K 2⊥)

d2K
= S⊥(N 2

c − 1)

4π3

∣∣GA(x, xP, K⊥)
∣∣2

2π(1 − x)
,

(15)

with S⊥ ∝ A2/3 the transverse area of the nucleus A and GA

a dimensionless distribution given by

GA(x, xP, K⊥) = M2
∫ ∞

0
dR R J2(K⊥R)K2(MR)Tg(R, YP) with

M2 ≡ x

1 − x
K 2⊥. (16)

For a qualitative discussion, we shall use the MV model [38,
39], which is a reasonable approximation for a large nucleus
and not too high energies. In this model, the gluon-gluon
dipole amplitude is independent of YP and reads

Tg(R) = 1 − exp

(
−Q2

gAR
2

4
ln

4

R2�2

)
, (17)

where � is the QCD scale and Q2
gA is the colour charge

density of the valence quarks in nucleus A, as measured by the
gluon-gluon dipole, hence it is proportional to NcA1/3. We
define the gluon saturation momentum Qgs via the condition
that the exponent in Eq. (17) becomes equal to one when
R = 2/Qgs , which gives

Q2
gs = Q2

gA ln
Q2

gs

�2 . (18)

The Pomeron UGD coming out from the MV model can be
given the piecewise form [5,6]

dxGA
P
(x, xP, K 2⊥)

d2K

� S⊥(N 2
c − 1)

4π3

1 − x

2π

⎧⎪⎨
⎪⎩

1 for K⊥ � Q̃s(x)

Q̃4
s (x)

K 4⊥
for K⊥ � Q̃s(x).

(19)

The expression in the first line arises from the unitarity limit
Tg = 1, while that in the second line, in which we have
neglected slowly varying functions of x and K 2⊥, comes
from the weak scattering limit Tg ∼ R2Q2

gs . In the above,

Q̃2
s (x) = (1 − x)Q2

gs is an effective saturation momentum
which can be understood as follows: the t-channel gluon has
a space-like virtuality k2

g = K 2⊥/(1 − x), so that the typi-
cal size squared of the gluon-gluon dipole is R2 ∼ 1/k2

g =
(1 − x)/K 2⊥. Then the condition that the scattering be strong
for R � 1/Qgs , leads to K⊥ � Q̃s(x).

The rapid 1/K 4⊥ fall-off in the tail of the Pomeron UGD
implies that the transverse momentum of the third jet in the
typical events is of the order of Q̃s(x). In turn, this has two
significant phenomenological consequences for UPCs: (i)
the gluon jet is too soft to be observed as a genuine jet in
a calorimeter, albeit its hadronic descendants could be still
measured in a hadron detector, and (ii) the dijet imbalance
is eventually controlled by mechanisms which have not been
taken yet into account, namely the DGLAP evolution [42–
44] of the Pomeron gluon distribution [6] (see below) and
the final state radiation from the hard dijet [45]. Such effects
involve emissions of partons with transverse momenta log-
arithmically distributed between Q̃s(x) and P⊥, so that the
final dijet imbalance becomes considerably larger than the
semi-hard scale Q̃s(x).

Since the experimentally measured dijet imbalance K⊥
is not under control within the present approach, nor rep-
resentative for the physics of saturation, it is preferable to
integrate over K⊥ up to the hard scale P⊥ and thus obtain a

123



Eur. Phys. J. C (2023) 83 :1078 Page 7 of 19 1078

semi-inclusive cross-section for hard dijet production

dσ
BA→γ A
2+1

dη1dη2d2PdYP
= ω

dNB

dω
h(η1, η2, P

2⊥) xGA
P
(x, xP, P2⊥),

(20)

which involves the integrated gluon distribution of the
Pomeron xGA

P
(x, xP, P2⊥), a.k.a. the gluon diffractive par-

ton distribution function (DPDF). It is suggestive to present
its expression in the MV model, cf. Eq. (19). Then the inte-
gral is dominated by momenta K⊥ ∼ Q̃s(x) and is almost
independent of the upper limit P⊥ so long as P⊥ � Q̃s(x).
The result can be written as [5,6,14]

xGA
P
(x, xP, P2⊥) =

∫ P⊥

0
d2K

dxGA
P
(x, xP, K 2⊥)

d2K

= S⊥(N 2
c − 1)

4π3 κ
(
x, P2⊥/Q̃2

s (x)
)
(1 − x)Q̃2

s (x),

(21)

where κ is a slowly varying function in all of its arguments. In
this semi-classical approximation, valid at small xP, the gluon
distribution of the Pomeron is independent of xP. Since pro-
portional to Q̃2

s (x) = (1 − x)Q2
gs , the right hand side (r.h.s.)

of (21) scales like A ln A (recall Eq. (18)) and vanishes like
(1 − x)2 when x → 1. These scaling laws are characteris-
tic of gluon saturation. Without saturation, the unitarisation
of the scattering amplitude would likely occur at the QCD
confinement scale � and the single-scattering approxima-
tion in the second line3 of Eq. (19) would then apply for all
transverse momenta down to K⊥ ∼ �. Since the integral in
Eq. (21) is dominated by its lower limit, the ensuing result for
xGA

P
would be larger, roughly, by a factor Q̃2

s (x)/�
2, than

the saturation prediction shown above. Moreover, it would
scale with A like A4/3 and would vanish like (1 − x)3 when
x → 1.

