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Abstract Higher-order theories of gravity are extensions
to general relativity (GR) motivated mainly by high-energy
physics searching for GR ultraviolet completeness. They are
characterized by the inclusion of correction terms in the
Einstein–Hilbert action that leads to higher-order field equa-
tions. In this paper, we propose investigating inflation due
to the GR extension built with all correction terms up to the
second-order involving only the scalar curvature R, namely,
R2, R3, R�R. We investigate inflation within the Friedmann
cosmological background, where we study the phase space
of the model, as well as explore inflation in slow-roll leading-
order. Furthermore, we describe the evolution of scalar per-
turbations and properly establish the curvature perturbation.
Finally, we confront the proposed model with recent obser-
vations from Planck, BICEP3/Keck, and BAO data.

1 Introduction

Despite the immense predictive power of general relativity
(GR), extensions to it have been motivated by several areas.
In high-energy physics, which aims for the ultraviolet com-
pleteness of GR, quantum gravity and inflation models are
included. On the other hand, models involving low-energy
physics include, among others, the phenomenology of the
dark sector of the universe and spherically symmetric solu-
tions in a weak-field regime.

According to Lovelock’s theorem, fundamentally, GR is
constructed based on some hypotheses: it is a 4-dimensional
Riemannian metric gravity theory, containing the metric gμν

as the only fundamental field, invariant by diffeomorphism
and with second-order field equations. In this sense, exten-
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sions to GR are achieved by violating any of these hypotheses
[1]. By violating the first hypothesis, we can allow a higher-
dimensional spacetime or even consider a gravitational action
constructed with curvature and torsion invariants due to a
Riemann–Cartan spacetime [2]. If we violate the hypothesis
that the theory of gravity has the metric as the only fun-
damental field, we can obtain, for example, the Horndeski
theories. These, in turn, are the more general 4-dimensional
theories of gravity whose action, constructed with the met-
ric and a scalar field, leads to second-order field equations
[3]. On the other hand, by allowing field equations above the
second-order and preserving all other assumptions, we find
the higher-order gravities.

Higher-order theories of gravity are characterized by the
inclusion of correction terms in the Einstein–Hilbert (EH)
action that lead to higher-order field equations. Such correc-
tions can be conveniently classified according to their mass
(energy) scale. In this scenario, EH plus the cosmological
constant represents the usual zero-order term. First-order cor-
rections to EH are fourth mass terms constructed from the 4
possible invariants1

R2,RμνR
μν,Rμναβ R

μναβ and �R.
In turn, the second-order corrections to EH are sixth mass

terms, built with the invariants2

R�R,Rμν�Rμν,

R3,RRμνR
μν,RμνR

ν
αR

αμ,

RRμναβ R
μναβ,RμαRνβ R

μναβ and Rμναβ R
αβ
κρR

κρμν.

1 Although we present all of the following terms, not all are relevant
to field equations. The �R is a surface term, and it does not con-
tribute. Also, due to the Gauss–Bonnet invariant G = Rμναβ Rμναβ −
4Rμν Rμν + R2, the contraction of the Riemann tensor can be written
in terms of the other two terms.
2 In this case, since the number of terms grows vastly, we present only
those that contribute to the field equations.
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And so on, we will have more higher-order correction terms
as we increase the energy scales.

Models involving higher-order gravities have been
explored in various contexts. There are papers in the liter-
ature whose purpose is to show the equivalence between
different classes of gravity theories, in particular, between
f (R) or f

(
R,�k R

)
and scalar-tensor theories [4–10]. In

some contexts, it becomes more convenient to pass from the
original frame to the Jordan or Einstein frames, through a
conformal transformation, in order to handle equations for
scalar fields rather than higher-order equations for the metric.
Another topic of great interest is the investigation of spheri-
cally symmetric and static solutions in higher-order gravities,
with Stelle’s paper [11] being one of those responsible for
shedding light on this line of research. In particular, the study
of the possibility of non-Schwarzschild black hole solutions
through different approaches is addressed in Refs. [12–19],
whereas researches involving weak-field regime solutions are
covered in Refs. [19–22]. There are also models that study
the generation and properties of gravitational waves [23–33].
The latter is a topic of great current appeal due to the direct
detections [34–36] that allow the rising of gravitational wave
astrophysics.

Regarding inflation, it is well known in the literature that
the Starobinsky model [37,38] has a good fit for recent obser-
vational data from Planck, BICEP3/Keck and BAO [39,40].
Furthermore, the fact that it has a well-grounded theoretical
motivation makes it one of the strongest inflationary candi-
dates, despite the immense plethora of inflation models [41].
Such reasons motivate the investigation of models based on
extensions to the Starobinsky model via higher-order gravity
theories. There is a large amount of research in this con-
text. Some of them are based on f (R) theories, as in Refs.
[42–47], others consider the introduction of Weyl’s term [48–
52]. There are those that consider local gravitational actions
involving a finite number of curvature derivative terms [53–
59], while others are nonlocal, involving infinite derivatives
[60–64].

In this paper, we propose to investigate the extension to the
Starobinsky model due to the inclusion of all correction terms
up to the second-order involving only the scalar curvature R.
In this sense, we have the following gravitational action

S = M2
Pl

2

∫
d4x

√−g

(

R + 1

2κ0
R2 + α0

3κ2
0

R3 − β0

2κ2
0

R�R

)

, (1)

where κ0 has squared mass unit and parameters α0 and β0 are
dimensionless quantities. Furthermore, MPl is the reduced
Planck mass, such that M2

Pl ≡ (8πG)−1 and � ≡ ∇σ ∇σ

represents the covariant d’Alembertian operator. In this sce-
nario, where we only address the scalar sector of correc-
tions, R2 represents the first-order correction, while the last
two terms correspond to the second-order corrections to EH.

Note that the parameter κ0 is responsible for establishing
the energy scale of inflation, while the parameters α0 and
β0 give us a measure of the Starobinsky deviation. Since R3

and R�R are both second-order correction terms on energy
scales, they must contribute similarly to inflation, so there is a
joint effect that must be considered. In that regard, it is worth
noting that our paper goes a step further in recent researches
developed in [44] and [58,59], which address the models
Starobinsky+R3 and Starobinsky+R�R, respectively. In
this paper, the multi-field treatment associated with the R�R
term is different from that used in Ref. [58]. While in that
paper, inflation is described by a scalar and a vector field,
here, inflation is driven through the dynamics of two scalar
fields. Furthermore, by properly constructing the curvature
perturbation, we can obtain observational constraints differ-
ent from those obtained in Ref. [58] for the tensor-to-scalar
ratio. In turn, by assuming the R�R sixth-derivative term as
a small perturbation to Starobinsky inflation, Ref. [59] uses
a somewhat different approach, being able to map the model
into a one-scalar theory.

It is important to comment that the discussed model (1)
is not seen as a fundamental theory of gravity. On the other
hand, it is seen as a classical model of gravity in a con-
text of effective theory. One could legitimately worry about
the ghost-type instabilities introduced with the R�R sixth-
derivative term.3 Nevertheless, as previously pointed out by
Refs. [65,66], the complications of the growing up explosive
behaviour of the ghost-type perturbations will not take place
only until the initial seeds of such perturbations do not have
sufficiently high frequencies. Usually, as long as the energy
scales involved are close to the Planck order of magnitude,
cosmological solutions are stable.

The paper is structured as follows. In Sect. 2, we start
from the original frame for the action (1) and rewrite it in
the scalar-tensor representation in the Einstein frame, where
the theory is described through a metric and two auxiliary
scalar fields, only one of which is associated with a canonical
kinetic term. Then we write the field equations for each of the
fields. Section 3 is responsible for making the full description
of inflation in the cosmological background. In Sect. 3.1, we
study the critical points and the 4-dimensional phase space of
the model. Next, we explore inflation in the slow-roll leading
order regime by defining the slow-roll factor, and thus, we
obtain the slow-roll parameters and the number of e-folds.
In Sect. 4, we give a complete description of the evolution of
scalar perturbations. In addition to writing the perturbed field
equations in the slow-roll leading order regime, we define
the adiabatic and isocurvature perturbations by separating of
the background phase space trajectories in the tangent (adi-
abatic perturbation) and orthogonal (isocurvature perturba-
tion) directions. This allows us to properly establish the cur-

3 This occurs for β0 > 0.
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vature perturbation, which is essential to connect our model
with the observations. In Sect. 5, we confront the proposed
model with the recent observations of Ref. [40], where by
using the constraint for the number of inflation e-folds found
in [44], we build the usual ns × r0.002 plane and the Plot for
the parameter space α0 × β0. In Sect. 6, we make some final
comments.

2 Field equations

The first step is to rewrite the action (1) in the Einstein frame.
Performing this calculation, we get

S̄ = M2
Pl

2

∫
d4x

√−ḡ

[
R̄ − 3

(
1

2
∇̄ρχ∇̄ρχ

−β0

6
e−χ ∇̄ρλ∇̄ρλ + V (χ, λ)

)]
, (2)

with

V (χ, λ) = κ0

3
e−2χλ

(
eχ − 1 − 1

2
λ − α0

3
λ2
)

, (3)

the potential associated with the model. The quantities with
bar are defined from the metric as ḡμν = eχgμν and the
dimensionless fields χ and λ are defined as

λ = R

κ0
and μ = eχ = 1 + λ + α0λ

2 − β0

κ0
�λ, (4)

where in the Einstein frame, �λ = eχ
(
�̄λ − ∂̄μλ∂̄μχ

)
.

