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Abstract Recently, the concept of half-wormholes is intro-
duced to give a resolution to the factorization puzzle in holog-
raphy and help understand better the relation between ensem-
ble average theories and gravity in the bulk. Half-wormholes
are proposed to be the contributions to the gravitational path
integral that correspond to fluctuations of each individual the-
ory around the average of the whole ensemble of theories. In
this paper, we further explore the extent to which the half-
wormhole interpretation is applicable. In particular, to fur-
ther demonstrate that the half-wormhole interpretation is not
merely a feature of a specific theory but is a general feature
of ensemble average theories, we examine various models,
including different enriched 0-dimensional SYK-like mod-
els, the 1-dimensional Brownian SYK model and its gen-
eralization. To further demonstrate that the half-wormhole
interpretation applies to more general probability distribu-
tions apart from the zero-mean Gaussian distribution, we
consider random couplings with other non-trivial moments.
Specifically, introducing a non-trivial mean value to the ran-
dom coupling renders the spectral correlators to exhibit both
disconnected saddles and connected saddles. The inclusion
of higher-order moments leads to new “multi-linked half-
wormhole” saddles. We also clarify the distinctions between
the unlinked half-wormhole and the linked half-wormhole in
our modified Brownian SYK model.

1 Introduction

The AdS/CFT correspondence [1–3] provides a non-perturb-
ative definition of quantum gravity. An important lesson
from the recently progress in understanding the black hole
information paradox is that a summation of different con-
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figurations in the semi-classical gravitational path integral
is crucial to probe some quantum mechanical properties
of the system, such as the Page curve [4–7], the late-time
behavior of the spectral form factor [8,9], and correlation
functions [10,11], see also a recent review [12]. However,
the inclusion of spacetime wormholes leads to an appar-
ent factorization puzzle [13]; a holographic computation of
the correlation functions of field theory partition functions
living on different boundaries gives non-factorized results,
i.e. 〈ZL ZR〉 �= 〈ZL 〉 × 〈ZR〉, which is in tension with the
general expectation on the field theory side. This revitalizes
the hypothetical connection between wormholes and ensem-
ble averages [14–17], and motivates an appealing conjectural
duality between a bulk gravitational theory and (the aver-
age of) an ensemble of theories on the boundary [8,18–64],
whose prototype is the by-now well known duality between
the two-dimensional Jackiw-Teitelboim (JT) gravity [65,66]
and the Schwarzian sector of the Sachdev-Ye-Kitaev (SYK)
model [67–69], or more directly the random matrix theo-
ries [8,18]. These results suggest that solving the factoriza-
tion problem could shed light on the microscopic structure
of quantum gravity that are not universal and hence cannot
be captured by the ensemble-averaged quantities [70,71]. In
[72], the factorization problem is carefully studied in a toy
model introduced in [52], where it is shown that the (approx-
imate) factorization can be restored if other half-wormhole
contributions are included. In the dual field theory analysis,
these half-wormhole contributions are identified with non-
self-averaging saddle points in each individual theory of the
ensemble. This idea is explicitly realized in a 0-dimensional
“one-time” SYK model in [73], followed by further analyses
[74–81]. An explicit connection between the gravity com-
putation in [72] and the field theory computation in [73] is
proposed in [59].

In this paper, we explore the extent to which the half-
wormhole interpretation is applicable.
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In Sect. 2, we first review the computation in [73] and pro-
vided another way to derive the same result. Our discussion
is based on a detailed Lefschetz thimble analysis, which is
independent of the argument given in [73]. The Lefschetz
thimble analysis gives a systematic way to justify how to
identify the correct set of saddle points to be included in the
path integral. This serves as a very non-trivial cross-check of
the result in [73] and a preparation for the later parts of this
paper.

In Sect. 3, we consider a 0d SYK model whose random
couplings are drawn from a probability distribution with a
non-zero mean. The motivation to study this model is the
following. The 0d SYK model studied in [73] is simple
enough to explicitly demonstrate the contribution from half-
wormholes, but some crucial properties of the more familiar
1d SYK model are missing in this 0d toy model. The most
notable consequence of this is that the averaged partition
function 〈z〉 of the 0d toy model in [73] is zero, so there
is no disconnected contribution to any spectral correlation
functions at all. This is quite different from the original 1d
SYK model and hence raises a question if the conclusion
obtained in the 0d model in [73] applies to the more familiar
1d SYK and other similar models. Our analysis in this sec-
tion is a first step towards a thorough study of this question
and a resolution of the factorization in that case. Our analysis
shows that in the presence of a non-zero mean value of the
random couplings, the structure of half-wormhole-like con-
tributions is much richer, and in particular new types of non-
self-averaging contributions become important and should
be considered in the saddle point analysis of the spectral cor-
relation functions.

In Sect. 4, we consider other generalized 0d SYK models
whose random couplings are drawn from more general prob-
ability distributions other than the zero-mean Gaussian dis-
tribution. The motivation for this study is the following. First
of all, a significant feature in the analysis of [73,77] is the
Gaussian property of the randomness in the ensemble aver-
age model. On the other hand, the gravitational analysis [72]
of a topological model [52] reveals that other connected half-
wormhole configurations, which contain more than two half-
wormholes linking together (see discussion around Figure 18
and in section 6.1 of [72]), play a crucial role in understanding
the factorization problem in the gravity theory. This raises the
question of whether there are similar multi-boundary linked-
half-wormhole contributions in the boundary ensemble aver-
age theories. This motivates us to consider random couplings
drawn from continuous distributions with non-trivial higher
moments, which is a natural origin of non-trivial intercon-
nections between the different factors of the spectral corre-
lation functions. Furthermore, the results of the gravitational
analysis in the toy model [52] suggest that a good bound-
ary dual description could involve an ensemble average of
different theories with Poisson distributions. A related anal-

ysis in [82] shows that random variables drawn from Poisson
distributions have a natural connection to gravitational sys-
tems. Ensemble-averaged theories involving an average over
uniform distributions on the moduli space [36–40,46,62,63]
are shown to have clear connection to gravitational system.
These motivate us to consider 0d SYK models with random
couplings drawn from discrete distributions. Our computa-
tion shows that in theories with non-trivial higher moments,
there are very rich structures of the non-self-averaging contri-
butions to the spectral correlation functions, and the inclusion
of higher moments yields new “multi-linked half-wormhole”
saddles in addition to the original two-linked half-wormhole
saddle. All these new saddle points should be taken into
account in order to solve the factorization puzzle in these
models. In addition, we find that when the random couplings
are Poisson distributed, the multi-linked half-wormhole con-
tributions are all suppressed in the large-N limit; contribu-
tions with disk and cylinder topology are good enough to
solve the factorization puzzle.

In Sect. 5, we study the 1d Brownian SYK model and its
generalizations. Since the SYK model is originally defined
in 1d, the computation in this section clearly helps further
explore the important question of whether the half-wormhole
interpretation of the non-self-averaging contributions to var-
ious spectral correlators applies to models in 1-dimensional
spacetime. By an explicit computation, we confirm that there
is indeed a similar decomposition of the partition function
into the averaged contribution and a punctured-disk-like non-
self-averaging contribution. This agrees with our expectation
obtained from the computation in the 0d model in Sect. 3. The
results in this section also provide direct evidence of the wide
applicability of the half-wormhole type interpretation of the
non-self-average contributions in general ensemble average
theories.

2 SYK at one time point: the cylinder model

In this section, we study the half-wormhole contributions in
the toy 0d SYK model that can be considered as the usual
0+1d SYK model at a single instant of time. We first briefly
review the previous results in [73] and also in [74,77]; in
Sect. 2.3.2 we provide a detailed study of the various saddle
points via a Lefschetz-thimble analysis, which is also a useful
preparation for the analysis of the other models in this paper.

2.1 SYK model with one time point

As in [73], we are interested in the following Grassmann
integral1

z =
∫

dNψ exp(iq/2 Ji1...iqψi1...iq ), (1)

1 In this paper, repeated indices are summed if no further explanation.
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where ψi1...iq = ψi1ψi2 . . . ψiq and ψi are Grassmann vari-
ables. The number z can be understood as the partition func-
tion of 0 + 0 dimensional analogue of SYK model. The ran-
dom couplings Ji1...iq is drawn from a Gaussian distribution

〈Ji1...iq 〉 = 0, (2)

〈Ji1...iq J j1... jq 〉 = t2δi1 j1 . . . δiq jq , t2 = (q − 1)!
Nq−1 . (3)

We sometimes use the collective indies A, B to represent a
series of q indices to simplify our notation

A = {i1 < · · · < iq}, JAψA ≡ Ji1...iqψi1...iq . (4)

Integrating out the Grassmann variables directly gives 2:

z =
∫

dNψ exp(iq/2 JAψA) (5)

=
′∑

A1<···<Ap

sgn(A)JA1 . . . JAp , (6)

where p = N/q and the expression (6) is the hyperPfaffian
Pf(J ) of the Ji1...iq hypermatrix.

Before diving into the technical details, let us first outline
the computation we will perform in this section. The ensem-
ble theory (1) could be regarded as an effective description of
a dual gravitational system. However, explicit computation
uncovers a “factorization” problem of the spectral correlators
(correlation functions of the partition functions), namely

〈z2〉 = 〈zL zR〉 �= fL(zL) fR(zR). (7)

where we have trivially rewritten z2 to zL zR to emphasis that
the two copies of z are independent to each other, and fL ,
fR are some functions. This leads to a puzzle: the correlation
functions of the partition functions of two different theories
are expected to factorize into two factors each only depends
on one of the z’s, but this is in contradiction with the above
equation. In this section, we review a proposal [73] to resolve
the puzzle and provide an independent computation by the
Lefschetz-thimble method to support the results there. The
main conclusion is that in the path integral of the spectral cor-
relators, apart from the wormhole saddle that gives 〈zL zR〉,
one should also include the contribution from another saddle
point, which is referred to as the half-wormhole saddle, into
the path integral. Then we have approximately

z2 ≈ 〈zl zR〉 + half-wormhole saddle, (8)

where the “half-wormhole saddle” is denoted by �(0) in the
rest of this section.

2 Here we choose the measure of Grassmann integral to be∫
dNψψ1...N = i−N/2 and the prime on the sum means that in each

term of the sum Ai ∪ A j = ∅ due to the fact ψ2 = 0.

2.2 The ensemble averaged quantities

We first consider the ensemble averaged quantities 〈z2〉
which is defined as

z2 = zL zR (9)

=
∫

dNψ LdNψ R exp
{

iq/2 JA
(
ψ L

A + ψ R
A

)}
, (10)

〈z2〉 =
∫

d2Nψ exp

{
N

q

(
1

N
ψ L
i ψ R

i

)q}
, (11)

where we have assumed that q and N are even, and L , R
labels the two copies of z on the left-hand-side. In the follow-
ing, we would like to compute this quantity by saddle-point
analysis. In the 0+1d SYK model, the analog of this quantity
is the “spectral form factor” (SFF) 〈Z(β + iT )Z(β − iT )〉.
It is known that both a “disk” saddle point and a “wormhole
saddle” contribute to the SFF; the disk saddle is responsible
for the decay of the SFF at the early time and the wormhole
saddle is responsible for the linear increasing period called
the “ramp” of the SFF in a relatively later time regime.

However, in the 0d SYK model there is no time. More-
over, since 〈z〉 = 0, only a wormhole saddle is possible to
exist. In the following, we will confirm the existence of the
wormhole saddle by comparing the exact evaluation of 〈z2〉
and its saddle point approximation. The exact values of (11)
can be computed by introducing a G variable

〈z2〉 =
∫

d2Nψ

∫
R

dG

×δ

(
G − 1

N

N∑
i=1

ψ L
i ψ R

i

)
exp

(
N

q
Gq
)

(12)

= N−N
∫
R

dG exp

(
N

q
Gq
)

(−∂G)N δ(G) (13)

= N !(N/q)N/q

N N (N/q)! (14)

= e−(1− 1
q )N√

q

(
1 + 1 − q

12N
+ O

(
1

N 2

))
, (15)

where in the last step we expand to the next-to-leading order
of 1/N .

