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Abstract There is a possibility that the event horizon of a
Kerr-like black hole with perfect fluid dark matter (DM) can
be destroyed, providing a potential opportunity for under-
standing the weak cosmic censorship conjecture of black
holes. In this study, we analyze the influence of the strength
parameter of perfect fluid DM on the destruction of the event
horizon of a Kerr-like black hole with spinning after inject-
ing a test particle and a scalar field. We find that, when a
test particle is incident on the black hole, the event horizon
is destroyed by perfect fluid dark matter for extremal black
holes. For nearly extremal black holes, when the dark matter
parameter satisfies α ∈ (−rh, 0) ∪ (rh, k2) i.e. (A < 0), the
event horizon of the black hole will not be destroyed; when
the dark matter parameter satisfies α ∈ (k1,−rh] ∪ [0, rh]
i.e. (A ≥ 0), the event horizon of the black hole will be
destroyed. When a classical scalar field is incident into the
black hole in the extremal black hole case, we find that the
range of mode patterns of the scalar field that can disrupt the
black hole event horizon is different for different values of
the perfect fluid dark matter strength parameter. In the nearly
extremal black hole case, through our analysis, we have found
when α �= 0 and α �= ± rh i.e. A �= 0, the event horizon of
the black hole can be disrupted. Our research results indicate
that dark matter might be capable of breaking the black hole
horizon, thus potentially violating the weak cosmic censor-
ship conjecture.

1 Introduction

The study of dark matter (DM) is currently a hot topic of
interest among physicists [1,2], requiring the integration of
cosmology and particle physics. Current observational evi-
dence indicates that DM is nearly invisible and only inter-
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acts through gravity. Since DM cannot be directly observed,
its existence can only be inferred through indirect evidence
[3], such as measurements of galaxy rotation curves [4–
6], large-scale structure measurements [7,8], weak gravi-
tational lensing effects [9,10], galaxy mass-to-light ratios
[11], microwave background radiation measurements [12],
and cluster dynamics measurements [13,14]. The cold dark
matter model is one of the predominant models for dark mat-
ter [15,16], which argues that the vast majority of DM is
composed of neutral weakly interacting heavy particles [17],
and the number of DM is very large [18]. It is estimated
that DM constitutes approximately 23% of the total matter
content in the present-day universe. Classic examples of evi-
dence include Fritz Zwicky’s [14] early suggestion of the
existence of dark matter, and Vera Rubin’s [4] observations
of the motion of stars within galaxies in the 1980s, which
revealed a more concentrated distribution of matter in galax-
ies than predicted by gravitational effects, providing strong
support for the theory of dark matter. In 2003, the Wilkinson
Microwave Anisotropy Probe (WMAP) produced the first
image of the infant universe and accurately measured cos-
mological parameters. That same year, the Sloan Digital Sky
Survey (SDSS) also obtained similar results. The achieve-
ments of WMAP and SDSS provide compelling evidence
for the existence of dark matter [19].

The concept of black holes was initially proposed by
Michell and Laplace [20], and the term “black hole” was
coined by John Wheeler in 1967. Black holes are the result
of stellar evolution and interactions, characterized by an
extremely strong gravitational field and curvature. In recent
years, with the rapid development of gravitational wave
astronomy [21–26] and the successful capture of black hole
images in 2019 [27–29], black holes have become a hot topic
of discussion. In the central regions of galaxies, along with a
significant amount of dark matter particles, there exist super-
massive black holes [30–33]. Dark matter and black holes
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can form a stable system in these regions [34]. Connecting
dark matter and black holes in the cores of galaxies allows
for a deeper understanding by studying their interactions and
dynamics, providing insights into the nature of both dark
matter and black holes.

The gravitational collapse inevitably leads to spacetime
singularities, as described by the famous Hawking–Penrose
singularity theorems [35,36]. The existence of spacetime sin-
gularities implies the breakdown of gravitational theory. In
order to preserve the predictability of gravitational theory,
Roger Penrose proposed the weak cosmic censorship conjec-
ture in 1969 [37,38]. This conjecture relates to the formation
process of black holes and suggests that black holes formed in
nature satisfy a principle of cosmic censorship, ensuring the
existence of what is known as the “weak cosmic censorship
conjecture.” Under this conjecture, spacetime singularities
are hidden behind the event horizons of black holes and are
forever invisible to distant observers.

The strict formulation of the weak cosmic censorship con-
jecture within the framework of general relativity states that
any formation of black holes caused by matter must sat-
isfy the requirements of the conjecture, which means that
naked singularities do not exist in the universe. Specifically,
it requires that every black hole must be enveloped by an event
horizon, ensuring that naked singularities are not exposed to
the universe. In other words, spacetime singularities result-
ing from gravitational collapse must necessarily exist within
the event horizon. In essence, while the weak cosmic censor-
ship conjecture has not been fully proven and lacks a rigorous
mathematical definition, it has become one of the foundations
of black hole physics research. The latest research extends
the cosmic censorship conjecture to Anti-de Sitter spacetime
[39,40].

