
Eur. Phys. J. C (2023) 83:960
https://doi.org/10.1140/epjc/s10052-023-12153-y

Regular Article - Theoretical Physics

Extracting the energy and angular momentum of a Kerr black hole

J. A. Rueda1,2,3,4,5,a, R. Ruffini1,2,6,b

1 ICRANet, Piazza della Repubblica 10, 65122 Pescara, Italy
2 ICRA, Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
3 ICRANet-Ferrara, Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
4 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
5 INAF, Istituto de Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, 00133 Rome, Italy
6 INAF, Viale del Parco Mellini 84, 00136 Rome, Italy

Received: 4 September 2023 / Accepted: 14 October 2023 / Published online: 24 October 2023
© The Author(s) 2023

Abstract It has been thought for decades that rotating black
holes (BHs) power the energetic gamma-ray bursts (GRBs)
and active galactic nuclei (AGNs), but the mechanism that
extracts the BH energy has remained elusive. We here show
that the solution to this problem arises when the BH is
immersed in an external magnetic field and ionized low-
density matter. For a magnetic field parallel to the BH spin,
the induced electric field accelerates electrons outward and
protons inward in a conical region, centered on the BH rota-
tion axis, and of semi-aperture angle θ ≈ 60◦ from the BH
rotation axis. For an antiparallel magnetic field, protons and
electrons exchange their roles. The particles that are accel-
erated outward radiate off energy and angular momentum to
infinity. The BH powers the process by reducing its energy
and angular momentum by capturing polar protons and equa-
torial electrons with net negative energy and angular momen-
tum. The electric potential allows for negative energy states
outside the BH ergosphere, so the latter does not play any
role in this electrodynamical BH energy extraction process.

1 Introduction

In this article, we show an electrodynamical process that effi-
ciently extracts the rotational energy of BHs. The mechanism
works for stellar-mass BHs in strong magnetic fields that
power GRBs and supermassive BHs in weak magnetic fields
that power AGNs. A critical ingredient for this discussion is
one of the most relevant concepts of BHs, the Christodoulou-
Ruffini-Hawking mass-energy formula [1–3]. In its most gen-
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eral form, for a charged, rotating BH, it reads1

M2 =
(
Mirr + Q2

4Mirr

)2

+ J 2

4M2
irr

, (1)

which relates the BH mass-energy, M , to three indepen-
dent pieces, the irreducible mass, Mirr , the charge, Q, and
the angular momentum, J . The radius of the BH horizon
is rH = M + √

M2 − a2 − Q2, being a = J/M , the
angular momentum per unit mass. Equation (1) implies a
great corollary: part of the BH energy is extractable, i.e.,
Eext = M − Mirr ≥ 0, and it amounts up to 50% of the
mass-energy of a non-rotating, charged BH (in the extreme
case Q = M), and up to 29% in a neutral, rotating BH
(in the extreme case a = M). It is worth noticing that the
above percentages are obtained under the nontrivial assump-
tion that the BH irreducible mass remains constant during the
energy extraction process. For fifty years as of this writing,
the concept of BHs being energy storehouses usable by nature
has permeated relativistic astrophysics at the theoretical and
experimental levels.

To explain the most powerful transients in the Universe,
GRBs, stellar-mass (i.e., of a few M�) BHs should release
up to a few 1054 erg in a few seconds. The supermassive
BHs (of up to 109M�), to power AGNs, release luminosi-
ties of up to 1046 erg s−1 for billion years. Existing models
of AGNs attempt to explain the emission with massive jets
powered by an accretion disk around the BH, and most GRB
models have inherited the same idea (see, e.g., [4,5], and
references therein). Accretion disk models use gravitational
energy, whose low efficiency makes it costly to power the
most energetic processes in these relativistic sources.