Next we derive the same result (15) from a saddle point
approximation. We start by rewriting the δ function in (12)

δ

(
G − 1

N

∑
i

ψ L
i ψ R

i

)
=
∫

d� e
i�
(
G− 1

N ψ L
i ψ R

i

)
, (16)

and then deform the contour of the integration along which
the g, σ variables, defined by

� = ie−i π
q σ, G = ei π

q g, (17)
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are real. This modification ensures the convergence of the
integral. The resulting effective action is

〈z2〉 =
∫
R

dg
∫
R

dσ

2π/N

× exp

{
N

(
log
(

ie− iπ
q σ
)

− iσg − 1

q
gq
)}

, (18)

≡
∫
R

dg
∫
R

dσ

2π/N
eNS . (19)

The saddle point equations of this path integral are

−iσ − gq−1 = 0, gq = −1, (20)

→ g = e
(2m+1)iπ

q , m = 0, . . . , q − 1. (21)

All of them give the same on-shell action

〈z2〉s = N

2π
e
−
(

1− 1
q

)
N
. (22)

To match with the exact result (15) we need to add in contri-
butions from fluctuations around each of these saddle points.
For simplicity let us take q = 4 and focus on one of the
saddle points

σs = gs = −(−1)
3
4 , 〈z2〉s = N

2π
e− 3

4 N . (23)

Expanding the exponent around this saddle

σ = σs + x, g = gs + y, (24)

to the 4th order

S2 ∼ −3

4
+ 3ix2

2
− ixy − iy2

2

+
[
(−1)3/4x3 + (−1)3/4

3
y3
]

ε + y4 − x4

4
ε2, (25)

where we have added ε ≡ 1 to keep track of the expansion,
then expanding exp(S2) to the second order of ε and finally
evaluating the integral (18) to this order directly gives the
contribution from this saddle up to 2-loop as

〈z2〉saddle+loop = e− 3
4 N

1

2

(
1 − 1

4N

)
. (26)

Adding contributions from all the 4 saddles we arrive at

〈z2〉saddle+loop = 2e− 3
4 N
(

1 − 1

4N

)
, (27)

that agrees with (15) at 2-loop order. These saddles are named
as the wormhole saddles because in the 0+1d SYK model,
they have a gravity dual which can be viewed as a wormhole.3

At first glance, it may be surprising that we need to add all
complex saddle points (which are not along the integral con-
tour along the real axis) to obtain the correct result. However

3 More precisely, the gravity dual is the double-cone geometry.

this can be explained and justified with the method of Lef-
schetz thimbles which we discuss in Sect. 2.3.2 with some
technical details reviewed in Appendix A. The method of
Lefschetz thimbles is a way to determine which saddle points
should be considered when there are multiple saddle points
in the integral domain. In short, for each saddle point we
can associate a steepest descent path which is called the Lef-
schetz thimbles and if the thimble intersects with the chosen
integral contour then the corresponding saddle point should
be included.

2.3 The non-averaged quantities

Now we try to compute the non-averaged quantity (10) in
the saddle point approximation. Following [73], we rewrite
z2 as an integral

z2 =
∫
R

dσ �(σ)�(σ), (28)

�(σ) =
∫

dg

2π/N
exp[N (−iσg − 1/qgq)], (29)

where the coupling dependent piece � is

�(σ) =
∫

d2Nψ exp

{
ie−

iπ
q σψL

i ψ R
i + iq/2 JA

(
ψL
A + ψ R

A

)

− N

q

(
1

N
ψL
i ψ R

i

)q}
. (30)

This expression (28) is derived by inserting the trivial identity
1 = ∫

dGδ(G−1/N
∑

i ψ
L
i ψ R

i ) and rotating the contour. In
this form, the ensemble average of 〈z2〉 is entirely attributed
to the ensemble average of �(σ)

〈z2〉 =
∫
R

dσ �(σ)〈�(σ)〉 , (31)

since the �(σ) does not depend on the random couplings.
The integral region of (28) can be divided into two subre-

gions depending on whether �(σ) is self-averaging or not.
By self-averaging we mean the fluctuations around the aver-
age value is small in the large N limit

�(σ) − 〈�(σ)〉 ≈ 0 , ⇔ 〈(�(σ) − 〈�(σ)〉)2〉 ≈ 0 ,

⇔ 〈�(σ)2〉 ≈ 〈�(σ)〉2 . (32)

If the wormhole saddle points (20) are in this subregion, we
then know that the result of the integral (28) is self-averaging,
namely it can be approximated as 〈z2〉 ≈ 〈z2〉wormhole-saddle.
In this simple model, both 〈�(σ)〉 and 〈�(σ)2〉 can be com-
puted exactly. The 〈�(σ)〉 can be directly obtained as

〈�(σ)〉 = (ie− iπ
q σ)N . (33)
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To compute 〈�(σ)2〉, we introduce σAB and gAB analogous
to (17)

gAB = e−i π
q GAB , GAB = 1

N

∑
i

ψ A
i ψ B

i , (34)

where we label the L , R in one of the �(σ) (30) by
L = 1, R = 2, and L ′, R′ in the other of the �(σ)

by L ′ = 3, R′ = 4. Then the combination (AB) is one
of {(13), (14), (23), (24)}. Each gAB is paired with a σAB

whose subscript has the same meaning as in gAB . Then sim-
ilar to the computation we used to get (15), 〈�(σ)2〉 can be
done exactly

〈�(σ)2〉
=
∫
R

d4σABd4gAB
(2π/N )4 exp

{
N
[
log(−e− 2iπ

q (σ 2

+σ14σ23 − σ13σ24)) − iσABgAB − 1

q
gqAB

]}
, (35)

= (−e− 2iπ
q )N

∑
n1+n2+n3= N

q ,ni≥0

N !
N 2q(n2+n3)

×
(
N

q

)2(n2+n3) σ 2qn1(qn2)!(qn3)!
(qn1)!(n2!)2(n3!)2 , (36)

It can be organized into a polynomial in σ

〈�(σ)2〉 = (−e− 2iπ
q )N

(
σ 2N + 2N !q!

(N − q)!q2N 2q−2 σ 2N−2q

+ · · · + e2N 1−q
q 2q

)
(37)

∼ (−e− 2iπ
q )N

(
σ 2N + 2(q − 1)!

qNq−2 σ 2N−2q

+ · · · + e2N 1−q
q 2q

)
, (38)

where the phase factor is trivial wheneverq divides N . Appar-
ently when q > 2 and σ 2q Nq−2 � 1 we have

〈�(σ)2〉 ≈ 〈�(σ)〉2, (39)

and the result is self-averaging.
In this simple example, we can perform an exact compu-

tation to get the results. However, in other models there is not
a similar exact computation so it is important to understand
how to reach the same conclusion by saddle approximation.

2.3.1 The saddle points analysis: σ �= 0, the trivial saddle

The saddle point equations of the integral (35) are

gq−1
AB = −iσAB, −ig13 = σ24

f
, ig14 = σ23

f
,

ig23 = σ14

f
, −ig24 = σ13

f
, (40)

where f ≡ σ14σ23 −σ13σ24 +σ 2. The above set of equations
has a trivial solution σAB = gAB = 0, which we call the
“trivial saddle”. The trivial saddle point value of 〈�(σ)2〉 is

〈�(σ)2〉trivial =
(

N

2π

)4 (
−e− 2iπ

q σ 2
)N = N 4〈�(σ)〉2 ,

(41)

and the 1-loop fluctuations around the trivial saddle points
is 1/N 4 suppressed. Therefore the contribution up to 1-loop
level is

〈�(σ)2〉trivial+1loop = (−e− 2iπ
q σ 2)N = 〈�(σ)〉2, (42)

which says the trivial saddle always agrees with the first term
in (37). If this saddle dominates the integral the quantity z2

is self-averaging.

2.3.2 The saddle points analysis: σ �= 0, the wormhole
saddle

However, there could be other non-trivial solutions to the
saddle point equation (40) with σAB �= 0. From the equations
of motion we obtain

xq−2 = yq−2, (43)

(xq−1 − yq−1 + σ 2)2 = xq−2 = yq−2, (44)

gq13 = gq24, gq23 = gq14 (45)

where

x = g13g24, y = g14g23. (46)

It is easy to check that solutions of the above equation satisfy

x = ye
2mπ i
q−2 , and for each choice of m there are 2q2 solutions

of gab.
For simplicity, we again focus on the q = 4 case, where

there are only two classes of solutions x = ±y.
• When x = y we find 32 non-trivial saddles. The on-shell

action of them are all the same

〈�(σ)2〉+non-trivial = N 4〈�(σ)〉2 = 〈�(σ)2〉trivial, (47)

where the factor N 4 comes from the measure of (35). How-
ever, the one-loop fluctuations around these non-trivial sad-
dle points amount to one-eighth of the fluctuations from the
trivial saddle, with a value of 1/(8N 4).Although when the 1-
loop effects are taken into account, we observe that the trivial
saddles give larger contributions. But the contributions from
the non-trivial saddles are also significant. Therefore naively
we should add the contributions from all these saddle point,
however, if we were adding the contributions from both the
trivial and non-trivial saddles the answer would exceed the
exact value (37). This suggests that only a subset of these
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Fig. 1 Anti-thimble on the σ13 plane (left) and the σ24 plane (right)

saddle point contributions should be included in the inte-
gral expression of 〈�(σ)2〉. Indeed, through a straightfor-
ward Lefschetz-thimble analysis, as reviewed in Appendix
A (see also [83]), we conclude that only trivial saddles are
needed. The detailed reasoning is as follows.

To start with, we choose the real part of the action (35) as
a Morse function

h ≡ �(S)

=
∑
abj

(
−g4

abj

4
+ 3g2

ab1g
2
ab2

2
+ gab1σab2 + gab2σab1

)

+ 1

2
log
(
(σ142σ231 + σ141σ232 − σ132σ241 − σ131σ242)

2

+(1 + σ141σ231 − σ142σ232 − σ131σ241 + σ132σ242)
2
)

,

(48)

where we have set q = 4 for simplicity and rescaled σ to 1
since we are interested in the case σ �= 0. The gabi and σabj
are the real and imaginary parts of the field gab and σab

gab = gab1 + igab2, σab = σab1 + iσab2 . (49)

The downward flow equations of the Morse function are

dgabj
dt

= − ∂h

∂gabj
,

dσabj

dt
= − ∂h

∂σabj
. (50)

The end point of each anti-thimble is one of the saddles,
labeled by c, at gcabj and σ c

abj , which leads to the following
boundary conditions of the flow equation

lim
t→+∞ gabj = gcabj , lim

t→+∞ σabj = σ c
abj . (51)

We can then solve the flow equation and obtain the Lefschetz
anti-thimbles going through each saddle point. If they inter-
sect with the original integration contour the saddle point
contributes to the integral.

For example in Fig. 1 we illustrate examples of the anti-
thimbles of the saddle point

g13 = 1, g24 = −1, g14 = (−1)3/4, g23 = (−1)1/4,

(52)

σ13 = i, σ24 = −i, σ14 = (−1)3/4, σ23 = −(−1)1/4 ,

(53)

which do not intersect with the original integration contour,
namely the real axis. This means the contribution of this
saddle should not be included in the integral.

Examples of anti-thimbles of another saddle point

g13 = −(−1)1/4, g24 = (−1)3/4, g14 = −1, g23 = −1,

(54)

σ13 = (−1)1/4, σ23 = (−1)3/4, σ14 = −i, σ23 = −i ,
(55)

is shown in Fig. 2. Again they do not intersect with the
real axis so the contribution from this saddle should not be
included either.

We can run this analysis over all the nontrivial saddles,
and we find none of them contribute to the integral.

• When x = −y, there are also nontrivial saddle points,
and a similar analysis of Lefschetz-thimbles demonstrates
that they do not contribute to the integral either.

Actually, there is a quicker way to arrive at the same con-
clusion. We find that the on-shell actions corresponding to
these saddle points are

(
σ 2

2

) N
3

e−N± 3
2 2

1
3 Ne

2imπ
3 σ

4
3
, m = 0,±1. (56)
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Fig. 2 Anti-thimble on the g13 plane (left) and the g24 plane (right)

However, these saddle points should be saddle points of the
entire multi-dimensional integral including the integral over
σ . As a result, this saddle should also satisfy the fall-off con-
dition of the σ integral, otherwise, they will not contribute to
the σ integral. Therefore we should only consider the decay-
ing saddle points namely

(
σ 2

2

) N
3

e−N+ 3
2 2

1
3 Ne± 2iπ

3 σ
4
3
,

(
σ 2

2

) N
3

e−N− 3
2 2

1
3 Nσ

4
3
.

(57)

We plot the region where these non-trivial saddle dominates
over the trivial saddle in Fig. 3, and it is easy to observe from
the figure that the wormhole saddle (20) of 〈z2〉, located at
|σ | = 1, is in the region where the trivial saddle dominates.

Fig. 3 The shaded region is where a non-trivial saddle in (56) dom-
inates over the trivial saddle. The plot for the other two non-trivial
saddles can be obtained from this plot by simple rotations

Another family of solutions to the equation of motion (40)
has x = 0 or y = 0. On shell actions on these saddles behave
as

σ
2N
3 e−N+ 3

2 Ne± 2iπ
3 σ

4
3
, σ

2N
3 e−N− 3

2 Nσ
4
3
, (58)

whose dominant regions are similar to Fig. 3 and they are
sub-leading compared with the trivial saddle.

Since the trivial saddle is on the original integration con-
tour, putting all the results together we confirm that the path
integral over gab and σab can be approximated entirely by
the trivial saddle point. Due to (42), we conclude that the
wormhole saddle (20) is in the self-averaging region.

2.3.3 The saddle points analysis: σ = 0, the half-wormhole
saddles

The analysis in the above sub-sections concludes that the
leading saddle point contributions to the �(σ) function are
all proportional to positive powers of σ . However, this raises
a puzzle: all these results vanish at σ = 0, but from the exact
result in (37) we know

〈�(0)2〉exact ∼ 2qe− 3
2 N �= 0 . (59)

at σ = 0. This indicates that there must be other saddle
points, which are missed in the previous analysis due to being
subleading at generic σ �= 0, becomes important at σ =
0. This is possible because in the large-N limit the �(σ)

function is peaked at the origin, so other saddle points could
give a large contribution near the origin. In this section, we
thus focus on the σ ∼ 0 region of the integration and look
for new saddle point contributions.
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In practice, we can apply the same analysis as in the pre-
vious section, except that now we evaluate at σ ∼ 0. As
expected, the trivial saddle gives

eN log(σ ) ∼ 0 . (60)

At σ = 0, the subleading non-trivial saddles (57) and (58)
discussed in the previous section now have different on-shell
values

e− 3
2 N

2N/2 , e− 3
2 N , (61)

respectively. So (58) dominates. Adding them up and includ-
ing the 1-loop correction, the result agrees precisely with the
exact solution (59)

〈�(0)2〉 = 2qe− 3
2 N . (62)

We can continue to carry out the sigma integral to get the
contribution from this saddle to the z2, since the saddle is
supported at σ = 0, this is easily done the result is simply
�(0).