Addendum By recovering the usual notation and the
dimensions of the scalar fields, and the potential, we must
take

χ =
√

2

3

φ

MPl
, λ = √

2
ψ

MPl
, and

Ṽ (φ,ψ) = 3M2
Pl

2
V (χ, λ) . (5)

This way, we can rewrite the action (2) as

S̄ =
∫

d4x
√−ḡ

⎛

⎝M2
Pl

2
R̄ − 1

2
∇̄ρφ∇̄ρφ

+β0e
−
√

2
3

φ
MPl

2
∇̄ρψ∇̄ρψ − Ṽ (φ,ψ)

⎞

⎠ . (6)

By starting from the action (2), we obtain three field equa-
tions: one for ḡμν and another two for each of the scalar fields
χ and λ. Taking the variation concerning the metric ḡμν , we
find

R̄μν − 1

2
ḡμν R̄ = 1

M2
Pl

T̄ (eff)
μν , (7)

where we define an effective energy-momentum tensor as

1

M2
Pl

T̄ (eff)
μν = 3

2

(
∇̄μχ∇̄νχ − 1

2
ḡμν∇̄ρχ∇̄ρχ

)
+

−β0e−χ

2

(
∇̄μλ∇̄νλ − 1

2
ḡμν∇̄ρλ∇̄ρλ

)
− 3

2
ḡμνV (χ, λ) . (8)

The variation concerning the χ and λ fields results in

�̄χ − β0

6
e−χ ∇̄ρλ∇̄ρλ − Vχ = 0, (9)

β0e
−χ

(∇̄ρχ∇̄ρλ − �̄λ
)− 3Vλ = 0. (10)

where Vχ = ∂χV and Vλ = ∂λV represent derivatives con-
cerning the fields χ and λ, respectively.

3 Inflation in Friedmann cosmological background

On large scales (� 100 Mpc), we can consider the universe to
be homogeneous and isotropic. Furthermore, for a spatially
flat universe, the line element that describes the evolution of
a comoving frame of reference is given by

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (11)

where a (t) is the scale factor.
By obtaining the field equations in Friedmann background

is to write the field equations (7), (9) and (10) for the met-
ric (11). From the field equation for the metric, we get two
independent ones, namely the Friedmann equations

H2 = 1

2

(
1

2
χ̇2 − β0

6
e−χ λ̇2 + V (χ, λ)

)
, (12)

Ḣ = −3

4
χ̇2 + 1

4
β0e

−χ λ̇2, (13)

where H = ȧ/a. In addition to these equations, we also have
the equations for the χ and λ fields. Since, for a scalar field
�,

�̄� = ∇̄σ ∇̄σ � = −3H�̇ − �̈,

for the equation of χ given in (9), we have

χ̈ + 3H χ̇ − β0

6
e−χ λ̇2 + Vχ = 0. (14)

In turn, for the equation of λ given in (10), we have

β0e
−χ

[
λ̈ − (χ̇ − 3H) λ̇

]− 3Vλ = 0. (15)

3.1 Phase space

In this section, we will analyze the phase space of the model.
Therefore, it becomes convenient to rewrite the field equa-
tions in a dimensionless way: we define the dimensionless

123



1032 Page 4 of 19 Eur. Phys. J. C (2023) 83 :1032

time derivative

At ≡ 1√
κ0

Ȧ,

the dimensionless Hubble parameter h

h ≡ 1√
κ0

H,

and the dimensionless potential V̄ as

V̄ (χ, λ) = 1

κ0
V (χ, λ) .

With that, it is possible to rewrite the equations of cosmolog-
ical dynamics (12), (13), (14) and (15) as follows:

h2 = 1

2

(
1

2
χ2
t − β0

6
e−χλ2

t + V̄ (χ, λ)

)
, (16)

ht = −3

4
χ2
t + 1

4
β0e

−χλ2
t , (17)

and

χt t + 3hχt − β0

6
e−χλt

2 + V̄χ = 0, (18)

β0e
−χ [λt t − (χt − 3h) λt ] − 3V̄λ = 0. (19)

We already know the inflationary dynamics of Starobinsky
+R3 model, which in the scalar-tensor approach in the Ein-
stein frame is characterized by its specific potential V (χ)

[44], as well as the dynamics inflation of Starobinsky+R�R
model, explored in Ref. [58] via a scalar-vector approach. A
first step in order to understand the dynamics of our current
case is through the study of its phase space, having as ref-
erence the known particular cases mentioned above. In this
first part, we will investigate the existence of an attracting
inflationary regime in some region of the phase space.

Since the dimensionless equations governing the dynam-
ics of the χ and λ fields are written as in (18) and (19), that
is, two autonomous second-order differential equations con-
cerning time, we can rewrite them as a system of four first-
order differential equations. Taking χt = ψ and λt = φ, we
have

χt = ψ, (20)

ψt = −3hψ + β0

6
e−χφ2 − V̄χ , (21)

λt = φ, (22)

β0φt = β0 (ψ − 3h) φ + 3eχ V̄λ, (23)

where

h =
√

1

2

(
1

2
ψ2 − β0

6
e−χφ2 + V̄

)
,

which is associated with a physically consistent system when
its root argument is positive.4

From that point on, we will study the approximate behav-
ior of the solutions of the system at critical points. Critical
points are equilibrium points of the system, and it is our inter-
est to investigate their stability, which is directly related to the
necessary conditions for the occurrence of a physical infla-
tionary regime.5 The analysis of the previous system allows
us to conclude that there are two critical points:

P0 = (χ0, λ0, ψ0, φ0) = (0, 0, 0, 0) (24)

Pc = (χc, λc, ψc, φc) =
(

ln

(

4 +
√

3

α0

)

,

√
3

α0
, 0, 0

)

.

(25)

The study on the stability of these critical points is done
through the linearization of the 4-dimensional autonomous
system (χ, λ,ψ, φ). Linearizing the system given by Eqs.
(20), (21), (22) and (23) around P0, we verify that the Lya-
punov exponents r0, associated with the stability of the crit-
ical point, satisfy the fourth-order characteristic equation

β0r
4
0 + r2

0 + 1

3
= 0, (26)

whose solution is

r0 = ±

√√√
√−1 ±

√
1 − 4β0

3

2β0
.

A center or spiral point occurs when we obtain pure imagi-
nary roots. Looking at the previous expression, we see that
this occurs whenever the condition

0 ≤ β0 ≤ 3

4
, (27)

is satisfied. Any value of β0 outside this range contains at
least one Lyapunov exponent with positive real part. That is,
outside the range (27) the point P0 is unstable.6 A numerical
analysis of the system (21) shows that within the interval (27)
the point P0 is an attracting spiral point and therefore stable
(see Fig. 1). This behavior is essential for the existence of a
graceful exit. In fact, the spiral dynamics around P0 constitute
the period of coherent oscillations consistent with the initial
phases of reheating. It is also worth noting that Eq. (26) is
independent of α0, and therefore the term R3 plays no role
at the end of the inflationary period.

4 We refer to a physically consistent system that one with real h(t) and
a(t).
5 A physical inflationary regime is understood to be a regime that
has a sufficient number of e-folds to solve the flatness, horizon, and
perturbations generation problems and that has a graceful exit.
6 An identical result was obtained in Ref. [58].
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Fig. 1 The χt × χ graphs considering phase space cuts (χ, λ, χt , λt )

fixing λt = λt t = 0 and β0 = 0.001 with (λ, α0) = (173, 0.0001) (top
graph) and (λ, α0) = (94, 0.00034) (bottom graph). The red and black
points correspond to the critical points P0 and Pc, respectively. For
α0 = 0.0001, we have Pc = (5.18, 173, 0, 0) and for α0 = 0.00034,
we have Pc = (4.58, 94, 0, 0). The red (cyan) trajectories represent tra-
jectories that, when reaching the attractor line close to χ̇ = 0, approach
(depart) from the origin. Details on the interpretation of the graphics
are presented in the body of the text

In turn, linearizing the system (21) around Pc, we ver-
ify that the Lyapunov exponents rc satisfy the characteristic
fourth-order equation

β0

[
rc (rc − G) − 4

9
G2
]
rc (rc − G) + 4

9
G2

[(√
3α0 + 6α0

)

×rc (rc−G) +1

3

√
3α0−4

9

(√
3α0+6α0

)
G2
]

= 0, (28)

where

G = −3

2
√

4
√

3α0 + 3
.

A numerical study of this characteristic equation, considering
α0 > 0 and β0 > 0, shows that at least two of the four roots
of Eq. (28) are real and have opposite signs. This shows that
Pc is a saddle point and therefore unstable. This conclusion
also remains valid for β0 = 0 and α0 > 0, in which case we
have only two roots.7 See Ref. [44] for details.

