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Abstract We inspect the model-independent study of prac-
tical Dirac Majorana confusion theorem (pDMCT) – a wide
spread belief that the difference between Dirac and Majorana
neutrinos via any kinematical observable would be practi-
cally impossible to determine because of the difference only
being proportional to the square of neutrino mass – in context
of processes that have at least a neutrino antineutrino pair in
their final state. We scrutinize the domain of applicability
of pDMCT and also highlight those aspects that are often
misunderstood. We try to clarify some of the frequently used
concepts that are used to assert pDMCT as a generic feature
irrespective of the process, or observable, such as the exis-
tence of any analytic continuity between Dirac and Majorana
neutrinos in the limit mν → 0. In summary, we illustrate
that pDMCT is not any fundamental property of neutrinos,
instead, it is a phenomenological feature of neutrino non-
observation, depending on models and processes.

1 Introduction

Are neutrinos distinct from their antiparticles like the rest
of the known fermions of the Standard Model (SM), or are
the neutrino and antineutrino quantum mechanically identi-
cal to one another? An affirmative response to the first (sec-
ond) question would imply neutrinos are Dirac (Majorana)
fermions. We are yet to have a definite answer to this fun-
damental question regarding Dirac or Majorana nature of
neutrinos. However, the literature is replete with attempts
made on both theoretical and experimental fronts, without
much success. The situation is such that there is an ossified
belief in the community that the difference between Dirac and
Majorana neutrinos via any kinematical observable would
be practically impossible to determine due to fact that the
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observable difference between Dirac and Majorana neutri-
nos is proportional to the tiny neutrino mass. This is often
cited as the “practical Dirac Majorana confusion theorem”
(pDMCT, in short) [1]1. While the “theorem” has been ver-
ified in some cases, there is no general model-independent
and process-independent proof. Also there is a general lack
of clarity regarding its domain of validity. It is therefore
necessary and important to explore whether there are any
SM allowed processes and kinematic observables that can
directly probe the Majorana nature of neutrinos avoiding this
pDMCT constraint. In this article we discuss the domain of
validity of pDMCT as well as its exceptions. This does not
invalidate pDMCT but brings more clarity with regard to its
applicability as an useful tool.

There are two issues regarding pDMCT to which we
would like to draw readers’ attention.

1. The pDMCT should not be taken out-of-context of its
historical development. Historically, only SM allowed
neutral current interaction mediated processes as well as
those processes mediated by exchange of massive Majo-
rana neutrinos [4], were analyzed. In processes involving
neutral current interaction, there had been no way to gain
any information regarding individual neutrino antineu-
trino energies or 3-momenta. This invariably leads to
integration over neutrino antineutrino related kinematic
variables while proposing any relevant kinematic observ-
ables. If one considers a process which is mediated not
through weak neutral current interactions, and if one has
access to individual information of neutrino and antineu-
trino momenta without directly measuring them, then one
need not take pDMCT for granted while analyzing the
relevant observables.

1 A few notable precursors to the formulation of pDMCT were the
analysis made by Refs. [2,3].
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2. The usual approach to validate pDMCT as a general the-
orem is by alluding to a non-existent correspondence
between massive Dirac and Majorana fermions in the
massless limit where the neutrinos have specific chiral-
ity. This strangely overlooks the well-known mathemat-
ical impossibility of having a chiral massless Majorana
neutrino. In any case it does not make practical sense
since the neutrinos have non-zero mass.

For the first time in Refs. [5,6], we respectively
implemented both model-independent and specific process-
independent studies of pDMCT. The current work borrows
some of the features from both the above papers in a more
accessible manner and directly addresses some pedagogical
aspects to bring clarity. Thus in Sect. 2 we first consider a
generic model-independent analysis of processes that contain
a neutrino antineutrino pair in the final state. This structure
in the final state allows for application of Pauli exclusion
principle through anti-symmetrisation in the case of Majo-
rana neutrinos. The application of the exclusion principle is
independent of the size of the non-zero mass of the neutrino
or any other dimensional parameter for that matter. We refer
to this as model-independent in the sense that our analysis
includes both the SM and new physics (NP) contributions.
However, the process itself is allowed in the SM. This is
exclusively discussed in Sect. 3. In Sect. 4 we highlight the
domain of applicability of pDMCT. This is followed by some
pedagogical explanations on pDMCT in Sect. 5. Finally we
conclude highlighting the important features in Sect. 6.

2 A model-independent analysis of processes containing
ν ν in the final state

2.1 Details on the process under consideration

Consider a general process with a neutrino and an antineu-
trino2 of the same flavor in the final state, say

X (pX ) → Y (pY ) ν(p1) ν(p2),

where X,Y can be single or multi-particle states, Y can also
be null, the contents of X and Y (if it exists) are visible
particle/s and the 4-momenta pX , pY are assumed to be well
measured so that one can unambiguously infer the total miss-
ing 4-momentum of ν ν, pmiss = p1 + p2. The 4-momentum
of X must either be fixed by design of the experiment (e.g.
X might be a particle produced at rest in the laboratory or be
the constituent of a collimated beam of known energy or it

2 Note that although Majorana antineutrino is indistinguishable from
Majorana neutrino, we keep using the notation of ν for antineutrino and
ν for neutrino simply as a book-keeping device.

could consist of two colliding particles of known 4-momenta)
or the 4-momentum of X be inferred from the fully-tagged
partner particle with which it is pair-produced. The final state
Y should not contain any additional neutrinos or antineutri-
nos. The process could be a decay or scattering depending on
whether X is a single particle state or two particle state. Some
actual processes that satisfy such criteria are e+ e− → ν ν,

Z → ν ν, e+ e− → γ ν ν, K → π ν ν, B → K ν ν,

R → μ+ μ− νμ νμ with R = B0, H, J/ψ,Υ (1s), etc.
A word of caution: the process X → Y ν ν is not neces-

sarily a neutral current process, and could proceed through
other means such as by doubly weak charged currents. To
keep our analysis model-independent we allow the process
X → Y ν ν to proceed even via NP interactions. We do not
consider any specific NP possibility, but simply ensure that
whenever explicit NP contributions are needed there are no
Lorentz-symmetry violation as well as CPT violation in the
underlying effective Lagrangian.

It should be noted that in this work we discuss processes
where the effect of measurements does not destroy the iden-
tical nature of Majorana neutrino and antineutrino. This is
akin to putting the constraint that in a double-slit experiment,
meant to observe the interference of light, no measurement
should identify the slit through which the photon has passed.