1 We use geometric units c = G = 1 unless otherwise specified.
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The binary-driven hypernova (BdHN) model of GRBs has
proposed as inner engine of the high-energy emission in the
gigaelectronvolt (GeV) domain, a Kerr BH surrounded by
low-density matter and a magnetic field, modeled by the Wald
solution [6–8]. For an aligned and parallel (to the BH spin
axis) magnetic field, the induced electric field in the polar
region accelerates electrons outwardly, reaching ultrarela-
tivistic energies and emitting synchrotron and high-energy
curvature radiation. In [7,9], the model has been applied
with M = 4.4M�, a/M = 0.4, and B0 = 4 × 1010 G
to the energetic GRB 190114C, and extended to AGNs, e.g.,
for the supermassive BH in M87*, with M = 6 × 109M�,
a/M = 0.1, and B0 = 10 G. These works have focused on
the emission of escaping particles assuming by energy con-
servation that the Kerr BH pays for the energy radiated to
infinity. On this basis, the evolution of the BH mass, angular
momentum, and irreducible mass as the system radiates have
been determined (see, e.g., [7,10]). However, the mechanism
for which the BH loses energy and angular momentum has
remained unexplained.

Thus, extracting the BH energy is tantalizing and cru-
cial in relativistic astrophysics. The first mechanism of BH
energy extraction was the mechanical Penrose process [11].
A particle of energy E1 splits into two particles of energy E2

and E3 that, by energy conservation, fulfill E3 = E1 − E2.
So, E3 > E1 if E2 < 0, and the BH reduces its mass by
δM = E2 < 0 and angular momentum by δ J = L2 < 0
by absorbing such a particle. The split must occur in the
BH ergosphere, where negative energy (and associated neg-
ative angular momentum) states exist. We shall see that the
ergosphere does not play any role in the electrodynamical
mechanism presented here.

It was soon demonstrated that the Penrose process is either
unrealizable or inefficient (see, e.g., [12–14]). Thus, numer-
ous works have searched for alternatives. For example, from
the mechanical viewpoint, the collisional Penrose process
has received much attention (see, e.g., [15–18]). General-
izations of the Penrose process, i.e., the same three-body
problem, accounting for electromagnetic fields, can be found,
e.g., in [19–21], and references therein. In parallel, increasing
research has been devoted to electromagnetic fields to extract
the BH energy. The idea of matter-dominated plasma accret-
ing onto a Kerr BH by Ruffini and Wilson [22], further devel-
oped in the Blandford-Znajek mechanism [23], which pro-
poses that poloidal and toroidal magnetic field lines threading
the BH extract its rotational energy. Without entering into the
discussion of whether or not such a mechanism can operate
in accreting rotating BHs, its efficiency, and power should be
at most (although unlikely) that of the surrounding accretion
disk [24,25]. Numerical, relativistic magnetohydrodynamics
and particle-in-cell simulations have also studied the prob-
lem (e.g., [26–28]). In the above literature, it is assumed
(or achieved under specific conditions) that the density of

charged particles in the magnetosphere is high enough to
shorten any electric field so that force-free electrodynamics
applies. Those magnetospheres fulfill magnetic dominance,
i.e., B2 − E2 > 0, and lack accelerating electric fields, i.e.,
E · B = 0 everywhere. Those systems can not accelerate
charged particles and emit radiation. To alleviate this draw-
back, it has been borrowed from pulsar theory the concept
of gaps [29,30], limited regions in the magnetosphere where
the force-free condition is violated, leading to regions where
E · B �= 0 (e.g., [23,26]).

Most numerical simulations of BH magnetospheres use as
initial condition the Wald solution of the Einstein-Maxwell
equations [31], which describes a Kerr BH immersed in a test
magnetic field, asymptotically uniform and aligned (parallel
or antiparallel) to the BH spin. The Wald solution contains
large regions where E · B �= 0 (see next section below).
The force-free condition is achieved if the charge density in
the magnetosphere exceeds the Goldreich–Julian value [32],
nGJ = ΩB0/(2πc e), where Ω is the angular velocity of the
corotating magnetic field lines. Since the BH angular velocity
is ΩH = a/(2 MrH ), for M = 4M�, a/M = 1, B0 = 1013

G, we obtain ρGJ = mpnGJ ≈ 5×10−9 g cm−3. Although it
looks like a very small value easy to exceed, numerical sim-
ulations show that, e.g., the matter density around the BH
formed from the gravitational collapse of a neutron star in
a BdHN can be as low as ρ ∼ 10−14 g cm−3 [33,34], and
the matter to electromagnetic energy density ratio as low as
8πρ/B2

0 ∼ 10−10. These physical conditions are far from the
ones explored in numerical simulations of screening plasma
leading to force-free conditions starting from the Wald solu-
tion (see, e.g., [27,28], in which both quantities have much
higher values).