To better understand the dynamics of the χ and λ fields,
we will numerically study the 4-dimensional phase space. In
this study, we will analyze two 2-dimensional slices of this
space given by χt × χ and λt × λ. For that, we manipulate
Eqs. (18) and (19) writing them as

dχt

dχ
= −3hχt + β0

6 e−χλ2
t − V̄χ

χt
,

dλt

dλ
= (χt − 3h) + 3eχ

β0λt
V̄λ,

where h is given by (16).
Numerical analysis of the equation dχt/dχ is more easily

performed if we write λ = λ (χ, χt , λt , λt t , α0, β0). For
that, it is necessary to work with the Eqs. (16) and (19).
Solving the quadratic equation for λ in Eq. (19), we get

λ = −1 + √
1 − 4α0 {1 − eχ + β0eχ [λt t − (χt − 3h) λt ]}

2α0
,

where we choose the positive sign to guarantee the Starobin-
sky limit. In principle, we can substitute (16) in the previous
expression, obtain a third-degree algebraic equation for λ

and solve it to obtain λ = λ (χ, χt , λt , λt t , α0, β0). How-
ever, we will see in Sect. 5 that the values of interest for α0

and β0 are such that α0 < 10−3 and β0 < 3 × 10−2.8 In
this case, it is licit to consider only linearized corrections of
α0 and disregard terms of the type α0β0. Performing these
approximations, we obtain the functional forms

Fχ ≡ dχt

dχ
� −3h̄χt + β0

6 e−χλ2
t − 1

9e
−2χ λ̄

{
4 − eχ + λ̄ − 2β0eχ

[
λt t − (

χt − 3h̄
)
λt
]}

χt
, (29)

xcFλ ≡ dλt

dλ
= (χt − 3h) + 1

β0λt

[
1 − e−χ

(
1 + λ + α0λ

2
)]

, (30)

7 In Ref. [44], it was shown that the potential V of the real and well-
behaved model occurs for an α0 ≥ 0. Thus, in this paper, we assume a
restricted parameter α0 in this range.
8 See also Refs. [44,58].
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where

h � h̄ ≡ −3β2
0λt +

√(
3β2

0λt
)2 + (

12 + 9β2
0λ2

t
) [

3χ2
t − β0e−χλ2

t − (λt t − χtλt )
2 β2

0 + A
]

12 + 9β2
0λ2

t
, (31)

λ � λ̄ ≡ (
eχ − 1

) [
1 − α0

(
eχ − 1

)]− β0e
χ [λt t − (χt − 3h) λt ] , (32)

with

A = (
1 − e−χ

)2
[

1 − 2

3
α0
(
eχ − 1

)]
.

In Figs. 1 and 2, we show direction fields associated with
equations (29) and (30).

Fig. 2 The λt × λ graphs considering phase space cuts (χ, χt , λ,λt )

setting χt = 0 and β0 = 0.001 with (χ, α0) = (5.18, 0.0001) and (top
graph) and (χ, α0) = (4.58, 0.00034) (bottom graph). The black points
correspond to the critical points Pc = (5.18, 173, 0, 0) (top graph) and
Pc = (4.58, 94, 0, 0) (bottom graph). Details on the interpretation of
the graphics are presented in the body of the text

The first (and most relevant) point that can be seen in Fig. 1
is that there is an attractor line close to χt � 0. The existence
of this region is consistent with any value of α0 < 10−3

and β0 < 3 × 10−2 and for any interval of λt and λt t that
yields real results in the region of interest χ ∈ [0, 8].9 At
the same time that the χ field tends to the attracting line
(χt � 0), Fig. 2 indicates that λ tends to a finite value and
λt → 0. This finite value of λ essentially depends on the
value of χ with variations on a smaller scale due to changes
in the parameter α0. The other fixed parameters χt and β0 in
Fig. 2 change how λ approaches the accumulation point but
does not change its value. We will see in the Sect. 3.2 that
this attractor region in the 4-dimensional phase space where
(χ, λ, χt ,λt ) � (χ, λ (χ) , 0, 0) corresponds to a slow-roll
inflationary regime.

Once the attractor region is reached, we must ask our-
selves if inflation occurs enough, i.e., if it generates a suffi-
cient number of e-folds and if it ends in a reheating phase.
The answer to this question essentially depends on the posi-
tion where the χ field hits the attractor line in Fig. 1. If the
χ field is to the left of the critical point Pc (black dots in
the graphs of Fig. 1), inflation proceeds normally and ends
in a phase of coherent oscillations associated with the begin-
ning of reheating. On the other hand, if χ is to the right of
Pc the value of χ increases indefinitely, and inflation never
ends (see Ref. [44] for details). Thus, a physical inflationary
regime, i.e., consistent with a graceful exit, only occurs if
χ < χc ⇒ α0 < 3 (eχ − 4)−2 which for sufficiently large
χ corresponds to α0 < 3e−2χ .

In the next section, we will see how to describe the dynam-
ics of the χ and λ fields during the slow-roll inflationary
phase.

3.2 Inflation in the slow-roll leading order regime

This section aims to describe the dynamics of χ , λ, and their
derivatives during the inflationary regime considering the
slow-roll approximation. In the region associated with physi-
cal inflation, the parameter χ is a monotonic decreasing func-
tion of time, so we can parameterize the various quantities in
terms of χ . For the case of Starobinsky model, we know that
in the slow-roll leading order regime χt ∼ δ and χt t ∼ δ2,
where δ is the slow-roll factor defined as δ ≡ e−χ . And for

9 These ranges are typically between −10 e 10.
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Starobinsky plus R3 model (i.e., β0 = 0 and α0 �= 0), we
have [44]

χt ∼
(
δ − α0

3
δ−1

)
. (33)

Note that since α0 < 3δ2, the second term of the previous
expression is of the same order or less than δ.

The previous discussion allows us to associate the factor
δ as a parameter that controls the slow-roll approximation
order, i.e., a quantity f ∼ δn will be an nth-order slow-
roll quantity. In this case, χt present in (33) is first-order in
slow-roll, since both δ and α0δ

−1 are first-order. To apply
this reasoning in our model, it is also necessary to establish
what is the maximum slow-roll order of the parameter β0. A
more detailed analysis of the field equations in the attractor
region shows us that, for slow-roll inflation, β0 � δ, i.e., β0

is a (at most) first-order slow-roll parameter (for details see
Ref. [58]).

Once the slow-roll (maximum) orders of the parameters
α0 and β0 are known, we can propose the following ansatz
for χt :

χt � c1δ + β0

∞∑

n=0

bn
(
β0δ

−1
)n + α0δ

−1
∞∑

n=0

dn
(
β0δ

−1
)n

.

(34)

This ansatz has the following properties:

• All terms are first-order in slow-roll, this being the lead-
ing order of χt ;

• In the limit of β0 → 0, we recover the result (33);
• Derivating Eq. (34) with respect to t , we increase the

slow-roll order, i.e., χt t is second order, χt t t is third order,
etc.

By following similar reasoning, we propose the following
ansatz for λ:

λ � δ−1 +
∞∑

n=0

gn
(
β0δ

−1
)n + α0δ

−2
∞∑

n=0

jn
(
β0δ

−1
)n

.

(35)

In this case, the first term is of order O (−1) in slow-roll,
and the others are zero-order terms. The O (−1) order term
is necessary as we know that in the case of Starobinsky λ =
δ−1 − 1 (see Eq. (19) with α0 = β0 = 0). Analogously to
χt , each derivative of λ with respect to t increases by one the
slow-roll order.

The next step is substituting these two ansatzes and their
derivatives into Eqs. (16), (18), and (19) taking into account
only the slow-roll leading order. In this situation, we get

3hχt − 1

3
δλ

(
1 − δλ − 2δ − 2

3
α0δλ

2
)

� 0, (36)

3β0hλt −
[
1 − δ

(
1 + λ + α0λ

2
)]

� 0, (37)

where

h2 � 1

6
δλ

(
1 − 1

2
δλ

)
. (38)

By explicitly substituting Eqs. (34) and (35 ) in these last
three expressions, we get after a long calculation

χt � − 2
√

3

3
(
3 − β0δ−1

)δ
(

1 − α0

3
δ−2

)
, (39)

λ � δ−1 − 3 − 2β0δ
−1

3 − β0δ−1 − α0δ
−2

(

1 +
1
3β0δ

−1

3 − β0δ−1

)

, (40)

with

h2 � 1

12

(
1 − 2δ − 2

3
α0δ

−1
)

. (41)

For details see Appendix A. It is worth noting that the previ-
ous expressions are well defined only for β0δ

−1 < 3. Note
in Eq. (39) the existence of two terms that, in the slow-roll
leading order, are first-order terms. In Eq. (40), we have the
O (−1) order term in addition to the zero-order corrections.
Finally, h2, related to the Hubble parameter, is given by the
zero-order slow-roll leading term plus first-order corrections
(independent of β0).

3.2.1 Calculation of slow-roll parameters and number of
e-folds

The characterization of the inflationary regime is done
through the slow-roll parameters

ε ≡ − Ḣ

H2 = − ht
h2 , (42)

η ≡ − 1

H

ε̇

ε
= − 1

h

εt

ε
. (43)

By substituting (39) and (40) in (17), we get

ht � − δ2

3
(
3 − β0δ−1

)
(

1 − α0

3
δ−2

)2
.

Thus, in the slow-roll leading order, we have

ε � 4δ2
(
3 − β0δ−1

)
(

1 − α0

3
δ−2

)2
. (44)

The next step is calculating η. Differentiating ε and using
this result together with ε itself in Eq. (43), we get

η � − 4δ
(
3 − β0δ−1

)2

[
3
(
2 − β0δ

−1)+ α0δ
−2
(

2 − 1

3
β0δ

−1
)]

.