2.2 Origin of observable difference between Dirac and
Majorana neutrinos and practical Dirac Majorana
Confusion Theorem (pDMCT)

We now recall some features from our earlier work for com-
pleteness. The transition amplitude is, in general, dependent
on all the 4-momenta. For brevity of expression and without
loss of generality, we denote the transition amplitude by only
mentioning the p1, p2 dependence. For Dirac neutrinos, the
transition amplitude for X → Y ν ν can be written as,

M D = M (p1, p2), (1)

while for Majorana case the amplitude is anti-symmetrized3

with respect to the exchange of the Majorana neutrino
and antineutrino which are quantum mechanically identical
fermions,

M M = 1√
2

(
M (p1, p2)︸ ︷︷ ︸

Direct amplitude

− M (p2, p1)︸ ︷︷ ︸
Exchange amplitude

)
, (2)

where 1/
√

2 takes care of the symmetry factor. Note that
the amplitudes of Eqs. (1) and (2) do not necessarily assume
the SM interactions, they can involve NP effects as well,
and hence they include the most general structures of the
amplitude that are allowed by Lorentz invariance.

3 For any clarification regarding amplitude anti-symmetrization in case
of Majorana neutrino, please see Sect. 5.2.
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The difference between Dirac and Majorana cases that
can possibly be probed is obtained after squaring the ampli-
tudes (including the usual summation over final spins of ν, ν

and averaging over initial spins4) and taking their difference,
which is given by,

∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2 = 1

2

(
|M (p1, p2)|2︸ ︷︷ ︸

Direct term

− |M (p2, p1)|2︸ ︷︷ ︸
Exchange term

)

+ Re
(
M (p1, p2)

∗ M (p2, p1)
)

︸ ︷︷ ︸
Interference term

. (3)

From Eq. (3) it is easy to conclude that there are essentially
two major sources of any possible difference between Dirac
and Majorana cases:

1. Unequal contributions from “Direct term” and “Exchange
term” in general, i.e.

|M (p1, p2)|2︸ ︷︷ ︸
Direct term

�= |M (p2, p1)|2︸ ︷︷ ︸
Exchange term

. (4)

For the special cases that satisfy |M (p1, p2)|2 =
|M (p2, p1)|2 see Sect. 2.3.

2. Non-zero contribution from the “Interference term”, i.e.

Re
(
M (p1, p2)

∗ M (p2, p1)
)

︸ ︷︷ ︸
Interference term

�= 0. (5)

It is interesting to note that in the case of the SM the inter-
ference term always depends on the size of the neutrino
mass, that is

Re
(
MSM(p1, p2)

∗ MSM(p2, p1)
)

︸ ︷︷ ︸
Interference term

∝ m2
ν . (6)

In presence of NP contributions, the full interference term
need not follow Eq. (6).

The above sources of difference between Dirac and Majo-
rana cases at the level of amplitude square, may or may not

4 This is the usual procedure unless one is interested in quantities that
depend on the neutrino spin-projections, such as what is intended in
Refs. [7,8]. In this work, just like in Refs. [5,6], we do not consider
any neutrino spin-dependent observable. Since, active sub-eV neutri-
nos remain undetected close to their place of production, their spin-
projections also remain experimentally inaccessible. Therefore, all our
amplitude squares in this work include summation over final spins and
average over initial spins. For a generic discussion with spin-dependent
amplitudes have a look at Sect. 5.2.

survive at the level of observables5 which requires appro-
priate phase space considerations. We note that in the case
when no individual information about ν ν are either known
or deducible, the only difference between Dirac and Majo-
rana cases that can be experimentally accessed is obtained
after full integration over p1 and p2 which gives,

∫∫ (∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2
)

d4 p1 d4 p2

=
∫∫

Re
(
M (p1, p2)

∗ M (p2, p1)
)

︸ ︷︷ ︸
Interference term

d4 p1 d4 p2, (7)

which is directly proportional to m2
ν if only the SM inter-

actions are considered. Here we have used the fact that
although, in general, the “Direct” and “Exchange” terms dif-
fer as shown in Eq. (4), when we fully integrate over the
4-momenta of neutrino and antineutrino we get
∫∫

|M (p1, p2)|2︸ ︷︷ ︸
Direct term

d4 p1 d4 p2

=
∫∫

|M (p2, p1)|2︸ ︷︷ ︸
Exchange term

d4 p1 d4 p2, (8)

as p1 and p2 act as dummy variables since the range of inte-
gration is identical.

In the simple processes with the SM mediated interaction
alone (e.g. weak neutral current mediated decay Z (∗) → νν̄)
one finds that, (1) the “Direct term” and “Exchange term”
are equal (see Sect. 2.3), (2) the “Interference term” is pro-
portional to m2

ν and (3) the observable usually requires full
phase space integration over p1,2. This leads to the con-
clusion that all kinematical observable differences between
Dirac and Majorana cases would be proportional to m2

ν. This
is essentially the statement of the “practical Dirac–Majorana
Confusion Theorem” (pDMCT).

Note that our model-independent and process-independent
analysis suggests that if (1) the doubly weak charged cur-
rent processes6 that possibly lead to a non-zero difference
between “Direct term” and “Exchange term” of Eq. (3) and
(2) some kinematic configurations could be identified where
individual information about ν, ν can be accessed so as to
avoid doing the full phase space integration in Eq. (7), then
one might avoid pDMCT constraint.

5 Here by an observable we mean a physical quantity for which we can
make certain predictions from theory for Dirac and Majorana nature of
neutrinos and which can be accessed experimentally.
6 For the sequential weak charged current mediated decays that produce
neutrino and antineutrino of different flavors, e.g. �− → ν� ν�′ �′−,

where �, �′ ∈ {e, μ, τ } and one can never have � = �′, the ν� and ν�′ can
never be considered as identical fermions even if they might indeed be
Majorana fermions. We do not consider such processes in our analysis.
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2.3 Z (∗) → νν̄ in the SM and special cases of
|M (p1, p2)|2 = |M (p2, p1)|2

There are certain special cases when Eq. (4) is not satis-
fied. These are (a) collinear case: p1 = p2, (b) symmetric
case: M (p1, p2) = M (p2, p1) and (c) antisymmetric case:
M (p1, p2) = −M (p2, p1). As an example, within the SM
for the neutral current mediated processes Z (∗) → νν̄, such
as Z → νν̄, e+e− → νν̄, B → Kνν̄ and etc. [5], one gets
equal direct and exchange terms,

|M (p1, p2)|2︸ ︷︷ ︸
Direct term

= |M (p2, p1)|2︸ ︷︷ ︸
Exchange term

. (9)

Therefore, for these processes we find that even at the level
of amplitude square,

|M D|2 − |M M |2 ∝ m2
ν, (10)

which suggests that in such a case pDMCT holds true always
without any exception. Since in this case pDMCT holds at the
amplitude square level, it naturally holds true for all observ-
ables.7 See Sect. 3 to find out how this conclusion changes
in presence of NP.

