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Abstract Quantum resources construct new avenues to
explore the cosmos. Considering bipartite-qubit detectors
subjected to scalar fields in an expanding spacetime, quan-
tum resources (including quantum coherence, quantum dis-
cord, Bell-nonlocality, and nonlocal advantage of quantum
coherence) of the system are characterized. The influences
of various cosmic parameters on these quantum resources
are investigated. Besides, we use the filtering operation to
propose a strategy that can be used to control these quantum
resources. The results reveal that quantum coherence and
quantum discord can not disappear at different expansion
rapidity, expansion volumes, and particle masses of scalar
field. Conversely, one can not capture Bell-nonlocality and
nonlocal advantage of quantum coherence at higher expan-
sion rapidity, larger expansion volume, and smaller particle
mass. The dissipation of quantum resources can be resisted
via the filtering operation. One can use the filtering opera-
tion to remarkably strengthen these quantum resources of the
system.

1 Introduction

Quantum resources are the significant traits of quantum field,
and they embody differently crucial application values in
quantum information science [1]. Quantum coherence (QC)
is a fundamental quantum resource, and it stems from the
fluctuation of microscopic particles. QC investigation can be
traced backed to its quantification framework [2]. Based on
a fixed reference basis, a series of QC measurements were
proposed, including the relative entropy of coherence [2], the
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l1 norm of coherence [2], the skew information of coherence
[3–5], and the robustness of coherence [6,7]. QC becomes a
promising topic in quantum channel discrimination, quantum
thermodynamics, quantum metrology, and quantum algo-
rithms [8,9]. There have been valuable efforts to improve
QC [10–15].

Quantum properties of nonclassical correlations of two-
qubit systems can be quantified through the quantum dis-
cord (QD) [16,17]. It is deemed as the difference between
total correlation and classical correlation [16,17]. The pre-
vious results indicated that some separable states with QD
can be used to realize quantum information tasks. Exam-
ples include state discrimination [18,19], quantum computa-
tion [20], Grover search [21], and quantum phase transitions
[22,23]. Bell-nonlocality (BN) is found to be a stricter cri-
terion for predicting quantum correlation when compared to
both QC and QD. For a bipartite state, BN describes the non-
locality that the joint probability distributions of arbitrary
measurement outcomes can not be represented by local hid-
den variable-local hidden variable model [24,25]. The vio-
lation of the Bell inequality (for example Clauser–Horne–
Shimony–Holt (CHSH) inequality [26]) manifests that the
bipartite state possesses BN. BN plays a nontrivial role in
the field of quantum information [27–29].

In particular, the nonlocal advantage of quantum coher-
ence (NAQC) was proposed by Mondal et al. as a new
quantum resource [30]. NAQC reveals the nonclassical phe-
nomenon that the upper bound of QC quantified under a set
of mutually unbiased bases for a single-qubit state can be
punctured by performing a local measurement on a bipartite
system [30]. One can achieve NAQC by employing different
criteria, which relies on the measure of QC. A variety of valu-
able achievements have been obtained in the related efforts
[31–34]. Also, Ding et al. verified NAQC of two-qubit states
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in experiment [35], and this work establishes a base for the
practical application of NAQC.

Due to the ubiquitous and remarkable applications of these
quantum resources in the field of quantum information area,
the explorations regarding QC, QD, BN, and NAQC in dif-
ferent models are always hot topics. Recently, the quantum
resources have been used to cognize the nonclassical traits
of various systems. Involving two-level molecular systems
[36], quantum batteries [37,38], dilaton spacetime [39], neu-
trino oscillations [40–43], curved space-time [44], fermion
systems [45], noninertial frame [46], and black holes [47].

Significantly for what follows, the expanding spacetime
is an essential model that can be used to explore the cos-
mos. Some concepts of quantum information have been
used to investigate expanding spacetime [48–57], and the
quantum resources reveal a new avenue to cognize the cos-
mos. To be clearer, relevant efforts can help us predicting
the particle creation in an expanding spacetime [49], cap-
ture spacetime curvature [51], and demonstrate the influ-
ences of cosmic parameters on the quantum entanglement of
the system [55]. However, explorations regarding QC, QD,
BN, and NAQC of two-qubit detector subjected to scalar
fields in an expanding spacetime are still lacking. Mean-
while, the controls and enhancements of these quantum
resources of two-qubit detectors subjected to scalar fields
in an expanding spacetime have not been achieved till now.
These explorations can shed new light on the cosmos from
the perspective of quantum information, and provide a vital
technique to steer the quantum resources of bipartite-qubit
detectors subjected to scalar fields in an expanding space-
time.