(45)

Note that by construction α0δ
−2 < 3 and β0δ

−1 < 3.
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In order to have robust inflation, i.e., with enough number
of e-folds, we must have ε � 1 and η � 1. Thus, from the
Eqs. (44) and (45), we see that this occurs for δ � 1 (typically
χ � 4). However, unlike the Starobinsky case, we also have
lower bounds for δ. In fact, the slow-roll inflationary regime
only occurs if

δ >
β0

3
and δ >

√
α0

3
. (46)

The first condition does not represent a real difficulty for the
existence of slow-roll inflation, because even if at some point
we have δ < β0,10 the dynamics of the phase space guaran-
tees that χ decreases monotonically so that at some point δ

becomes greater than β0 (see Fig. 1). The second condition
represents a real constraint for carrying out a physical infla-
tion (see discussion at the end of Sect. 3.1). For a discussion
of the implications of this second constraint and the initial
conditions of inflation see Ref. [44].

Next we will calculate the number of e-folds N in the
slow-roll leading order. By the definition of N , we have

N =
∫ te

t
Hdt� 1

4

∫ δe

δ

(
1 − 2δ − 2

3α0δ
−1
) (

3 − β0δ
−1
)

δ2
(
1 − α0

3 δ−2
) dδ,

where the index e corresponds to the end of inflation. To
integrate this expression, it is convenient to perform the fol-
lowing change of variable:

x = δm

δ
where δm =

√
α0

3
. (47)

In this case, we get

N � − 1

4δm

∫ xe

x

(
x − 2δm − 2x2δm

) (
3 − β0δ

−1
m x

)

1 − x2

dx

x
,

whose solution is

N � − 1

4δm

{
−2xβ0 − 6δm ln x + β0 + 12δ2

m

2δm

× ln [(1 − x) (1 + x)] + 3 + 4β0

2
ln

(
1 + x

1 − x

)}xe

x
.

By considering only leading terms and taking into account
that xe � x , we finally get

N � 3

8

√
3

α0
ln
[
(1 − x)γ−1 (1 + x)γ+1] where γ 2 = β2

0

3α0
.

(48)

By construction, physical inflation occurs in the interval
0 ≤ x < 1. In fact, when x → 1 we have δ → δm which
corresponds approximately to χ → χc (see Eq. (25 )). How-
ever, the expression (48) has an extra restriction due to the

10 In this situation, we have no guarantee that an inflationary regime
exists.

presence of the β0 term. For β2
0 > 3α0 ⇒ γ > 1, we have

that when x → 1, the value of N diverges to −∞, and this
is clearly not physical. What happens is that for γ > 1, the
function N presents a maximum point within the interval
0 ≤ x < 1. Differentiating N with respect to time, we have

Nt � 3x

8

√
3

α0

[− (γ − 1) (1 + x) + (γ + 1) (1 − x)

(1 − x) (1 + x)

]
χt .

So, for γ > 1, we have

Nt = 0 ⇒−(γ − 1) (1 + xmax)+(γ + 1) (1 − xmax)=0

⇒ xmax = 1

γ
< 1. (49)

On the other hand, for values of x such that xmax ≤ x < 1,
we get

β0δ
−1 = 3γ x ≥ 3 ⇒ δ ≤ β0

3

which violates the first condition of Eq. (46).
Therefore, based on the previous analysis, we conclude

that Eqs. (44), (45) and (48) referring to the quantities ε, η

and N are valid in the following intervals:
⎧
⎨

⎩

γ ≤ 1 ⇒ x < 1 ⇒ χ < ln
(√

3
α0

)

γ > 1 ⇒ x < xmax ⇒ χ < ln
(

3
β0

) . (50)

In the next section, we will study the inflationary regime
from the perturbative point of view.

4 Inflation via cosmological perturbation theory

In this section, we investigate inflation of the model (2)
via cosmological perturbations. Recall that its background
dynamic equations are the Friedmann ones, given by Eqs.
(12) and (13), and the equations of motion for the scalar
fields χ and λ, given by Eqs. (14) and (15).

Before proceeding with our developments, it is worth com-
menting on scalar perturbations. In addition to the perturba-
tions of the two scalar fields, which we will denote by δχ and
δλ, we have the scalar perturbations of the metric. The line
element in the perturbed Friedmann–Lemaître–Robertson–
Walker (FLRW) metric is given by

ds2 = − (1 + 2A) dt2 + 2a∂i Bdx
i dt

+a2 [(1 − 2ψ) δi j + 2∂i j E + hi j
]
dxidx j , (51)

with A, B, ψ and E being the scalar perturbations of the
metric [67,68]. In order to obtain the perturbative field equa-
tions through a perturbation directly in the action, we need
to write it up to the second order in the perturbations. In this
case, we must consider second-order terms for perturbations
involving only scalar field perturbations (e.g., δχ2), second-
order terms involving only metric scalar perturbations (e.g.,
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A2) and cross terms, that is, a product of first-order terms
(e.g., Aδχ ). In the following subsection, by following a per-
turbative procedure directly in the action, along the lines of
that found in Refs. [68–70], and assuming the spatially flat
gauge,11 we obtain and discuss the equations of motion for
the perturbations.

4.1 Equations for scalar perturbations

The first step in order to perturbate the action is defining
the perturbations of the scalar fields. For an inhomogeneous
distribution of matter, we write

χ (t, x) = χ (t) + δχ (t, x) , (52)

λ (t, x) = λ (t) + δλ (t, x) . (53)

In turn, the metric in Eq. (51) is written as

gρσ (t, x) = gρσ (t) + δgρσ (t, x) . (54)

By writing Eq. (2) up to the second order in the perturbations
and taking their variations with respect to each one of the
perturbations, we are able to obtain the following equations
of motion for the perturbations δχ and δλ

δχ̈ + 3Hδχ̇ − 1

a2 ∇2 (δχ)

+β0

6
e−χ λ̇

(
λ̇δχ − 2δλ̇

)+ Vχχδχ + Vχλδλ

= χ̇ Ȧ + 1

a
χ̇∇2B − 2Vχ A, (55)

and

β0e
−χ

[
δλ̈ + (3H − χ̇) δλ̇ − 1

a2 ∇2 (δλ)

−λ̇δχ̇ − 3Vλδχ
]− 3

(
Vχλδχ + Vλλδλ

)

= β0e
−χ

(
λ̇ Ȧ + λ̇

1

a
∇2B + χ̇ λ̇A

)
+ 6VλA, (56)

as well as the Einstein equations

H

(
3H A − k2

a
B

)
= −1

4

[
3χ̇δχ̇ − β0e

−χ λ̇δλ̇

− (
3χ̇2 − β0e

−χ λ̇2) A + 1

2
β0e

−χ λ̇2δχ + Vχ δχ + Vλδλ

]
,

(57)

and

H A = 1

4

(
3χ̇δχ − β0e

−χ λ̇δλ
)
. (58)

The double subscript in potential V represents second-order
differentiation with respect to the corresponding scalar fields.

11 In the spatially flat gauge, the perturbations ψ = E = 0, in order to
kill the spatial part of the metric.

4.2 Equations in the slow-roll leading order regime

Once we obtain Eqs. (55), (56), (57) and (58), which com-
pletely describe the evolution of scalar perturbations, the next
step is to write them in the slow-roll leading order regime.
This is not a trivial task and therefore, we will initially present
the particular case of the Starobinsky model (α0 = β0 = 0).
In this case, Eqs. (55), (56), (57) and (58) reduce to

δχ̈ + 3Hδχ̇ − 1

a2 ∇2 (δχ) + V̂χχ δχ + V̂χλδλ

= χ̇ Ȧ + 1

a
χ̇∇2B − 2V̂χ A, (59)

V̂χλδχ + V̂λλδλ = −2V̂λA, (60)

H

(
3H A − k2

a
B

)
= −1

4

(
3χ̇δχ̇ − 3χ̇2A + V̂χ δχ + V̂λδλ

)

(61)

and

H A = 3

4
χ̇δχ, (62)

with

V̂ (χ, λ) = 1

3
κ0e

−2χλ

(
eχ − 1 − 1

2
λ

)
. (63)

In Sect. 3.2, we saw, in the context of the background,
the behavior of the scalar fields, their derivatives and the
relationships they keep between them. Once the slow-roll
factor δ was established, we recall that in the slow-roll leading
order regime, we obtain

χ̇ ∼ δ, λ ∼ δ−1, H ∼ δ0, β0 ∼ δ and α0 ∼ δ2 ,

and that with each differentiation with respect to time in the
scalar fields, an order of slow-roll is increased, that is, χ̈ ∼ δ2

and λ̇ ∼ δ0. By making the constructions in this section, some
assumption is necessary, namely, to find the slow-roll orders
of the perturbations, we need to establish the slow-roll order
of one of them. In this sense, we take the perturbation δχ as
a zero-order slow-roll quantity. Also, we keep in mind that
derivatives do not change the slow-roll order of perturbations.
We are now able to write the equations of motion in the
slow-roll leading order. Analyzing Eq. (62), note that since
χ̇δχ ∼ δ, perturbation A must be at most first-order in slow-
roll. Regarding Eq. (61), in its right member, we have the
first and third terms, which are of first-order, the second term,
which is subdominant 3χ̇2A of third-order in slow-roll, and
the last one is null, since V̂λ = 0. Furthermore, since in its left
member we have 3H2A ∼ δ, we conclude that perturbation
B is at most first-order in slow-roll. In turn, as V̂χλ ∼ δ and
V̂λλ ∼ δ2, we see that Eq. (60) establish the perturbation
leading order of δλ, namely, δλ ∼ δ−1. With Eq. (60), we
can still write δλ in terms of δχ and substitute in Eq. (59).
Thus, on the left side of Eq. (59), the first three terms are of
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zero order in slow-roll, while all other terms of the equation
give us subdominant contributions. So we can write

δχ̈ + 3Hδχ̇ − 1

a2 ∇2 (δχ) � 0. (64)

When developing the previous analysis now for the case of
the complete equations, we find that the perturbations evolve,
in the slow-roll leading order regime, with the same orders
obtained previously. In short, the scalar perturbations evolve
in the form A ∼ B ∼ δ and δλ ∼ δ−1. It is interesting to
note that the perturbation δλ goes in leading order regime
with δ−1, and that if it were otherwise, it would seriously
compromise the slow-roll dynamics.