3 New Physics scenarios and pDMCT in Z(∗) → ν� ν�

There is no reason a priori for the “practical DMCT” to hold,
if NP contributions in the neutrino interactions are allowed, as
in this case Eq. (3) “Direct” and “Exchange” terms in general
do not need to cancel each other. To illustrate it more clearly
using symmetry properties of the transition amplitude, let us
assume that some (yet unknown) NP at high energy modifies
the low energy effective neutrino interactions Z (∗) → ν� ν�.

Considering Lorentz invariance, CP and CPT conserva-
tion, applying Gordon identities as well as neglecting any
mν dependent terms at the amplitude level, we find that the
most general decay amplitude for Z(p) → ν(p1) ν(p2) is as
follows (for Dirac neutrinos) [5],

M D = M (p1, p2)

= − i gZ
2

εα(p)
[
u(p1) γ α

(
C�
V − C�

A γ 5
)
�(p2)

]
,

(11)

where gZ = e/(sin θW cos θW ) with θW being the weak mix-
ing angle and e being the electric charge of positron, and for
different lepton family � = e, μ, τ we have the possibility of

7 The equality of direct and exchange terms, either at amplitude square
level as shown in Eq. (9) or at the level of experimentally measur-
able observable that involves full phase space integration shown in
Eq. (8), is often generalized as existence of one-to-one correspondence
between Dirac and Majorana neutrinos in the massless limit mν → 0.

See Sect. 5.1 for more details.

having different vector and axial-vector coupling parameters
C�
V , C�

A. Since we are considering NP possibilities here, we
can write the vector and axial-vector coupling parameters as
follows,

C�
V,A = 1

2
+ ε�

V,A, (12)

where ε�
V , ε�

A parameterise the NP effects, vanishing in the
SM case. The amplitude for Majorana case is given8 by

M M = 1√
2

(
M (p1, p2) − M (p2, p1)

)

= i gZ C�
A√

2
εα(p)

[
u(p1) γ α γ 5 �(p2)

]
. (13)

It is clear that we can combine the direct and exchange ampli-
tudes in this case and effectively redefine the vertex structure
for Z → ν� ν� when Majorana neutrinos are considered.

Keeping neutrino mass dependent terms in the amplitude
squares, we get different results for Dirac and Majorana neu-
trinos:

∣∣∣M D
∣∣∣
2 = g2

Z

3

((
(C�

V )2 + (C�
A)2

) (
m2

Z − m2
ν

)

+ 3
(
(C�

V )2 − (C�
A)2

)
m2

ν

)
, (14)

∣∣∣M M
∣∣∣
2 = 2 g2

Z (C�
A)2

3

(
m2

Z − 4m2
ν

)
, (15)

such that

∣∣∣M D
∣∣∣
2 −

∣∣∣M M
∣∣∣
2

= g2
Z

3

( (
(C�

V )2 − (C�
A)2

) (
m2

Z + 2m2
ν

)
+ 6 (C�

A)2 m2
ν

)

=

⎧
⎪⎪⎨
⎪⎪⎩

g2
Z

2
m2

ν,
(

for the SM
alone

)

g2
Z

3

(
ε�
V − ε�

A

)
m2

Z ,

(
with NP but

neglecting mν

) (16)

where we have kept only the leading order contributions of
ε�
V,A while considering NP effects. It is clear that the SM

result is fully in agreement with “practical Dirac Majorana
confusion theorem” even at the amplitude-squared level, i.e.
in the limitmν → 0 there is no observable difference between
Dirac and Majorana cases in the SM via the process Z → ν ν.

It implies

|M (p1, p2)|2 = |M (p2, p1)|2 ,

8 Anti-symmetrized amplitude for Majorana neutrino can have contri-
butions only from scalar, pseudo-scalar and axial-vector interactions (if
the process is mediated via a neutral current), as shown in [5,9].
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within the SM. However, the difference between Dirac and
Majorana neutrinos appears in context of NP contributions
even when one neglects mν dependent terms (unless, of
course, ε�

V = ε�
A in which case the additional NP contri-

butions effectively rescale the SM allowed V − A coupling).
Possible example of NP effects in this Z boson decay could
arise from kinetic mixing of Z with the neutral gauge bosons
from extra gauge groups like additional U (1) or SU (2)R . In
this work we are not concerned with any specific model of
NP to keep our results and discussions very general.

Note that for the neutral current mediated processes in the
SM, such as Z → νν̄, e+e− → νν̄, B → Kνν̄ etc., the
deduction of energy and/or momentum of the invisible neu-
trinos does not help to distinguish between Dirac and Majo-
rana neutrinos because the pDMCT holds true even at the
amplitude-squared level. In such a case every conceivable
observable gives the same result for Dirac and Majorana
neutrino, except showing the tiny difference coming from
the interference term which is proportional to the neutrino
mass. Therefore, only in the presence of physics beyond the
SM [5,10,11] a distinction may be made between Dirac and
Majorana nature of neutrinos through such processes.

4 Practical Dirac–Majorana Confusion Theorem and
its exceptions

4.1 The general strategy to probe nature of neutrinos and
pDMCT

The general formalism discussed in previous sections may
be suitably illustrated by the chart shown in Fig. 1. The red
(color in online) arrows drawn in the figure present the previ-
ous works of the pDMCT, all of which have studied the weak
neutral current processes within the SM, such as γ ∗ → ν ν̄

[1], Z → ν ν̄ [12], e+e− → ν ν̄ [7], K+ → π+ ν ν̄ [13],
e+e− → ν ν̄ γ [8], |es〉 → |gs〉+ν ν̄ γ [14], e−γ → e− ν ν̄

[15], ν + N → N ν γ [16], etc. As can be easily seen, all
of these processes have confirmed the pDMCT because (1)
|M (p1, p2)|2 = |M (p2, p1)|2 due to the weak neutral cur-
rent processes within the SM and/or (2) there is no way to
observe or deduce the 4-momenta of ν and/or ν̄ as these are
simple 2- or 3-body processes.