Enlighted by this, our attention is directed to characterize
QC, QD, BN, and NAQC of two-qubit detectors subjected
to scalar fields in an expanding spacetime, and explore the
effects of different cosmic parameters on QC, QD, BN, and
NAQC. Moreover, we design a scheme that can be used to
control the quantum resources of two-qubit detectors sub-
jected to scalar fields in an expanding spacetime. It is revealed
that an increase in the expansion rapidity gives rise to the
decreases in QC, QD, BN, and NAQC. High expansion rapid-
ity is responsible for the invariant traits of QC and QD. NAQC
and BN can not be detected when the volume expansion
approaches the maximum or the particle mass of the scalar
field is small. An increase in the mass of the scalar field
particle results in invariance of QC, QD, BN, and NAQC.
The influences of different cosmic parameters on quantum
resources can be controlled through the filtering operation.
One can use the operation to battle against the declines of
quantum resources of two-qubit detectors subjected to scalar
fields in an expanding spacetime. The quantum resources can
be achieved with the help of the filtering operation in the cases
of higher expansion rapidity, stronger volume expansion, and
smaller particle mass.

In Sect. 2, the model of two-qubit detectors coupled to
scalar fields is provided. QC, QD, BN, and NAQC of the
system are characterized in Sect. 3. Also, the effects of dif-
ferent cosmic parameters on QC, QD, BN, and NAQC are
investigated in this section. Section 4 reveals the avenue that
can be used to control the quantum resources of two-qubit
detectors subjected to scalar fields in an expanding space-
time. Finally, conclusions are drawn.

2 Bipartite-qubit detectors subjected to scalar fields in
an expanding spacetime

We consider a Robertson–Walker metric,ds2 = R(η)2(dη2−
dx2), where η (−∞ < η < +∞) is the conformal time
and R(η)2 (R(η) = √

1 + ε[1 + tanh(ση)]) is the conformal
scale factor [48,58]. The volume expansion and expansion
rapidity of spacetime are ε and σ, respectively. η → −∞
and R(η)2 = 1 (η → +∞ and R(η)2 = 1+2ε) indicate the
distant past (the far future) for the flat space-time.

A real scalar field �(x, η) satisfies Klein–Gordon equa-
tion, i.e., (�+m2)� = 0 (�� = ∂μ(

√−ggμv∂v�)/
√−g),

where �(x, η) = (2πωk)
−1/2eikxξk(η) [58,59] with equa-

tion ∂2
ηξk(η) + [k2 + R2(η)m2]ξk(η) = 0. When η → −∞

and η → +∞, we respectively label two solutions of the
equation as μin

k and μout
k . The relation between μin

k and μout
k

is [58,59]

μin
k (x, η) = αkμ

out
k (x, η) + βkμ

out∗
−k (x, η), (1)

where αk and βk (|αk |2 − |βk |2 = 1) are the Bogoliubov
coefficients, given by

αk =
(

ωout

ωin

) 1
2 �
(

1 − iωin
σ

)
�
(
− iωout

σ

)

�
(
− iω+

σ

)
�
(

1 − iω+
σ

) , (2)

βk =
(

ωout

ωin

) 1
2 �
(

1 − iωin
σ

)
�
(
iωout

σ

)

�
(
iω−
σ

)
�
(

1 + iω−
σ

) . (3)

ωout = [k2 + m2(1 + 2ε)]1/2, ωin = (k2 + m2)1/2, and
ω± = (ωout ± ωin)/2. In the following sections, we have
taken all parameters (including expansion rapidity σ and
energy level 
) in units of the momentum k, and k = 1
is assumed for simplicity. One can use

ℵk =
∣∣∣∣βk

αk

∣∣∣∣
2

= sinh2(πω−/σ)

sinh2(πω+/σ)
(4)

to indicate the mixed degree between k and −k (the “in”
modes). Besides, |βk |2 = 1/(ℵ−1

k − 1) [49] represents the
average particle number of “out” modes [49]. ℵk → 0
(ℵk → 1) induces |βk |2 → 0 (|βk |2 → ∞). The creation
and annihilation operators are [60]
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âink = α∗
k â

out
k − β∗

k â
out†
−k , (5)