By applying all the discussion raised above, we find, in
the slow-roll leading order regime, the following equations
of motion for the perturbations of the scalar fields

δχ̈ + 3Hδχ̇ − 1

a2 ∇2 (δχ) � 1

3
κ0
(
δχ − e−χδλ

)
, (65)

and

β0

[
δλ̈ + 3Hδλ̇ − 1

a2 ∇2 (δλ)

]
� κ0

(
δχ − e−χδλ

)
. (66)

These results are in agreement with those obtained in Ref.
[58], where the Starobinsky+R�R model is explored.

4.3 Adiabatic and isocurvature perturbations

In this subsection, we define adiabatic and isocurvature per-
turbations, obtain expressions that describe their dynamics,
and study their solutions.

The action (2) can be rewritten, along the lines of Ref.
[71], compactly as

S= M2
Pl

2

∫
d4x

√−g

(
−1

2
gμνGI J (�) ∂μ�I ∂ν�

J −3V

)
,

(67)

where the scalars �I (x) are seen as local coordinates of the
scalar field space with metric GI J (�)

�I =
(

χ

λ

)
, GI J (�) =

(
3 0
0 −β0e−χ

)
, (68)

and V represents the potential of the model, Eq. (3). In a
two-field scalar model, the field space is 2-dimensional and
characterized by GI J (�). To conveniently describe the evo-
lution of perturbations, we can define a basis having a tangent
direction, which we will denote by σ̂ I , and another orthog-
onal, ŝ I , to the background trajectories. Tangent directions
to background trajectories are associated with adiabatic per-
turbation, while orthogonal directions are associated with
isocurvature perturbation. In this sense, we build the basis
through the definitions, respectively, of the module of the

velocity vector, the unit velocity vector in the tangent direc-
tion and the normalization rule

σ̇ =
√
GI J �̇I �̇J , σ̂ I = �̇I

σ̇
and GI J σ̂

I σ̂ J = 1,

(69)

and for the orthogonal direction, the normalization12 and
orthogonality rules

GI J ŝ
I ŝ J = −1 and GI J ŝ

I σ̂ J = 0. (70)

For our case, we have for the velocity module σ̇

σ̇ =
√

3χ̇2 − β0e−χ λ̇2. (71)

Note that it is directly related to the Friedmann equation (13).
For the unit velocity vectors, we write

σ̂ χ = χ̇

σ̇
and σ̂ λ = λ̇

σ̇
. (72)

In turn, for the unit vectors in the orthogonal direction to the
background trajectories, we have

ŝχ =
√

β0e−χ

3

λ̇

σ̇
and ŝλ =

√
3

β0e−χ

χ̇

σ̇
. (73)

Continuing our study on the evolution of scalar perturba-
tions, we point out that the quantity δ�I

g given by

δ�I
g = δ�I + �̇I

H
ψ, (74)

is gauge invariant. It turns out that ψ = 0 when working on a
spatially flat gauge, so that δ�I

g = δ�I . That said, by project-
ing δ�I in the σ̂ and ŝ directions, we construct the adiabatic
Qσ and isocurvature Qs perturbations, respectively. In that
sense, we have

Qσ = σ̂ J G I J δ�
I = 3χ̇δχ − β0e−χ λ̇δλ

σ̇
, (75)

and

Qs = ŝ J G I J δ�
I =

√
3β0e−χ

(
λ̇δχ − χ̇δλ

)

σ̇
. (76)

It is worth noting that from the point of view of the slow-
roll approximation both Eqs. (75) and (76) are zero-order. By
having written the expressions for the adiabatic and isocur-
vature perturbations, the next step is to invert the relations in
order to obtain δ�I = δ�I (Q). We obtain these relations by
solving the linear system given by Eqs. (75) and (76). Thus,
we find the expressions

δχ = 1

σ̇

(

χ̇Qσ −
√

β0e−χ

3
λ̇Qs

)

, (77)

12 This proposed normalization condition for ŝ I is necessary due to
the negative sign in the metric GI J (�).
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and

δλ = 1

σ̇

(

λ̇Qσ −
√

3

β0e−χ
χ̇Qs

)

. (78)

Once the field perturbations in terms of the adiabatic and
isocurvature perturbations were obtained, we can write the
second order perturbed action for Qσ and Qs . Such an action
is fundamentally constituted by quadratic terms involving
Qσ and Qs (e.g., Q2

σ ), cross terms involving a Qσ or Qs and
a metric perturbation (e.g., AQσ ), and quadratic terms for
metric perturbations (e.g., A2). On the other hand, we can
express the cross term only in terms of the perturbations Qσ

and Qs by making use of the constraints from the Einstein
equations, Eqs. (57) and (58). By taking these considerations
into account, we find the following structure for the part of
the action that depends only on Qσ and Qs

S(2) = M2
Pl

2

∫
d4x

√−g

(
−1

2
∂κQσ ∂κQσ + 1

2
∂κQs∂

κQs

+ CQ2
σ
Q2

σ + CQσ Qs Qσ Qs + CQ2
s
Q2

s

+ CQσ Q̇σ
Qσ Q̇σ + CQ̇σ Qs

Q̇σ Qs + CQσ Q̇s
Qσ Q̇s

+CQs Q̇s
Qs Q̇s

)
, (79)

where the coefficient of the cross kinetic term ∂κQσ ∂κQs

is zero, and the others can be found in Appendix B. It is
interesting to analyze the behavior of kinetic terms and their
possible contribution to the emergence of ghost-type insta-
bilities. Note that the kinetic terms are canonical, equal and
with reversed signs. This characteristic irremediably indi-
cates that the existence of ghost-type instabilities is some-
thing intrinsic to the model and that it is essential to take
this into account when performing the perturbation quanti-
zation process.13 Furthermore, the fact of the non-existence
of the cross kinetic term is something expected and is directly
related to our approach of making a consistent decomposition
of the perturbations in the tangent and orthogonal directions
to the trajectories of the background phase space.

When writing Eq. (79) considering a slow-roll leading
order regime, we obtain

S(2) � M2
Pl

2

∫
d4x

√−g

{
−1

2
∂κQσ ∂κQσ + 1

2
∂κQs∂

κQs

− κ0

σ̇ 2

[
1 − 1

2

(
3

β0eχ
+ β0eχ

3

)]
χ̇2Q2

s

}
. (80)

We now turn our attention to the task of writing the equa-
tions for the evolution of adiabatic and isocurvature pertur-
bations. This is done by substituting the expressions (77) and
(78) in the dynamic equations (65) and (66). In this case, tak-
ing the first derivatives of Eqs. (77) and (78), remembering

13 This conclusion is valid for the case of a positive β0.

that the background quantities can be considered constant,
we are able to write

Q̈σ + 3H Q̇σ − 1

a2 ∇2Qσ � 0, (81)

and

Q̈s + 3H Q̇s + m2Qs � 0, (82)

where

m2 = −
[

1

a2 ∇2 + κ0

3

(
1 − 3

β0eχ

)]
. (83)

Note that relations (81) and (82) indicate that the adiabatic
Qσ and isocurvature Qs perturbations are decoupled, that is,
they evolve independently in our model. That is an interest-
ing result since such a decoupling usually does not occur.
Generally, the isocurvature perturbation enter as source of
the adiabatic one. [71].

From this point on, it becomes convenient to treat the field
equations for the perturbations in a Mukhanov-Sasaki form.
By making a redefinition of the perturbations and assuming
conformal time and Fourier space, we get

δϕ′′
σ +

(
k2 − a′′

a

)
δϕσ � 0, (84)

δϕ′′
s +

[
k2 − a′′

a
− a2κ0

3

(
1 − 3

β0eχ

)]
δϕs � 0, (85)

with the prime representing derivative with respect to con-
formal time and where

δϕσ ≡ aQσ and δϕs ≡ aQs . (86)

In a de Sitter background (slow-roll zero order), we have

a′′

a
� 2

η2 , a � − 1

Hη
and H2 � κ0

12
. (87)

Furthermore, in the slow-roll zero order regime, we have

χ̇ � −1

3

H−1

3 − β0δ−1 δ
(

1 − α0

3
δ−2

)
� 0 ⇒ χ = cte. (88)

For consistency with several previous results, we have
β0eχ < 3 so that we can define a quantity

M ≡ 3

β0eχ
− 1 > 0, (89)

and in this way we write the expressions

δϕ′′
σ + k2

(
1 − 2

k2η2

)
δϕσ � 0, (90)

δϕ′′
s + k2

[
1 − 2

k2η2 (1 − 2M)

]
δϕs � 0. (91)

Next, we will explore the solutions of Eqs. (90) and (91).
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4.4 Solutions to the perturbations

Once the equations for the dynamics of adiabatic and isocur-
vature perturbations have been established in the appropriate
form, given by Eqs. (90) and (91), we can write and analyze
their solutions.