Although there is no general, model-independent, process-
independent and observable-independent proof9 of the “prac-
tical Dirac Majorana confusion theorem”, it is generally

9 We use the phrase ‘observable-independent proof’ to underline the
fact that no mathematical proof of pDMCT can be given without refer-
ring to any specific observable. So observables play a pivotal role in the
discussion on pDMCT. As there is no observable-independent proof of
pDMCT, one is free to explore different possible observables to distin-
guish between Dirac and Majorana nature of neutrinos in the specific
context of one’s chosen process.

assumed to apply to all the probes of Majorana nature of
sub-eV neutrinos. The formalism presented in Sects. 2 and 3
provides a simple model-independent, process-independent
and observable independent view of the pathways by which
the confusion theorem can be overcome, such as by using the
properties of the NP interactions or analysing the “special
kinematical scenarios” utilising the chosen parts of neutrino
momentum spectra.

In order to illustrate the general strategy within the SM
we would like to point out that the 2-body and 3-body νν̄

final state processes are not suitable for the special kine-
matic scenarios because those decays are weak neutral cur-
rent processes. On the other hand, 4-body decays such as
B, D, K , H, J/ψ,Υ (1s), . . . → μ+ μ− νμ νμ, which are
doubly charged weak decay processes [6], could be more rel-
evant for utilising the dependence of decay distributions on
kinematic variables to distinguish between Dirac and Majo-
rana neutrino in the case of the SM-like interactions. The
main advantage of 4-body decays over the 2/3-body decays is
the multitude of kinematic configurations and related observ-
ables that can be explored for the purpose of distinguish-
ing between Dirac and Majorana neutrinos. The difference
between Dirac and Majorana neutrinos that exists at the level
of amplitude square, requires a proper observable so that we
can access that difference. This once again highlights how
crucial an observable is in this context. In the next subsection
we summarize our findings on how to possibly overcome the
pDMCT to distinguish between Dirac and Majorana neutrino
using the special kinematics in B0 → μ+ μ− νμ νμ decay
in the SM.

4.2 How to overcome pDMCT within the SM by using the
special kinematics in
B0 (D, H, J/ψ, Υ (1s), . . .) → μ+ μ− νμ νμ

In most of the experimental scenarios, especially true for pro-
cesses of the form X → Y ν ν, information about individual
neutrino momenta is not available. In such a case the dif-
ference between the Dirac and the Majorana neutrinos, that
may be realised, is given by the integrated interference term in
Eq. (7). In such a case the evaluation of the squared Feynman
diagram for the “Interference term” in the SM necessarily
involves two helicity flips which would make it proportional
to m2

ν. Thus, if only the SM interactions are considered and
one fully integrates over the neutrino and antineutrino 4-
momenta, the difference between Dirac and Majorana cases
is proportional to m2

ν . This may be considered as the most
general statement of the “practical Dirac Majorana confusion
theorem”.

However, there is no reason a priori for the pDMCT
to hold, if one can consider special kinematic configura-
tions where the 4-momenta (or some components of the 4-
momenta) of the neutrino and antineutrino are known, so that
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Fig. 1 Distinct pathways that
can be explored to probe the
Majorana nature of sub-eV
neutrinos and overcome the
limitations imposed by the
“practical Dirac Majorana
confusion theorem”

full integration over 4-momenta is not necessary before com-
parison with the experiment. This is valid even in the SM. In
the following sub-subsections we discuss this scenario where
such situation may occur.

4.2.1 pDMCT and the doubly weak charged current decay
B0 → μ− μ+ νμ ν̄μ

The decay B0 → μ− μ+ νμ ν̄μ takes place via doubly weak
charged currents since flavor changing neutral currents are
impossible at tree-level in the SM. The branching ratio of this
mode gets substantial contributions from intermediate reso-
nances such as π− and D−. Details on the process have been
thoroughly investigated in Ref. [6]. Similar 4-body decays
such as B, D, K , H, J/ψ, Υ (1s), . . . → μ+ μ− νμ νμ

could be studied in an analogous manner.
The Eqs. (31, 32) in Ref. [6] clearly show the unequal con-

tributions from “Direct term” and “Exchange term”, which
satisfy our Eq. (4)

|M (p1, p2)|2︸ ︷︷ ︸
Direct term

�= |M (p2, p1)|2︸ ︷︷ ︸
Exchange term

,

unlike the weak neutral current processes. As explained in
Sect. 2.2 if we can measure or deduce the individual energy
or momentum of the missing neutrino, then the pDMCT con-
straint will not apply.

Fig. 2 The general kinematics of B0 → μ−μ+νμν̄μ in the rest frame
of B, showing the polar angles θm and θn, as well as the azimuthal angle
φ. Here Xm and Xn denote the muon pair and the neutrino pair

In Fig. 2, we show the general kinematics of B0 →
μ−μ+νμν̄μ in the rest frame of B. The angles θn and φ

are indeed inaccessible in general, as the neutrino pair goes
missing. Therefore, for a physically useful differential decay
rate we must integrate over both θn and φ, i.e.

d3Γ D/M

dm2
μμ dm2

νν d cos θm
= Y Ym Yn

(4 π)6m2
B mμμ mνν

×
∫ 1

−1

∫ 2π

0

〈∣∣M D/M
∣∣2

〉
d cos θn dφ,

(17)
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where Y is the magnitude of 3-momentum of the di-muon
system (muon pair with invariant mass mμμ) or di-neutrino
system (neutrino pair with invariant mass mνν) in the rest
frame of B0, Ym is the magnitude of 3-momentum of μ± in
the di-muon rest frame, Yn is the magnitude of 3-momentum
of νμ or νμ in the di-neutrino rest frame. It is straightfor-
ward to show that the difference between Dirac and Majorana
cases, as shown in Eqs. (33, 34) of [6], is given by

d3Γ M

dm2
μμ dm2

νν d cos θm
− d3Γ D

dm2
μμ dm2

νν d cos θm
∝ m2

ν, (18)

which agrees with the pDMCT. Therefore, even in the case
of a doubly weak charged current mediated decay process if
we integrate fully over the available phase space of the invis-
ible neutrino pair, we confirm pDMCT as expected from our
discussion in Sect. 2.2. The situation changes, if and when
we access a special kinematic scenario where the individ-
ual energy or 3-momentum of the invisible neutrinos can be
inferred. In the following we discuss such a special kinematic
situation.