âin†
k = αk â

out†
k − βk â

out
−k . (6)

The “in” vacuum in the sectors of the (unordered) pair k and
-k is [55]

|0〉ink |0〉in−k =
∑
n

An,k |0〉outk |0〉out−k (7)

with

An,k =
(

β∗
k

α∗
k

)n√
1 − ℵk, (8)

where n is the particle content. In opposite directions, each
pair of modes keeps away from the other [49]. The state of
mode k is [55]

ρout
k = Tr−k[|0〉ink |0〉in−k

in
−k 〈0| ink 〈0|]

= (1 − ℵk)
∑
n

ℵn
k |n〉k 〈n|, (9)

where |n〉k 〈n| is a stenography for |n〉outk
out
k 〈n| .

In the far future of the expanding spacetime (described
by Eq. (2)), considering the Unruh–DeWitt (UDW) detector
model [61] in which the detector locally subjected to scalar
fields. The UDW detectors can be modelled by nonlinear
optics system [62], electro-optic sampling of the electromag-
netic vacuum [63], coupled laser field [64], and two-level
atomic or artificial-atom systems [65]. The Hamiltonian is
[55]

Ĥ = Ĥq + Ĥ� + ĤI . (10)

Ĥq = 
ϒ̂†ϒ̂(
 is the energy level difference between
|0〉 and |1〉 . ϒ̂† and ϒ̂ are the rising and lowering opera-
tors, respectively.) is the Hamiltonian for the qubit detec-
tor. Ĥ� is the Klein–Gordon Hamiltonian of the scalar field.
ĤI (t) = ς(t)

∫
∑�(x, t)[ψ(x)ϒ̂ + ψ∗(x)ϒ̂†]√−gdx is

the interaction. ψ(x) (ς(t)) is a smooth function (the cou-
pling constant with a finite duration of qubit-field interac-
tion). � is the spacelike Cauchy surface.

U ≈ 1 + iϒ̂ â†(�∗) − iϒ̂†â(�∗) (11)

is the unitary transformation induced by the Hamilto-
nian [61]. Here, �(x) = −2i

∫
ϑψ∗(x ′)

√−g′d2x ′, ϑ =
[GR(x; x ′) − GA(x; x ′)] × ς(t ′)ei
t ′ . â(�∗)|n〉k = √

nμk

|n − 1〉k, â†(�∗)|n〉k = √
n + 1μ∗

k |n + 1〉k, and μk =〈
�∗
q , χk

〉
[61].

The single mode approximation is taken, which is valid
only in a certain regime. That is, the coupling between the
detector qubit and the mode k0 is dominant, however, the
coupling between the detector qubit and other field modes
are weak (−k0 is out of access because of the separation
on a cosmological scale) [55]. In this regime, the coupling
between the detector qubit and all the field modes can be

ignored, and only the interaction between the detector qubit
and the field mode k0 (the energy is 
) can be considered
[55]. The purpose of using the single mode approximation is
to obtain the influence between the mode k0 and the detector
qubit, namely [55],

|n〉 ⊗ |0〉 → |n〉 ⊗ |0〉 − i
√
nμ |n − 1〉 ⊗ |1〉 ,

|n〉 ⊗ |1〉 → |n〉 ⊗ |1〉 + i
√
n + 1μ∗ |n + 1〉 ⊗ |0〉 , (12)

where we omit the mode index k0 of the Fock state |n〉
and the inner product of the mode functions μ =

〈
�∗
q , χk0

〉
[55]. m

√
1 + 2ε is the minimum energy of a particle gener-

ated in expansion spacetime. ωout = √
k2 + m2(1 + 2ε) ≥

m
√

1 + 2ε. 
 ≥ m
√

1 + 2ε must be satisfied due to the
fact that the field modes can influence the qubit. Therefore,
ε ≤ εmax = (
2/m2 − 1)/2 [55]. Of particular note is that
εmax is the maximum volume such that our approximation can
give any meaningful results, with results only being trustwor-
thy for ε � εmax. The εmax is a detector dependent quantity,
and not a fundamental property of spacetime.