Bearing the above in mind, we hold on to the Wald solu-
tion and show a process that occurs in its electromagnetic
field configuration, where E · B �= 0, allowing the Kerr BH
rotational energy extraction. This overcomes the original dif-
ficulty brought by the condition E · B = 0 in Ruffini and
Wilson [22] and Blandford and Znajek [23] treatments.

2 The electromagnetic field

In spheroidal Boyer–Lindquist coordinates (t, r, θ, φ), the
Kerr BH metric reads [35]2

ds2 = −
(

1−2Mr

Σ

)
dt2+Σ

Δ
dr2 + Σ dθ2 + A

Σ
sin2 θ dφ2

− 4aMr

Σ
sin2 θ dt dφ, (2)

2 We use geometric units c = G = 1 unless otherwise specified.
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where Σ = r2 + a2 cos2 θ , Δ = r2 − 2 Mr + a2, A =
(r2+a2)2−Δa2 sin2 θ , being M and a = J/M , respectively,
the BH mass and angular momentum per unit mass.

The electromagnetic four-potential of the Wald solution
for an uncharged, rotating BH is given by [31]

Aμ = B0

2
ψμ + a B0 ημ, (3)

where B0 is the asymptotic magnetic field strength, and ημ =
δ
μ
t and ψμ = δ

μ
φ are the time-like and space-like Killing

vectors of the Kerr metric. In the frame of the locally non-
rotating (LNR) observer [13,36], which carries a tetrad basis
with vectors �eâ , the electric and magnetic field components
are given by

Eî = Eμ �eμ

î
= Fî t̂ , Bî = Bμ �eμ

î
= (1/2)εî ĵ k̂ F

ĵ k̂, (4)

where Fμν is the electromagnetic field tensor in the coordi-
nate basis. Careted components are in the LNR frame, Greek
indexes run from 0 to 3 (t , r , θ , and φ), and Latin indexes
run from 1 to 3. In Boyer–Lindquist coordinates, the compo-
nents Eî and Bî are given in Eqs. (16a)–(16d) in [37] for the
chargeless case (Q = 0) and can be written as

Er̂ = − B0aM

Σ2A1/2

[
(r2 + a2)(r2 − a2 cos2 θ)(1 + cos2 θ)

− 2r2 sin2 θ Σ

]
, (5a)

E
θ̂

= B0aM
Δ1/2

Σ2A1/2 2ra2 sin θ cos θ(1 + cos2 θ), (5b)

Br̂ = − B0 cos θ

Σ2A1/2

{
2Mra2[2r2 cos2 θ + a2(1 + cos4 θ)]

− (r2 + a2)Σ2
}
, (6a)

B
θ̂

= −Δ1/2B0 sin θ

Σ2A1/2 [Ma2(r2 − a2 cos2 θ)(1 + cos2 θ)

+ rΣ2]. (6b)

We can now calculate the regions of charged particles’
acceleration. For the present case of magnetic dominance,
i.e., B2 > E2 [37], charged particles move along magnetic
field lines. For magnetic field lines that cross the horizon,
a particle will either move inward to the BH or be expelled
outward, depending upon its charge. The electric field com-
ponent parallel to the magnetic field line accelerates the par-
ticle. Therefore, we calculate the scalar product �E · �B on the
BH horizon, ( �E · �B)H . Specifically, we are interested in the
regions where ( �E · �B)H is positive and negative, so we calcu-
late the regions where it vanishes, which separate the regions
of acceleration. At the event horizon, we have Δ = 0, which

Fig. 1 BH horizon (filled-black), ergosphere (dashed-gray), Kp = 0
boundary (green), electric field lines (blue arrows) and magnetic field
lines (red, contours of constant Aφ). The BH parameters are mass M =
4M�, the spin parameter a/M = 0.7, and B0 = 4.4 × 109 G. For
the present spin parameter, θc ≈ 56.12◦, marked by the dashed-blue
lines. The physical situation in the southern hemisphere is analogous
due to equatorial symmetry. The figure shows the xz plane (φ = 0, π )
in Cartesian Kerr-Schild coordinates (see, e.g., [8])

leads to ( �E · �B)H = (Er̂ Br̂ )H = EH
r̂ BH

r̂ . Thus, the scalar
product vanishes where either EH

r̂ or BH
r̂ vanishes. From Eq.