4.2.2 Back-to-back muon special kinematic configuration
in B0 → μ− μ+ νμ ν̄μ

Consider the decay of the parent B0 in its rest frame in which
the μ+, μ− back to back with equal but opposite 3-momenta.
Experimentally this is an ideal situation since it is easier to
detect muons. The neutrino antineutrino pair must also fly
away back-to-back since 3-momentum is conserved. This is a
much simpler kinematic configuration than the general kine-
matics for any 4-body decay. Instead of the usual five inde-
pendent variables one needs to describe any 4-body decay,
we only need two independent variables to describe the back-
to-back configuration. In this case, the energies of the two
muons are the same and let us denote them by Eμ. Similarly,
the energies of the back-to-back neutrino and antineutrino
are the same and let us denote them by Eν . Either Eμ or Eν

is independent, because from conservation of energy we get,

Eμ + Eν = mB/2, (19)

where mB is the mass of the B0 meson. Let us choose Eμ

as one independent variable. The other independent variable
would then be the angle, say θ, between the muon direction
and the neutrino direction.

For back-to-back case, with E1 = E2 = Eν (say) and
the angle between the two neutrinos Θ = π, we get the
following,

m2
νν = 4 E2

ν , (20a)

m2
μμ = (mB − 2 Eν)

2 . (20b)

Moreover, for the back-to-back case we have

Ym =
√(mB

2
− Eν

)2 − m2
μ, (21a)

Yn =
√
E2

ν − m2
ν. (21b)

It can be shown that, in general,

cos θn = mνν (E1 − E2)

2 Y Yn
. (22)

Whenever E1 = E2 for any value of the angle Θ between
the neutrino and antineutrino we get cos θn = 0. By ana-
lytic continuation we extend this feature to the back-to-back
kinematics for which the cos θn has a discontinuity otherwise.
Moreover, in the back-to-back case we have both the back-to-
back muons and the back-to-back neutrino antineutrino pair,
in one single plane. This implies that for the back-to-back
case we have φ = 0. These choices put the orientation of the
coordinate axes in such a way that the back-to-back neutrino
and antineutrino fly away defining the x-axis. The xz-plane
in Fig. 2 is the one in which the 3-momenta of muons lie,
and now the back-to-back neutrino antineutrino define the x-
direction. The direction perpendicular to the neutrino direc-
tion is the z-direction. If we define the angle between the
neutrino and muon directions to be θ, then θm = π/2 − θ.

This implies that

cos θm = sin θ. (23)

The differential decay rate in the back-to-back case is there-
fore given by,

d3Γ
D/M↔

dE2
μ d sin θ

=
2

√
E2

μ − m2
μ

(4 π)6 mB Eμ

((mB

2
− Eμ

)2 − m2
ν

)

〈∣∣M D/M↔
∣∣2

〉
, (24)

where
〈∣∣M D/M↔

∣∣2
〉

is same as
〈∣∣M D/M

∣∣2
〉

with the necessary

dot product substitutions in the back-to-back case (this is the
meaning of the subscript ‘↔’). Please note that the difference
between the integrated widths of Γ D↔ and Γ M↔ can be very
large as shown in Eq. (51) of [6], and computable in the SM or
any other framework. It is also independent of the magnitude
of the unknown neutrino mass for the leading terms.

For simplicity we neglect the masses of muons and neutri-
nos in comparison with the mass of B0 as well as the energies.
Note again that this does not mean that we consider muons
and neutrinos to be massless. With this condition we find
that only the non-resonant contributions survive. We consider
only the dominant form factor contribution, and assume it to
be a constant form factor. The full differential back-to-back
decay rates are then given by,
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d3Γ D↔
dE2

μ d sin θ
= G4

F |Fa |2
(
mB − 2 Eμ

)4
Kμ

512 π6 mB Eμ

× (
Eμ − Kμ cos θ

)2
, (25a)

d3Γ M↔
dE2

μ d sin θ
= G4

F |Fa |2
(
mB − 2 Eμ

)4
Kμ

512 π6 mB Eμ

×
(
E2

μ + K 2
μ cos2 θ

)
, (25b)

where Kμ =
√
E2

μ − m2
μ is the magnitude of the 3-

momentum of the back-to-back muons. There are no mν

dependent terms here. The muon energy distribution obtained
after integrating over sin θ shows that there exists non-zero
difference between the Dirac and the Majorana cases. More-
over, the corresponding branching ratio for the back-to-back
kinematics for Majorana case is more than 15 times bigger
than that for the Dirac case. Thus, these results are not in
agreement with pDMCT. Strictly speaking, since we are not
integrating over the full phase space of neutrinos, the pDMCT
need not apply in this case. The back-to-back kinematic con-
figuration provides a way of realising this exception. For
more details of the back-to-back kinematics and the related
issues, please see Appendix A.

This result confirms the discussion in Sect. 2. However, it
should be acknowledged that the reader may find the result
contradictory or even counter intuitive to the previous under-
standing of the pDMCT. In the next section we try to clarify
some of the frequently used concepts that are used to assert
pDMCT as a generic feature irrespective of the process, or
observable.

5 Discussions on concepts usually accompanying
explanations of pDMCT

It is generally believed that all observable difference between
Dirac and Majorana neutrinos must always be proportional
to some power of neutrino mass mν [1], which is the content
of practical Dirac–Majorana Confusion Theorem (pDMCT).
However, all processes where the theorem was shown to hold
involved either full integration over the 4-momenta of miss-
ing neutrinos and/or only for the weak neutral current process
within the SM [5,6].

As we have discussed, pDMCT is not a fundamental the-
orem of neutrinos: pDMCT actually depends on physics
models, processes and observables, e.g. even for Z → νν̄,

pDMCT holds within the SM, but can be violated beyond
the SM depending on the model parameters. Even within
the SM, pDMCT depends on the processes, e.g. B → Kνν̄

confirms pDMCT, but B → μ+μ−νν̄ can violate pDMCT.
Therefore, while the quantum statistics of Majorana neutri-

nos10 is a fundamental property of neutrinos, pDMCT is not.
Instead, pDMCT is an emergent phenomenological feature
arising out of non-observation of neutrinos.