Going beyond the MV model, the gluon distribution of
the Pomeron is subjected to two types of quantum evolu-
tion: the high-energy evolution with YP, as described by the
BK/JIMWLK equations [30–37] (here, applied to the gluon
dipole amplitude Tg(R,YP)), and the DGLAP evolution of
the gluon distribution xGA

P
(x, xP, P2⊥) with increasing P2⊥

[42–44].
The high-energy evolution introduce a non-trivial depen-

dence upon YP (or xP), but does not alter the general structure
in the r.h.s. of (21) – its mere effect is to increase the saturation
momentum and to slightly change the form of the function
κ (see [6] for a related discussion and numerical results). In

3 More precisely, in the absence of saturation, the scale Q2
s appearing in

this equation should be replaced by the (standard) gluon distribution of
the nuclear target per unit transverse area: Q2

s → αs xGA(x, Q2)/S⊥,
with the r.h.s. evaluated at x = xP and Q2 ∼ K 2⊥/(1 − x). This ratio
too scales like A1/3.

this work, we shall not consider this evolution, since in our
subsequent applications to the phenomenology of UPCs we
will be led to consider only moderate values4 YP � 5.

On the other hand, the DGLAP evolution turns out to be
important for our purposes, since we shall consider rela-
tively hard dijets, with P⊥ as large as 30 GeV, for which
αs ln(P2⊥/Q2

gs) � 1. For the problem at hand, this amounts
to solving an inhomogeneous version of the DGLAP equa-
tion, in which the unintegrated gluon distribution provided
by the MV model (cf. Eq. (15)) enters as a source term (see
[6] for details). In order to write down this equation and
exhibit our numerical results, it is convenient to introduce a
reduced gluon distribution xgA

P
by stripping some “trivial”

phase-space factors off the original distribution xGA
P

:

xgA
P
(x, xP, P2⊥) ≡ xGA

P
(x, xP, P2⊥)

F0
with

F0 ≡ N 2
c − 1

4π3 S⊥Q2
gs, (22)

with Qgs the value of the saturation momentum at tree-level
(here, as given by the MV model, cf. Eq. (18)). Since we
ignore the effects of the high-energy evolution, this scale
Qgs remains the physical saturation momentum throughout
our analysis (it is not affected by the DGLAP evolution).

The relevant version of the DGLAP equation reads as fol-
lows [6]:

dxgA
P
(x, xP, P2⊥)

d ln P2⊥
= π P2⊥

∣∣GA(x, xP, P⊥)
∣∣2

2π(1 − x)Q2
gs

+ αs(P2⊥)

2π

∫ 1

x
dz Pgg(z)

x

z
gA
P

(
x

z
, xP, P2⊥

)
,

(23)

where Pgg(z) is the gluon-gluon splitting function (see e.g.
[4]) and αs(P2⊥) = 1/[b0 ln(P2⊥/�2)] with b0 = (11Nc −
2N f )/12π and � = 0.2 GeV is the one-loop QCD run-
ning coupling. The DGLAP evolution is turned on at some
initial value P2⊥ = μ2

0, which must obey μ2
0 � Q2

gs and
αs ln(μ2

0/Q
2
gs) � 1, but is otherwise arbitrary. So long as the

final momentum P2⊥ that we are interested in is much larger,
P2⊥ � μ2

0, the scheme dependence upon μ0 is expected to
be small.

Using equations (16) and (23), we have numerically com-
puted the reduced gluon distribution xgA

P
, with the results

shown in Fig. 3. The two plots in the first line illustrate its
functional dependences upon P⊥ and upon x predicted by the
MV model. The left plot shows that the distribution rapidly
saturates when increasing P⊥ above Q̃gs(x), in agreement

4 We recall that the high energy evolution is generally assumed to start
at xP = 0.01, corresponding YP � 4.5.
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Fig. 3 The reduced gluon
DPDF shown as a function of
P⊥ for various values of x and
as a function of x for various
values of P⊥. First line: the
predictions of the MV model in
Eqs. (17) and (18), with
Q2

gs = 2 GeV2 and � = 0.2
GeV. Second and third lines:
adding the effects of the
DGLAP evolution, initiated at
the scale μ2

0 = 4 GeV2 and
μ2

0 = 8 GeV2 respectively

with the above discussion of Eq. (21). In particular, the x-
dependence of the effective saturation momentum can be
appreciated from this figure. The right plot showing the x-
dependence confirms the (1 − x)2 behaviour near x = 1
and also shows that the function κ introduced in Eq. (21) is
roughly linear in x , as originally noticed in [14].

In the second line of Fig. 3, we show the effects of the
DGLAP evolution for an initial scale μ2

0 = 4 GeV2. By com-
paring with the respective plots in the first line, it becomes
clear that the evolution effects are substantial. When increas-
ing P⊥, one sees an increase of xgA

P
for the smallest value

x = 0.01 and a mild decrease for larger values x ≥ 0.1.
This is in agreement with the fact that the DGLAP evolution
copiously produces soft gluons with x � 1, while depleting

the number of their sources at larger values of x . In partic-
ular, the distribution becomes singular as x → 0 and van-
ishes faster when x → 1 than the MV model prediction
∝ (1 − x)2 (see the right plots in Fig. 3). The growth of
the gluon distribution at small x has no phenomenological
consequences, since in the kinematical range of interest, the
diffractive cross-section (20) is controlled by larger values
x � 0.1, as we shall see. But the faster approach to zero in
the limit x → 1 will be important for what follows. In the
third line of Fig. 3 we repeat our analysis using μ2

0 = 8 GeV2

as the starting scale for DGLAP evolution; comparing with
the second line we see that the scheme dependence is indeed
small for any P⊥ ≥ 5 GeV and x ≥ 0.05.
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4 Kinematical constraints and pseudo-rapidities

The phase space for the 2+1 jet production in coherent
diffraction is limited by two conditions. The first is the kine-
matical constraint x ≤ 1, which in turn requires that xqq̄
be very small, since xP = xqq̄/x is assumed to be small as
well. The second arises from the exponential decay of the
photon flux at high energies ω = xγ EN , which effectively
requires xγ � x∗

γ , cf. the discussion after Eq. (7). To study
their consequences, we shall consider the case that the two
hard jets have equal pseudo-rapidities, η1 = η2 ≡ y. This
assumption, which is useful in that it reduces the number
of independent variables, is not unrealistic: we have already
explained that η1 and η2 should be comparable with each
other for the typical events. Then the longitudinal fractions
of interest and the respective constraints become

xγ � P⊥
EN

ey � x∗
γ and x = xqq̄

xP
� P⊥

EN
eYP−y ≤ 1. (24)