Currently, the weak cosmic censorship conjecture has
been validated through various means. For example, numer-
ical evolutions of collapses of dust clouds or other matter
fields [41–44], extensive nonlinear numerical simulations
of perturbed black holes or black hole rings [45–48], and
numerical evolutions of black hole collisions and mergers
in four dimensions and higher-dimensional spacetimes [49–
53]. In the context of dark matter-black hole systems, this
study employs thought experiments to investigate how dark
matter can modify the weak cosmic censorship conjecture,
thus providing potential avenues for studying the interiors of
black holes.

The article is structured as follows. In Sect. 2, we intro-
duce the relevant basic properties of the Kerr-like black hole
with perfect fluid dark matter (PFDM). In Sects. 3 and 4,
based on the work in Sect. 2, we investigate the weak cosmic
censorship conjecture of the black hole by using a scalar field
and a test particle with high angular momentum injected into
the Kerr-like black hole with perfect fluid DM. In the last sec-

tion, we provide a brief summary of the preceding research
and discuss the issues addressed in this study.

2 A Kerr-like black hole with perfect fluid DM

A Kerr-like black hole with perfect fluid dark matter is a four-
dimensional rotating black hole. In Boyer–Lindquist coordi-
nates, the metric of a Kerr-like black hole with perfect fluid
dark matter is given by the following equation [54]

ds2 =
(

1 − 2Mr − αr ln ( r
|α| )

�2

)
dt2 + �2

�r
dr2

−
2a sin2 θ

(
2Mr − αr ln ( r

|α|
)

�2 dϕdt + �2dθ2

+sin2θ

(
r2 + a2 + a2sin2θ

2Mr − αr l n( r
|α| )∑2

)

dϕ2, (1)

the metric functions �2 and �r are expressed as follows

�2 = r2 + a2cos2θ, (2)

�r = r2 − 2Mr + a2 + α rln

(
r

|α|
)

, (3)

where M represents the black hole mass, α represents a
parameter describing the strength of perfect fluid dark mat-
ter, a = J

M represents the black hole spin parameter, and
J = Ma represents the angular momentum of the black hole.
If the PFDM does not exist, i.e. α = 0, the metric mentioned
above will become the metric of a Kerr black hole.

Under the metric, the event horizon rh of a Kerr-like black
hole with perfect fluid dark matter is defined by equation
grr = 0 i.e. �r = 0. Here, we set a parameter

A = α rhln

(
rh
|α|

)
. (4)

By referring to Figs. 1 and 2, along with expression
A = α rhln(

rh|α| ), we can derive the following conclusion.
When it is α = ±rh or α = 0, the parameter A = 0; when it
is α ∈ (k1,−rh) ∪ (0, rh), the parameter A > 0; when it is
α ∈ (−rh, 0)∪ (rh, k2), the parameter A < 0. (k1 and k2 are
functions of the black hole spin parameter, satisfying expres-
sions M2 = a2 + k1rh ln(

rh−k1
) and M2 = a2 + k2rh ln(

rh
k2

).)
So the event horizon rh can be expressed as

rh
M

= 1 ±
√

1 − a2 + A

M2 . (5)

The plus sign corresponds to the event horizon, while the
minus sign corresponds to the inner horizon. It is evident that
the values of the horizons strongly depend on the black hole
spin parameter a and the strength parameter α. For a2 + A ≤
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Fig. 1 This is a plot showing the relationship between the event horizon
rh and the strength parameter α of the perfect fluid DM, where the black
hole mass M = 1, the spin parameter a = 0, 0.5, 0.9

Fig. 2 This is a plot showing the relationship between the parameter
A and the strength parameter α of the perfect fluid DM, where the black
hole mass M = 1, the spin parameter a = 0, 0.5, 0.9

M2, the metric describes a black hole, while for a2 + A >

M2, the metric describes a rotating spacetime without the
event horizon.

The surface area of the black hole’s event horizon is

AH = 4π
(
r2
h + a2

)
, (6)

the Hawking temperature associated with the event horizon

TH = r2
h − a2

4πrh
(
r2
h + a2

) , (7)

the metric described by Eq. (1) corresponds to a rotating
black hole, with an angular velocity of

�H = a

r2
h + a2

. (8)

3 Verifying the weak cosmic censorship conjecture
through a test particle incidence

In this section, the focus is primarily on exploring the pos-
sibility of disrupting the event horizon of a Kerr-like black
hole with perfect fluid dark matter by a test particle incident
into the black hole. From Eq. (5), we can deduce that when
a2 + A ≤ M2, the spacetime possesses an event horizon;
while when a2 + A > M2, the spacetime lacks an event
horizon. Hence, the conditions for disrupting the event hori-
zon become

J > M2

√
1 − A

M2 = M2ω0, (9)

there is

ω0 =
√

1 − A

M2 . (10)

To obtain the internal structure of the event horizon of
a Kerr-like black hole with perfect fluid dark matter, it is
sufficient to inject a test particle or a scalar field with a high
angular momentum into the black hole. This allows the Kerr-
like black hole to acquire energy from the test particle or
scalar field, forming a composite system that disrupts the
event horizon. Therefore, the conditions for this composite
system to fulfill are given as J ′ > M ′2ω0.