In this section we give comments on the existence of any
analytic continuity between Dirac and Majorana neutrinos
in the limit mν → 0 and the issue on anti-symmetrization
of amplitude while dealing with pair of identical Majorana
neutrinos. We also address in the appendix some pedagogical
issue on massless Majorana neutrino, which can be a funda-
mental difference between Dirac and Majorana neutrinos.

5.1 Is there any one-to-one correspondence between Dirac
and Majorana neutrinos in the massless limit, mν → 0?

The issue of one-to-one correspondence between Dirac and
Majorana neutrinos in the massless limit mν → 0 can be
analyzed from the context of specific processes and observ-
ables. As mentioned in Sect. 2.3 if one considers neutral
current mediated processes such as Z → ν ν (and include
summation over neutrino spins while evaluating amplitude
squares) within the SM, the direct and exchange terms in
amplitude square become equal and the difference between
Dirac and Majorana neutrinos becomes proportional to m2

ν,

which vanishes if we were to simply apply the limit mν → 0
at the end.11 However, when one considers processes that
are not facilitated by the SM neutral current interactions, the
direct and exchange terms can have non-zero difference even
when we neglect mν dependent terms (or equivalently put
mν → 0). In such a case some specific observable might be
able to probe these important non-zero differences. In these
instances, in the context of a specific process and observ-
able, there is indeed no one-to-one correspondence between
the Dirac and Majorana neutrino scenarios. However, in all
cases with the SM only interactions if the observable includes
full phase space integration over the neutrino and antineu-
trino, we do find that the direct and exchange terms have equal
contribution after integration (see Eq. (8)) which amounts to
no observable difference between the two scenarios in the
limit mν → 0.

As explained in Appendix B, it is a mathematical impossi-
bility to preserve Majorana nature of a fermion when its mass
becomes zero. In fact due to Lorentz invariance and conserva-
tion of chirality for massless fermions, such chiral fermions
have a distinct nomenclature as being Weyl fermions. To
describe Weyl fermions it is sufficient to use 2-component
complex spinors instead of 4-component complex spinors.

10 The quantum statistics of Majorana neutrino and antineutrino
(which are quantum mechanically identical) does not depend on the
size of their mass, but only on their spin.
11 As shown in Appendix B, we can not start from massless neutrinos
as then the neutrinos can not have Majorana nature. At the end of full
calculation, one can certainly apply the limit mν → 0 which amounts
to neglecting mν dependent terms due to their tininess.

123



Eur. Phys. J. C (2023) 83 :972 Page 9 of 13 972

Nevertheless, the 2-component Weyl spinors can be used to
construct 4-component complex Dirac spinors as well as 4-
component Majorana spinors (that are real in the Majorana
basis). Both the Dirac and Majorana spinors have both left-
and right-chiral components. When one takes the massless
limit or when one considers ultra-relativistic fermions one
finds that these constructs of Dirac or Majorana spinors pre-
fer specific chirality states. Nevertheless, as long as the mass
of the fermion is non-zero both the chiral states are present.
However, once the fermion is massless, it becomes fully chi-
ral and it can not have Majorana nature at all. The Dirac
nature (meaning its particle and antiparticle states are distinct
and distinguishable) survives the massless limit. Therefore,
although both Dirac and Majorana 4-component spinors get
reduced to 2-component Weyl spinors in the massless limit,
the Weyl spinors only show Dirac nature and the Majorana
nature is completely lost. This implies there is really no one-
to-one correspondence between Dirac and Majorana nature
of neutrinos in the massless limit.

5.2 Should the amplitude be anti-symmetrized for pair of
Majorana neutrinos of the same flavor with mν > 0?

It is well known that when two identical particles are present
in the final state, the corresponding transition amplitude
needs to be symmetrized (or anti-symmetrized) with respect
to their exchange if they are bosons (or fermions). There-
fore, if a final state has two massive neutrinos or two mas-
sive antineutrinos of the same flavor (i.e. ν� ν� or ν� ν�, with
� = e, μ, τ ) then the transition amplitude would always
be anti-symmetric under their exchange (which involves
exchange of 4-momenta and spin) irrespective of whether
they are Dirac and Majorana fermions. This is to ensure the
Fermi–Dirac statistics. However, if we have a final state that
has ν� ν�, then it has distinct particles for Dirac neutrinos,
but it has identical particles for massive Majorana neutri-
nos. Thus, when considering Majorana nature of the massive
neutrinos, one needs to anti-symmetrize the transition ampli-
tude in this case. This is one of the main differences between
Dirac and Majorana neutrinos, and it has been noted by many
authors, (see e.g. [7,8,13] and etc.) before us. One simple
example of this amplitude anti-symmetrization is, as shown
in Sect. 3, the most general amplitude of Z → νν̄ for Dirac
neutrino in Eq. (11) and for Majorana neutrino in Eq. (13).

If the 4-momenta (and spins) of ν�, ν� be denoted by p1,

p2 (and s1, s2) respectively, then the transition amplitude for
Dirac case can be symbolically written as,

M D ≡ M s1,s2(p1, p2), (26)

while the amplitude for Majorana case would be,

M M ≡ M s1,s2(p1, p2) − M s2,s1(p2, p1). (27)

In the calculation of the observable for the specific process
in both Dirac and Majorana cases, one takes the square of the
amplitude, does the usual trace calculations by summing over
the final spins and averages over the initial spins, except when
one is interested in an observable that depends on neutrino
spins which is practically impossible to do experimentally
for sub-eV active neutrinos. Thus the spin information gets
wiped out via the spin summation. In context of the SM,
we know that the V − A nature of weak interaction ensures
that we always get a left-chiral neutrino and a right-chiral
antineutrino. However, despite being produced in specific
chiral states, their chirality is not conserved due to non-zero
mass, following Eq. (38). Due to non-zero mass, chirality is
not same as helicity which is the projection of spin along
the direction of motion. Thus, left and right helical massive
neutrinos get produced from the SM weak interaction. Thus
we consider all spin possibilities of the massive eigenstates
in our calculation. Any issues related to relativistic or non-
relativistic kinematics are automatically taken care of by the
field theoretic calculations for amplitude square with sum-
mation over final spins and average over initial spins.