These two conditions can be combined to limit the range of
allowed values for y:

P⊥
EN

eYP ≤ ey � EN

P⊥
x∗
γ , (25)

The pseudo-rapidity y of the hard dijets cannot be neither
too large not too small.5 A very forward dijet (large and
positive y) requires a very forward photon, which means that
xγ must be largish and the photon flux enters the regime
of its exponential fall-off. A very backward dijet (large but
negative y) requires a somewhat large minus longitudinal
momentum fraction x transferred from the target, but this is
limited by the condition that YP should be large. Besides,
events with small 1 − x � 1 are strongly suppressed by the
gluon distribution (21). It is also important to notice that the
window for the allowed values of y widens with decreasing
P⊥.

Let us preview how the rapidity space is marked by the
various particles and gaps, as we move from forward to
backward in the coherent diffractive events of interest. The
nucleus B appears in the very forward direction. Behind it,
there is a large gap of the order of ln(1/xγ ), which is “triv-
ial” in the sense that there is obviously no hadron produc-
tion before the photon dissociation. Moving towards central
rapidities, one finds the hard dijet system, which for the inter-
esting values of P⊥ and YP, can be either slightly forward or
slightly backward, as we shall see. The third, gluon, jet typ-
ically lies at backwards rapidities, a few units away from

5 The conditions in (25) also introduce an upper limit on the Pomeron
rapidity, namely YP � ln[(EN /P⊥)2x∗

γ ]. E.g. with EN = 2.5 TeV and
x∗
γ � 1/60, one finds Ymax

P
� 6 and 5 for P⊥ = 15 and 30 GeV,

respectively.

the hard dijets. Next, there is a large “non-trivial” gap – the
genuine diffractive gap, of the order of YP = ln 1/xP, asso-
ciated with the colourless exchange between the qq̄g system
and the target nucleus A. It extends all the way to the most
backward region where nucleus A is found.

To be more quantitative, let us first exhibit the pseudo-
rapidities of the particles present in the final state. For the
purposes of the current discussion we shall express them in
terms of the photon energy ω, the hard momentum P⊥, the
imbalance K⊥ and the fraction x , while we always have in
mind the value EN = 2.5 TeV for the energy per nucleon.
Using the nucleon mass MN as an infrared regulator, Eq. (3)
gives for the two nuclei

ηB = ln

√
2P+

MN
= ln

2EN

MN
= −ηA, (26)

which leads to a value ηB � 8.5. The pseudo-rapidities of
the hard jets can be found by inverting the first equation in
(24) and recalling that ω = xγ EN :

η1 = η2 = y = ln
ω

P⊥
. (27)

Clearly, the common pseudo-rapidity y of the two hard jets
can have either sign depending on the ratio ω/P⊥. For suf-
ficiently large P⊥, comparable to the critical photon energy
ω∗ � 40 GeV, the dijet is more likely to propagate at central,
or even slightly negative rapidities, that is, in the opposite
hemisphere w.r.t. to the photon. To illustrate this point, we
have displayed in the right panel in Fig. 2 the photon spec-
trum ω(dN/dω) = dN/dy as a function of y for various
values of fixed P⊥; there it is manifest that with increasing
P⊥ the support shrinks towards negative y. But this figure also
shows that it should be possible to trigger on forward jets,
say with y � 1, even when they are relatively hard, say with
a P⊥ around 30 GeV. That would require large photon ener-
gies ω > ω∗, for which the spectrum is strongly suppressed,
yet non-vanishing. Albeit rare, such large ω events are very
interesting, in that they explore higher center-of-mass ener-
gies for the γ A collision and thus offer better possibilities to
probe gluon saturation.

Concerning the third, gluon, jet, it is more convenient to
indicate its pseudo-rapidity separation from the hard dijets;
using Eqs. (12)–(14), one finds

�ηjet = y − η3 = ln
2(1 − x)

x
+ ln

P⊥
K⊥

. (28)

This is positive and sizeable (since P⊥ � K⊥) for all the
interesting values of x , that is, whenever x is not very close
to one.6

6 We recall that the regime 1 − x � 1 is suppressed by the large-x
behaviour of the gluon distribution, cf. Eq. (21).
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One can now easily calculate the relevant pseudo-rapidity
gaps and separations by taking the appropriate differences.
The photon gap is obtained as

�ηB
γ ≡ ηB − y = ln

2EN

MN
− ln

ω

P⊥
= ln

2

xγ

+ ln
P⊥
MN

.

(29)

This is the sum of two large contributions since xγ � x∗
γ � 1

and P⊥ � MN .
For the typical events, the diffractive gap extends between

the target nucleus A and the gluon jet, and is computed as

�ηA
gap = η3 − ηA = YP + ln

1

1 − x
+ ln

K⊥
MN

, (30)

where we have also used the following expression for YP,
which easily follows from Eq. (24):

YP = ln
1

xqq̄
− ln

1

x
= ln

ω

P⊥
+ ln

EN

P⊥
− ln

1

x
. (31)

For the representative values of x , say 0.1 � x � 0.5, and
with K⊥ taking semi-hard values of the order of Qs , both
logarithms on the r.h.s. in Eq. (30) are of order one. Hence, the
pseudo-rapidity gap, which can be experimentally measured,
is comparable to the Pomeron rapidity which appears in the
theoretical description.

Equation (31) confirms that one can increase YP (or
decrease xP) by increasing the COM energy squared sγ A =
4ωEN for the photon-nucleus collision and/or by decreas-
ing the relative transverse momentum P⊥ of the hard dijets.
Furthermore, for a fixed kinematics of the hard process, one
can enhance YP by triggering on events where the variable
x is not too small (say, x > 0.1), meaning events in which
the rapidity separation �ηjet between the hard dijet and the
gluon jet is as small as possible – close to ln(P⊥/K⊥) (cf.
Eq. (28)).