In the spacetime of a Kerr-like black hole with perfect
fluid dark matter, if a test particle with mass M is thrown,
its motion trajectory can be described by a geodesic. By
choosing the affine parameter proper time as the parame-
ter to describe the motion of the test particle, the equation of
motion for the test particle can be obtained as given below

d2xμ

dτ 2 + �
μ
αβ

dxα

dτ

dxβ

dτ
= 0, (11)

using the Euler–Lagrange equations, the geodesic equation
for the test particle can be obtained from its Lagrangian. In
this case, the expression for the Lagrangian describing the
particle is

L = 1

2
mgμν

dxμ

dτ

dxν

dτ
= 1

2
mgμν ẋ

μ ẋν . (12)

When slowly incident from infinity onto the equatorial
plane, it can be visually observed that the test particle lacks
any velocity component in the θ direction. As a result, its
motion before crossing the event horizon will remain con-
fined to the equatorial plane. Therefore, the momentum Pθ

in the θ direction of the test particle will be zero

Pθ = ∂L

∂θ̇
= mg22θ̇ = 0, (13)
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analyzing the motion of the test particle, we find that the
energy δE and angular momentum δ J can be expressed as

δE = −Pt = −∂L

∂ ṫ
= −mg0ν ẋ

ν, (14)

δ J = Pϕ = ∂L

∂ϕ̇
= mg3ν ẋ

ν . (15)

After the black hole captures a test particle with energy δE
and angular momentum δ J, the energy and angular momen-
tum of the black hole will change according to the following
form

M → M ′ = M + δE, (16)

J → J ′ = J + δ J. (17)

In this section, we discuss whether the event horizon of a
black hole is disrupted when a test particle passes through it.
First, we deduce the conditions under which a test particle
can enter a Kerr-like black hole, namely energy δE and angu-
lar momentum δ J. Then, we determine the energy or angular
momentum requirements for the disruption of the event hori-
zon based on our calculations for the Kerr-like black hole. As
long as the test particle can enter the inner region of the event
horizon and the absorbed energy and angular momentum by
the Kerr-like black hole satisfy the conditions for event hori-
zon disruption, the internal structure of the event horizon can
be revealed to distant observers.

For a test particle with a mass of m, the magnitude of its
four-velocity is described by a timelike length of |	v| < c,
and its direction can be described by a unit vector 	μ

Uμ Uμ = gμν

dxμ

dτ

dxν

dτ
= 1

m2 g
μνPμ Pν = −1, (18)

substituting Eqs. (14) and (15) into the above expression, we
obtain

g00δE2 + g11P2
r + g33δ J 2 − 2g03δEδ J = −m2, (19)

taking δE as the unknown variable, the above expression is
a quadratic equation. By applying the quadratic formula, we
can obtain

δE = g03

g00 δ J ± 1

g00√
(g03)2δ J 2 − g00(g33δ J 2 + g11P2

r + m2). (20)

Since the spacetime outside the event horizon is regular,
the geodesic motion of the test particle outside the event hori-
zon is timelike and directed towards the future. Therefore, we
have

dt

dτ
> 0, (21)

expanding Eqs. (14) and (15), we obtain

mg00 ṫ + mg03ϕ̇ = −δE, (22)

mg30 ṫ + mg33ϕ̇ = δ J. (23)

If we consider ṫ and ϕ̇ as unknown variables, the above equa-
tion can be viewed as a system of linear equations. By solving
it, we obtain

ṫ = dt

dτ
= −g33δE + g03δ J

g00g33 − g2
03

. (24)

By using Eqs. (21) and (24), we can obtain

δE > −g03

g33
δ J, (25)

so, the value that satisfies the condition (25) in Eq. (20) is,
which corresponds to the energy of the test particle as δE

δE = g03

g00 δ J − 1

g00√
(g03)2δ J 2 − g00(g33δ J 2 + g11P2

r + m2). (26)

By using Eq. (24), we can obtain the upper limit for the value
of the test particle δ J

g33δE + g03δ J > 0, (27)

δ J <
r2
h + a2

a
δE = 1

�H
δE = δ Jmax . (28)

Furthermore, in order to disrupt the event horizon of a
Kerr-like black hole with perfect fluid DM, it can be deter-
mined through analyzing the conditions for event horizon
disruption of Kerr-like black hole that the angular momen-
tum δ J of the test particle must be significantly greater than
the energy δE . In other words, the angular momentum δ J
of the test particle should be maximized as much as possi-
ble. Therefore, it is also necessary to satisfy the following
condition: there should be a lower limit for the value of δ J.

J + δ J > (M + δE)2ω0, (29)

δ J > δ Jmin = ω0δE
2 + 2ω0MδE + (M2ω0 − J ). (30)

Therefore, if the test particle simultaneously satisfies both
conditions (28) and (30), the event horizon of a Kerr-like
black hole with perfect fluid DM will be disrupted, enabling
observers at infinity to observe the internal structure of the
event horizon.