A general lesson we can learn from this computation is
that the half-wormhole saddle points always exist. But most
of the time they are hidden behind the leading saddles. Never-
theless, they become important whenever the leading saddle
decreases faster, e.g. the σ ∼ 0 region in this case.

With both the wormhole and the half-wormhole saddle
contributions, we can now approximate

z2 ≈ 〈z2〉 + �(0) . (63)

The wormhole saddle is holographically dual to bulk worm-
hole-like geometry, and the half-wormhole saddles are con-
jectured to be dual to half-wormhole-like configurations
that are typically sub-dominant. This result indicates one
way to resolve the factorization problem; when we consider
bulk gravitational path integral, the factorization problem is
caused by only considering the wormhole-like connected
geometry, if other sub-dominant contributions, such as the
half-wormhole geometries are also taken into account, the
factorization property will be restored (so that the result is
z2 ≡ zL zR that factorizes).

3 Sourced one-time SYK: a disk-and-cylinder model

An important difference between the 0d-SYK model and the
1d-SYK model is that the averaged partition function 〈z〉 van-
ishes in the 0d model. From the bulk gravity point of view,
this corresponds to the exclusion of the gravity configuration
where a surface with the disk topology fills a single boundary

in the bulk. as shown in [72]. JT gravity admits a limit where
the bulk geometry can always be approximated by disks and
cylinders. Therefore to understand if the discussion in the
previous model is also applicable when disk topology is also
allowed in the bulk, we consider a sourced 0d-SYK model
where the random coupling is drawn from a Gaussian distri-
bution N (u, t2) with non-zero mean4

〈JA〉 = J 0
A = u, 〈J 2

A〉 − 〈JA〉2 = τ 2 (q − 1)!
Nq−1 ≡ t2. (64)

Since a non-zero expectation value of the couplings is equiv-
alent to turning on a source term of the random couplings,
we call this model “sourced” 0d-SYK model.

The ensemble averaged quantities can be computed
directly by averaging over the couplings and integrating out
the fermions

〈z〉 = PF(J 0), (65)

〈z2〉 =
∫

d2Nψ

× exp

(
iq t2

∑
A

ψ L
Aψ R

A + iq/2 J 0
A

(
ψ L

A + ψ R
A

))

(66)

=
′∑

A,B

sgn(A)sgn(B)
(
J 0
A1
J 0
B1

+ δA1B1 t
2
)

. . .

. . .
(
J 0
Ap

J 0
Bp

+ δApBp t
2
)

. (67)

Our main results about this model are

1. The self-averaging part of z does not persist; they are
subdominant compared with the non-self-averaging con-
tribution in the large N limit.

2. The half-wormhole contribution � can be improved so
that the approximation z2 ≈ 〈z2〉+� is still good in this
model.

3.1 The averaged quantities

Let us first compute the averaged quantities. We again pro-
ceed by looking for proper collective variables and establish
a saddle point analysis that’s similar to the model discussed
in the previous section.

The ensemble average of z is simply the ensemble average
of the hyperPfaffian (6)

〈z〉 =
′∑

A1<···<Ap

sgn(A)J 0
A1

. . . J 0
Ap

= m[p]u p, (68)

4 In [81], a model with non-zero mean is studied, but in their model the
mean value is not a real number but is constructed by a set of Grassmann
variables.
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where p is not summed over, pq = N and the factor m[p]
is defined as

m[p] = (pq/2)!
p!((q/2)!)p . (69)

This result can alternatively be derived by introducing a col-
lective variable

G =
∑
i< j

ψiψ j , (70)

followed by a similar computation as we show in (15). Intro-
ducing the following collective variables

GLR = 1

N

∑
i

ψ L
i ψ R

i , (71)

GL = 1

N

∑
i< j

ψ L
i ψ L

j , GR = 1

N

∑
i< j

ψ R
i ψ R

j , (72)

we can compute the averaged quantity 〈z2〉

〈z2〉 =
p∑

k=0

c[k] t2k
(
m[p − k] u p−k

)2
, (73)

where m[p] is defined in (68) and the coefficient c[k] is

c[k] = 1

k!
(
N

q

)(
N − q

q

)
. . .

(
N − (k − 1)q

q

)
(74)

= N !
k!(q!)k(N − kq)! . (75)

The details of the derivations of 〈z〉 and 〈z2〉 are presented
in Appendix B. The averaged partition function (68) is pro-
portional to u p because in each term of the hyperPfaffian
there are no repeated JAi so the result does not depend on
t ; rather, each random coupling has to “contract” with itself
thus producing p copies of the factor of u. The polynomial
expression of the averaged squared partition function (73)
can be also understood from summing over the Feynman
diagrams as shown in Fig. 5. It turns out that each diagram
in Fig. 5 correpond to a term z(k)2 in (73), i.e.

〈z2〉 =
p∑

k=0

z(k)2 , z(k)2 = c[k] t2k
(
m[p − k] u p−k

)2
. (76)

Diagramatically, the z(k)2 come as follows. We first contract
k pairs of JAi (in the diagram the contraction is denoted by
a blue line connecting zL and zR) which gives the factor t2k

and c[k] is the total number of different contractions. Each
of the rest JA becomes μ in the average and they contribute

a factor
(
m[p − k] u p−k

)2
(in the diagram the contraction is

denoted by a red line connecting zL or zR with a red dot.).

In the large-N limit, we can find the dominant terms by
computing the ratio5

rk = z(k)2

z(k−1)
2

= t2(−k + p + 1)(−4k + 4p + 1)(−4k + 4p + 3)

3u2(2k(p − k) + k)
(77)

rp = t2

pu2 , r1 ∼ p2t2

u2 , (78)

here for simplicity we have chosen q = 4. First we notice
that rk decreases with respect to k, namely

rk > rk+1 (79)

Therefore if r1 � 1 i.e.

u

t
� p, (80)

then the dominant term will be

〈z2〉 ≈ z(0)
2 = (

m[p]u p)2 . (81)

In this case, we clearly have

〈z2〉 ≈ 〈z〉2 . (82)

Since the geometric meaning of z(0)
2 is two disconnected

disks, the above result means in this regime, this “two-disk”
saddle is dominant, which results in a self-averaging z due
to (82). This behavior resembles the early-time characteris-
tics of the SFF of the 0 + 1 SYK model.

On the other hand, if rp � 1 i.e.

u

t
� 1√

p
(83)

the dominant term will be z(p)2 . Geometrically, this contri-
bution corresponds to connected wormhole configurations.
Therefore in this regime the wormhole saddle dominates,
and z is non-self-averaging.

In the rest regime of the parameter u
t

1√
p

� u

t
� p, (84)

neither the disk nor the wormhole saddle point dominates.
It suggests that there might be a new saddle point that con-
tributes the most. It turns out when our toy model has a well-
defined large N limit, the parametersu and t lie in this regime.

5 Recall that p = N/q.
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We now examine this result more carefully by a saddle
point analysis. As we show in the Appendix B, by introducing
the G, � variable we can rewrite 〈z〉 as

〈z〉 =
∫
R

dG
∫

iR

d�

2π i/N
�N/2euiq/2 Nq/2

(q/2)!Gq/2
e−N�G . (85)

We again rotate the integral contour as in the model with zero
mean

� → ie−i 2π
q σ, G → ei 2π

q g, (86)

which leads to the action:

〈z〉 =
∫
R

dgdσ

2π/N
exp

{
N

2

(
log(ie− 2π i

q σ)

−2iσg − 2μ

q
gq/2

)}
, (87)

with

μ ≡ iq/2u
2Nq/2−1

(q/2 − 1)! ,

↔ u = (−i)q/2μ
(q/2 − 1)!
2Nq/2−1 . (88)

The saddle point equations are

1

σ
− 2ig = 0, −2iσ − μgq/2−1 = 0,

→ μgq/2 = −1. (89)

Comparing (87) with (18) it is easy to find that to reproduce
the exact result (76) we have to add the contributions from
all the q/2 saddles. For the choices (64) and (88) we have

u

t
∼ μ

τ

(q/2 − 1)!√
(q − 1)! N

1
2 ∼ √

p, (90)

which exactly lies in the regime (84). To find the new saddle
explicitly, we start from a path integral expression of 〈z2〉

〈z2〉 =
∫
R

d3Gi

∫
iR

d3�i e
N
q (τ 2Gq

LR+μGq/2
L +μGq/2

R )−N (�i Gi )

×1

2

(
(�LR + i

√
�L�R)N + (�LR − i

√
�L�R)N

)

(91)

whose detailed derivation is in Appendix B. The saddle point
equations are

G
−1+ q

2
L(R) = 2

μ
�L(R), G−1+q

LR = 1

τ 2 �LR, (92)

GL(R) = i�R(L)

2
√

�L�R

f n−1+ − f n−1−
f n+ + f n−

, (93)

GLR = f n−1+ + f n−1−
f n+ + f n−

, (94)

where f± = �LR ± i
√

�L�R . For simplicity, we choose
τ 2 = μ = 1. There are always two types of trivial solutions

wormhole solution : GL = GR = 0,

GLR = e
2imπ
q , (95)

disconnect solution : GLR = 0, GL = e
4imLπ

q ,

GR = e
4imRπ

q (96)

with on-shell action respectively

wormhole solution : 〈z2〉wh = e−N (1− 1
q )e

2imπN
q (97)

disconnect solution :
〈z2〉dis = 2−Ne−N (1− 2

q )e
4imπN

q . (98)

Note that the ratio of these two contributions is

〈z2〉wh

〈z2〉dis
=
(

2e−1/q
)N

, (99)

so when q ≥ 2 the wormhole contributes more. We find
another solution where only one of ( f+)N and ( f−)N sur-
vives in the large N limit. Assuming f N− → 0, N → ∞,
(94) simplifies to

GL(R) = �R(L)

−2i
√

�R�L

1

�LR + i
√

�L�R
, (100)

GLR = 1

�LR + i
√

�L�R
, (101)

which leads to

Gq
LR + Gq/2

R + Gq/2
L = 1, Gq/2

R = Gq/2
L . (102)

For the case of q = 4, (92) and (102) can be solved explicitly
and gives the following contribution to the integral (91)

〈z2〉non-trivial+ ≈ e−0.63Ne
2miπN

4

> 〈z2〉wh = e−0.75Ne
2miπN

4 . (103)

We also checked that these solutions indeed satisfies limN→∞
f N− = 0. There are similar saddles that satisfy f N+ = 0.
Therefore we conclude that in the large N limit the dominate
saddles are the non-trivial ones.

3.2 The non-self-averaged contributions to z

Contrary to the model with zero means, we expect a non-
vanishing “disk” saddle point in this u �= 0 model, which
gives 〈z〉 �= 0, in the path integral representation of z. More-
over, we will show that there are new saddle point con-
tributions to z as shown in Fig. 4, analogous to the half-
wormhole contribution to z2 in the previous model with zero
means, which we call the “punctured disk” (or “single half-
wormhole”) saddles.
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Fig. 4 A pictorial illustration of the “disk” and the “Punctured disk”
saddle of z respectively

With the help of the collective variables (72), we insert
the identity

1 =
∫ ∞

−∞
dGh

∫ i∞

−i∞
Nd�h

2π i

×e
−�h(NGh−∑i< j ψiψ j )+ Nμ

q

(
Gq/2

h −
(

1
N

∑
i< j ψiψ j

)q/2
)
,

(104)

into the non-averaged partition function z

z =
∫

dNψ exp
(

iq/2 Ji1...iqψi1...iq

)
. (105)

To make the integral well defined, we again rotate the
contour by �h = ie−2iπ/qσh,Gh = e2iπ/qgh , then z can be
cast into the form

z =
∫ ∞

−∞
Ndσh

2π
�(σh)
̂(σh), (106)

where the first factor is similar to (29)

�(σh) =
∫
R

dgh
2π/N

exp

[
N

(
−iσhgh − μ

q
gq/2
h

)]
, (107)

and the second factor is


̂(σh) =
∫

dNψ exp

⎡
⎣ie− 2iπ

q σh
∑
i< j

ψiψ j

+iq/2 JAψA − iq/2u
∑
A

ψA

]
. (108)

The function �(σh) is again peaked at σh = 0, so a naive
generalization of the proposal of the existence of the half-
wormhole saddle suggests the approximation

z ≈ 〈z〉 + 
1, (109)

where


1 = 
̂(0) = Pf(J − J 0)

=
′∑
A

sgn(A)(JA1 − J 0
A1

) . . . (JAp − J 0
Ap

). (110)

To examine this approximation, we define the error function:

Error = z − 〈z〉 − 
1 (111)

and compute variance of the error

〈Error2〉 = 〈z2〉 − 〈z〉2 + 〈
2
1〉 − 2〈z
1〉. (112)

Fig. 5 Feynman diagrams for 〈z2〉, 〈
2
1〉, 〈z
1〉. Each black dot rep-

resents a factor of z, each red dot and the attached line represents a
contraction with the J 0

A source, and each blue line is a contraction of a

pair of JA. So the diagram containing k blue lines corresponds to z(k)2
in (76)

The quantities 〈z2〉, 〈
2
1〉, 〈z
1〉 can be computed by sum-

ming over the Feynman diagrams in Fig. 5.
Recalling that 〈z2〉 = ∑p

k=0 z
(k)
2 which is given by sum-

ming over all the diagrams, z(0)
2 = 〈z〉2 which is given by the

last diagram in Fig. 5, z(p)2 = 〈z2〉μ=0 which is given by the

first diagram in Fig. 5 and 〈
2
1〉 = 〈
1z〉 = z(p)2 , we find

〈Error2〉 =
p−1∑
k=1

z(k)2 . (113)

Based on our analysis in the previous section, this error is
negligible only when the ratio of u to t is very small and z
exhibits self-averaging, or when the ratio is very large and
z is mostly non-self-averaging. However, within the regime
defined by inequality (84), the error becomes non-negligible,
rendering the naive half-wormhole proposal (109) invalid.
The underlying reason for this failure is the emergence of a
new saddle point when we tune the parameter u.