To get a better feeling for all these considerations, we
show the various rapidities and rapidity gaps in Fig. 4 for
some interesting values of the kinematical parameters. We
have chosen ω = ω∗ � 40 GeV, a rather large value which
corresponds to somewhat rare events, in order to increase the
probability to have small–xP diffraction. Also, we have fixed
K⊥ = 2 GeV, a value comparable to Qs . This allows us to
see how the various rapidities depend on the t-channel gluon
fraction x (for the 2 interesting values x = 0.2 and x = 0.5)
and on the hard dijet momentum P⊥. As expected, the case for
gluon saturation in the Pomeron becomes more favourable –
in the sense that the value of YP increases – when decreasing
P⊥ and/or increasing x . Furthermore, decreasing P⊥ has the
effect to push the three jet system to more forward rapidities
(the more so for the third, gluon, jet), with the double benefit
that the diffractive gap �ηA

gap grows and the probability to

find the third jet in the rapidity range covered by the detector
increases.

Let us study in more detail a couple of examples by listing
explicit numbers for all the rapidities of interest. We still keep
ω = 40 GeV and assume the more favourable value x = 0.5
together with two relatively large values for the dijet relative
momentum P⊥ (15 and 30 GeV), which are experimentally
accessible (in the sense of allowing for jet reconstruction) at
the LHC.

(i) For P⊥ = 15 GeV we have

y = 1.0 | η3 = −1.7 | �ηjet = 2.7 | YP = 5.4 | �ηB
γ = 7.5

| �ηA
gap = 6.8. (32)

(ii) For P⊥ = 30 GeV we have

y = 0.3 | η3 = −3.1 | �ηjet = 3.4 | YP = 4.0 | �ηB
γ = 8.2

| �ηA
gap = 5.4. (33)

In Fig. 5 we depict the direction of motion of the outgoing
particles in the two aforementioned cases. Both such events
would be suitable for a study of gluon saturation: YP is large
enough for that purpose (at least marginally in the second
case), although not that large to also probe the high energy
evolution of the Pomeron. This motivates our study in the
next section, where we will focus on such relatively large
values of P⊥, for which we can ignore the BK/JIMWLK
evolution with increasing YP, but we must include the effects
of the DGLAP evolution with increasing P2⊥.

5 Numerical results

In this section we shall present numerical results for the
cross section for (2+1)-jet production via coherent diffrac-
tion in AA UPCs. We shall more precisely focus on the
semi-inclusive cross-section (20), in which the transverse
momentum of the third jet (which is equal to the opposite
of the transverse momentum imbalance K of the hard dijets)
has been integrated out. As in Sect. 4, we consider symmet-
ric jets (η1 = η2 ≡ y) and we rewrite Eq. (20) in a form
convenient to our purposes, namely

dσ
BA→γ A
2+1

dη1dη2d2P dln(1/x)

∣∣∣∣
η1=η2=y

= F0 h(P2⊥) ω
dNB

dω
xgA

P
(x, xP, P2⊥), (34)

where we have used dYP = d ln(1/x) together with Eq. (22).
The hard factor h(P2⊥) is the limit of Eq. (10) for η1 =
η2 = y, that is, h(P2⊥) = αemαs

( ∑
e2
f

)
/8P4⊥. Since its
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Fig. 4 Jet pseudo-rapidities
and rapidity gaps in events with
high photon energies (ω = 40
GeV) as a function of the hard
momentum P⊥ for x = 0.2 (left
panel) and x = 0.5 (right panel)

Fig. 5 Graphical illustration of two (2+1)-jet events which correspond
to two different values of the relative momentum of the hard dijets:
P⊥ = 15 GeV (left panel) and P⊥ = 30 GeV (right panel). All the
other kinematical variables are identical and are shown in the legends.

The relevant pseudo-rapidities can be read from Eq. (32) (for the left
panel) and Eq. (33) (right panel). The dotted lines in the figures rep-
resent the upper limit in pseudo-rapidity, |η| = 2.4, of the hadronic
tracker in the experimental set-up described in [28,29]

P⊥-dependence is both simple and explicit, we also define
a reduced, dimensionless, cross section by removing the
factors h(P2⊥) and F0 from Eq. (34) (below, the condition
η1 = η2 = y is kept implicit, to simplify writing):

dσ̂
BA→γ A
2+1

dη1dη2d2P dln(1/x)
= ω

dNB

dω
xgA

P
(x, xP, P2⊥), (35)

where ω = P⊥ey and xP = e−YP , with YP given by Eq. (31).
As anticipated, we will ignore the high-energy evolution of
the Pomeron, that is, we shall compute the gluon DPDF
xgA

P
(x, xP, P2⊥) by using the MV model supplemented with

the DGLAP evolution. With this approximation, the function
xgA

P
does not explicitly depend upon xP, but only upon x and

P2⊥, as shown in Fig. 3.
Since the third jet is too soft to be reconstructed as a gen-

uine jet in a calorimeter, the main question is whether this
can be observed (via its hadronic descendants) by a hadronic
detector. For that to be possible, the gluon must propagate at
sufficiently central rapidities, |η3| < η0, with η0 the upper
limit of the pseudo-rapidity coverage of the hadronic detec-
tor (e.g. η0 = 2.4 at CMS [28,29]). In our current set-up, in
which the photon is a right mover and the gluon jet is almost
certain to propagate in the backward hemisphere, the non-
trivial condition reads η3 > −η0. Making use of Eq. (28),

this condition translates to a lower limit on the gluon fraction,
namely x > x0 with

x0 = 1

1 + K⊥
2P⊥ ey+η0

(36)

This lower limit decreases – leading to a larger phase space
– when increasing y and/or η0 and also when decreasing P⊥.
Now we can define the (η0-dependent) “in” reduced cross-
section for the gluon “jet” to be inside the hadronic detector
as

dσ̂
BA→γ A
2+1,in

dη1dη2d2P

∣∣∣∣
η0

= ω
dNB

dω

∫ 1

x0

dx

x
xgA

P
(x, xP, P2⊥). (37)

Strictly speaking, the lower limit x0 depends on the trans-
verse momentum K⊥, hence the integration over x must be
performed prior to the one over K⊥. In other words we should
first integrate over x the unintegrated gluon distribution and
then integrate over K⊥. This would be possible at the level of
the MV model, but not also after adding the DGLAP evolu-
tion (which applies only to the integrated distribution xgA

P
).