For a Kerr-like black hole with perfect fluid DM, if the
initial state of the black hole is extremal, it follows that a2 +
A = M2. In this scenario, the event horizon of this extremal
case can be expressed as

rh = M. (31)

The angular velocity �H of this extremal case can be
simplified as

�H = Mω0

2M2ω2
0 + A

. (32)
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If we only consider the first-order of energy δE, then the
event horizon of this extremal Kerr-like black hole with per-
fect fluid DM can only be disrupted if both of the following
conditions are satisfied

δ J < δ Jmax = 1

�H
δE = 2Mω0δE + A

Mω0
δE, (33)

δ J > δ Jmin = 2Mω0δE . (34)

Clearly, for an extremal Kerr-like black hole with perfect
fluid DM, whether the angular momentum δ J and energy
δE of the test particle can simultaneously satisfy conditions
(33) and (34) depends on the value of parameter A, i.e. the
strength parameter α of the perfect fluid DM. When α ∈
(−rh, 0)∪ (rh, k2) i.e. (A < 0), the two equations cannot be
satisfied simultaneously. When α ∈ (k1,−rh) ∪ (0, rh) i.e.
(A > 0), the two equations can be simultaneously satisfied,
and in this case, the event horizon of the Kerr-like black hole
with perfect fluid DM can be disrupted. It is worth noting that
when the strength parameter α = 0 i.e. A = 0 of the perfect
fluid DM , the event horizon of the Kerr black hole cannot
be disrupted. At this point, the Kerr black hole becomes an
extremal Kerr black hole, which is consistent with the case
where the event horizon of an extremal Kerr black hole cannot
be disrupted.

If we need to consider the second-order term δE2 of the
test particle’s energy δE, it will only increase the lower limit
δ Jmin of the test particle, making the values more precise.

For a Kerr-like black hole with perfect fluid DM, if the
initial state of the black hole is near-extremal, and the energy
δE of the test particle is taken at the first-order, the conditions
for the test particle to enter the black hole and disrupt its event
horizon can be obtained

δ J < δ Jmax = 1

�H
δE = r2

h + a2

a
δE, (35)

δ J > δ Jmin = 2Mω0δE + (M2ω0 − J ). (36)

To describe the degree of approaching the extremal con-
dition, a dimensionless decimal ε can be used to depict the
near-extremal scenario, i.e.

a2 + A

M2 = 1 − ε2. (37)

It can be observed that when parameter ε approaches zero,
i.e. ε → 0, it describes the near-extremal Kerr-like black
hole. And when parameter ε = 0 is satisfied, the Kerr-like
black holes becomes the extremal case.

In this context, M2ω0− J is a second-order small quantity,
but since we are only considering the first-order scenario, this
second-order small quantity is not taken into account. There-
fore, it is sufficient for the energy δE and angular momentum
δ J of the test particle to simultaneously satisfy Eqs. (35) and
(36), i.e.

δ Jmax > δ Jmin, (38)

this is equivalent to

1

�H
− 2ω0M > 0. (39)

Based on Eqs. (5), (10), and (37), we obtain

1

� H
− 2ω0M = r2

h + a2

a
− 2ω0M

= A + (
2M2ω2

0 + 2A
)
ε + (

M2ω2
0 + A

)
ε2 − 2M2ω2

0O
(
ε4

)
√
M2ω2

0 − (
M2ω2

0 + A
)
ε2

,

(40)

in Eq. (40), O
(
ε4

)
is a higher-order infinitesimal, and

whether the equation is greater than zero or less than zero
depends on the value of parameter A, which is the strength
parameter α of the perfect fluid DM.

When α ∈ (−rh, 0) ∪ (rh, k2) i.e. (A < 0)

1

�H
− 2ω0M < 0, (41)

at this point, the event horizon of the near-extremal Kerr-
like black hole with perfect fluid DM cannot be disrupted,
and this near-extremal scenario does not violate the cosmic
censorship conjecture.

When α ∈ (k1,−rh] ∪ [0, rh] i.e. (A ≥ 0)

1

�H
− 2ω0M > 0, (42)

the event horizon of the near-extremal Kerr-like black hole
with perfect fluid DM can be disrupted, and this near-
extremal scenario violates the cosmic censorship conjecture.
It is worth noting that when the strength parameter α = 0,

i.e. A = 0, the metric degenerates into a near-extremal Kerr
black hole. From the above equation, it can be seen that in
this case, the event horizon can be destroyed, which is con-
sistent with previous research showing that a near-extremal
Kerr black hole can be disrupted by a test particle, revealing
the singularity [55].

Based on the analysis above, for incoming a test particle
to disrupt the event horizon of a Kerr-like black hole with
perfect fluid DM, the ability to disrupt the event horizon
depends on A, where A is a function of α. For the near-
extremal scenario of this Kerr-like black hole, when α ∈
(−rh, 0)∪(rh, k2) i.e. (A < 0), the event horizon of the black
hole cannot be disrupted, adhering to the cosmic censorship
conjecture. However, when α ∈ (k1,−rh] ∪ [0, rh] i.e. (A ≥
0), the event horizon of the black hole can be disrupted, thus
violating the cosmic censorship conjecture.
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4 Verifying the weak cosmic censorship conjecture
through a scalar field incidence

Another way to disrupt the event horizon of a Kerr-like black
hole with perfect fluid DM is by throwing a scalar field with
high angular momentum into the black hole, which would
result in the destruction of the event horizon. Semiz [56]
initially proposed a thought experiment involving the intro-
duction of a classical field into extremal and near-extremal
cases of black holes to destroy their event horizons. Research
has shown that in this situation, the event horizon of the black
hole cannot be destroyed [56]. Others have further developed
this method [57–60].