In a subhorizon regime, kη � 1, equations to the pertur-
bations are approximated by

δϕ′′
σ + k2δϕσ � 0, kη � 1,

δϕ′′
s + k2δϕs � 0, kη � 1.

The quantization process in de Sitter takes the following ini-
tial conditions [72,73]

δϕσ � δϕs � 1√
2k

e−ikη, kη � 1, (92)

or

Qσ � Qs � 1√
2ka

e−ikη � − Hη√
2k

e−ikη. (93)

Note that due to the ghost-type behavior of isocurvature per-
turbation, the quantization of the Qs field was performed in
the same way as in Refs. [48,74]. In principle, this behav-
ior can raise questions about the unitarity of the theory [75]
(see also the discussions in Refs. [65,66]). However, as we
will see below, the Qs field decays rapidly after crossing the
horizon, suppressing any observable effects associated with
isocurvature perturbation.14

The exact solution of Eqs. (90) and (91) can be written
using a combination of Hankel’s functions as [73,76]

δϕ (η, k) = C1 (k)
√−ηH (1)

ν (−kη)

+C2 (k)
√−ηH (2)

ν (−kη) , (94)

where for the adiabatic perturbation δϕσ , we have νσ = 3/2,
and for the isocurvature perturbation δϕs , we have

νs = 3

2

√

1 − 16M

9
. (95)

To determine the constants, we compare the general solution
with the initial conditions in Eq. (92). For the adiabatic case
(νσ = 3/2) in the subhorizon regime, we find

C1σ = −
√

π

2
and C2σ = 0, (96)

so that

δϕσ (η, k) = −
√−πη

2
H (1)

3/2 (−kη) . (97)

14 Note also that in the slow-roll leading order regime, the adiabatic
and isocurvature perturbations of the model evolve independently.

In turn, for the case of isocurvature perturbation, where νs is
given by Eq. (95), for a subhorizon regime, we get15

C1s =
√

π

2
e
i π

2

(
νs+ 1

2

)

and C2s = 0. (98)

Thus, the solution to the isocurvature perturbation is written
as

δϕs (η, k) =
√−πη

2
e
i π

2

(
νs+ 1

2

)

H (1)
νs

(−kη) . (99)

Since the solutions (97) and (99) for the perturbations
have been established, we can analyze their behavior in the
superhorizon regime (kη � 1). Taking into account Eq. (87),
which gives us the relation between η and a in a de Sitter
background, for adiabatic perturbation, we find

δϕσ (η, k) � − i

4η

(
k

2

)−3/2

or Qσ � i H

4

(
k

2

)−3/2

,

kη � 1,

(100)

while for isocurvature perturbation, we have

δϕs (η, k) � − i
√

πe
i π

2

(
νs+ 1

2

)

2 sin (νsπ)� (1 − νs)

(
k

2

)−νs

(−η)
1
2 −νs ,

kη � 1,

(101)

or

Qs � − i
√

πe
i π

2

(
νs+ 1

2

)

H νs− 1
2

2 sin (νsπ)� (1 − νs)

(
k

2

)−νs

aνs− 3
2 . (102)

The result in Eq. (100) tells us that the adiabatic perturba-
tion is constant in the superhorizon limit, whereas Eq. (102)
reveals a decaying behavior for the isocurvature one. Remem-
bering that M > 0, we have the following situations:

• If the quantity νs is real, we have

0 < M ≤ 9

16
⇒ 0 ≤ νs <

3

2
, (103)

representing a solution to Qs that decays with a.
• If the quantity νs is imaginary,

M >
9

16
⇒ νs = i

3

2

√∣∣∣∣1 − 16M

9

∣∣∣∣, (104)

also providing a decaying solution, since we have the
product of an oscillatory term and the term decaying with

a− 3
2 .

15 Note that in the limit where M → 0 (adiabatic case νσ = 3/2), we
have C1 s = C1σ = −√

π/2.
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We can provide a quantitative measure of isocurvature
perturbation by considering scales of interest during inflation
(measured in CMB anisotropies). These ones are within the
range 10−3 Mpc−1 < k < 104 Mpc−1, where the pivot scale
is k∗ = 0.002 with 50 < N∗ < 60. The point is that during
the inflationary regime, a given scale k crosses the horizon at a
specific value of the number of e -folds N . The smaller/larger
the scale k is, the smaller/larger the number of e-folds N it
experiences after crossing the horizon. Taking the smallest
scale16 ksm = 104 Mpc−1, we find Nsm = N∗ − 15.4. In
this sense, for N∗ = 50 and νs = 1/2, we get

Qs � 1

2

(
ksm
2

)− 1
2

e−Nsm ∼ 10−18, (105)

which shows us that isocurvature perturbation is negligible
after inflation. Since, in addition to this, they do not enter as a
source of adiabatic perturbation, we can consider them neg-
ligible. All the previous analysis was carried out considering
the slow-roll approximation.

In the next section, we will analyze the connection of our
model with the observations.

5 Observational constraints

At the end of the previous section, we show why isocurva-
ture perturbation is negligible after inflation. Furthermore,
since adiabatic perturbation has the same behavior as in the
case of a single scalar field, we easily recognize the power
spectrum and its connection with observational parameters.
To make the connection with the observations, specifically to
write the power spectrum, it is interesting to recover the mass
units of the fields. In this sense, equations such as (12), (13),
(69) and (75) need to be written in terms of massive fields
given in Eq. (5). Since the curvature perturbation is given by

R = H
σ̇

( √
2

MPl
Qσ

)
,17 the power spectrum of adiabatic pertur-

bation is written as

P2
R = k3

2π2
|R|2

∣
∣∣∣
k=Ha

= 1

8π2M2
Pl

H2

ε

∣
∣∣∣∣
k=Ha

, (106)

where we evaluate it to k = Ha at the instant when k crosses
the horizon. The result in Eq. (106) is identical to the power
spectrum for single-field inflationary models. Thus, in the
slow-roll leading order regime, the scalar spectral index ns
and the tensor-to-scalar ratio r are, respectively,

ns = 1 + η − 2ε and r = 16ε, (107)

16 Since all others decay further.
17 The quantity

√
2/MPl is introduced in the definition of the curvature

perturbation R to recover the conventional units of Qσ .

where ε and η are the slow-roll parameters of the model given
by the Eqs. (44) and (45). These equations depend on α0, β0,
and the number of e-folds N through Eq. (48 ) which carries
the dependency between N and δ.

In our paper, there are two types of Plots where we com-
pare our model with observational data [40], built from Eq.
(107) taking the three independent parameters α0, β0, and N :
the usual ns × r0.002 plane and the parameter space α0 × β0.
The Plots are constructed by setting one of the parameters
and varying the others. We use the range 52 ≤ N ≤ 59
for the number of inflation e-folds N based on a reheating
modeling. For details, see appendix C.

The Fig. 3 shows the ns × r0.002 plane containing the
observational constraints (in blue) obtained from Ref. [40]
and the theoretical evolution of the model in two different
situations.

In the top graph of Fig. 3, we fixed the parameter β0

and varied the others. In it, the light red region represents
Starobinsky+R3 model, which starts at the light red points.
In turn, the light yellow region represents the complete model
with β0 = 1.5 × 10−2, starting at the yellow points. As we
increase the values of the parameter α0, the region predicted
by the model shifts to the left and slightly downwards, until
it crosses the region of 95% C.L.. This behavior can also be
seen in Ref. [44], and it is consistent with the results obtained
in Ref. [42], where β0 = 0. These constraints establish, in
the most conservative way, a maximum value for α0 ∼ 10−4.

In the bottom graph of Fig. 3, on the other hand, we fixed
the parameter α0 and varied the others. The light red region
represents the Starobinsky+R�R model, which starts at the
light red points. In turn, the light green region represents the
complete model with α0 = 10−5, starting at the light green
points. As the values of β0 increase, the region predicted
by the model moves to the right and slightly upwards, until
it crosses the region of 95% C.L.. These constraints estab-
lish a maximum value for β0 ∼ 10−2. Similar results were
obtained in Refs. [58,59] for the Starobinsky+R�R case.
However, a considerable difference between our results and
those in Ref. [58] is checked for the constraint on the tensor-
to-scalar ratio r0.002. There, r0.002 can assume larger values,
so that the growth of the region predicted by the model is
more accentuated. This difference is due to the fact that in
Ref. [58], the definition for the curvature perturbation was not
established properly by not making a separation of the back-
ground phase space trajectories in the tangent (adiabatic per-
turbation) and orthogonal (isocurvature perturbation) direc-
tions. On the other hand, our results are closer to those in
Ref. [59], indicating that the approach of treating the R�R
term as a small perturbation is relevant and consistent.