Yet, from the discussion leading to Eq. (21), we know that
the integral over K⊥ is controlled by momenta of the order
of the target saturation momentum Qgs – a scale which is not
affected by the DGLAP evolution. Hence, in practice one can
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Fig. 6 First 3 plots: The “in” reduced cross-section (37) for finding the
gluon jet in the pseudo-rapidity range |η3| < η0 as a function of y (the
common pseudo-rapidity of the two hard jets) for three different values
of the hard dijet momentum P⊥ and for three values of the hadronic

detector’s coverage: η0 = 2.4, 3.5 and 4.5. (For η0 = 4.5, the “in”
cross-section is by convention the same as the “total” cross-section.)
The last plot: the P⊥-dependence of the reduced cross-section for the
particular case η0 = 4.5

evaluate the lower limit x0 with a fixed value K⊥ ∼ Qgs and
then Eq. (37) is indeed meaningful. We have tested this strat-
egy in the case of the MV model and found that it gives the
correct result provided one fixes K⊥ = 2 GeV in Eq. (36).
So, we shall systematically make this choice in what follows.

The “in” reduced cross-section is shown in Fig. 6 as a
function of y for P⊥ = 15, 20 and 30 GeV, and for three
values of the detector’s coverage: η0 = 2.4, 3.5 and 4.5.
The cross-section is suppressed at large positive y due to the
fast decrease of the photon flux. The same is true at large
negative y, not only because the lower limit of integration
x0 approaches the upper limit x = 1 (so that the support of
integration is squeezing), but also because the gluon distri-
bution xgA

P
vanishes when x → 1. As a consequence, the

cross section peaks at relatively central rapidities. Further-
more, the “in” reduced cross-section is rapidly decreasing
with P⊥, due to the increase in x0 and also due to the photon
flux: when increasing P⊥ at fixed y, one probes larger values
for the photon energy ω, where the spectrum ωdNB/dω is
rapidly decreasing, cf. Fig. 2. To further illustrate this point,

we show in the fourth plot in Fig. 6 the P⊥–dependence of
the (reduced) cross-section for the particular case η0 = 4.5.
In the actual cross-section (34), the suppression with increas-
ing P⊥ will be even faster, due to the additional hard factor
h(P2⊥) ∝ 1/P4⊥.

The largest value for η0 considered in Fig. 6, namely
η0 = 4.5, will play a special role in what follows (and will
be denoted as ηM for more clarity): we shall use it to conven-
tionally define the total cross-section for producing a pair of
hard dijets via the coherent (2+1)-jet channel. The existence
of an upper limit on |η3|, or, equivalently, of a lower limit
on the diffractive gap �ηA

gap = |ηA| − |η3|, is inherent in
the definition of a coherent process: such a process cannot
exist if the diffractive gap becomes too small. Indeed, for the
target nucleus A not to break during the collision, it must
lose only a tiny fraction xP � 1 of its longitudinal momen-
tum. A physically motivated condition, that was implicitly
assumed in our approach, is xP � 0.02, corresponding to
YP � 4. In practice, we prefer to implement this constraint
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Fig. 7 Left figure: the ratio between the “in” cross-section corresponding to η0 = 2.4 and the “total” cross-section. Right figure: the same as in
the left figure but for η0 = 3.5

on the pseudo-rapidity gap7 �ηA
gap, which can be directly

measured, unlike YP. The condition �ηA
gap � 4 together with

|ηA| � 8.5 imply ηM � 4.5, as anticipated. Hence, Eq. (37)
with η0 → ηM = 4.5 will be our definition for the “total”
cross-section. Of course, there is some ambiguity in the value
of ηM and varying this value (say, between 4 and 5) could be
seen as a form of “scheme dependence”. That said, this ambi-
guity is not very important for what follows, since we shall
not treat this “total” cross-section as a real observable,8 but
only as a benchmark for estimating the relative importance
of various processes.

From Fig. 6, we notice that the “total” cross-section is
peaked at mid-rapidity and is rather symmetric around y =
0. Hence, by measuring the hard dijets alone, it should be
difficult to decide whether the photon was a right-mover, or
a left-mover. The situation becomes considerably clearer if
the third jet is also measured (most likely via its hadronic
descendants). If the third jet is more backward than the hard
dijets, i.e. if the difference �ηjet = y−η3 is positive, then one
can safely conclude that the photon was a right-mover, like
in our current set-up. Vice-versa, negative values for �ηjet

should indicate a situation where the photon was a left-mover.
So, we are mainly interested in situations where the third jet
propagates at sufficiently central rapidities to be captured by
the detector (|η3| < η0). This is also the most favorable case
for a study of gluon saturation, since it corresponds to a large
rapidity gap �ηA

gap = |ηA| − |η3|. Moreover, it is preferable
to observe this jet somewhere in the middle of the detector,
rather than towards its edge: indeed, besides the third jet,

7 As explained after Eq. (30), the difference between �ηA
gap and YP is

typically of order one.
8 Of course, our “total” cross-section would become a true observable in
an experiment where the actual rapidity coverage of the hadron detector
is at |η| ≤ 4.5.

we would like to also see the beginning of the gap at larger
rapidities (within the interval |η3| < |η| < η0).