In this section, the focus is primarily on introducing a
scalar field with high angular momentum into the interior of
a Kerr-like black hole and discussing the potential for event
horizon disruption in extremal and near-extremal scenarios
of the Kerr-like black hole.

4.1 The scattering of a massive classical scalar field

In this subsection, we investigate the mass scattering of a
classical scalar field with a Kerr-like black hole that possess
perfect fluid DM. The scalar field ψ has a mass of μ. The
equation for the scalar field ψ can be derived from the Klein–
Gordon equation.

∇ν∇ν� − μ2� = 0, (43)

in the above equation, ∇ν represents the covariant derivative.
The equation can also be written as follows

1√−g
∂μ

(√−ggμν∂ν�
) − μ2� = 0. (44)

By substituting the metric (1) of the Kerr-like black hole
with perfect fluid DM into (44), the following equation can
be obtained, here we set σ = 2Mr − α rln( r

|α| )

− (r2 + a2)2 − a2�r sin2θ

�r�2

∂2�

∂ t2 − 2aσ

�r�2

∂2�

∂ t∂ϕ

+ 1

�2

∂

∂ r

(
�r

∂�

∂ r

)
+ 1

�2sinθ

∂

∂θ

(
sinθ

∂�

∂θ

)

+�r − a2sin2θ

�r�2sinθ

∂2�

∂ϕ2 − μ2� = 0. (45)

Equation (45) can be separated into variables [61]. To facil-
itate obtaining a solution for the above equation, we can
employ the method of variable separation by making the fol-
lowing decomposition

� (t, r, θ, ϕ) = e−iωt R (r) Slm (θ) eimϕ, (46)

in the above equation, Slm (θ) represents the spherical func-
tion, where l and m are constant variables representing the

separation of variables, denoted as l,m = 1, 2, 3 . . . By sub-
stituting Eq. (46) into Eq. (45) and simplifying, we obtain

(r2 + a2)2 − a2�r sin2θ

�r
ω2R (r) Slm (θ)

−2aσ

�r
mω R (r) Slm (θ) + Slm (θ)

d

dr

(
�r

d R (r)

dr

)

+ 1

sinθ
R (r)

d

dθ

(
sinθ

dSlm (θ)

dθ

)

+a2sin2θ − �r

�r sinθ
m2R (r) Slm (θ)

−
(
r2 + a2cos2θ

)
μ2R (r) Slm (θ) = 0. (47)

By separating variables in (47), we can obtain the angular
part of the motion equation for the scalar field as

1

sinθ

d

dθ

[
sinθ

dSlm (θ)

dθ

]

−
[
a2ω2sin2θ + m2

sin2θ
+ μ2a2cos2θ − λlm

]
Slm = 0,

(48)

and the radial part of the motion equation for the scalar field
is

d

dr

(
�r

d R

dr

)

+
[
(r2 + a2)2

�r
ω2 − 2aσ

�r
mω + m2a2

�r
− μ2r2 − λlm

]
×R (r) = 0. (49)

In the motion equation for the scalar field, the solution of
the angular part (48) is a spherical function with an eigenvalue
of λlm [62]. When calculating the stress–energy tensor later,
the integration is performed over the entire event horizon
surface. According to the normalization property of spherical
functions, the integral over the event horizon surface is equal
to one. Therefore, the specific expression of the spherical
function is not separately solved here. Instead, the focus is
on solving the radial equation.

To facilitate the solution of the radial equation, the tortoise
coordinate r∗ is introduced

dr

dr∗
= �r

r2 + a2 . (50)

After introducing the tortoise coordinate, the event hori-
zon is pushed to infinity, and the tortoise coordinate takes a
value of (−∞,+∞) in this case. Therefore, the radial coor-
dinate covers the entire region from the event horizon out-
ward in the spacetime. By substituting the tortoise coordinate
from Eq. (50) into the radial component equation of the scalar
field, namely Eq. (49), the radial equation simplifies to the
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following form

�r

(r2 + a2)2

d

dr

(
r2 + a2

) dR

dr∗
+ d2R

dr2∗

+
[(

ω − ma

r2 + a2

)2

+ �r

(r2 + a2)2 2amω − �r

(r2 + a2)2

(
μ2r2 + λlm

)]
×R (r) = 0. (51)

During the entire process of the scalar field incident on this
spacetime, we pay closer attention to the situation near the
event horizon, especially in terms of energy flux and angular
momentum flux in this region, namely near point r ∼= rh .
In this vicinity, the equation for solving the event horizon,
denoted as �r ∼= 0, is taken into account. Therefore, the
radial equation for the scalar field in Eq. (51) can be approx-
imated and simplified as follows

d2R

dr2∗
+

(
ω − ma

r2 + a2

)2

R = 0. (52)

Due to the fact that the angular velocity of this Kerr spacetime
at the event horizon is