Here, we consider the model in which the created par-
ticles in the expansion spacetime constitute the surround-
ing environment of a two-entangled-qubit detector [55]. The
entangled-qubit can be realized by different physical sys-
tems, including quantum dot system [66–68], Heisenberg
spin chains system [69–72], superconducting system [73–
75], cavity QED system [76–78], and Rydberg atom system
[79–81]. The initial state of a two-entangled-qubit detector
is |ψ〉 = cos θ |01〉 + sin θ |10〉 . When one of the qubits is
coupled to a scalar field, the other one is decoupled [55].
Under the basis of {|00〉 , |01〉 , |10〉 , |11〉} (namely, under
the σz-representation), the final state of the two-qubit detec-
tor is [55]

ρAB =

⎛
⎜⎜⎝

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

⎞
⎟⎟⎠ , (13)

with

ρ11 = Ξ4cos2θ + Ξ3sin2θ, ρ22 = Ξ0cos2θ + Ξ5sin2θ,

ρ33 = Ξ6cos2θ + Ξ0sin2θ, ρ44 = Ξ1cos2θ + Ξ2sin2θ,

ρ23 = ρ32 = Ξ0 sin θ cos θ,

(14)

where

Ξ0 = �
∑
a,b

ℵa
Aℵb

B

ϒab
, (15)

Ξ1 = �|μA|2
∑
a,b

aℵa
Aℵb

B

ϒab
, (16)

Ξ2 = �|μB |2
∑
a,b

bℵa
Aℵb

B

ϒab
, (17)
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Ξ3 = �|μA|2
∑
a,b

(a + 1)ℵa
Aℵb

B

ϒab
, (18)

Ξ4 = �|μB |2
∑
a,b

(b + 1)ℵa
Aℵb

B

ϒab
, (19)

Ξ5 = �|μA|2|μB |2
∑
a,b

b(a + 1)ℵa
Aℵb

B

ϒab
, (20)

Ξ6 = �|μA|2|μB |2
∑
a,b

a(b + 1)ℵa
Aℵb

B

ϒab
, (21)

� = (1 − ℵA)(1 − ℵB), (22)

ϒab = cos2θ [1 + a|μA|2 + (b + 1)|μB |2
+a(b + 1)|μA|2|μB |2] + sin2θ [1 + b|μB |2
+(a + 1)|μA|2 + b(a + 1)|μA|2|μB |2], (23)

Ξ0 + cos2θ(Ξ1 + Ξ4 + Ξ6)

+sin2θ(Ξ2 + Ξ3 + Ξ5) = 1. (24)

Here, ℵA and ℵB are the mixed degree defined in Eq. (4)
[55]. μA and μB are the inner product of the mode functions

defined by μ =
〈
�∗
q , χk0

〉
[55,61]. Notably, the Eq. (13) and

all results of our work are valid in the scenarios that one
only considers the coupling between the detector qubit and
the mode k0, and neglects the coupling between the detector
qubit and other field modes.

3 The quantum resources of bipartite-qubit detectors
subjected to scalar fields in an expanding spacetime

3.1 The characterizations of QC, QD, BN, and NAQC

In this section, we first characterize QC in the expansion
spacetime by using the relative entropy of coherence. QC is
a fundamental quantum resource. QC of a quantum state is
defined as the shortest distance from it to all incoherent states.
Therefore, QC depends on the definition of incoherent state.
However, the definition of incoherent state is dependent on
the reference basis. One can use various avenues to measure
QC of system based on the framework of Baumgratz et al.
[2]. Thus, QC is a basis dependent quantity. The relative
entropy of coherence is one of the important methods for
quantifying QC [2]. The relative entropy of coherence of any
two-qubit state ρ is defined as QC(ρ) = S(ρdiag)−S(ρ) [2],
where ρdiag is the matrix containing only diagonal elements
of ρ in the reference basis, and S(ρ) = −Tr(ρlog2ρ) is
the von Neumann entropy. Under the σz-representation, the
incoherent state is the simple matrix that only contains the
diagonal elements when choosing the eigenstates of σz as the
reference bases. However, the incoherent state does not have
this simple form when choosing the eigenstates of σx or σy as

the reference bases under the σz-representation. Therefore,
researchers are accustomed to choosing the eigenstates of σz

as the reference bases in experiment and theory [82–86]. For
this reason, we choose the eigenstates of σz as the reference
bases in this paper. Based on the Eq. (13), we can obtain QC
of ρAB, namely