The probability for such interesting events can be esti-
mated as the ratio between the “in” cross-section (37) cor-
responding to η0 < ηM = 4.5 and the “total” cross-section
(η0 → ηM ). This is shown in Fig. 7 for η0 = 2.4 (left panel)
and for η0 = 3.5 (right panel). The photon flux cancels in
this ratio, which therefore is not suppressed when y � 1.
For η0 = 2.4, the ratio is quite small, which may explain
the difficulty to observe this jet in a recent measurement by
CMS [28,29] (see also Fig. 5). That said, the ratio is signifi-
cantly rising when increasing either the pseudo-rapidity y of
the hard dijets, or the detector acceptance η0. Hence, one can
enhance the chances to observe the third jet by triggering on
events where the hard dijets are as forward as possible.

For instance, for P⊥ = 15 GeV and η0 = 2.4, the optimal
value of y is y � 1, since this yields the largest cross-section
according to the respective plot in Fig. 6. Motivated by this
observation, we show in Fig. 8 the distribution of the third jet
in �ηjet = y − η3 (the pseudo-rapidity difference between
the gluon jet and the hard dijets, cf. Eq. (28)) for the particular
case y = 1. This distribution is defined as

1

N

dN

d�ηjet
≡ dσ

BA→γ A
2+1 /dη1dη2dη3d2P

dσ
BA→γ A
2+1,tot /dη1dη2d2P

= (1 − x) xgA
P
(x, xP, P2⊥)∫ 1

x0

dx ′
x ′ xgA

P
(x ′, xP, P2⊥)

, (38)

where it is understood that η1 = η2 ≡ y and η3 = y −
�ηjet, with y = 1. As before, the “total” cross-section in the
denominator is given by Eq. (37) with η0 = 4.5. The value
of x in the numerator is related to �ηjet via

x = 1

1 + K⊥
2P⊥ e

�ηjet
, (39)
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Fig. 8 The distribution of the pseudo-rapidity difference �ηjet between the gluon jet and the hard dijets, for the particular case where the hard
dijets propagate at η1 = η2 = 1. Left: MV model. Right: adding DGLAP evolution

(we choose K⊥ = 2 GeV, once again) and the factor 1 − x
comes from the Jacobian for changing rapidity variables from
ln(1/x) to η3.

The plots in Fig. 8 show several interesting features: (i)
this distribution is only weakly dependent upon P⊥; (ii) there
is a minimal value for the rapidity difference, of the order of
�ηjet � ln 2P⊥

K⊥ (about 2 to 3 units of rapidity); this reflects
the physics of saturation (which fixes K⊥ to be of the order
of Qgs) together with the strong suppression of the gluon
distribution near x = 1 (an effect that is enhanced by the
DGLAP evolution, cf. Fig. 3); (iii) the distribution in �ηjet

is rapidly growing at larger rapidity separations �ηjet �
ln 2P⊥

K⊥ , due to the rise of xgP at small x , as also visible in
Fig. 3.

In general, this interval �ηjet does not correspond to a
genuine rapidity gap, since there can be hadronic activity
between the hard jets and the third jet, notably that asso-
ciated with DGLAP evolution. Such DGLAP hadrons, or
jets, should be easier to observe than the semi-hard gluon
jet because they are considerably harder (their transverse
momenta p⊥ satisfy Q2

gs � p2⊥ � P2⊥) and also closer
in pseudo-rapidity to the hard dijets. This might be interest-
ing in practice, because it could allow one to distinguish the
target nucleus from the photon emitter even in the situations
where the third jet is not measured: in pseudo-rapidity space,
the DGLAP hadrons propagate in the region between the hard
dijets and the target. That said, the explicit observation of the
third set would offer more information about the final event,
notably the value of the Pomeron rapidity gap YP.

6 Conclusions

In this paper, we have studied semi-inclusive dijet photo-
production via coherent diffraction in AA UPCs and in the

kinematical conditions at the LHC. We have focused on the
(2+1)–jet events – a hard quark-antiquark dijet and a semi-
hard gluon jet – which represent the dominant leading-twist
contribution to diffractive dijet production in perturbative
QCD. The emission of the semi-hard gluon opens up the
colour space in transverse directions and thus allows for
strong scattering in the black disk limit, which is the nec-
essary condition for the existence of a leading-twist contri-
bution to diffraction.

Due to gluon saturation, the transverse momentum phase-
space accessible to strong scattering extends up to the semi-
hard scale Qgs ∼ 1 ÷ 2 GeV – the saturation momentum
of the nuclear target – rather than being confined to the soft,
non-perturbative, sector at K⊥ ∼ � ∼ 0.2 GeV. Diffraction
lives at the upper end of this phase-space, at K⊥ ∼ Qgs .
Since Qgs is semi-hard, it is legitimate to study diffraction
within perturbation theory in QCD.

Our theoretical framework was the diffractive TMD fac-
torisation emerging from the colour dipole picture and the
CGC effective theory at high energy. Within this framework,
we have computed the cross-section for diffractive (2+1)-
jet production in AA UPCs to leading order in perturbative
QCD and in the presence of multiple scattering (i.e. of gluon
saturation). Gluon saturation controls the overall strength of
this cross-section and has specific predictions for its func-
tional dependencies upon the various kinematical variables
and upon the nuclear mass number A.

Perhaps the most striking prediction refers to the distri-
bution of the three jets in pseudo-rapidity. For the current
kinematics in Pb+Pb UPCs at the LHC, meaning for a center-
of-mass energy

√
sNN = 5.2 TeV per nucleon pair and for

hard dijets with large transverse momenta P⊥ ≥ 20 GeV,
the two hard jets are predicted to propagate at nearly central
rapidities, while the third, semi-hard, jet should be separated
from them by a rapidity interval whose size controlled by
saturation: �ηjet � ln(2P⊥/Qgs) ∼ 2 ÷ 3.
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Because of this large rapidity separation, and also of its
relatively small transverse momentum K⊥ ∼ Qgs , the third
jet is a priori difficult to measure – indeed, it has not been
reported by the recent dedicated analyses at the LHC [26–
29]. Yet, its observation (e.g. as a leading hadron) would be
extremely useful for the interpretation of the events and also
for comparing with the theory predictions. For instance, it
would enable us to distinguish the nucleus which has emitted
the photon from that which has interacted with it. Indeed, our
calculations show that the third jet propagates oppositely to
the photon, in the rapidity interval between the hard dijets
and the nuclear target.