Another plot developed, Fig. 4, is the parameter space
α0 ×β0 allowed by the observations. In the top graph of Fig.
4, we have the Plot for N = 52, while in the bottom graph of
Fig. 4, we have it for N = 59. The blue regions represent the
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Fig. 3 The contours in blue represent the constraints of the ns × r0.002
plane in 68% and 95% C.L. due to observational data from Planck plus
BICEP3/Keck plus BAO [40]. In the top graph, we set the parameter
β0 and vary the others. The light red circles represent Starobinsky+R3

model for N = 52 (smaller one) and N = 59 (bigger one). The yellow
circles represent the complete model with β0 = 1.5×10−2 for N = 52
and N = 59. As the values of α0 increase, the region predicted by
the model shifts to the left and downwards, until it crosses the region
of 95% C.L.. When it crosses, the curves for Starobinsky+R3 and the
complete model with β0 = 1.5 × 10−2 for N = 52 correspond to
α0 = 3.5 × 10−5 and r0.002 = 4.1 × 10−3 and α0 = 4 × 10−5 and
r0.002 = 4.1 × 10−3, respectively; for N = 59 they correspond to
α0 = 8.2 × 10−5 and r0.002 = 2.8 × 10−3 and α0 = 5.4 × 10−5 and
r0.002 = 2.9 × 10−3, respectively. In the bottom graph, in turn, we set
the parameter α0 and vary the others. The light red circles represent
Starobinsky+R�R model for N = 52 (smaller one) and N = 59
(bigger one). The green circles represent the complete model with α0 =
10−5 for N = 52 and N = 59. As the values of β0 increase, the region
predicted by the model shifts to the right and slightly upwards, until
they cross the 95% C.L. region. As it crosses, the curves for N = 52
correspond approximately to β0 = 1.7×10−2 and r0.002 = 5.2×10−3;
for N = 59 they correspond approximately to β0 = 1.5 × 10−2 and
r0.002 = 3.9 × 10−3

allowed regions for the α0 and β0 parameters in 68% and 95%
C.L.. Note that the Plot for N = 52 gives us a smaller region
for the parameters if we compare it to the Plot for N = 59.
In addition, we can see two regions on each of the Plots. One
is an approximated rectangular region completely within the
95% C.L. (for N = 52, the sides correspond to α0 = 2.8 ×
10−5 and β0 = 1.7×10−2, and for N = 59, α0 = 5.3×10−5

and β0 = 1.5×10−2), where the parameters α0 and β0 do not
keep a dependency between them, being able to assume any
values independently. In this region of independence between
the model parameters, we reproduced the results obtained in

Fig. 4 The regions in blue represent the allowed regions for the param-
eters α0 and β0 in 68% and 95% C.L., due to observational data from
Planck plus BICEP3/Keck plus BAO [40]. In the top graph we have the
Plot for N = 52, while in the bottom graph we have it for N = 59. Note
that the constraints for N = 59 allow a larger region for the parameters
α0 and β0 in line with what we saw in the Fig. 3, whose predictions
for N = 59 are more within the region of 68% C.L. Note that for large
values of α0 and β0, around α0 = 1.5 × 10−4 and β0 = 2.5 × 10−2

(N = 52) and α0 = 2.2 × 10−4 and β0 = 1.2 × 10−2 (N = 59), the
predicted regions for the parameters converge to an asymptotic region.
In this region, the values of α0 and β0 suggest to keep a constraint

Refs. [42,59] for each model separately. The other region
is the asymptotic one for large values of α0 and β0, whose
occurrence suggests a dependence β0 = β0(α0) between the
parameters.

6 Final comments

The Starobinsky model is one of the most competitive can-
didates for describing physical inflation. In addition to hav-
ing a well-grounded theoretical motivation, it better fits the
recent observations [39,40]. Motivated by the success of such
a model, we propose to investigate inflation based on the
higher-order gravitational action characterized by the inclu-
sion of all terms up to the second-order correction involv-
ing only the scalar curvature, namely, the terms R2, R3, and
R�R. In this sense, our proposed model has two additional
dimensionless parameters, α0, and β0, whose values repre-
sent deviations from Starobinsky.

Unlike Ref. [58], whose multi-field treatment used to
address the term R�R gives us an inflation described by
a scalar and a vector field, here, when passing from the orig-
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inal frame to the representation in the Einstein frame, the
model is described through the dynamics of two scalar fields
χ and λ, where only one of them is associated with a canon-
ical kinetic term, and whose potential is V (χ, λ) given in
Eq. (3). The study of inflation in a Friedmann background,
through the analysis of the critical points and phase space of
the model, is essential to verify the existence of an attrac-
tor region associated with the occurrence of an inflationary
regime and to know if such a regime has a graceful exit. We
took as a basis the study of particular cases developed in
Refs. [44,58], which deal with the Starobinsky+R�R and
Starobinsky+R3 extensions. We saw that there is an attractor
line near χt � 0, corresponding to the slow-roll inflation, for
any value of α0 < 10−3 and β0 < 3 × 10−2. Furthermore,
the occurrence of such a physical inflation regime essentially
depends on the initial conditions for the χ field. If they are
such that the χ field is to the right of the critical point Pc, the
value of χ increases indefinitely, and inflation never ends. On
the other hand, the occurrence of a consistent physical infla-
tionary regime that has a graceful exit essentially requires
that the initial conditions be such that χ < χc, i.e., that it is
to the left of the critical point Pc. Finally, we conclude the
background analysis with the study of inflation considering
the slow-roll approximation. By defining the slow-roll fac-
tor δ, which in our analysis is responsible for controlling the
slow-roll approximation order, we obtain all relevant quan-
tities, such as ε and η, in the slow-roll leading order.

There is considerable literature about multi-field inflation
models, which we took into account to develop the analysis
at the perturbative level [68,70]. The equations of motion
for the scalar perturbations were obtained using the spatially
flat gauge. By writing the equations in the slow-roll leading
order approximation, we saw that the scalar perturbations of
the metric are sub-dominant concerning the perturbations δχ

and δλ. At this point, we performed a correct decomposition
of the perturbations in the tangent (adiabatic perturbations)
and orthogonal (isocurvature perturbations) directions to the
phase space background trajectories. This way, adiabatic Qσ

and isocurvature Qs perturbations are completely separated.
Such a decomposition allows us to consistently establish the
curvature perturbation, which led us to obtain observational
constraints different from those obtained in Ref. [58]. The
action written in terms of Qσ and Qs makes it clear that
there are irremediably ghost-type instabilities in the model
since the kinetic terms have opposite signs. Next, we write
the equations of motion in a Mukhanov–Sasaki form in order
to study their solutions. We obtained the exact solutions for
the perturbations through a linear combination of the Hankel
functions. Their analysis leads us to conclude that the isocur-
vature perturbation associated with the ghost field is negli-
gible after inflation and that the adiabatic one has the same
behavior as in the case of a single-field inflation. All previous
results were obtained considering the slow-roll approxima-

tion. Thus, a question that remains is whether the suppres-
sion of isocurvature perturbation holds beyond the slow-roll
regime. This issue will be addressed in a further work.

Finally, we confront our model with recent observations
from the Planck satellite, BICEP3/Keck and BAO [39,40],
making use of a constraint on the number of e-folds N of
inflation (52 ≤ N ≤ 59) based on reheating modeling [44].
For that, we made two types of Plots, namely, the usual
ns × r0.002 plane and the parameter space α0 × β0. In this
analysis, we have three parameters: α0, β0, and N . Thus, to
build the Plots, we set one of the parameters and vary the
others. Fixing the parameter β0, we observe that the region
predicted by the model in the ns × r0.002 plane shifts to the
left and slightly downwards. On the other hand, fixing the
parameter α0, we notice that the predicted region shifts to
the right and slightly upwards. By setting α0 = 0, we get
the Starobinsky+R�R model. In this context, we saw that
inconsistency in establishing the curvature perturbation in
Ref. [58] led them to obtain values higher than ours for the
tensor-to-scalar ratio. In turn, by fixing the number of e-folds
N , we construct the parameter space α0 × β0 constrained by
the observations. In general, the model predictions are more
in agreement with the observations for a number of e-folds
N = 59. Our analysis, conservatively, restrict the param-
eters to maximum values of α0 ∼ 10−4 and β0 ∼ 10−2.
It is also worth pointing out the behavior of the α0 × β0

parameter space. The R3 and R�R terms are second-order
correction terms on energy scales and, therefore, should con-
tribute similarly to inflation. In this sense, the joint effect of
such terms is reflected in the plot α0 × β0. In fact, there is a
considerable region in which the parameters do not depend
on each other and which we can associate with the models
separately discussed in Refs. [42,44,58,59]. However, there
is an asymptotic region for large values of α0 and β0, where
such parameters seem to keep a constraint. In this particular
region, a change in one of the parameters necessarily implies
a change in the other, so that the possibility of a dependence
β0 = β0(α0) is something to be investigated. This is a topic
that the authors will address in a future research.
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Appendix A: Determination of χt and λ

The equations of motion of the model can be explicitly writ-
ten in terms of the fields and their first derivatives as

χt t + 3hχt − β0

6
e−χλt

2

+ 1

3
e−2χλ

[(
2 − eχ

)+ λ + 2

3
α0λ

2
]

= 0, (A1)

β0 [λt t − (χt − 3h) λt ] −
[
1−e−χ

(
1 + λ + α0λ

2
)]

=0,

(A2)

where

h2 = 1

4
χ2
t − 1

12
β0e

−χλ2
t + 1

6
e−2χλ

[ (
eχ − 1

)

−1

2
λ − 1

3
α0λ

2
]

. (A3)

By studying the case where the model parameters behave
as β0 ∼ δ ≡ e−χ and α0 ∼ δ2, we assume the quantities χt

and λ as follows, respectively,

χt � c1δ + β0

∞∑

n=0

bn
(
β0δ

−1
)n + α0δ

−1
∞∑

n=0

dn
(
β0δ

−1
)n

,

(A4)

and

λ � δ−1 +
∞∑

n=0

gn
(
β0δ

−1
)n + α0δ

−2
∞∑

n=0

jn
(
β0δ

−1
)n

,

(A5)

where we explore several possibilities of construction of the
quantities χt (in first-order) and λ (up to zero-order). In addi-
tion to the terms involving β0 and α0 separately, we observe
the need to introduce crossed terms due to the non-linearity
of gravitation. We also notice fine limits when we take the
particular cases α0 → 0 (Starobinsky+R�R) and β0 → 0
(Starobinsky+R3).