�H = a

r2
h + a2

. (53)

By substituting (53) into the simplified radial equation (52),
it can be further simplified to

d2R

dr2∗
+ (ω − m�H )2 R = 0, (54)

the above equation is a second-order homogeneous partial
differential equation, so the solution to the equation is

R (r) = exp[± i (ω − m�H ) r∗], (55)

in the above equation, the positive and negative solutions rep-
resent the outgoing wave and the ingoing wave, respectively.
When considering the scalar field incident on the Kerr space-
time, this spacetime absorbs energy and angular momentum.
Therefore, in this case, the negative solution is more consis-
tent with the physical reality. Thus, the radial solution of the
scalar field equation is

R (r) = exp[−i (ω − m�H ) r∗]. (56)

Substituting the radial solution (56) into the solution of the
scalar field equation (46), we obtain the following expression

� (t, r, θ, ϕ) = exp[−i (ω − m�H )]e−iωt Slm (θ) eimϕ.

(57)

The above expression represents the solution of the scalar
field near the event horizon when a massive scalar field is
incident on the Kerr spacetime. By obtaining this solution, it

is possible to calculate the flux of energy and angular momen-
tum absorbed by the Kerr spacetime from the scalar field after
scattering. This can be used to discuss whether the event hori-
zon of the Kerr spacetime can be destroyed after absorbing
energy.

The next step is to primarily study the calculation of the
energy flux and angular momentum flux brought about by
the scattering of the scalar field from the event horizon of the
Kerr spacetime. Here, we assume that the scalar field has a
mode of (l,m) , and it is incident upon the Kerr spacetime.
During this process, a portion of the scalar field’s energy is
absorbed by the spacetime, while the rest is reflected back.
The main focus and concern lie in the angular momentum and
energy absorbed by the Kerr spacetime, exploring whether
the destruction of the event horizon of the spacetime can
occur after absorbing angular momentum and energy.

The energy–momentum tensor Tμν of the scalar field with
a mass of μ can be expressed in the following form

Tμν = ∂μ�∂ν�
∗ − 1

2
gμν

(
∂α�∂α�∗ + μ2�∗�

)
, (58)

substituting the metric of the Kerr-like black hole into equa-
tion (58), we obtain

T r
t = r2 + a2

�2 ω (ω − m�H ) Slm (θ) eimϕS∗
l,m, (θ) e−imϕ,

(59)

T r
ϕ = r2 + a2

�2 m (ω − m�H ) Slm (θ) eimϕS∗
l,m, (θ) e−imϕ.

(60)

From the above equation, the energy flux passing through the
event horizon of the Kerr spacetime can be calculated as

dE

dt
= ω (ω − m�H )

(
r2 + a2

)
, (61)

the angular momentum flux passing through the event hori-
zon of the Kerr spacetime is

d J

dt
= m (ω − m�H )

(
r2 + a2

)
. (62)

In Eqs. (61) and (62), the integration involves the normaliza-
tion of spherical harmonics.

By observing the above two equations, it can be intuitively
understood that when ω > m�H , the angular momentum
flux and energy flux passing through the event horizon are
positive. This indicates that when the massive scalar field
scatters into the Kerr spacetime, the Kerr black hole absorbs
energy and angular momentum from the scalar field. When
ω < m�H , the energy flux and angular momentum flux
passing through the event horizon are negative. This signifies
that the Kerr black hole does not absorb energy and angular
momentum from the scalar field, but rather the scalar field
carries away energy and angular momentum from the Kerr
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black hole during the scattering process, known as the famous
black hole superradiance [63].

If we only consider a very short time interval of dt, the
amount of energy absorbed by the Kerr-like black hole from
the scalar field is

dE = ω (ω − m�H )
(
r2 + a2

)
dt, (63)

the absorbed angular momentum is

d J = m (ω − m�H )
(
r2 + a2

)
dt. (64)

With the variation in the absorbed angular momentum
and energy from the scalar field by the Kerr spacetime, it
is possible to analyze whether the event horizon of the Kerr
spacetime can be broken by a scalar field with high angular
momentum in extremal and near-extremal cases. If it can be
broken, it would expose the internal structure of the event
horizon of the Kerr black hole to external observers.

4.2 Disruption of the event horizon of a Kerr-like black
hole through the monochromatic classical scalar field
incidence

In this section, we verify whether the event horizon of the
Kerr-like black hole with perfect fluid dark matter (DM)
can be broken by an incident classical scalar field with a
frequency of ω and an angular quantum number of m. We
focus on a small time interval of dt during the scattering
process. For longer scattering times, we can employ a dif-
ferential approach by dividing it into numerous infinitesimal
time intervals of dt, thus allowing us to analyze the out-
come by examining any specific time interval of dt. Such
an approach simplifies the treatment of scattering problems
and enhances our understanding of the physical processes
and laws involved in scattering. Importantly, studying each
time interval of dt provides a more detailed and comprehen-
sive scattering information, enabling further investigations
into the internal mechanisms involved. During the scatter-
ing process, we contemplate a composite system where a
Kerr-like black hole with perfect fluid DM, having a mass of
M and an angular momentum of J, absorbs the energy and
angular momentum of the incident scalar field, transforming
into a composite system with a mass of M ′ and an angular
momentum of J ′. In order to validate the cosmic censorship
conjecture, it is necessary to consider the sign of the parame-
ter M ′2ω0 − J ′ in the composite system. If M ′2ω0 − J ′ ≥ 0,

then the event horizon of the Kerr-like black hole exists, thus
not violating the cosmic censorship conjecture. However, if
M ′2ω0− J ′ < 0, then the event horizon of the Kerr-like black
hole does not exist, thereby violating the cosmic censorship
conjecture.