One possibility of what is happening in this parameter
regime (84) is that a specific Feynman diagram in Fig. 5,
denoted as z(k)2 , will dominate the summation (76) in the
large N limit. If this is the case, it is possible to find a domi-
nant non-self-averaging contribution 
(k), which we call the
“punctured disk” to z such that

z ≈ 〈z〉 + 
(k) , (114)

where the value of k is determined by the value of the param-
eter u/t .

The non-trivial point is that if this is true, then the approx-
imation of z2 is in the precise form of the aforementioned
proposal

〈z2〉 ≈ z(k)2 + 〈z〉2 . (115)

One proposal for the 
(k) is


(k) =
∫

dNψ
(iq/2 J (0)

A ψA)p−k

(p − k)! eiq/2(JB−J (0)
B )ψB . (116)

For examples


(p−1) =
′∑
A

sgn(A)(JA1 − J 0
A1

)(JA2 − J 0
A2

) . . .

. . . J 0
Ai

. . . (JAp − J 0
Ap

) , (117)
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(p−2) =
′∑
A

sgn(A)(JA1 − J 0
A1

) . . . J 0
Ai

. . .

. . . J 0
A j

. . . (JAp − J 0
Ap

) , (118)


(0) = 〈z〉 , 
(p) = 
1. (119)

Then from the Feynman diagrams in Fig. 5 it is not hard to
find that

〈
(k)
(k)〉 = 〈
(k)z〉 = z(k)2 . (120)

This result ensures that (115) is true.
We will present a further analysis from another approach

to this model somewhere else.

3.3 The non-self-averaged contributions to z2

In the previous section, we considered the non-self-averaged
contribution 
(k) to the partition function z. In this section,
we study the non-self-averaged contribution to z2 and try to
understand its relationship with the z(k)2 .

The result (114) immediately gives

z2 =
(
〈z〉 + 
(k)

)2 = 〈z〉2 + 2〈z〉
(k) +
(

(k)

)2
. (121)

In the previous section, we have shown that this relation leads
to (115). Using (115), we can further rewrite this relation into

z2 = 〈z2〉 − z(k)2 + 2〈z〉
(k) +
(

(k)

)2
. (122)

This provides an approximation to z2

z2 ≈ 〈z2〉 + �(k) , (123)

where

�(k) = −z(k)2 + 2〈z〉
(k) +
(

(k)

)2
(124)

We thus observe that once the punctured disk contribution

(k) is known, all the higher boundary non-self-averaging
contributions can be recursively determined. Additionally,
a geometric interpretation of (124) is that the sum of con-
nected two-boundary contributions, including the wormhole
contribution z(k)2 and the linked half-wormhole �(k) is the
same as the sum of all non-self-averaging disconnected con-
tributions, either one disk plus one punctured disk or two
punctured disks. This can be shown in Fig. 6.

One might wonder whether �(k) has a similar expres-
sion as the half-wormhole contribution in the model with
zero mean that was introduced in [73] and recast in (63). In
Appendix C, we demonstrate that this is not the case.

Fig. 6 A pictorial illustration of equation (124)

4 Modified SYK at one time point: beyond Gaussian
approximation

The models considered in the literature so far only involve
random couplings drawn from Gaussian distributions. On the
other hand, SYK-like field theories with other kinds of ran-
dom couplings are expected to have similar chaotic behav-
iors as the Gaussian SYK model does. So it is possible that
in the low energy limit they also admit effective gravitational
descriptions. In particular, explicit examples of field theo-
ries with random variables subjecting to other distributions
includes the Poisson random variable appearing in the theory
of [52,73,82]. Additionally, it is conjectured [22] that any
2-dimensional dilaton gravity theory possesses a dual ran-
dom matrix description that is generally non-Gaussian. It is
therefore interesting to consider random couplings beyond
Gaussian distributions and check if there are other non-
self-averaging contributions to these models. Separating the
physical observables into the self-averaging and non-self-
averaging parts is generically applicable in ensemble average
theories, so we expect that there always exist half-wormhole-
like non-self-averaging saddles for various different observ-
ables. We will demonstrate how it works in this section and
further understand the relation between the different non-
self-averaging quantities.

4.1 SYK at one time point: 〈Ja〉 = 0, 〈J 4
a 〉c �= 0

In this section, we consider theories whose random couplings
have vanishing mean values and non-trivial quadrupole
moments, namely

〈JA〉 = 0 , 〈J 2
A〉 = t2 , 〈J 4

A〉 = v4 + 3〈J 2
A〉2 . (125)

Note that the introduction of non-vanishing 〈J 4
A〉 − 3〈J 2

A〉2

could potentially alter the outcome of 〈z4〉, but not 〈z2〉. As
a result, we expect that the original half-wormhole proposal
should be modified. The additional contribution to 〈z4〉 can
be attributed to a new wormhole saddle that has four bound-
aries. In addition, it is reasonable to believe that when v < t ,
this new wormhole saddle is negligible and the original half-
wormhole saddle remains valid. We will confirm this through
a direct calculation in the following section.

It is easy to compute the correlation functions of the par-
tition function of this model

〈z〉 = 0, 〈z2〉 = N !
p!(q!)p t

2. (126)
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The quadupole moments of JA in (4.2) contributes nontriv-
ially to 〈z4〉

〈z4〉 =
′∑

A,B,C,D

sgn(A)sgn(B)sgn(C)sgn(D)

× 〈JA1 JB1 JC1 JD1 · · · JAp JBp JCp JDp

〉
, (127)

which can be expanded

〈z4〉 =
p∑

k=0

c[k]n[N − qk]v4k t4(p−k) ≡
∑
k

z(k)4 ,

n[N ] = N !
(q!)2N/q

∑
n1+n2+n3=N/q

ni≥0

(qn1)!(qn2)!(qn3)!
(n1!n2!n3!)2 ,

(128)

where c[k] defined in (74) is the number of ways to choose
k q-subsets out of N and n[N ] is the multiplicities coming
from the different Wick contractions. In particular, we get

〈z4〉v=0 = n[N ]t4p, (129)

which reduces to the result in [73]. To find the dominant term
in the large N limit let us define the ratio

r̃k = z(k)4

z(k−1)
4

∼ v4

t4

1 − k + p

k

4!(4p − kp)!
(4p − 4k + 4)! , (130)

r̃1 ∼ v4

t4

1

p2 , r̃ p ∼ υ4

t4

1

p
, (131)

where we have again taken q = 4 for simplicity. We find
that r̃k initially decreases and then increases as k increases.
For p > 1 we have r̃ p > r̃1, so r̃ p is the maximal value.
Therefore If r̃ p � 1 i.e.

v4

t4 � p, (132)

then the dominant term will be z(0)
4 and the contributions from

non-trivial higher moments, e.g. the nontrivial quadrupole
moments proportional to v, can be ignored. Then the situation
will be similar to the previous models with v = 0. Namely,
the half-wormhole saddle of z2, when 〈JA〉 = 0, can be
written as

� = ∑′
A,B sgn(A)sgn(B)

(
JA1 JB1 − δA1B1 t

2
)
. . .

. . .
(
JAp JBp − δAp Bp t

2
)

, (133)

such that

〈�2〉 ≈ 〈�z2〉 ≈ 2〈z2〉2, (134)

and

〈Error2〉 = 〈z4〉 − 〈z2〉2 + 〈�2〉 − 2〈z2�2〉
≈ 3〈z2〉2 − 〈z2〉2 + 2〈z2〉2 − 4〈z2〉2 = 0, (135)

in the leading order of N as before.

Fig. 7 A schematic picture of z(p)4 with p = 4, for generic p there
are p purple dots in the middle. Each purple line represents a pair of
identical JA’s, and the purple dots are vertex coming from the non-trivial
quadrupole moment proportional to v

Contrarily, if r̃ p � 1, z(p)4 can be the leading contribution,
whose corresponding Feynman diagram is shown in Fig. 7.

Therefore, there will be no half-wormhole saddle anymore
since the (two-mouth) wormhole saddles are not dominant.

One can consider more general distribution with all the
cumulants to be non-vanishing. The analysis and the results
will be similar. If v is very large then it is the four-way worm-
hole saddle that dominate. It is therefore possible to introduce
a new ”four-linked-half-wormhole” saddle as we show in
next section. However, if v is relatively small it is still the
two-sided wormhole (with some legs as shown in Fig. 5) that
dominates.

4.2 SYK at one time point: 〈Ja〉 = 〈J 2
a 〉 = 〈J 3

a 〉 = 0

In this section, we consider a special model where we could
focus on the multi-linked half-wormhole saddles. We will
show that the multi-linked half-wormhole saddles are not
simply related to the two-linked-half-wormhole saddle. In
this model the random coupling only have non-vanishing
quadrupole moment

〈Ja〉 = 〈J 2
a 〉 = 〈J 3

a 〉 = 0, 〈J 4
a 〉 = v4. (136)

Such a distribution could also be considered as an extremal
limit of other distributions.
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4.2.1 Averaged quantities: 〈z4〉 and 〈z8〉
Due to our special choice (136) the first non-vanishing aver-
aged quantity is

〈z4〉 =
∫

d4Nψ

× exp

⎛
⎝v4

∑
A1<···<Aq

ψ1
A1

ψ2
A1

ψ3
A1

ψ4
A1

. . . ψ1
Aq ψ2

Aq ψ3
Aq ψ4

Aq

⎞
⎠

=
∫

d4Nψ exp

⎛
⎝ v4

q!

⎛
⎝ N∑

i

ψ1
i ψ2

i ψ3
i ψ4

i

⎞
⎠
q⎞
⎠ . (137)

Then we can introduce the G, � trick

〈z4〉 =
∫

d4Nψ

∫
dG

×δ

(
G4 −

N∑
i

ψ1
i ψ2

i ψ3
i ψ4

i

)
exp

(
v4

q! G
q
4

)

=
∫

d4Nψ

∫
dG

d�

2π i
exp

(
−�

(
G4 −

N∑
i

ψ1
i ψ2

i ψ3
i ψ4

i

))

× exp

(
v4

q! G
q
4

)
= (∂G4 )

N exp

(
υ4

q! G
q
4

)
|G4=0

=
(

v4

q!
)N/q

N !
(N/q)! = v4p N !

p!(q!)p . (138)

The computation of 〈z8〉 is more involved

〈z8〉 =
∫

d8Nψ exp

⎛
⎝v4

q!

(
N∑
i

ψa
i ψb

i ψc
i ψ

d
i

)q⎞
⎠ , (139)

where

1 ≤ a < b < c < d ≤ 8. (140)

In the following we use the collective index A′ to label the 4-
element string. Introducing antisymmetric tensors Gabcd =
GA′ and �abcd = �A′ as the collective field variables such
that (139) can be expressed as

〈z8〉 =
∫

dGA′d�A′

(2π i)70 (PF(�A′))N

× exp

(
−
∑
A′

(
�A′GA′ + v4

q!G
q
A′

))
(141)

=
⎛
⎝ ′∑

A′
1<A′

2

sgn(A′)∂GA′
1
∂GA′

2

⎞
⎠

N

exp

(
v4

q!G
q
A′

)
|GA′=0

(142)

≈
(

v4

q!
) 2N

q N !2
p!2

1

2

(
8

4

)
= 35

(
v4

q!
) 2N

q N !2
p!2 , (143)

where in the last line we have taken the large N limit. In this
limit we have

〈z8〉 ≈ 35〈z4〉2 . (144)

4.2.2 The un-averaged z4

Following similar ideas as in the previous sections, we insert
a suitable identity to the expression of z4

z4 =
∫

d4Nψ exp

⎛
⎝iq/2

∑
A,i

JAψ i
A

⎞
⎠
∫

dG4

×δ

(
G4 −

N∑
i

4∏
a=1

ψa
i

)

× exp

⎛
⎝v4

q!