Another approach to include all spin possibilities in the
final calculation leading to correct amplitude square is via
splitting the full amplitude into all possible helicity ampli-
tudes, where one specifies the individual helicities, say λ1

and λ2 instead of s1 and s2. In such a method, one has to
exchange the helicities (equivalent to exchange of spins) for
the Majorana case, i.e.

M D ≡
∑
λ1,λ2

M λ1,λ2(p1, p2), (28a)

M M ≡
∑
λ1,λ2

(
M λ1,λ2(p1, p2) − M λ2,λ1(p2, p1)

)
. (28b)

In the Majorana case amplitude square, it thus becomes clear
that there will be interference terms that require helicity flip
and such terms would be proportional to m2

ν . If the SM inter-
actions are only taken into account, then all the interference
terms always involve helicity flips.

6 Conclusions

In this work, we have revisited the practical Dirac Majorana
confusion theorem and studied its domain of applicability.
We find that one should always keep the historical context of
neutral currents in mind while applying this theorem rigor-
ously. If the process involves doubly weak charged currents,
or some new physics contributions, and if one can infer the
energy or 3-momentum of neutrino and antineutrino using
some special kinematic configurations, then this theorem
need not hold true. It might hold true in specific processes, but
this theorem does not have any generic, model-independent,
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process-independent and observable-independent proof. We
have also highlighted and addressed some of the most com-
monly and easily misunderstood concepts that come to mind
while thinking of this theorem.

As a final note, it is rather tempting to confirm the
pDMCT and/or find out how to overcome the pDMCT from
the fundamental Lagrangian level. The effective interaction
Lagrangian always respects quantum statistics even though
it might not be evident at the level of fundamental interac-
tion Lagrangian. Since the Lagrangian pertaining to neutrino
masses have neither a direct bearing on the effective inter-
action Lagrangian nor carry any signature of the quantum
statistical difference we are interested in, the mass gener-
ating Lagrangians do not affect our analysis. As is previ-
ously explained, the use of basic weak neutral current inter-
action, Z → νν̄, will always lead to pDMCT within the
SM. And the use of weak charged current processes, such
as W± → �±ν� and �− → ν� ν�′ �′−, do not intro-
duce any identical Majorana neutrino pair, so no difference
between Dirac and Majorana neutrinos can be probed using
these. Only doubly weak charged 4-body decay processes,
e.g. B, D, K , H, J/ψ,Υ (1s), . . . → μ+ μ− νμ νμ, could
be considered to find out whether the process gives equal
contributions from “Direct term” and “Exchange term” – the
only meaningful way to overcome pDMCT within the SM.

The neutrino-less double beta decay (0νββ) [17,18] has
a limitation that it is dependent on the unknown tiny mass
of the neutrino. If it is too small, there is no possibility of
establishing the nature of the neutrino through 0νββ. Our
proposal to probe quantum statistics of Majorana neutrinos
seems to be the only viable alternative to 0νββ as far as prob-
ing Majorana nature of sub-eV active neutrinos is concerned.
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Appendix A: Clarifications on back-to-back kinematics

In back-to-back kinematic configuration of Fig. 2, we note
the following points.

1. All the final particles fly away in a single decay plane in
the rest frame of the parent particle, i.e. �p+, �p−, �p1 and
�p2 lie on a single plane, and

�p1 + �p2 = �0, �p+ + �p− = �0. (29)

2. Only by assuming all the final particles in Fig. 2 to be
massless, or by neglecting their masses, do we get equal
energies for the particles flying back-to-back, i.e.

E1 = E2 ≡ Eν, E+ = E− ≡ Eμ, (30)

and from conservation of energy

Eν + Eμ = 1

2
mB . (31)

Thus knowing either Eν or Eμ is sufficient.
3. The back-to-back kinematics for a measured event would

specify Eμ as well as the angle θ shown in Fig. 2. Since νμ

and ν̄μ are invisible in the detector, the angle θ is experi-
mentally unknown and therefore should be integrated out
for the final observable.

4. The back-to-back configuration is a special case of the
general kinematic configuration, and not arrived at by any
integration or summation. The general kinematic con-
figuration involves two decay planes (see Fig. 2), and
requires five independent variables for complete spec-
ification (see Sec.IV.E of [6]). For full specification of
the back-to-back kinematics one instead needs to spec-
ify, only the energy Eν or Eμ (here we are making the
massless assumption mentioned above) and the angle θ

in Fig. 2. To come from general kinematics to the back-
to-back kinematics one needs to fix certain quantities.

A.1 Important issues to address when coming to
back-to-back kinematics from general kinematics

The angle between twodecay planes:The usual description
of general kinematics for the 4-body final state has two decay
planes, with an angle φ between them. For back-to-back kine-
matics the two decay planes coincide to form a single decay
plane. So for back-to-back kinematics φ = 0. No integra-
tion over φ is involved to arrive at the final observables in
back-to-back kinematics.
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Discontinuity from general kinematics to back-to-back
kinematics: The expression

cos θν =
√
sνν̄ (Eν − Eν̄ )

2Xβν

, (32)

has a discontinuity when Eν → Eν̄ and the angle Θνν̄

between νμ and ν̄μ approaches π. In fact this expression
yields 0/0 form if we simply substitute Eν = Eν̄ and
Θνν̄ = π. Thus, one needs to apply L’Hospital’s rule to get
the limit. The limit Eν → Eν̄ with Θνν̄ = π yields ±1, i.e.
cos θν has a discontinuity which needs to be resolved. Here
we note that for Eν = Eν̄ we get cos θν = 0, as long as
Θνν̄ �= π. At Θνν̄ = π this discontinuity appears and it can
be resolved by taking average of the two limits, which yields
0 and makes cos θν continuous. The approach is similar to
what is done to remove the discontinuity in Heaviside step
function at x = 0. Once cos θν and φ are put to zero, the rest
of the results needs to be consistent with expectations from
helicity arguments, as is found consistently in Ref. [6].

Inferredneutrino energydistribution:The neutrino energy
distribution in back-to-back configuration requires that the
neutrino energies be inferred. In the case of back-to-back
events we have E1 = E2 ≡ Eν = 1

2mB − Eμ. In our paper
[6] in Eq. (35), we have shown that the difference between
Dirac and Majorana neutrinos vanishes when full integra-
tion over neutrino phase space is done. Moreover as we have
noted before, the back-to-back kinematics can be obtained
from general kinematics not via any integration but by taking
specific values of the parameters in the general kinematics.
This makes the back-to-back kinematics a special case of the
general kinematics.