During the scattering process, the focus is primarily on the
scattering events within a small time interval of dt. After the

composite system absorbs the energy and angular momentum
of the incident scalar field, the state of the composite system
is

M ′2ω0 − J ′ =
(
M2ω0 − J

)
+ 2Mω0dE − d J. (65)

Substituting Eqs. (63) and (64) into Eq. (65), we obtain

M ′2ω0 − J ′ =
(
M2ω0 − J

)
+2Mω0m

2
(

ω

m
− 1

2Mω0

)( ω

m
− �H

) (
r2 + a2

)
dt.

(66)

When the initial state of the Kerr-like black hole with
perfect fluid DM is in the extremal case, we have J = M2ω0.

Therefore, Eq. (66) can be rewritten as

M ′2ω0 − J ′

= 2Mω0m
2
(

ω

m
− 1

2Mω0

) ( ω

m
− �H

) (
r2 + a2

)
dt.

(67)

The angular velocity �H of the Kerr-like black hole in the
extremal case can be simplified as

�H = a

r2
h + a2

= Mω0

2M2ω2
0 + A

. (68)

If the perfect fluid does not exist, meaning α = 0, the
metric described by Eq. (1) will become the metric of a Kerr
black hole. In the extremal case, the angular velocity of the
Kerr black hole with perfect fluid DM is influenced by the
strength parameter α, resulting in a difference from the angu-
lar velocity of the standard Kerr black hole. This difference
plays a crucial role in the scattering process of the scalar field.

We incident the following mode of scalar field into the
extremal case of the Kerr black hole

ω

m
= 1

2

(
1

2Mω0
+ �H

)
, (69)

substituting Eq. (69) into the composite system of Kerr black
hole, which absorbs the energy and angular momentum of the
scalar field, we obtain by substituting into Eq. (67)

M ′2ω0 − J ′ = −1

2
Mω0m

2(�H − 1

2Mω0
)2(r2 + a2)dt.

(70)

For the extremal case of the Kerr black hole, we can obtain
from Eq. (70)

M ′2ω0 − J ′ ≤ 0. (71)

When the PFDM does not exist, i.e. α = 0 (parameter
A = 0), the equation above holds true, which corresponds to
the Kerr black hole. In this case, the event horizon of the black
hole cannot be destroyed [64], aligning with the predictions
of general relativity that a massive scalar field cannot disrupt
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the event horizon of an extremal Kerr black hole. However,
interestingly, through the analysis of the equation above, we
find that when parameter α �= 0 and α �= ± rh i.e. (A �= 0),

M ′2ω0 − J ′ < 0 holds true. That is, in this scenario, the event
horizon of the Kerr-like black hole can be destroyed.

By analyzing Eqs. (67) and (68) in combination, we can
observe that there exists a range of scalar field modes that
can potentially disrupt the event horizon.

When α ∈ (k1,−rh) ∪ (0, rh) i.e. (A > 0)

�H = a

r2
h + a2

<
1

2Mω0
, (72)

in this case, the range of scalar field modes is

�H <
ω

m
<

1

2Mω0
. (73)

When α ∈ (−rh, 0) ∪ (rh, k2) i.e. (A < 0)

�H = a

r2
h + a2

>
1

2Mω0
, (74)

in this case, the range of scalar field modes is

1

2Mω0
<

ω

m
< �H . (75)

In other words, for different values of the strength param-
eter α i.e. parameter A of the perfect fluid DM, there exist
different ranges of scalar field modes that can disrupt the
event horizon. Within these ranges, the event horizon can be
destroyed.

When the initial state of the Kerr black hole with perfect
fluid DM approaches the near-extremal case, i.e. J �= M2ω0,

but tends to infinity, it can be expressed using the following
formula

M ′2ω0 − J ′ =
(
M2ω0 − J

)
+2Mω0m

2
(

ω

m
− 1

2Mω0

) ( ω

m
− �H

) (
r2 + a2

)
dt,

(76)

similarly to the extremal case, considering the mode of the
scalar field incident in this near-extremal situation is

ω

m
= 1

2

(
�H + 1

2Mω0

)
. (77)

Therefore, Eq. (76) can be expressed in the following form

M ′2ω0 − J ′ = (M2ω0 − J )

− 1

8Mω0
m2�2

H (
1

�H
− 2Mω0)

2(r2 + a2)dt. (78)

Similar to the previously discussed dimensionless infinites-
imal parameter ε that describes the destruction of the
event horizon by a test particle incident on a near-extremal
Kerr-like black hole, we now define another dimensionless

infinitesimal parameter ε to describe the deviation of a near-
extremal Kerr-like black hole from an extremal Kerr-like
black hole situation

a2

M2ω0
2 = 1 − ε2, (79)

it can be concluded that as parameter ε decreases, the black
hole approaches a near-extremal situation; when parameter
ε = 0 is reached, the black hole becomes extremal.