Both the observability of the third jet and the experimental
study of gluon saturation would be greatly improved by low-
ering P⊥, say down to values in the ballpark of 5–10 GeV.
That would make it easier to produce very forward dijets and
would also decrease their rapidity separation from the semi-
hard jet. In turn, this would substantially increase the (diffrac-
tive) rapidity gap between the third jet and the target nucleus
and thus allow for fully fledged studies of gluon saturation,
including its high-energy, B-JIMWLK, evolution. Last but
not least, reducing P⊥ would also diminish the effects of the
DGLAP evolution between the third jet and the hard dijets,
thus reducing the risk for confounding the third jet with one
of the DGLAP jets in the experiments.
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AppendixA:Comparingdiffractive (2+1)-jetswith exclu-
sive dijets

We have mentioned in the Introduction that the cross sec-
tion for exclusive dijet production is a higher-twist effect,
which is (roughly) suppressed by a factor Q2

gs/P
2⊥ com-

pared to the cross-section for the (2+1)-jet coherent channel.
Since experimentally it seems difficult to distinguish exclu-
sive from (2+1)-production, it becomes important to compare
the respective cross-sections in more detail. The exclusive
dijet cross section in UPCs can be trivially obtained from
the corresponding one in γ ∗A collisions (see for example
Appendix A in [6]) by taking the real-photon limit Q2 → 0
and multiplying the result with the photon flux; one finds

dσ
BA→γ A
exc

dη1dη2d2P
= S⊥αemNc

2π2

(∑
e2
f

)
ϑ1ϑ2

(
ϑ2

1 + ϑ2
2

)

× ω
dNB

dω

∣∣Al
exc(P,Yqq̄)

∣∣2
. (40)

Here ϑ2 = 1 − ϑ1, Yqq̄ = ln(1/xqq̄), while ω, ϑ1 and xqq̄
are expressed in terms of the hard momentum P⊥ and the
pseudo-rapidities η1 and η2 through Eqs. (8), (11) and (13).
The amplitude Ai

exc(P,Yqq̄) is related to a particular Fourier
transform which involves the amplitude for a qq̄ dipole to
scatter of the nucleus target. Here we are only interested in the
tail of the amplitude at large transverse momenta P⊥ � Qs .
For simplicity, we only show the corresponding result in the
MV model, which is independent of Yqq̄ and reads

Al
exc(P) � −i

Q2
AP

l

P4⊥
for P⊥ � Qs . (41)

Notice that both QA and Qs in the above refer to a
quark-antiquark dipole, i.e. they are proportional to CF ; for
instance, Q2

A = (CF/Nc)Q2
gA, where QgA is the corre-

sponding scale for a gluon dipole, as introduced in Eq. (17).
Equation (41) implies

∣∣Al
exc(P)

∣∣2 = Q4
A/P6⊥, hence the

exclusive dijet cross-section is of higher-twist order: it is
suppressed by a factor Q2

A/P2⊥ with respect to the cross-
sections for both inclusive dijets [41] and diffractive (2+1)-
jets. Also, it scales like A4/3 with the mass number of the
nuclear target.

In order to perform the desired comparison we form the
following ratio (once again, we specialise to symmetric jets,
with η1 = η2 ≡ y)

R(P⊥, y) ≡ dσ
BA→γ A
exc /dη1dη2d2P

dσ
BA→γ A
2+1,tot /dη1dη2d2P

= 2π

αs

Nc

N 2
c − 1

P4⊥
Q2

gs

∣∣Al
exc(P)

∣∣2

∫ 1
x0

dx
x xgA

P
(x, xP, P2⊥)

, (42)
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Fig. 9 The MV model predictions for the ratio between the cross
section for exclusive dijet production and the “total” diffrac-
tive cross section for 2+1 jet production. This ratio is plotted

as a function of y for various values of P⊥ (left panel) and
as a function of P⊥ for a various values of y (right panel)

in which the photon flux trivially cancels. The lower limit x0

in the integral over x is given by Eq. (36) with η0 = 4.5. The
strong coupling in the above refers to the gluon emission with
transverse momentum K⊥ ∼ Qgs in the 2+1 jets case. By
using its one-loop version αs(Q2

gs), defined below Eq. (23),
together with the relation (18) between Qgs and QgA and
Eq. (41) for Al

exc in the MV model, one easily finds

R(P⊥, y) = πb0

Nc

CF

Nc

Q2
gA

P2⊥

1∫ 1
x0

dx
x xgA

P
(x, P2⊥)

, (43)

where πb0/Nc = 0.75 for Nc = N f = 3 and the integral
in the denominator is a quantity of order one. Since QgA �
0.7 GeV is much smaller than P⊥ ≥ 15 GeV, it is clear
that the ratio is very small, in the ballpark of 10−2 to 10−3,
depending upon the value of P⊥. This is in agreement with
the numerical results presented in Fig. 9. As also visible in
Fig. 9, the ratio is rapidly falling with y, due to the rapid
decrease of x0 and to the increase of xgA

P
at small x , cf.

Fig. 3. The would-be rapid decrease ∝ 1/P2⊥ introduced by
the exclusive cross-section is somewhat tempered by the fact
that x0 increases towards unity for very large P⊥, so the
integral gets squeezed to x ∼ 1, where xgA

P
is suppressed.

This effect becomes stronger at negative values of y (leading
to larger x0). That said, the numerical results in Fig. 9 confirm
that the exclusive dijet production is two to three orders of
magnitude smaller than the 2+1 jet production in the whole
kinematic regime of interest.