(6a), we have BH
r̂ = 2 cos2 θB0MrH (r2

H − a2)/Σ2
H , which

readily tells that BH
r̂ = 0 on the equator, θ = π/2. The solu-

tion of the equation EH
r̂ = 0 is given by the angles θc that

vanish the expression within the square brackets of Eq. (5a),
i.e.,

cos2 θc = − σ

2a2 + rH
a

√
1 +

(
σ

2arH

)2

, (7)

where σ = (r2
H − a2)(rH + M)/(rH − M). We recall that

this is a spherical polar angle, so it is positively measured
clockwise from the polar axis, and it is in the range [0, π ].
At second-order approximation in a/M , σ ≈ 2rH (rH + M)

and the above expression reduces to the one of [38], cos2 θc ≈
rH/[2(rH +M)]. At first order, rH ≈ 2 M , so cos2 θc ≈ 1/3.

Figure 1 shows the electric field lines (blue arrows) and the
magnetic field lines (contours of constant Aφ , in red) for a BH
with a/M = 0.7. We display only the northern hemisphere
for the azimuthal angles φ = 0 and φ = π . The physical
situation is analogous in the southern hemisphere, given the
equatorial reflection symmetry of the Wald solution. For this
spin value, Eq. (7) leads to θc,1 ≈ 56.12◦, shown by the
dashed-blue line in the first quadrant (i.e., where φ = 0, so
x > 0 and z > 0). It also vanishes at θc,2 ≈ 123.88◦ which
lies in the fourth quadrant, not shown in the figure. Because
of the axial symmetry, the scalar product also vanishes along
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a line given by the same θc,1 and φ = π , leading to the
dashed-blue line in the second quadrant (i.e., where x < 0
and z > 0).

Therefore, these blue-dashed lines separate four regions
where �E · �B �= 0, unveiling the quadrupole nature of the
electric field. We call hereafter as polar the region within the
two blue-dashed lines in the northern hemisphere. There is an
analogous polar region in the southern hemisphere by equa-
torial reflection symmetry. We call as equatorial the region
θc,1 ≤ θ ≤ θc,2. There is an analogous equatorial region in
the western hemisphere by axial symmetry.

The electric field is nearly radial in these regions. It
decreases nearly as 1/r2, just like it would exist a net effective
charge [6,7], |Qeff | = 2J B. The net charge of the BH is zero,
as testified by calculating the induced charge over the hori-
zon. For this task, one integrates the induced surface charge
density introduced by Hanni and Ruffini [39], given by the
discontinuity of the electric field component perpendicular
to the BH horizon, i.e., the radial electric field. An explicit
calculation for the Kerr BH immersed in the magnetic field
can be found in [8,40,41]. The induced charge on the two
polar regions is of order Qeff and is equal but of the opposite
sign to the induced charge on the two equatorial regions [8].
The concept of effective charge has been useful in the analy-
sis of the high-energy (MeV and GeV) emission of GRBs in
the BdHN model (see, e.g., [6,7,42,43]). The above effec-
tive charge is also known as the Wald charge, QW , derived
in [14] as the maximum charge the BH acquires by capturing
charged particles along the polar axis, stopping accretion by
the BH after it reaches Q = QW . We shall return to this point
below in the conclusions.

3 Energy and angular momentum

Therefore, we focus on capturing charged particles with neg-
ative energy and angular momentum. The conserved energy
and angular momentum of charged particles are shifted by
the presence of the electromagnetic potential so that nega-
tive energies are achievable well beyond the ergosphere, and
co-rotating particles can attain negative angular momentum
(details below). Interesting analyses of the motion proper-
ties of charged particles in the Wald solution can be found
in [44–46] (see also [47] for the case of photons but in the
ergosphere).