⎡
⎣Gq

4 −
(

N∑
i

4∏
a=1

ψa
i

)q⎤
⎦
⎞
⎠ . (145)

Rotating the contour as before we can rewrite z4 as

z4 =
∫

dσ�(σ)�̂(σ ) , (146)

where �(σ) is same as (29) and the second factor is

�̂(σ ) =
∫

d4Nψ exp

(
ie− iπ

q σ
∏
a

ψa
i

+iq/2
∑
A,a

JAψa
A − v4

∑
A

∏
a

ψa
A

⎞
⎠ . (147)

Therefore we expect the half-wormhole saddle is given by

� = �̂(0)

=
∑

ABCD

sgn(A, B,C, D)

×
p∏

k=1

(
JAk JBk JCk JDk − δ

Bk
Ak

δ
Bk
Ck

δ
Dk
Ck

v4
)

, (148)

which satisfies

〈�〉 = 0, 〈�2〉 = 〈�z4〉 ≈ 34〈z4〉2 , (149)

〈(z4 − 〈z4〉 − �)2〉 = 〈z8〉 − 〈z4〉2 + 〈�2〉 − 2〈�z4〉
≈ 0 . (150)

We find clearly that the contribution from this four-linked-
wormhole saddle is not equal to the square of (two-linked)
half-wormhole saddle. Even though we derive it in the 0d-
SYK toy model, it should exist in other SYK-like theory as
long as the G, � trick can be applied.

4.3 SYK at one time point: Poisson distribution

Up to now we have only considered random couplings with
continuous probability distributions. It is also interesting to
consider random couplings that take discrete values such as
the Poisson distribution. Ensemble theory or theories with
random coupling with Poisson distribution have been studied
in [52,59,82]. A property of Poisson distribution is that all the
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cumulants are equal; for a model with a 2q-point interaction
among 2N fermions, we define

〈Jn〉c = Nλ , ∀n , (151)

so that a large-N limit is well defined. Starting with action
(1) we can compute the first few moments

〈z〉 =
∫

d2Nψ eN iqλ
∑

A ψ1
A , (152)

〈z2〉 =
∫

d4Nψ eN iqλ
∑

A(ψ1
A+ψ2

A)eN i2qλ
∑

A ψ1
Aψ2

A , (153)

〈z3〉 =
∫

d6Nψ eN iqλ
∑

A(ψ1
A+ψ2

A+ψ3
A)

× eN i2qλ
∑

A(ψ1
Aψ2

A+ψ1
Aψ3

A+ψ2
Aψ3

A)eN i3qλ
∑

A ψ1
Aψ2

Aψ3
A .

(154)

For a generic k, we find

〈zk〉 =
∫

d2kNψeNλ
∑

A
∑k

n=1
1
n! (iq

∑k
i=1(ψ

i
A))n . (155)

Formally we can define

Z(λ) ≡ 〈z∞〉 (156)

=
∫

dψ exp

{
Nλ

∑
A

(
eiq

∑
i=1 ψ i

A − 1
)}

. (157)

We can compute these moments by integrating out the
fermions directly

〈zn〉 = 〈
Pf(JA)n

〉
. (158)

However, the ensemble average of PF(JA)n in the last expres-
sion is very complicated. We therefore look at the large N
behavior of 〈zn〉, which can be done by introducing G

G =
∑
i< j

iψiψ j , (159)

and � as before and do a saddle point approximation. The
G, � expression of 〈z〉 is similar to (B.54)

〈z〉 =
∫

d�dG(−i)N�NeN iqλ Gq
q! eiN�G . (160)

The saddle point equations are

�G = i,
λ

(q − 1)! (iG)q = 1, (161)

whose solutions are

iG =
(

(q − 1)!
λ

)1/q

e
2mπ i
q , m = 1, . . . , q. (162)

The structure of these solutions is identical to that in [73] and
the models discussed previously in this paper, so we should

add up all these q saddle points contributions6

〈z〉Disk = e−N (1− 1
q )

(
Nqλ

(q − 1)!
)p∑

m

e
2mπ i
q (163)

= qe−N (1− 1
q )

(
Nqλ

(q − 1)!
)p

, (164)

where p = N/q as before. Adding the 1-loop factor 1/
√
q

we end up with the large-N behavior

〈z〉Disk+1 loop = 1√
q
e−N (1− 1

q )

(
Nqλ

(q − 1)!
)p

. (165)

Other moments can be computed similarly. For example, to
compute 〈z2〉, we introduce three collective variables

G1 =
∑
i< j

iψ1
i ψ1

j , G2 =
∑
i< j

iψ2
i ψ2

j , (166)

G12 =
∑
i

ψ1
i ψ2

i (167)

such that

iq
∑
A

ψ1
A = Gq

1

q! , iq
∑
A

ψ2
A = Gq

2

q! , (168)

i2q
∑
A

ψ1
Aψ2

A = G2q
12

(2q)! . (169)

Imposing these relations with the help of a set of Lagrangian
multiplier fields �1, �2 and �12, the 〈z2〉 can be expressed
as

〈z2〉 =
∫

[d3Gid
3�i ]eN

λ
q! (G

q
1+Gq

2+ q!
(2q)!G

2q
12 )eiN

∑
i (�i Gi )

×
∫

d2Nψe
1
2 �M�, (170)

=
∫

[d3Gid
3�i ]

√
det[�1�2A2 − �2

12 I2N ]

×e
Nλ
q! (Gq

1+Gq
2+ q!

(2q)!G
2q
12 )eiN

∑
i (�i Gi ) (171)

=
∫

[d3Gid
3�i ]i2N

N∑
k=1

(
2N

2k

)
�2N−2k

12 (�1�2)
k

×eN
λ
q! (G

q
1+Gq

2+ q!
(2q)!G

2q
12 )eNi

∑
i (�i Gi ) (172)

where we have defined

� =
(
ψ1

1 , . . . , ψ1
2N , ψ2

1 , . . . , ψ2
2N

)
, (173)

M =
(

�1A −i�12 I2N
i�12 I2N �2A

)
, (174)

A = −AT , Ai j = 1, ∀i < j. (175)

6 Here we take the large-N limit by considering a series of multiples
of 4, so that the normalization factor iN can be dropped.
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The saddle point equations are

i�i + λ

(q − 1)!G
q−1
i = 0, i = 1, 2, (176)

i�12 + λ

(2q − 1)!G
2q−1
12 = 0,

∑
i

�i Gi = 2i. (177)

This set of equations has multiple solutions. For example,
the wormhole saddle is

G1 = G2 = �1 = �2 = 0, (178)

G12 =
(

2(2q − 1)!
λ

)1/2q

e
2mπ i

2q , (179)

〈z2〉WH+1loop = 1√
2q

e−2N (1− 1
2q )

(
(2N )2qλ

2(2q − 1)!
)p

(180)

and the disconnected disk saddle is

G12 = �12 = 0, G1 = G2 =
(

(q − 1)!
λ

)1/q

, (181)

〈z2〉disc+1loop = 1

q
e−2N (1− 1

q )

(
Nqλ

(q − 1)!
)2p

(182)

= 〈z〉2
Disk+1loop. (183)

The ratio of these two saddles is

〈z2〉WH+1loop

〈z2〉Disk+1loop
=
√
q

2

(
q!222q

eλq(2q)!
)p

. (184)

In the large N or p = N/q limit, the wormhole saddle can

dominate only when λ <
q!222q

eq(2q)!
( q

2

) 1
2p . For q = 4 and N →

∞, this requires λ < 0.336, which is consistent with what we
learned from our previous results. Indeed, for the wormhole
or other connected saddle points to be dominant we would
like to have non-negligible higher moments of the random
coupling. For the Poisson distribution this means, apart from
the factors of N to be compensated by powers of fermion
contractions, λ should be much larger than λ2.

Then a natural question is that in this limit how about other
n-boundary wormhole saddles? In the following let us focus
on a particular n-linked-wormhole saddles. When n = 2k is
even, the situation is similar to the one in Sect. 4.2:

〈z2k〉connected

=
∫

d4kNψdG
d�

2π
exp

(
iN�

(
G −

2N∑
i

2k∏
a=1

ψa
i

))

× exp

(
N

λ

(2q)!G
2q
)

(185)

=
∫

dG
d�

2π
(i�)2N exp

(
Nλ

(2q)!G
2q + iN�G

)
(186)

where the collective variable G is

G =
2N∑
i

2k∏
a=1

ψa
i . (187)

The expression (186) is of the same form as (160) so the
saddle point approximation is

〈z2k〉2k−WH+1loop = 〈z2〉2−WH+1loop (188)

= 1√
2q

e−2N (1− 1
2q )

(
(2N )2qλ

2(2q − 1)!
)p

. (189)

When n = 2k + 1 is odd, the situation is similar to the one
of n = 1:

〈z2k+1〉connected

=
∫

d(4k+2)NψdG
d�

2π

× exp

⎛
⎝iN�

⎛
⎝G −

2N∑
i< j

2k+1∏
a=1

ψa
i

2k+1∏
a=1

ψa
j

⎞
⎠
⎞
⎠

× exp

(
Nλ

q! G
q
)

(190)

=
∫

dG
d�

2π
(i�)2N exp

(
Nλ

q! G
q + iN�G

)
, (191)

where the collective variable G is obviously defined as

G =
2N∑
i< j

2k+1∏
a=1

ψa
i

2k+1∏
a=1

ψa
j , (192)

therefore the saddle point approximation is

〈z2k+1〉(2k+1)−HW+1loop = 〈z〉Disk+1loop

= 1√
q
e−N (1− 1

q )

(
Nqλ

(q − 1)!
)p

. (193)

These higher n-linked-wormholes should be compared with
the corresponding powers of the disk solution, and further-
more since 〈z2〉2−WH+1loop � 1 and 〈z2〉Disk+1loop � 1 due
to large-N so

〈z2k〉2k−WH+1loop �
(
〈z2〉2−WH+1loop

)k
, (194)

and

〈z2k+1〉(2k+1)−WH+1loop � (〈z〉Disk+1loop
)2k+1

, (195)

we conclude that all these multiple-linked wormholes with
k > 0 are suppressed. In other words, the ensemble of z can
be approximated by a Gaussian when the ratio (184) is of
order 1.

5 The modified Brownian SYK model

Given the above results in 0 dimension, it is interesting to
check if similar stories hold in high-dimensional models.
Therefore in this section, we look for the wormhole and half-
wormholes saddles in 1d Brownian SYK models [9].
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We first briefly review the Brownian SYK model. The
Brownian SYK model is characterized by couplings that are
only correlated at the same instant of time. Therefore after
integrating over the coupling we end up with a local effective
action. The quantity that is analogous to the partition function
but with some information of real time evolution is

z ≡ TrU (T )

=
∫

Dψi exp

{
−i
∫ T

0
dt

[
− i

2
ψi∂tψi

+Ji1...iq (t)i
q
2 ψi1...iq

]}
. (196)

The random couplings of this model satisfy

〈JA〉 = 0, 〈JA(t)JB(t ′)〉 = δ(t − t ′)δABJ 2, (197)

J 2 = 2J
(q − 1)!
Nq−1 , (198)

where the one-dimensional Majorana fermions is normalized
by

{ψi , ψ j } = δi j . (199)

In the rest of this section we look for the linked half-
wormhole contributions in a generalization of this model.7 In
particular, we consider a generalized Brownian SYK model
with non-vanishing mean value of the random couplings:

〈JA〉 = J (0)
A = μ, (200)

〈JA(t)JB(t ′)〉 = δ(t − t ′)(δABτ 2 + μ2), (201)

and in this section we use the convention {ψi , ψ j } = 2 hδi, j .
A comparable model has been examined in [79] with a focus
on the half-wormhole saddle. However, the key difference
lies in the fact that in [79], the random coupling is expressed
as a Grassmann number. In Appendix D, we also revisit this
modified the (Brownian) SYK model for comparison pur-
poses with our models.