Since ε is a parameter that tends to zero, it can be expanded
using a Taylor series. Therefore, Eq. (78) can be expressed
in the following form

M ′2ω0 − J ′ =
[

1

2

M2ω2
0 + A

ω0
ε2 − M2ω0O

(
ε4

)]

− 1

8Mω0
m2�2

H

×
⎛
⎝ A + (

2M2ω2
0 + 2A

)
ε + (

M2ω2
0 + A

)
ε2 − 2M2ω2

0O
(
ε4

)
√
M2ω2

0 − (
M2ω2

0 + A
)
ε2

⎞
⎠

2

×
(
r2 + a2

)
dt. (80)

Since we are considering a very short time interval dt, both
ε and dt are first-order small quantities. From the equation,
we can see that the first part is at most a second-order small
quantity, while the second part is predominantly a first-order
small quantity, and the latter part is even larger than the for-
mer part. In this case when α �= 0 and α �= ± rh i.e. (A �= 0),

there exists

M ′2ω0 − J ′ < 0, (81)

at this moment, the introduction of the scalar field causes the
event horizon of the black hole to be disrupted.

When parameter A = 0, which represents the strength
parameter α = 0 or α = ±rh of the perfect fluid DM, the first
part of the equation is at most a second-order small quantity,
while the second part is at most a third-order small quantity.
Therefore, we have

M ′2ω0 − J ′ > 0. (82)

When the strength parameter α = 0 for the perfect fluid
DM is considered, the corresponding near-extremal Kerr-
like black hole, as can be deduced from the above equation,
reveals that the event horizon of a near-extremal Kerr black
hole cannot be disrupted by the scalar field. This is consistent
with research in general relativity, which suggests that the
event horizon of a near-extremal Kerr black hole cannot be
destroyed [59].

In general, whether the scalar field can disrupt the event
horizon of a near-extremal Kerr black hole depends on the
value of the strength parameter α (i.e. parameter A) for the
perfect fluid DM. Only when parameter α �= 0 and α �= ± rh
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i.e. (A �= 0) is reached can the event horizon of a near-
extremal Kerr black hole be disrupted by the scalar field.

5 Summary and discussion

The dark matter-black hole system involves the interaction
between a black hole immersed in a dark matter background,
eventually forming a stable system. This system is considered
the most plausible model in the universe, making the investi-
gation of the Weak Cosmic Censorship Conjecture (WCCC)
significant. The WCCC is a fundamental hypothesis in black
hole physics, although its correctness has not been conclu-
sively proven yet and there is no rigorous mathematical for-
mula to support it. However, studying the WCCC is crucial
for delving into the underlying physical nature behind the
event horizon of black holes. If the WCCC is violated, it
would aid physicists in gaining a deeper understanding of the
characteristics of highly curved regions within black holes,
ultimately revealing profound laws and phenomena within
black hole physics.

In this paper, we investigated the incidence of both a test
particle and a scalar field into a Kerr-like black hole with
perfect fluid dark matter. We explored whether the event
horizon of the black hole is disrupted under extremal and
near-extremal conditions, in order to test the validity of the
Weak Cosmic Censorship Conjecture (WCCC) for the Kerr-
like black hole.

We found that when a test particle is incident into the
black hole, under extremal conditions, the event horizon of
the black hole remains intact when condition α ∈ (−rh, 0)∪
(rh, k2) i.e. (A < 0) is met, while it is disrupted when condi-
tion α ∈ (k1,−rh) ∪ (0, rh) i.e. (A > 0) is satisfied. Under
near-extremal conditions, the event horizon of the black hole
is not destroyed when condition α ∈ (−rh, 0) ∪ (rh, k2)

i.e. (A < 0) is met, but it is disrupted when condition
α ∈ (k1,−rh] ∪ [0, rh] i.e. (A ≥ 0) is satisfied. When a
classical scalar field is incident into the black hole, under
extremal conditions, the event horizon can be disrupted when
condition α �= 0 and α �= ± rh i.e. (A �= 0) is met for a speci-
fied mode of scalar field incidence. However, when the mode
of scalar field incidence is not specified, we observed that the
range of scalar field patterns that can destroy the black hole
event horizon varies depending on the strength parameter α

of the perfect fluid dark matter. Under near-extremal condi-
tions, through analysis, we determined that the event horizon
of the black hole can be disrupted when condition α �= 0 and
α �= ± rh i.e. (A �= 0) is satisfied.

Furthermore, we observed that both the incidence of a
test particle and a scalar field into this Kerr-like black hole
violate the Weak Cosmic Censorship Conjecture, potentially
offering insights into the inner regions of black hole event
horizons for future studies. However, it is important to note

that the dark matter model used in this paper is PFDM, which
lacks generality. We hope to explore generalized solutions of
gravitational field equations that are suitable for dark matter
in future research, and then extend and deepen the study
presented in this paper to make it more universally applicable
and informative.
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