QC(ρAB) = 1

2Ln2
[A + B−C− + B+C+)] (25)

with

A = −2(Ξ6cos2θ + Ξ0sin2θ)Ln(Ξ6 cos2 θ + Ξ0sin2θ)

−2(Ξ0 cos2 θ + Ξ5sin2θ)Ln(Ξ0 cos2 θ + Ξ5sin2θ),

(26)

B− = (Ξ0 + Ξ6) cos2 θ + (Ξ0 + Ξ5)sin2θ − √
R, (27)

C− = −Ln2 + Ln{(Ξ0 + Ξ6) cos2 θ

+(Ξ0 + Ξ5)sin2θ − √
R}, (28)

B+ = (Ξ0 + Ξ6) cos2 θ + (Ξ0 + Ξ5)sin2θ + √
R, (29)

C+ = −Ln2

+Ln[(Ξ0 + Ξ6) cos2 θ + (Ξ0 + Ξ5)sin2θ + √
R],
(30)

R = (Ξ0 − Ξ6)
2 cos4 θ

+2[Ξ0(Ξ0 + Ξ5) + Ξ6(Ξ0 − Ξ5)] cos2 θsin2θ

+(Ξ0 − Ξ5)
2sin4θ. (31)

Next let us investigate QD of system. The nonclassical cor-
relations are nontrivial in the field of quantum information,
and it can be conventionally represented by QD [16,17]. If
a system possesses QD but does not possess quantum entan-
glement, the system can also be used to implement quantum
information tasks. QD of system is QD(ρ) = I (A : B) −
C(ρ) [16,17]. The total correlation I (A : B) is I (A : B) =
S(ρA) + S(ρB) − S(ρ), The classical correlation is given
by C(ρ)= max�B

i
[S(ρA) − S�B

i
(ρA || B)], where �B

i is a
group of possible positive-operator-valued measurements on
particle B, S�B

i
(ρA| B)=∑i qi S(ρA

i ) represents the condi-

tional entropy of qubit A, and ρA
i = TrB(�B

i ρAB�B
i )/TrAB(

�B
i ρAB�B

i ). Due to the fact that the Eq. (13) is the form of the
bipartite-qubit X-state, and we can use QD of the bipartite-
qubit X-state [87–89] to reveal QD of ρAB, viz.,

QD(ρAB) = min{Q1, Q2}, (32)

Q1 = H(ρ11 + ρ33) +
4∑

i=1

λi log2λi + q1, (33)

and

Q2 = H(ρ11 + ρ33) +
4∑

i=1

λi log2λi + q2. (34)
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Here,

H(x) = −x log2x − (1 − x)log2(1 − x), (35)

κ =
√

[1 − 2(ρ33 + ρ44)]2 + 4(|ρ14| + |ρ23|)2, (36)

q1 = H((1 + κ)/2), (37)

q2 = −
∑
i

ρi i log2ρi i − H(ρ11 + ρ33), (38)

λi (i = 1, 2, 3, 4) are the eigenvalues of ρAB, namely,

λ1 = 1

2
{Ξ0 + Ξ6 cos2 θ + Ξ5sin2θ − √

� }, (39)

λ2 = 1

2
{Ξ0 + Ξ6 cos2 θ + Ξ5sin2θ + √

� }, (40)

λ3 = 1

2
{(Ξ1 + Ξ4) cos2 θ + (Ξ2 + Ξ3)sin2θ

−
∣∣∣(Ξ1 − Ξ4) cos2 θ + (Ξ2 − Ξ3)sin2θ

∣∣∣}, (41)

λ4 = 1

2
{(Ξ1 + Ξ4) cos2 θ + (Ξ2 + Ξ3)sin2θ

+
∣∣∣(Ξ1 − Ξ4) cos2 θ + (Ξ2 − Ξ3)sin2θ

∣∣∣} (42)

with

� = 4Ξ2
0 cos2 θsin2θ

+[(Ξ6 − Ξ0) cos2 θ + (Ξ0 − Ξ5)sin2θ ]2. (43)

BN is stronger than QC (or QD). That is to say, if BN exists
in a system, then QC (or QD) must also exist in the system, but
not vice versa. BN of two-qubit states ρ can be characterized
by the violation of CHSH inequality, i.e.,