Taking the disorder averaging of the coupling we obtain
the averaged theory

〈z(T )〉J =
∫

Dψ e−Sa , (202)

Sa =1

2

∫ T

0
dt

N∑
i

ψi∂tψi − iq/2
∫

dt
∑
A

J (0)
A ψA

− τ 2

2

∫
dt

(∑
A

ψ2
A

)
(203)

7 A discussion of the linked half-wormhole contributions can be found
in the arXiv version [84] of this paper.

We can convert the effective Hamiltonian of the averaged
theory as a spin system

〈z〉J = Tr
(
e−TH) , (204)

H = −iq/2
∑
A

J (0)
A ψA − τ 2

2

∑
A

hq (205)

= −iq/2
∑
A

J (0)
A ψA − τ 2

2

(
N

q

)
hq . (206)

When μ = 0, the averaged partition function is given by

〈z〉J = eT
τ2
2 (Nq )h

q ≡ 2NeT E0 , (207)

E0 = τ 2

2

(
N

q

)
hq ∼ τ 2

2
Nqhq . (208)

When μ �= 0, we have to evaluate the trace

〈z〉J = eT E0 Tr(eT iq/2μ
∑

A ψA ) (209)

= eT E0

∫
DNψi exp(T iq/2

∑
i

ψi ). (210)

However there is no simple expression for 〈z〉. We first con-
sider the simplest case with q = 1

I f =
∫

DNψi exp(a
∑
i

ψi ). (211)

The idea is to transfer the Majorana fermions to Dirac
fermions which have a well-defined rules of integrals.
Assuming the total number of fermions is even N = 2K
then we introduce K Dirac fermions as

ci = 1

2
√
h

(ψ2i−1 − iψ2i ), c†
i = 1

2
√
h

(ψ2i−1 + iψ2i ),

i = 1, . . . , K , (212)

ψ2i−1 = √
h(ci + c†

i ), ψ2i = i
√
h(ci − c†

i ) , (213)

which obey

{ci , c j } = {c†
i , c

†
j } = 0, {ci , c†

j } = δi j (214)

The integration measure changes as

Dψ2iDψ2i−1 = 2hDciDc†
i . (215)

Thus the integral can be evaluated as

I1 = (2h)K
∫ ∏

i

DciDc†
i

× exp

(
a

K∑
i

√
h
[
(1 + i)ci + (1 − i)c†

i

])
(216)

= (2h)K
(

2 cosh(
√

2ah)
)K

. (217)
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Now we let us consider the case of q = 2

I2(a) =
∫

dNψi exp

⎛
⎝a

2

∑
i �= j

ψi Ai jψ j

⎞
⎠ ,

with
(
Ai j = −Ai j = a, i < j

)
, (218)

which looks like a Gaussian but we need to replace ψi with
ci :

I2 = (
√

2h)N
∫ ∏

i

DciDc†
i e

H (219)

H =
⎛
⎝iah

⎛
⎝ K∑

i

[c†
i ci − ci c

†
i ] + 2

∑
i< j

[ci c j − c†
i c

†
j ]
⎞
⎠

+2ah
∑
i< j

[c†
i c j + ci c

†
j ]
⎞
⎠ (220)

To get an idea how to compute this integral let us consider a
simple case of N = 4:

ψ1 = √
h(c1 + c†

1), ψ2 = i
√
h(c1 − c†

1),

ψ3 = √
h(c2 + c†

2), ψ4 = i
√
h(c2 − c†

2), (221)∑
i< j

ψiψ j = ih(c†
1c1 − c1c

†
1 + c†

2c2 − c2c
†
2 + 2c1c2 − 2c†

1c
†
2)

+2h(c†
1c2 + c1c

†
2). (222)

We have four different states |�i 〉:

|00〉, c†
1|00〉, c†

2|00〉, c†
1c

†
2|00〉. (223)

So the operator
∑

i< j ψiψ j can be written as a 4 × 4 matrix:

∑
i< j

ψiψ j =

⎛
⎜⎜⎝

−2ih 0 0 −2ih
0 0 −2h 0
0 2h 0 0

−2ih 0 0 2ih

⎞
⎟⎟⎠ (224)

with 4 eigenvalues {±i2h,±i2
√

2h} so path integral over ci
and c†

i can be computed as

∑
i

〈�i |ea
∑

i ψiψ j |�i 〉 = 2
(

cos(2ah) + cos(2
√

2ah)
)

.

(225)

For example of N = 6, the corresponding matrix is

∑
i< j

ψiψ j

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3ih 0 0 0 −2ih −2ih −2ih 0
0 −ih 2h 2h 0 0 0 −2ih
0 −2h −ih 2h 0 0 0 2ih
0 −2h −2h −ih 0 0 0 −2ih

−2ih 0 0 0 ih 2h −2h 0
−2ih 0 0 0 −2h ih 2h 0
−2ih 0 0 0 2h −2h ih 0

0 −2ih 2ih −2ih 0 0 0 3ih

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(226)

which can be divided into two blocks. We get the eigenvalues
by directly diagonalizing the matrix:

±5ih, ±(2
√

3 + 1)ih, ±3ih, ±(2
√

3 − 1)ih. (227)

Similarly for general N , we can write effective Hamiltonian
defined in (219) as

H =
k∑

i≤ j=1

(
αi j c

†
i c j + βi j ci c

†
j + γi j c

†
i c

†
j + θi j ci c j

)
, (228)

with

αi i = ih, βi i = −ih, αi j = 2h, βi j = 2h, (229)

γi j = −2ih, θi j = 2ih, γi i = 0, θi i = 0. (230)

This Hamiltonian is quadratic and famously can be diag-
onalized by the Bogoliubov and Valatin’s method [85,86].
Explicitly we can do the transformation by taking an opera-
tor basis for the Hamiltonian

H = c†Mc (231)

where we have

c† =
(
c†

1, c
†
2, . . . , c1, c2, . . .

)
. (232)

In the simple case with N = 4 the matrix can be expressed
as

M =

⎛
⎜⎜⎝

ih h 0 −ih
−h ih ih 0
0 ih −ih h

−ih 0 −h −ih

⎞
⎟⎟⎠ , (233)

we can directly take the diagonalization and get the eigen-
values

i(1 + √
2)h, −i(1 + √

2)h, (234)

− i(1 − √
2)h, −i(−1 + √

2)h. (235)

For simplicity we take the notation as

λ1 = i(
√

2 + 1)h, λ2 = i(
√

2 − 1)h, (236)
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then the resulting effective Hamiltonian becomes

H = λ1

(
d†

1d1 − d1d
†
1

)
+ λ2

(
d†

2d2 − d2d
†
2

)
. (237)

To evaluate the trace we still take the states as (223) therefore
we have

Tr(eH ) = e−a(λ1+λ2) + ea(λ1−λ2) + ea(−λ1+λ2) + ea(λ1+λ2),

(238)

so we can recover the result (225). For general N the operator
(228) can be expressed as a block matrix

M =
(
A + ihIN −iA

iA A − ihIN

)
, (239)

with

A =

⎛
⎜⎜⎜⎝

0 h h · · ·
−h 0 h · · ·
−h −h 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ (240)

The characteristic equation is

det
(
A + (ih − λ))(A − (ih + λ) − H2

)

= det
(
(h2 + λ2)IN − 2λA

)
(241)

= (λ + h)N + (λ − h)N = 0 . (242)

So the eigenvalues are

λm = ih tan
(mπ

2N

)
, m = 1, 3, . . . , N − 1 . (243)

then the Hamiltonian becomes

H =
N∑
i=1

λi

(
d†
i di − did

†
i

)
. (244)

and the trace will have the form

Tr(eH ) =
∑

σ=±1

ea
∑k

i=1 σiλi =
∑
σ

k∏
i=1

eaσiλi (245)

=
k∏

i=1

∑
σ

eaσiλi = 2k
k∏

i=1

cosh (aλi ) , (246)

Now let us consider the function

Xn =
∑

1≤i1<...in≤N

ψi1 . . . ψiN . (247)

We would like to argue that in the large N limit, we have the
approximation

n!X2n ≈ (X2)
n, (248)

as we find for the 0-dimensional theory. Note that unlike the
situation of the 0-dimensional theory, {Xn} do not form a
basis for Xn

2 . For example, let us take N = 6, there is indeed
the identity

X2
2 = −15 + 2!X4 (249)

but we find that

X3
2 = 3!X6 + 15X2 + 12(ψ1ψ2 + ψ1ψ6 + ψ3ψ4 + ψ4ψ5

+ψ5ψ6) − 4(ψ1ψ4 + ψ2ψ4 + ψ3ψ6). (250)

Let us focus on the second last term in Xn
2

Xn
2 ≈ . . . c1X2n−4 + n!X2n, (251)

c1 = (n − 2)!
(
n

2

)(
N

2

)
, (252)

where c1 is computed as follows. We need to pick 2 X2 out
of n and contract them, and the (n− 2) X2’s remain not con-
tracted and gives (n − 1)! X2n−4. Notice that the subleading
term is X2n−4 instead of X2n−2, since if we contract one
fermion in X2 to get

ψ1ψ2ψ1ψ3 �→ ψ3ψ2, (253)

there is going to be another contraction that gives

ψ1ψ3ψ1ψ2 �→ ψ2ψ3. (254)

The two outcomes simply cancel with each other. The main
conclusion of this computation is, given that X2n ∼ N 2n , the
subleading terms can be safely neglected and approximate
X2n by Xn

2 . So in the large N limit, we can use the G, �

trick to compute the fermionic integral

Iq(a) =
∫

dNψi exp

(
a
∑
A

ψA

)
(255)

≈
∫

dNψi e
a G

q
2

q
2 ! eiσ(G−∑i< j ψiψ j )dGdσ (256)

=
∫

dGdσ I2(−iσ)e
a G

q
2

q
2 ! eiσG (257)

= I2(i∂G)e
a G

q
2

q
2 ! |G=0 ,

A = {1 ≤ a1 < · · · < aq ≤ N }. (258)

where the function I2 is defined in (218). We can evaluate this
expression and we expect the half-wormhole contributions to
be similar as the 0-SYK model

z ≈ 〈z〉 + 
, (259)


 =
∫

dNψ e− ∫ T0 dt 1
2

∑N
i ψi ∂tψi+iq/2

∫ T
0 dt

∑
A(JA−μ)ψA .

(260)
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Indeed we find that in the late time this is a good approxima-
tion. The detailed analysis is similar to the Brownian SYK
model as we have shown in [84], but it is not particularly
illuminating, so we omit them here.

6 Discussion

In this paper we examine the half-wormhole proposal in var-
ious simple SYK-like models. We show that the structure of
half-wormhole-like non-self-averaging contributions in the
0-dimensional SYK type models depends on the distribution
of the couplings. When the distribution of the random cou-
plings admits a non-vanishing mean value, there is a new
saddle point, which we call the “punctured disk”, to the un-
averaged partition function z. When the mean value of the
coupling is very large then only the disconnected saddles
dominate therefore the correlation functions automatically
factorize. On the contrary, when the mean value is not very
large compared with the other moments, the wormhole sad-
dles contribute significantly to the path integral. In this case
the factorization of spectral correlators can be restored by
adding various half-wormhole-like non-self-averaging sad-
dles. Moreover, when the random couplings satisfy a gen-
eral distribution with non-trivial higher moments, new half-
wormhole saddles exist and should be included in the path
integral. In models where the random couplings are drawn
from discrete distributions, such as the Poisson distribution,
we greatly modified the conventional approach of introduc-
ing collective variables and provide explicit proposals for the
expression of half-wormhole-like contributions.8 Addition-
ally, we generalize the construction of half-wormhole sad-
dles to the Brownian SYK model and confirm that non-self-
averaging saddles also exist and help restore the factorization
of the spectral correlators.

There are proposals in [72,74,77,81] of the half-wormhole
contributions to z2 in the original 1d SYK model. It would
be interesting to generalize our punctured disk saddle to the
SYK model.
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Appendix A: Lefschetz thimbles

In this appendix, we review the method of Lefschetz thimble
[83]. Suppose we would like to evaluate the integral

Z =
∫
MR

dxi eS , (A.1)

where the integration contour is MR. Then we complexify
the manifold on which the integration is done to MC. We
choose �(S) to be the Morse function, as we want to find
the contours where S has a constant imaginary part. The
saddle points of the integral are the critical points of the
Morse function because of the Cauchy-Riemann equations.
Around each critical point on MC we introduce a set of local
coordinates {zi }. The Morse flow is determined by the flow
equations

dzi

dt
= −gi j̄

∂ S̄

∂ z̄ j
,

dz̄ j

dt
= −gi j̄

∂S

∂zi
(A.2)

where gi j̄ is Kähler metric and the bar means complex con-
jugate. We find

d(S − S̄)

dt
= ∂S

∂zi
dzi

dt
− ∂ S̄

∂ z̄i
dz̄i

dt
= 0, (A.3)

which implies that the imaginary part of S is a constant along
the flow. Each of the critical points is associated with a pair
of flows, the thimble and the anti-thimble. The thimble is the
“stable” direction such that the Morse function �(S) decays
along the thimble and the integral of exp(S) along the thimble
converges. On the contrary, the anti-thimble is the “unstable”
direction. Explicitly the boundary conditions for a particular
critical point pσ are

lim
t→−∞ z(t) = pσ , for thimbles, (A.4)

lim
t→+∞ z(t) = pσ , for anti-thimbles. (A.5)

The main statement in [83] that we will use repeatedly is
that the integral can be approximated by a weighted sum over
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integrals along the thimbles of each critical point

Z =
∑
i

ni

∫
Ji

dt eS[t], (A.6)

where i runs over all the critical points, Ji is the Lefschetz
thimble attaching to the i th critical point, and the weight ni
is given by the intersection number between the anti-thimble
and the original integration contour MR.

Appendix A.1: some examples

To illustrate how this works, we first go through some simple
examples.

Appendix A.1.1: The Gaussian function

Let us consider a simple example with

S = −x2/2 + σ x . (A.7)

The integral can be regarded as a zero-dimension theory with
quadratic interaction and a complex source σ . The only crit-
ical point is at x = σ = a + ib. The flow equation is

dx

dt
= x̄ − (a − ib). (A.8)

Expressing x = x1 + ix2, we get the following equations

dx1

dt
= x1 − a,

dx2

dt
= b − x2. (A.9)

The general solution can be easily solved

x1 = a + c1e
t , x2 = b + c2e

−t , (A.10)

where c1,c2 are two undetermined constants. The boundary
conditions for the thimble is

(x1, x2) → (a, b), t → −∞, (A.11)

while for the anti-thimble we have

(x1, x2) → (a, b), t → +∞, (A.12)

where (a, b) is the critical point. Then with these boundary
conditions we can get the equations for the thimble and the
anti-thimble respectively

x2 = b, (A.13)

x1 = a. (A.14)

We plot the thimble and the anti-thimble in this case in Fig. 8,
where for simplicity we let σ = 1 + i.