By finding the coefficients of the series Eqs. (A4) and
(A5), we substitute them in Eqs. (A1) and (A2) and solve the
corresponding systems of equations. After a long calculation,
we obtain that, for consistency with the Starobinsky case,

g0 � −1, as well as finding the following n th coefficients
of the series

bn � − 2

3n+ 5
2

, for n ≥ 0, (A6)

dn � 2

3n+ 5
2

, for n ≥ 0, (A7)

gn � 1

3n
, for n ≥ 1, (A8)

jn � − 1

3n+1 , for n ≥ 1, (A9)

as well as

c1 � − 2

3
3
2

and j0 � −1. (A10)

In possession of the nth coefficients, we can substitute
them in the quantities χt and λ. In this case, for χt ,

χt � − 2

3
3
2

δ

[

1 + 1

3
β0δ

−1
∞∑

n=0

(
β0δ

−1

3

)n

−1

3
α0δ

−2
∞∑

n=0

(
β0δ

−1

3

)n
]

, (A11)

that converges with

β0δ
−1

3
< 1. (A12)

Thus,

χt � −2
√

3

3

δ

3 − β0δ−1

(
1 − 1

3
α0δ

−2
)

. (A13)

In turn, for λ, we have

λ � δ−1 − 3 − 2β0δ
−1

3 − β0δ−1 − α0δ
−2

(

1 +
1
3β0δ

−1

3 − β0δ−1

)

.

(A14)

The previous relation recovers the Starobinsky result

λ � δ−1 − 1, (A15)

and Starobinsky+R3, namely,

λ � δ−1 − 1 − α0δ
−2. (A16)

Appendix B: Coefficients in the action up to second-order
for the perturbations Qσ and Qs

In this appendix, we present the non-trivial coefficients in
the second-order perturbed action for the adiabatic Qσ and
isocurvature Qs perturbations, Eq. (79).

For CQ2
σ
, we have
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CQ2
σ

=
(

1

8σ̇ 4

){
6β3

0e
−3χ λ̇6 − 55β2

0e
−2χ λ̇4χ̇2 − 162χ̇6

+ 12β0e
−χ

[
−χ̇2λ̈2 + 2λ̇χ̇ λ̈

(
χ̇2 + χ̈

)

+λ̇2
(

13χ̇4 − 2χ̇2χ̈ − χ̈2
)]}

−1

4
H−1

(
4κ0e−2χ

9

){
3
[−1 + eχ − λ (1 + α0λ)

]
λ̇

+λ
[
6 − 3eχ + λ (3 + 2α0λ)

]
χ̇
}

+
(

−1

4
H−1

)2 (
e−2χ σ̇ 4

)
+

−
(

κ0e−2χ

6σ̇ 2

){
(3 + 6α0λ) λ̇2

+6
[
eχ − 2

(
1 + λ + α0λ

2
)]

χ̇ λ̇

+λ
(

12 − 3eχ + 6λ + 4α0λ
2
)

χ̇2
}

, (B1)

for CQ2
s
,

CQ2
s

=
(

1

24σ̇ 4

){
2β3

0e
−3χ λ̇6 − 27χ̇6 − 6β2

0e
−2χ λ̇3

[
−4χ̇ λ̈ + λ̇

(
5χ̇2 + 4χ̈

)]

+36β0e
−χ

[
χ̇2λ̈2 − 2χ̇ λ̇λ̈

(
χ̇2 + χ̈

)

+λ̇2
(

2χ̇4 + 2χ̇2χ̈ + χ̈2
)]}

+
(

κ0

18β0eχ σ̇ 2

){
2β2

0e
−2χλ [6 + λ (3 + 2α0λ)] λ̇2

+9χ̇
[
2β0λ̇ + 3 (1 + 2α0λ) χ̇

] +
−3β0e

−χ λ̇
[
β0λλ̇ + 12

(
1 + λ + α0λ

2
)

χ̇
]}

, (B2)

for CQσ Qs ,

CQσ Qs =
(√

3β0e−χ χ̇

2σ̇ 4

)
{
−3χ̇2 [−χ̇ λ̈

+λ̇
(
χ̇2 + χ̈

)]
+ β0e

−χ λ̇2
[
−3χ̇ λ̈ + λ̇

(
2χ̇2 + 3χ̈

)]}

−1

4
H−1

(
1

σ̇ 2

√
β0e−χ

3

)

{
β2

0e
−2χ λ̇5 + 6χ̇2

[
−χ̇ λ̈ + λ̇

(
2χ̇2 + χ̈

)]

−3β0e
−χ λ̇2

[
−2χ̇ λ̈ + λ̇

(
3χ̇2 + 2χ̈

)]}

−1

4
H−1

(
4κ0e−3χ

9
√

3β0e−χ

)
{−β0λ [6 + λ (3 + 2α0λ)] λ̇

−9e2χ χ̇ + 3eχ
[
β0λλ̇ + 3

(
1 + λ + α0λ

2
)

χ̇
]}

+
(

κ0e−3χ

3σ̇ 2
√

3β0e−χ

){
−3β0

[
eχ − 2

(
1 + λ + α0λ

2
)]

λ̇2

{−3eχ [3 + (6α0 − β0) λ] − 2β0λ [6 + λ (3 + 2α0λ)]
}
λ̇χ̇

−9eχ
[
eχ − 2

(
1 + λ + α0λ

2
)]

χ̇2
}

, (B3)

for CQ̇σ Qs
,

CQ̇σ Qs
= −

(
1

σ̇ 2

√
β0e−χ

3

)
[
β0e

−χ λ̇3 + 3χ̇ λ̈ − 3λ̇
(
χ̇2 + χ̈

)]
,

(B4)

for CQσ Q̇s
,

CQσ Q̇s
=
(√

3β0e−χ

σ̇ 2

)[
χ̇ λ̈ − λ̇

(
χ̇2 + χ̈

)]
, (B5)

for CQσ Q̇σ
,

CQσ Q̇σ
=
(

β0e−χ λ̇2

2σ̇ 2

)
χ̇

− 1

4H

(
1

σ̇ 2

){
β0e

−χ
[
β0e

−χ
(
1 + β0e

−χ
)
λ̇4

−12β0e
−χ λ̇2χ̇2 + 18χ̇4

]}
. (B6)

and finally, for CQs Q̇s
,

CQs Q̇s
= 1

2

(
−1 + β0e−χ λ̇2

σ̇ 2

)
χ̇ . (B7)

Appendix C:Restriction for N based on a reheatingmod-
eling

In Ref. [44], we saw that in the particular case of β0 = 0,
the uncertainty in the number of e-folds Nk for the reference
scale k = 0.002 Mpc−1, defines the interval

52 ≤ Nk ≤ 59. (C1)

This result was obtained through a very general modeling of
the reheating phase considering that at least the fields of the
standard model of particles are present during this phase.

The basic equations of the performed modeling are [44]

Nre = 4

3
(
wa − 1

3

)

{

Nk + ln

(
ρ

1/4
e

Hk

)

+ ln

⎡

⎣
(

k

a0T0

)(
30

π2

) 1
4
(
gre
g4

0

) 1
12
⎤

⎦

⎫
⎬

⎭
, (C2)

Tre =
(

30ρe

greπ2

) 1
4

exp

[
−3

4
(1 + wa) Nre

]
, (C3)

where Nre is the number of e-folds of the reheating, Tre is the
temperature of the reheating,wa is the average of the effective
equation of state during the reheating, ρe is the energy density
at the end of inflation, T0 is the CMB temperature in the
present day and gre and g0 are the relativistic degrees of
freedom in reheating and in the present day, respectively.
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The range (C1) is obtained by imposing the bounds Nre ≥ 0
and Tre ≥ T (min)

re , where T (min)
re is determined from the decay

of the inflaton field in the matter fields [44].
Based on the previous equations and results, it is rela-

tively simple to conclude that the range obtained in (C1) also
applies to β0 �= 0. The main point is that at the end and
after inflation where χ < 1 ⇒ δ ∼ 1, the proposed model
behaves essentially like the Starobinsky model.18 Thus, the
only term present in Eqs. (C2) and (C3), which may have
some relevance when β0 �= 0 is the term Hk . However, by
(41), we see that Hk weakly depends on β0 even taking into
account slow-roll first-order corrections. With this, we con-
clude that for our model, it is licit to consider the range for
the number of e-folds N as given by Eq. (C1).
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