For realistic experimental observation of back-to-back
kinematics: Our treatment of back-to-back kinematics in
Ref. [6] is purely mathematical, i.e. we have used the fol-
lowing exact conditions,

E1 = E2 = Eν, Θ = π, φ = 0, θm = π

2
− θ.

Out of these, the first and second conditions are primary ones,
while the rest arise as a consequence of the first two crite-
ria. However, none of these quantities are physically observ-
able. The first two conditions also imply that E+ = E− =
Eμ ≡ mB/2 − Eν which is experimentally observable. Any
error, on the muon energy measurement would imply that the
muon energy distribution as shown in Fig. 5(c) of Ref. [6]
would involve energy bins with bin width corresponding to
the experimental error within which equality of E+ and E−
is satisfied. There would also possibly be extremely slight
deviation from the 180◦ angle between the two final muons,
in an experimental back-to-back realization. This can lead
to small deviation of Θ from π, say Θ = π ± ΔΘ. This
implies cos Θ = − cos ΔΘ ≈ −1 + ΔΘ2/2, so that the

error in cos Θ measurement is ΔΘ2/2 and it gets multiplied
to the back-to-back muon energy distribution of Eq. (50) of
Ref. [6] to give the amount of smearing one can expect from
the measurement. Thus, a real experimental realization of the
back-to-back kinematics would lead to a muon energy dis-
tribution curve similar to Fig. 5(c) of Ref. [6] but it would
be a histogram plot with bin size determined by the muon
energy resolution and there will be some vertical smearing
arising from the slight deviation from 180◦ angle require-
ment. However, the difference between Dirac and Majorana
neutrinos should not get washed away as a result of such a
tiny smearing from experimental measurements.

Appendix B: Can a massless neutrino with the SM inter-
actions be a Majorana neutrino?

To properly address this question we need to make a small
detour and start from the beginning, the Dirac equation itself,
(
i γ μ ∂μ − m

)
ψ(x) = 0, (33)

where ψ(x) is the 4-component complex Dirac spinor field
that describes a spin- 1

2 fermion of mass m, and γ μ (μ =
0, 1, 2, 3) denote the set of four complex 4×4 matrices which
satisfy the anti-commutation relation {γ μ, γ ν} ≡ γ μ γ ν +
γ ν γ μ = 2 gμν, and also ensure the hermiticity of the cor-
responding Dirac Hamiltonian via γ 0 (γ μ)† γ 0 = γ μ. The
important question to ask here is whether one can have a real
solution of the Dirac equation. It turns out that, if one works
in Majorana basis which has only imaginary γ matrices, say
γ μ = −i γ̃ μ where γ̃ μ are real 4 × 4 matrices, then one can
have a real spinor field ψ̃(x) which satisfies the equation,
(
γ̃ μ ∂μ − m

)
ψ̃(x) = 0. (34)

Such a basis of fully imaginary gamma matrices is called the
Majorana basis and the real solution to Dirac equation is said
to describe the Majorana fermion. The reality condition in
Majorana basis,

ψ̃(x) = ψ̃∗(x) (35)

when viewed from any other basis for the gamma matri-
ces, yields that the Majorana spinor field be identical to
its charge conjugate spinor field (more accurately it is the
Lorentz-covariant conjugate). This implies that a Majorana
fermion is one which is indistinguishable from its antiparti-
cle state. From Eq. (34) it seems clear that one could have
a massless Majorana fermion as well. However, in context
of the fermion being neutrino, which gets produced only by
the weak interaction in the SM, the answer is slightly more
involved.

Before we address the issue with massless Majorana neu-
trino in the context of the SM weak interactions we need
to take another detour. Using the four gamma matrices, one
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can always define a fifth gamma matrix, γ 5 = i γ 0 γ 1 γ 2 γ 3,

called the chiralitymatrix and it commutes with other gamma
matrices, it is its own Hermitian adjoint and its own inverse.
We note that the matrix γ 5 is also fully imaginary in the Majo-
rana basis. The usefulness of γ 5 is that it allows us to split the
complex 4-component spinor field ψ into two distinct parts,

ψ = ψL + ψR, (36)

where ψL , ψR are two distinct eigenfunctions of γ 5,

γ 5ψL = −ψL , γ 5ψR = +ψR . (37)

The two parts of ψ, namely ψL and ψR are called the left-
chiral and right-chiral spinor fields. In terms of these chiral
parts, the Dirac equation gets split into two equations,

i γ μ ∂μ ψR = m ψL , (38a)

i γ μ ∂μ ψL = m ψR . (38b)

The space-time evolution of either of the chiral spinor fields
is dependent on the mass of the fermion as well as the
other chiral spinor field. Thus, when the fermion has non-
zero mass (m �= 0) the chirality is not conserved. How-
ever, when m = 0, the chirality is not only conserved, but it
also has the same physical meaning as helicity (which is the
projection of the fermion spin along its direction of flight).
Because a massless particle always travels with speed of light,
it has the same chirality or helicity in all frames of refer-
ence. Therefore, massless one-half spin fermions of definite
chirality are distinct particles. Upon charge conjugation (or
Lorentz-covariant conjugation) the chirality of the particle
gets reversed, implying that the chirality of the antiparticle
is opposite to that of its particle. Thus, for a massless chi-
ral spin- 1

2 fermion chirality (or helicity) distinguish between
particle and antiparticle which is against the requirement one
has for it to qualify as a Majorana fermion. In the SM, the
weak interaction always produces left-chiral neutrinos and
right-chiral antineutrinos. If neutrino is taken to be amassless
fermion (mν = 0), then its chirality would be conserved and
remain Lorentz invariant. Thus one can distinguish a mass-
less SM neutrino from the corresponding antineutrino by its
chirality. Another way to realize the impossibility of having
a massless chiral fermion with Majorana nature is by asking
the mathematical question whether a chiral spinor field can
ever be real in the Majorana basis. Since γ 5 in Majorana basis
is purely imaginary, its eigenfunctions ψR/L with eigenval-
ues ±1 in Eq. (37) can never be real. This is a mathematical
impossibility. Therefore, one can never have massless chiral
Majorana fermions or neutrinos.12

12 The conclusion of this section is inspired from Ref. [19].
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