Fig. 8 The red line denotes the thimble and the blue line denotes the
anti-thimble. The anti-thimble intersects with the real line, so this saddle
point contributes

We can also compare the saddle point solution with the
exact result. The integral can evaluated as

∫
dxe−x2/2+σ x = √

2πeσ 2/2. (A.15)

While the saddle point solution gives

eσ 2/2, (A.16)

with the one-loop correction
√

2π the saddle point analysis
recovers the exact result.

A.1.2: The Airy function

A slightly less trivial example is the Airy action

Zλ =
∫ ∞

−∞
dxeS, S = iλ

(
x3

3
− x

)
. (A.17)

It is not hard to find that for real λ there are three “convergent”
regions, namely �(S) < ∞, on the complex x-plane:

x = reiθ ,
2nπ

3
≤ θ ≤ π

3
+ 2nπ

3
, n = 0, 1, 2. (A.18)

In each convergent region, the Airy integrand is exponentially
small. As we vary λ to complex values, we should deform
the integration contour of x accordingly so that the integral
remains converge. This gives an analytic continuation of Zλ.
The two critical points are located at x = ±1. The values of
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Fig. 9 The red line denotes the anti-thimble of x = −1 and the Green
line denotes the anti-thimble of x = 1.The grey regions are the conver-
gent regions

saddle points are

S± = ∓2iλ

3
. (A.19)

Since along the (anti-)thimbles, the imaginary part of S is a
constant and

�(S±) = ∓2�(λ)

3
. (A.20)

Therefore the two (anti-)thimbles associated with the two
critical points will not intersect except for the case of �(λ) =
0. The thimble which connects critical points is called the
Stoke ray. Using the Lefschetz thimbles J±, we can rewrite
the integral as

Zλ = n+
∫
J+

exp S + n−
∫
J−

exp S. (A.21)

To solve the thimbles, let us take λ = 1, then the flow equa-
tions are

dx

dt
= i(x̄2 − 1). (A.22)

Expressing x = x1 + ix2, we obtain

dx1

dt
= 2x1x2,

dx2

dt
= x2

1 − x2
2 − 1. (A.23)

We plot the anti-thimbles in Fig. 9
Therefore for λ = 1 both of the saddle points contribute.

This result is expected since that the two critical points are
already located on the real line.

Fig. 10 The red line is the anti-thimble of x = i which intersects with
the real line while the Green line is the anti-thimble of x = −i which
does not intersect with the real line. The grey regions are the convergent
regions

The problem we met in the main text is better illustrated
by the following toy model

Z̃ =
∫ ∞

−∞
dx exp S, S = i

(
x3

3
+ x

)
. (A.24)

The integral is convergent and can be expressed by the Airy
function

Z̃ =
2πAi

(
1

3√3

)
3
√

3
= 0.83. (A.25)

We now try to compute the integral with saddle point approx-
imation, where the saddle points are located at x = ±i. The
saddle point value, plus the 1-loop correction, of the integral
at these two saddle points, Z̃± are the same, and the sum of
them is larger than the exact evaluation of the integral

Z̃+ = Z̃− = 0.733, Z̃+ + Z̃− > Z̃ . (A.26)

This is exactly the situation we are encountering. In this toy
model, it is easy to show that the anti-thimble associated with
the saddle point x = −i does not intersect with the real axis,
Fig. 10, so the saddle point x = −i does not contribute to the
integral.

Appendix A.2: Multi-variable cases

Let us consider another example with two variables

Z =
∫

dσ
dg

2π
eS, S = log σ − iσg − 1

2
g2. (A.27)
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Fig. 11 Since σ± are already on the real line here we only plot the
g-plane of the anti-thimbles. Clearly both of these two anti-thimbles
intersect with the real axis so these two saddle points both contribute to
the integral

The integral can be done directly to get

Z = 0 . (A.28)

There are two saddle points

g± = ±i, σ± = ∓1. (A.29)

with saddle point contributions to the integral (on-shell
action)

Z± = ∓ 1√
e
, Z− + Z+ = 0 (A.30)

Matching this with the exact solution suggests that n± = 1.
Note that σ± = ∓1 are already on the real line so correspond-
ing anti-thimbles always intersect with the original contour.
The flow equations are

dσ

dt
= − 1

σ̄
− iḡ,

dg

dt
= −iσ̄ + ḡ. (A.31)

Expressing σ = σ1 + iσ2 and g = g1 + ig2 we obtain the
following differential equations

dσ1

dt
+ g2 + σ1

σ 2
1 + σ 2

2

= 0, (A.32)

dσ2

dt
+ g1 + σ2

σ 2
1 + σ 2

2

= 0, (A.33)

dg1

dt
+ σ2 − g1 = 0,

dg2

dt
+ σ1 + g2 = 0. (A.34)

We find that indeed these two saddles should both be
included. We plot the g-plane of the anti-thimbles in Fig. 11.

Note that this example is special case of (18) with q = 2.

• Flow equations in real coordinates

Sometimes it more convenient to use the real form of the flow
equations (A.2). We start with the relations

∂S

∂z
= 1

2

∂S

∂x
+ 1

2i

∂S

∂y
, (A.35)

∂ S̄

∂ z̄
= 1

2

∂ S̄

∂x
− 1

2i

∂ S̄

∂y
, (A.36)

where

z = x + iy. (A.37)

Then we evaluate the equation as

dz

dt
+ dz̄

dt
= −∂S

∂z
− ∂ S̄

∂ z̄
= −∂�(S)

∂x
− ∂�(S)

∂y
, (A.38)

dz

dt
− dz̄

dt
= ∂S

∂z
− ∂ S̄

∂ z̄
= −i

∂�(S)

∂y
+ i

∂�(S)

∂x
, (A.39)

where we work in the flat space. Recall the Cauchy–Riemann
equation we get

dx

dt
= −∂�(S)

∂x
,

dy

dt
= −∂�(S)

∂y
. (A.40)

To illustrate it we consider a special case in the Airy function

S = i

(
x3

3
+ x

)
. (A.41)

In the complex plane its conjugate is

S̄ = −i

(
x̄3

3
+ x̄

)
, (A.42)

and we can define the components

x = x1 + ix2, x̄ = x1 − ix2. (A.43)

The flow equation in complex coordinates becomes

dx

dt
= −∂ S̄

∂ x̄
= i(x̄2 + 1), (A.44)

which leads to the equations in real coordinates

dx1

dt
= 2x1x2,

dx2

dt
= x2

1 − x2
2 + 1. (A.45)

On the other hand we can get the equations with the real part
of S:

�(S) = −x2 − x2
1 x2 + x3

2

3
. (A.46)

123



993 Page 24 of 30 Eur. Phys. J. C (2023) 83 :993

From the Eqs. (A.40) we can recover the two flow Eq. (A.45).

Appendix B: Details of the derivation of 〈z〉 and 〈z2〉

This result can be derived by a recursive method with respect
to p as shown in [84]. We choose a set of collective variables

G = 1

N

∑
1≤i< j≤N

ψiψ j . (B.47)

For simplicity of demonstration let us first consider the q = 4
case it is easy to see

G2 = 2!
N 2

∑
A

ψA, (B.48)

then 〈z〉 can be rewritten as

〈z〉 =
∫
R

dG
∫

iR

d�

2π i/N
dNψ e− u

2 N
2G2

e−�(NG−∑i< j ψiψ j ).

(B.49)

Now we can integrate the out the fermions to get∫
dNψ e�

∑
i< j ψiψ j = (�)N/2m[p] |(q=2) = �N/2.

(B.50)

Then (B.49) becomes

〈z〉q=4 =
∫
R

dG
∫

iR

d�

2π i/N
�N/2e− uN2G2

2 e−N�G

= N−N/2(∂G)N/2e− uN2G2
2 |G=0 (B.51)

=
(u

2

)N/4 (N/2)!
(N/4)! = m[p]u p|q=4 . (B.52)

For general q, the proof is similar with the modification

∑
A

ψA = Nq/2

(q/2)!G
q/2 . (B.53)

In summary, we have generalized the G, � trick and derived
an effective action to compute 〈z〉:

〈z〉 =
∫
R

dG
∫

iR

d�

2π i/N
�N/2euiq/2 Nq/2

(q/2)!Gq/2
e−N�G . (B.54)

By introducing the following collective variables

GLR = 1

N

∑
i

ψ L
i ψ R

i , (B.55)

GL = 1

N

∑
i< j

ψ L
i ψ L

j , GR = 1

N

∑
i< j

ψ R
i ψ R

j , (B.56)

the averaged quantity 〈z2〉 can be expressed as

〈z2〉 =
∫
R

d3Gi

∫
iR

d3�i e
N
q (τ 2Gq

LR+μGq/2
L +μGq/2

R )−N (�i Gi )

×
∫

d2Nψe
1
2 �M�, (B.57)

=
∫
R

d3Gi

∫
iR

d3�i e
N
q (τ 2Gq

LR+μGq/2
L +μGq/2

R )−N (�i Gi )

×
√

det[�L�R A2 + �2
LR], (B.58)

=
∫
R

d3Gi

∫
iR

d3�i

N/2∑
m=0

(
N

2m

)
(�LR)2m

×(i2�L�R)
N
2 −me

N
q (τ 2Gq

LR+μGq/2
L +μGq/2

R )e−N (�i Gi ),

(B.59)

where we have defined

� =
(
ψ L

1 , . . . , ψ L
N , ψ R

1 , . . . , ψ R
N

)
, (B.60)

M =
(

�L A �LR IN
−�LR IN �R A

)
, (B.61)

A = −AT , Ai j = 1, ∀i < j. (B.62)

Using the same tricks of integration by part, it can be evalu-
ated exactly as

〈z2〉 = N−N
p∑

k=0

(
N

kq

)
(∂GLR )kq(i2∂GL ∂GR )

N−kq
2

×e
N
q (τ 2Gq

LR+μGq/2
L +μGq/2

R )|Gi=0 (B.63)

= N−N
p∑

k=0

iN−kq
(
N

kq

)
(kq)!
k!

(
Nτ 2

q

)k
[

(
q(p−k)

2 )!
(p − k)!

]2

×
(
Nμ

q

)2p−2k

(B.64)

=
p∑

k=0

ckm
2
p−k t

2ku2p−2k, (B.65)

where m[p] is defined in (68) and the coefficient c[k] is

c[k] = N !
k!(q!)k(N − kq)! . (B.66)

Appendix C: A naive expression of the half-wormhole
contribution and its failure

Inspired by our analysis of the punctured disks for z, we can
insert another two copies of identities (104) in z2

z2 =
∫

dσwdσhL dσhR�(σw, σhL , σhL )�̂(σw, σhL , σhL ),

(C.67)

�(σw, σhL , σhL ) = �(σw)�(σhL )�(σhR ) , (C.68)

�̂(σw, σhL , σhL )
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=
∫

d2Nψ exp

⎡
⎣ie− 2iπ

q σhL

∑
i< j

ψ L
i j + ie− 2iπ

q σhR

∑
i< j

ψ R
i j

+ie
iπ
q σwψ L

i ψ R
i + iq/2 JA(ψ L

A + ψ R
A )

−iq/2u
∑
A

(ψ L
A + ψ R

A ) − iq t2ψ L
Aψ R

A

]
, (C.69)

where we have introduced three pairs of G, � variables

Gw = 1

N
ψ L
i ψ R

i , (C.70)

GhL = 1

N

∑
i< j

ψ L
i j , GhR = 1

N

∑
i< j

ψ R
i j , (C.71)

and rotated the contour as before. As before, the function �

is highly peaked around �(0, 0, 0) so one may expect that
there is a half-wormhole saddle point

� = �̂(0, 0, 0)

=
′∑

A,B

sgn(A)sgn(B)

×
p∏

k=1

(
(JAk − J 0

Ak
)(JBk − J 0

Bk ) − δAk Bk t
2
)

, (C.72)

whose average manifestly vanishes 〈�〉 = 0 and it further

satisfies 〈�2〉 = 〈z2�〉 = 2z(p)2

2
. If we naively follow the

discussion in [73] and propose the following approximation

z2 ≈ 〈z2〉 + � (C.73)

then the error can be evaluated as〈 (
z2 − (〈z2〉 + �)

)2
〉

= 〈z4〉 − 〈z2〉2 − 2〈z2�〉 + 〈�2〉

> 2〈z2〉2 − 2z(p)2

2 ≈ 2(z(k)2 )2,

(C.74)

where we have used

〈z4〉 > 3〈z2〉2, 〈z2〉 ≈ z(k)2 . (C.75)

Therefore, the average of the error square and 〈z2〉2 are in the
same order in the large N limit, which meaning the approx-
imation (C.73) is not accurate.

Appendix D: Random coupling from product of Grass-
mann variables J (0)

A = J
∏

i θAi

A modified SYK-like model dubbed as partially disorder-
averaged SYK model is proposed in [81]. In this model, the
random coupling J̃A consists of two pieces

J̃A = JA + J (0)
A (D.76)

where JA is the standard random coupling of the SYK model
while J (0)

A is specially chosen as

J (0)
ii ...iq

= iq/2q!μθi1 . . . θiq , with {θi , θ j } = 2δi j (D.77)

so we can think of it as coupling the fermions ψi in the
original model with some background Majorana fermions θi
(or non-dynamical fermions living in another universe [81]).
Note that J (0)

A is not a c-number which is different from our
models studied in the previous section.