Appendix B:Comparing diffractive (2+1)-jets with inclu-
sive dijets

When viewed from the perspective of TMD (or collinear)
factorisation, the scattering of the two hard jets is very sim-
ilar in the diffractive process under consideration and in the
inclusive photo-production of a pair of hard jets in the “cor-
relation limit” [41] (that is, in the regime where the relative
transverse momentum of the dijets is much larger than their
imbalance: P⊥ � K⊥). In both cases the hard dijets form a
small qq̄ colour dipole which scatters off a single gluon from
the target. The only difference refers to the physical origin
of the gluon which participates in the collision: this is taken
from the Pomeron (evolved up to a rapidity YP = ln 1/xP) in
the diffractive case and, respectively, from the gluon distri-
bution of the nuclear target (evolved up to Yqq̄ ≡ ln 1/xqq̄ ) in
the case of inclusive production. And indeed the respective
cross-sections have very similar expressions. For 2+1 diffrac-
tive jets this was shown in Eq. (9), that we rewrite here for
convenience (for the γ A subprocess)

dσ
γ A→qq̄gA
2+1

dη1dη2d2Pd2KdYP

= h(η1, η2, P
2⊥)

d xGA
P
(x, xP, K 2⊥)

d2K
|x=xqq̄/xP , (44)

while for inclusive dijets it reads

dσ
γ A→qq̄ X
incl

dη1dη2d2Pd2K
= h(η1, η2, P

2⊥)
d xGA

WW (x, K 2⊥)

d2K

∣∣∣∣
x=xqq̄

.

(45)
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Fig. 10 The MV model predictions for the ratio between the “total”
diffractive cross-section for 2+1 jet production and the cross-section for
inclusive dijet production in the correlation limit. Left panel: the ratio

is plotted as a function of y for P⊥ = 5, 10 and 15 GeV. Right panel:
the ratio is plotted as a function of P⊥ for y = −1, 0 and 1

These expressions involve the same hard factor, shown in
Eq. (10), but different unintegrated gluon distributions. That
appearing in Eq. (44) is the gluon diffractive TMD, that has
been discussed at length in this paper, while that from Eq. (45)
is the Weiszäcker-Williams gluon TMD – the gluon occupa-
tion number in the target light cone gauge A− = 0 (see e.g.
[1,2,41]). In the context of UPCs, the above cross-sections
are both multiplied by the photon flux factor ω(dNB/dω),
as shown in Eq. (9). Here however we will be interested in
their ratio, so neither the photon flux, nor the hard factor, will
contribute to our final results.

Interestingly, both cross-sections are of the same order in
the QCD coupling, namely they are both linear in αs (cf.
Eq. (10)), although the origin of this αs factor looks different
from the perspective of the colour dipole picture: for the
diffractive (2+1)-jet production, it comes from the vertex for
gluon emission by the qq̄ dipole, whereas for the inclusive
dijet production, it is rather the coupling associated with the
(single) scattering between the small qq̄ dipole and the target.

To meaningfully compare the two cross-sections, one
must first integrate the diffractive cross-section (44) over the
(physically acceptable values for the) rapidity gap YP. As
explained in the main text, it is more convenient to integrate
over x instead of YP and to enforce the minimal rapidity gap
constraint as x ≥ x0, with x0 given by Eq. (36) with η0 = 4.5
and K⊥ = 2 GeV. (As before, we consider η1 = η2 ≡ y.)
Also we will integrate the two cross-sections over the trans-
verse momentum imbalance K between the hard jets.

We are thus led to consider the following ratio

Rdiff/incl(P⊥, y) ≡
∫ 1
x0

dx
x xGA

P
(x, xP, P2⊥)

xGA
WW (x, P2⊥)

∣∣
x=xqq̄

, (46)

that we shall evaluate using the MV model. In this approxima-
tion, the Pomeron gluon distribution in the numerator is inde-
pendent of xP, whereas the WW distribution in the denomina-
tor is independent of x (see Eq. (47) below). The unintegrated
WW gluon distribution of the target can be found in Eq. (5)
from [41], that we rewrite here with our present conventions:

d xGA
WW (x, K 2⊥)

d2K
= S⊥(N 2

c − 1)

4π3

1

παs Nc

×
∫

d2R e−iR·K Tg(R)

R2 (47)

with Tg(R) the gg dipole amplitude in Eq. (17). This admits
the piecewise approximation

dxGA
WW (x, K 2⊥)

d2K

� S⊥(N 2
c − 1)

4π3

1

αs Nc

⎧⎪⎪⎨
⎪⎪⎩

ln
Q2

gs

K 2⊥
for K⊥ � Qgs

Q2
gA

K 2⊥
for K⊥ � Qgs .

(48)

We shall treat αs in the denominator as a fixed quantity at the
scale Qs ; in practice, we take αs = 0.3. The standard gluon
distribution which enters Eq. (46) is finally obtained as

xGA
WW (x, P2⊥) = π

∫ P2⊥

0
dK 2⊥

d xGA
WW (x, K 2⊥)

d2K
. (49)

Figure 10 shows our numerical results for the ratio
Rdiff/incl(P⊥, y), as computed in the MV model. In the left
figure, the results are plotted as a function of y for the three
values P⊥ = 5, 10 and 15 GeV, while in the right figure, they
are plotted as a function of P⊥ (from 5 GeV up to 20 GeV)
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for the three values y = −1, 0 and 1. The ratio is sizeable,
although considerably smaller than one. It increases with y,
due to the decrease in the lower limit x0 of the integral in
the numerator. Furthermore, it slowly decreases with P⊥, a
behaviour that can be attributed to two factors: the increase in
x0 (leading to a decrease of the diffractive gluon distribution)
and the logarithmic increase of the WW gluon distribution
(which for P2⊥ � Q2

gs is proportional to ln(P2⊥/Q2
gs)).
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