The conserved energy and angular momentum of a particle
of mass mi and charge qi are

Ei = −πμημ = −π0, Li = πμψμ = π3, (8)

where πα = pα + qi Aα is the canonical four-momentum,
pα = miuα the four-momentum, uα the four-velocity, and
i = p, e stands for protons or electrons. Let us assume the
particles are initially located at the position (ri , θi , φi ), at

rest. The latter condition implies that the particle lies initially
outside the ergosphere, i.e., Σi > 2 Mri , so ri > rerg = M+√
M2 − a2 cos2 θi , and the initial four-velocity isuα

i = u0
i δ

α
0 ,

with u0
i = (1−2 Mri/Σi )

−1/2. From Eq. (8), the energy and
angular momentum at the initial position are

Ei =mi

√
1 − 2Mri

Σi
± eaB0

[
1 − Mri

Σi
(1 + cos2 θi )

]
,

(9a)

Li = − mi
2Mari sin2 θi√
Σi (Σi − 2Mri )

± 1

2
eB0 sin2 θi

[
r2
i + a2 − 2Ma2ri

Σi
(1 + cos2 θi )

]
,

(9b)

where e is the fundamental charge, the upper (+) sign
applies for protons and the lower (−) sign for electrons.
The terms due to the electromagnetic potential largely dom-
inate in Eqs for astrophysical parameters (9). In the case
B0 � 0.011(M�/M)(mi/me) G, eB0M � mi , so Eqs. (9)
lead to polar protons with Ep > 0 and L p > 0, and equato-
rial electrons with Ee < 0 and Le < 0.

Those electrons’ negative energy states are physically pos-
sible if (i) they do not reach infinity and (ii) a local observer
measures positive kinetic energy. The first condition is auto-
matically satisfied since equatorial electrons are accelerated
inward. The four-velocity of a regular local observer at the
horizon can be constructed by the linear combination of the
spacetime Killing vectors [48]: lμ = ημ + ΩHψμ, being
ΩH = a/(2 MrH ) the BH angular velocity. Therefore, the
kinetic energy this observer measures when the particles
cross the event horizon is

Ki = −pμl
μ|H = Ei − ΩH Li . (10)

For electrons, Ke > 0 at any angle in the equatorial region.
For polar protons, the condition Kp ≥ 0 constrains their
initial position (rp, θp), i.e., for given rp, the boundary Kp =
0 defines a maximum value of θp, say θKp . The maximum
value of this angle occurs at rp = rerg, say θKp,max. Figure 1
shows the boundary Kp = 0 (dashed-green curves) for a
BH with spin parameter a/M = 0.7, for which θKp,max ≈
51.81◦.

Charged particles will follow the magnetic field lines, and
the latter point approximately in the+z direction (Aφ = cons.
implies r sin θ ≈ constant; see Fig. 1), so the BH can capture
those particles whose initial position fulfills ri sin θi ≤ rH .
Thus, the BH captures polar protons at (rp, θp) within 0 ≤
θp ≤ θp,max, where θp,max = Min(θKp , θp,cyl), θp,cyl =
arcsin(rH/rp), and equatorial electrons at (re, θe) within
θc ≤ θe ≤ θe,max, where θe,max = θe,cyl = arcsin(rH/re).
Figure 2 shows Ep,e and L p,e at initial positions that sat-
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Fig. 2 Ei , Li , given by Eq. (9), and Ei − ΩH Li , at initial positions
outside the ergosphere (ri > rerg) leading to the particle capture by the
BH in the example of Fig. 1

isfy the capture conditions mentioned above, specifically for
protons initially located in the polar region at (rp, θp), with
rp = rH/ sin θp and 0 ≤ θp ≤ θp,max, and electrons in the
equatorial region at (re, θe), with re = rH/ sin θe and θc ≤
θe ≤ θe,max. For the present spin parameter, a/M = 0.7, the
reference angles are θc ≈ 56.12◦, θp,max = θp,cyl ≈ 40.80◦,
and θe,max = θe,cyl ≈ 61.86◦.

4 Discussion and conclusion

We have analyzed the capture of charged particles by a Kerr
BH embedded in a test, asymptotically aligned magnetic field
given by the Wald solution. Paper [31] envisaged a situation
in which the BH, by capturing charged particles along the
rotation axis, gain charge up to a maximal possible value,
QW = 2J B0. After that point, the charged particle accre-
tion should stop. Our results show that the physical situation
can be more complicated and interesting. To account for the
feedback of the particle capture on the BH parameters and,
as we discuss below, the distribution of particles, are essen-
tial to draw any conclusions on the BH evolution. Indeed, the
charged particles’ energy and angular momentum at different
radii and latitudes can lead to a very different scenario. Sec-
ond, special attention must be paid to estimating the change
of all BH parameters in the process, including its irreducible
mass. The latter is of paramount relevance to assess the effi-
ciency and plausibility of the energy extraction process.