D.0.1: 0d model

Let us first consider the 0-dimensional model to see the dif-
ference explicitly. In this case the integral (1) can be written
as

z =
∫

dNψ exp
(

iq/2
∑

J̃i1...iqψi1...iq

)

=
∫

dNψ exp

(
iq/2

∑
A

JAψA + μ

(∑
i

θiψi

)q)
.

(D.78)

The averaged quantity 〈z〉

〈z〉 =
∫

dNψ exp

(
μ

(∑
i

θiψi

)q)
, (D.79)

can be computed in two ways. One can integrate out the
fermions ψi directly. The result is

〈z〉 = μN/q N !
(N/q)!

∫
dNψ(θ1ψ1) . . . (θNψN ) (D.80)

=
[∏

i

θi

]
μN/q N !
(N/q)! ≡

[∏
i

θi

]
mp . (D.81)

Note that z is not a c-number and depends on the background
fermions living in other universe. Here we will not think of
this as a problem but a feature since the model is not exactly
the original SYK model. Alternatively we can compute this
average quantity by the G, � trick:

Gσ =
∑
i

θiψi ,

〈z〉 =
∫

dNψ

∫
dGσ

d�σ

2π
ei[�σ (Gσ −∑i θiψi )]eμGq

σ

=
[∏

i

θi

]∫
dGσ

d�σ

2π
�N

σ ei�σGσ +μGq
σ (D.82)

=
[∏

i

θi

]
(∂Gσ )NeμGq

σ |Gσ =0 (D.83)

=
[∏

i

θi

]
μN/q N !
(N/q)! . (D.84)
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One can also use the effective action (D.82) to derive the
large N result of (D.79) as shown in [81]. We will not repeat
that analysis here. Instead, we would like to consider the
half-wormhole saddle of z

z ≈ 〈z〉 + 
 (D.85)

as we did in last section. The subtlety is that as we stressed z
is not a c-number so the approximation (D.85) is in the sense

〈[z − (〈z〉 + 
)]2〉 ≈ 0, (D.86)

which is a c-number due to (D.77) is small. Let us proceed
by computing the averaged quantity 〈z2〉

〈z2〉 =
∫

d2Nψ exp

⎛
⎝ τ2

q!

⎛
⎝∑

i

ψL
i ψ R

i

⎞
⎠
q

+μ

⎛
⎝∑

i

θiψ
L
i

⎞
⎠
q

+ μ

⎛
⎝∑

i

θiψ
R
i

⎞
⎠
q⎞
⎠ , (D.87)

=
∫

d2Nψ
∑
k

(
τ2

q!

)k

×
∑

i1<···<ikq

(ψLR
i1

. . . ψLR
iqk

)
(qk)!
k!

(
(N − kq)!
(N/q − k)!

)2
μ2p−2k

×
∑

j1<···< jN−qk �={i}
(θ j1ψ

L
j1

) . . . (θ jN−qkψ
L
jN−kq

)(θ j1ψ
R
j1

)

. . . (θ jN−kψ
R
jN−kq

), (D.88)

=
∫

d2Nψ
∑
k

(
τ2

q!

)k
μ2p−2k (qk)!

k!
(

(N − kq)!
(N/q − k)!

)2

×
(
N

kq

)
ψLR

1 . . . ψLR
N , (D.89)

=
∑
k

(
τ2

q!

)k
μ2p−2k (qk)!

k!
(

(N − kq)!
(N/q − k)!

)2 (N

kq

)
, (D.90)

=
p∑
k

τ2kμ2(p−k)ckm
2
p−k ≡

∑
k

z
(k)
2 , (D.91)

where ck of defined in (74) and mp is defined in (D.81). The
result (D.87) is in the same form of (B.65). So the analysis
of the half-wormhole saddle will be similar; we insert the a
suitable identity to (D.78)

z =
∫

dNψ exp
(

iq/2
∑

J̃i1...iqψi1...iq

) ∫
dGσ

×δ

⎛
⎝Gσ −

∑
i

θiψi

⎞
⎠ exp

⎛
⎝ μ

q!

⎛
⎝Gq

σ −
⎛
⎝∑

i

θiψi

⎞
⎠
q⎞
⎠
⎞
⎠ ,

(D.92)

=
∫

dNψ
d�σ dGσ

2π i
exp

⎛
⎝iq/2

∑
A

JAψA + �σ

∑
i

θiψi

⎞
⎠

× exp

(
−�σGσ + μ

q!G
q
σ

)
. (D.93)

Following the arguments below (104) one can obtain the half-
wormhole saddle9


 =
[∏

i

θi

]∫
dNψ exp

(
iq/2

∑
A

JAψA

)
. (D.94)

Then it is easy to find that the half-wormhole saddle satisfies

〈
〉 = 0, 〈
2〉 = 〈
z〉 = z
(p)
2 , (D.95)

so the approximation (D.85) will be sufficient if z(p)2 is the
dominant term in (D.91) as we have shown in last section.
When z

(p)
2 is not the dominant term we have to consider the

contribution of fluctuation of �σ . To finish our analysis of the
half-wormhole saddle for z, let us redo the computation of
〈z2〉 with the G, � trick. We need introduce three G variables

GLR = 1

N

∑
i

ψ L
i ψ R

i , (D.96)

GL = 1

N

∑
i

θiψ
L
i , GR = 1

N

∑
i

θiψ
R
i (D.97)

then 〈z2〉 can be written as

〈z2〉 =
∫

d2Nψ
∏
a

dGa
∏
a

d�a

2π i/N

× exp

(
N

q

(
tGq

LR + uGq
L + uGq

R

))

×
∫

exp

⎛
⎝−�LR

⎛
⎝NGLR −

∑
i

ψL
i ψ R

i

⎞
⎠
⎞
⎠

× exp

⎛
⎝−�L

⎛
⎝NGL −

∑
i

θiψ
L
i

⎞
⎠
⎞
⎠

× exp

⎛
⎝−�R

⎛
⎝NGR −

∑
i

θiψ
R
i

⎞
⎠
⎞
⎠ , (D.98)

=
∫ [∏

a
dGa

d�a

2π i/N

]

× exp

(
N

(
t

q
Gq
LR + u

q
Gq
L + u

q
Gq

R −
∑
a

�aGa

))

× (�LR + �L�R)N , (D.99)

where in order to have a well-defined large N scaling we
have introduced

t = τ 2

(q − 1)!N
q−1, u = qμNq−1. (D.100)

The saddle point equations are

tGq−1
LR = �LR, uGq−1

L = �L , uGq−1
R = �R , (D.101)

GLR = 1

�LR + �L�R
, GL = − �R

�LR + �L�R
, (D.102)

9 Here the factor
∏

i θi should be present.
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GR = − �L

�LR + �L�R
. (D.103)

The obvious solutions are the “wormhole” saddles with

GL = GR = �L = �R = 0, (D.104)

which corresponds to z
p
2 . There are also other saddles cor-

responding to other zk2. For the simplest case q = 2, these
solutions can be written explicitly. The “wormhole” saddles
are

GL = GR = �L = �R = 0, (D.105)

GLR = ± 1√
t
, �LR = ±√

t, (D.106)

〈z2〉WH = e− N
2 t N/2, (D.107)

which do not depend on μ and the other four solutions are

�L = �R = uGL = uGR = ±
√
u2 − t

u
, (D.108)

�LR = t

u
, GLR = 1

u
(D.109)

�L = uGL = −�R = −uGR = ±
√
u2 − t

u
, (D.110)

�LR = − t

u
, GLR = − 1

u
, (D.111)

〈z2〉new = e
− N

2 (2− t
u2 )

uN (D.112)

Apparently when u → ∞, �LR,GLR → 0, then we expect
that in this limit the dominant saddle will correspond to z0

2
since in this limit saddle point value does not depend on t .
Comparing these two saddle values we find

〈z2〉WH

〈z2〉new
= exp

(
N

2
(1 − x + log x)

)
≤ 1, (D.113)

x = t

u2 . (D.114)

Note that when x = 1 such that 〈z2〉WH = 〈z2〉new the
new saddle just reduces to the wormhole saddle. Therefore
it implies that the new saddle always dominates.

This new saddle is named as “unlinked half-wormhole” in
[81] to distinguish it from the half-wormhole saddle which
was found in [73]. One interpretation of this new saddle is that
it is the analogue of the disconnected saddle in this model;
indeed, we do not find other disconnected saddle withGLR =
0, �LR = 0 and GL/R, �L/R �= 0, in addition, this saddle is
present only when u �= 0, and this saddle is more and more
important as u increases.

The analysis of the half-wormhole saddle for z2 will be
similar so we will not repeat here.

D.0.2: 1d model

Now we come back to the 0+1d model that is a variant of the
Brownian SYK model. Let us begin by deriving the worm-
hole saddle of 〈z2〉10

zL zR =
∫

d2Nψ exp

{
−
∫ T

0
dt

1

2

∑
i

(
ψ L
i ∂tψ

L
i + ψ R

i ∂tψ
R
i

)

+iq/2
∫ T

0
dt
∑
A

J̃A
(
ψ L

A + ψ R
A

)}
(D.115)

〈zL zR〉

=
∫

d2Nψ exp

{
−
∫ T

0
dt

1

2

∑
i

(ψ L
i ∂tψ

L
i + ψ R

i ∂tψ
R
i )

+
∫ T

0
dt

(
τ 2

q!

(∑
i

ψ L
i ψ R

i

)q

+ μ

(∑
i

θiψ
L
i

)q

+μ

(∑
i

θiψ
R
i

)q)
+ τ 2E0T

}
. (D.116)

=
∫

d2Nψ

[∏
a

dGa
d�a

2π i

]
exp

{
−
∫ T

0
dt

1

2

∑
i

(ψ L
i ∂tψ

L
i

+ψ R
i ∂tψ

R
i ) + τ 2T E0 +

∫ T

0
dt

(
τ 2

q! G
q
LR + μGq

L

+μGq
R −

∑
a

�aGa +
∑
i

[
�LRψ L

i ψ R
i + �Lθiψ

L
i

+�Rθiψ
R
i

])}
, (D.117)

where E0 = (N
q

)
is the constant term coming from

ψ
L(R)
A ψ

L(R)
A = (−1)

q
2 . As explained in [73], we can focus

on the time-independent saddles then the fermions can be
simply integrated out. The result is11

〈zL zR〉

= eT τ 2E0

∫ [∏
a

dGa
d�a

2π i

]
eT N ( t

q G
q
LR+ u

q G
q
L+ u

q G
q
R−∑a �aGa)

×
[

cosh

(
T
√

�2
L + �2

R − �2
LR

)]N
.

=
∫ [∏

a
dGa

d�a

2π i

]
eτ

2T E0eSef f (D.118)

For general T , the saddle equation is very hard to solve
due to the complexity of cosh function. However the equa-
tions simplify in the large T limit because of the following
approximations

log

(
cosh

(
T
√

�2
L + �2

R − �2
LR

))

≈ ±iT
√

�2
LR − �2

L − �2
R . (D.119)

10 Here we have assumed the large N limit, the exact treatment can be
found in [73]
11 This is result is different from the one derived in [81]. It seems that
they used a wrong formula for the fermion integral.
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Then in this limit the effective action becomes

Sef f = T N

(
t

q
Gq

LR + u

q
Gq

L + u

q
Gq

R −
∑
a

�aGa

)

±iNT
√

�2
LR − �2

L − �2
R , (D.120)

and corresponding saddle point equations are

tGq−1
LR = �LR, (D.121)

uGq−1
L = �L , uGq−1

R = �R, (D.122)

GLR = ± i�LR√
�2

LR − �2
L − �2

R

, (D.123)

GL = ∓ i�L√
�2

LR − �2
L − �2

R

, (D.124)

GR = ∓ i�R√
�2

LR − �2
L − �2

R

. (D.125)

So the wormhole saddle still presents [9]

GL = GR = �L = �R = 0, GLR = ±i, (D.126)

eSef f
∣∣∣
WH

= eiq T N t
q . (D.127)

The unlinked half-wormhole saddle is:

GLR = �LR = 0, GL = sin α, GR = cos α, (D.128)

eSef f
∣∣∣
unlink

= eT N u
q (cosq α+sinq α)

≤ eSef f
∣∣∣
unlink,α=0,π/2

= eT N u
q (D.129)

where the relation

G2
L + G2

R − G2
LR = 1, (D.130)

is fulfilled and α satisfies

cos α = ± cosq−1 α√
cos2q−2 α + sin2q−2 α

. (D.131)

In the late time (T → ∞), there is indeed a wormhole
saddle so it possible to include a linked half-wormhole sad-
dle for z. We also assume that the half-wormhole saddle is
time independent since the wormhole saddle is time inde-
pendent. Then the analysis is completely same as the one for
the 0-dimensional model. So the half-wormhole saddle will
be given by


 =
[∏

i

θi

]∫
dNψ exp

(
T iq/2

∑
A

JAψA

)
, (D.132)

〈
2〉 ≈ 〈
z〉 ≈ 〈zL zR〉|Wormhole saddle . (D.133)
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