When the BH captures a proton or electron, its mass, angu-
lar momentum, and irreducible mass change by

δM = Ei , (11a)

δ J = Li , (11b)

δMirr = Mirr√
M2 − a2

(δM − ΩH δ J ). (11c)

Because δM −ΩH δ J = Ei −ΩH Li = Ki ≥ 0 (see Fig. 2),
we have δM2

irr ≥ 0, as expected [1–3]. Figure 2 shows that
the equatorial region from which the BH captures electrons is
smaller than the polar region from which it captures protons.
The main reason is that the magnetic field lines are parallel to
the z-axis in the Wald solution, even in the BH vicinity. This
is confirmed by the magnetic flux threading the BH horizon

ΦB =
∫∫

F23dθdφ, (12)

which leads to the ratio of the polar to equatorial flux

1 + √
5

2
<

ΦB(0, θc)

ΦB(θc, π/2)
= rH

2M
tan2 θc ≤ 2, (13)

for 0 ≤ a/M < 1. Thus, for the given magnetic field geom-
etry, whether the net energy and angular momentum that the
BH absorbs are negative or positive depending on the density
of protons and electrons, n. Assuming local neutrality, pro-
tons, and electrons of number density n transfer to the BH
an energy

Ei ≈ 2π

∫∫
Ein

√−gdrdθ, (14a)

Li ≈ 2π

∫∫
Lin

√−gdrdθ, (14b)

where g = −Σ2 sin2 θ is the Kerr metric determinant. The
constraints of the previous section give the integration bound-
aries. For a spherically symmetric density, n = n(r), there
are more capturable protons than electrons. The BH would
acquire an energy E = Ee + Ep > 0 and angular momen-
tum L = Le + Lp > 0. An interesting situation occurs
for an anisotropic density that increases towards the equa-
tor. As an example, Fig. 3 shows Ee, Ep, Le, Lp, E and L ,
for n(r, θ) = N (r)Ψ (θ), where N (r) = nH (rH/r)m , and
Ψ (θ) = (1 − cos θ)2, with m = 2, nH = 6.0 × 1010 cm−3,
which corresponds to a rest-mass density ρ = 10−13 g cm−3

near the BH horizon at the pole. We obtain Ep < |Ee| and
Lp < |Le|, leading to E < 0 and L < 0, for values of the
BH spin parameter a/M � 0.5.

Therefore, the long-standing question of how to extract the
rotational energy of a Kerr BH is answered naturally by ana-
lyzing a rotating BH capturing not a single charged particle
but a bunch of them of opposite charges, at different latitudes
(see Fig. 2). We have shown, using the Wald solution, that the
electrodynamical extraction of rotational energy works for
an anisotropic density of protons and electrons increasing
with latitude (see Figs. 2 and 3). Estimating the present rota-
tional energy extraction process for different magnetic field
configurations, matter accretion of varying nature, and more
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Fig. 3 Upper: Êi = Ei/(eB0a) for polar protons (red) and equatorial
electrons (blue) that cross the BH horizon. The net energy, Ê = Êp +
Êe, is shown in black. Middle: analogous to the upper panel but for
L̂i = Li/(eB0M2), and L̂ . Lower: Fractional change of the BH mass,
δM/M (green, units of 10−18), angular momentum, δ J/J (orange, units
of 10−15), and irreducible mass, δMirr/M (gray, units of 10−19). The
particle density is n(r, θ) = N (r)Ψ (θ), where N (r) = nH (rH /r)m ,
with m = 2, nH = 6.0 × 1010 cm−3, and Ψ (θ) = (1 − cos θ)2.
In the upper and middle panels, the dimensionless energy and angular
momentum are normalized by nH M3. This example uses B0 = Bc =
2πm2

ec
3/(e h) ≈ 4.41 × 1013 G

extended BH parameters, including non-vanishing electric
charge, is now possible (Rueda and Ruffini, in preparation).
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