∣∣〈BCHSH 〉ρ
∣∣ =

|Tr (ρBCHSH )| ≤ 2 [26]. Here, BCHSH = a ·σ ⊗ (b + b′) ·
σ + a′ · σ ⊗ (b − b′) · σ is the Bell operator. a, a′, b and
b′ represent different unit vectors, σ = (σx , σy, σz

)
. For an

arbitrary two-qubit state

ρ = 1

4

⎛
⎝I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
m,n=1

tnmσn ⊗ σm

⎞
⎠ ,

(44)

I is identity operator, r = Tr (ρσ ⊗ I ) , and s = Tr (ρ I ⊗ σ ) .

tnm= Tr (ρσn ⊗ σm) is the matrix elements of spin correla-
tion matrix T . The

∣∣〈BCHSH 〉ρ
∣∣ = |Tr (ρBCHSH )| has a

maximum BMax
CHSH (ρ) when a, a′, b and b′ obey the follow-

ing conditions [90],

b + b′ = 2 cos θc,b − b′ = 2 sin θc′, (45)

θ = θopt = arctan

∣∣T c′∣∣
|T c| , (46)

a = T c
|T c| , a

′ = T c′

|T c′| . (47)

Here, c and c′ are two eigenvectors corresponding to two
larger eigenvalues of T T T, respectively. For a two-qubit X
state ρX (spin correlation matrix is T = diag (t11, t22, t33)),

using the conditions of Eqs. (45)–(47), the maximum
expected value of the Bell operator can be simply represented
by [90]

BMax
CHSH (ρX ) = 2

√√√√ 3∑
i=1

t2
i i − λmin (48)

with tii = Tr[ρXσi ⊗ σi ] and λmin = min{t2
11, t

2
22, t

2
33}. BN

of ρX can be detected if and only if BMax
CHSH (ρX ) > 2, and

one can use

BN (ρX ) = Max
{

0, BMax
CHSH (ρX ) − 2

}
(49)

to characterize BN. Thereby, BN of ρAB is

BN (ρAB) = Max {0, Max {B1, B2} − 2} (50)

with

B1 = 4
√

2 |Ξ0| cos θ sin θ, (51)

B2 = 2
√
B ′, (52)

B ′ = 4Ξ2
0 cos2θsin2θ

+[(−Ξ0 + Ξ1 + Ξ4 − Ξ6)cos2θ

+(−Ξ0 + Ξ2 + Ξ3 − Ξ5)sin2θ ]2. (53)

Finally, we characterize NAQC of ρAB . NAQC is a new
quantum resource, which is revealed by implementing a local
measurement on subsystem of a bipartite system. If a bipartite
system possesses NAQC, then the upper bound of QC (for a
single-qubit state) measured under a set of mutually unbiased
bases can be punctured [30]. Supposing Alice and Bob share
a bipartite state ρ. Alice chooses the Pauli matrices σi (i =
x, y, x) and performs the corresponding measurement on her
particle. The measurement operator and outcome are �a

i =
[I + (−1)aσi ]/2 and a ∈ {0, 1} , respectively. Subsequently,
Bob chooses the other Pauli operators σ j ( j �= i) to measure
QC of the conditional states ρ B|σ a

i
(the ensemble of Bob’s

conditional states {p(a| σi ) = Tr(�a
i ρ), ρ B|σ a

i
}). By using

the relative entropy of coherence, the average coherence of
ρ B|σ a

i
can be given by

C̄
σ j
re ({p(a| σi ), ρ B|σ a

i
}) =

∑
a

p(a| σi )Cσ j
re (ρ B|σ a

i
) (54)

with ρ B|σ a
i

= TrA(�a
i ρ)/p(a| σi ). C

σ j
re is the relative

entropy of coherence measured in the eigenbasis of σ j . Con-
sidering all measurement choices of Alice, NAQC [30] can
be achieved if

Cna
re (ρ) = 1

2

∑
i, j,a,i �= j

p(a| σi )Cσ j
re (ρ B|σ a

i
) > Cm

re (55)
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can be violated.Cm
re ≈ 2.2320. Based on the Eq. (13), NAQC

of ρAB is

N AQC(ρAB) = Max

⎧⎨
⎩0,

∑
i=x,y,z

Ci
re − 2.232

⎫⎬
⎭ , (56)

where

Cx
re = Cy

re = 1

2Ln2

{
2
√
Darccoth

[
1√
D

]

−[(Ξ4 + Ξ6)cos2θ + (Ξ0 + Ξ3)sin2θ ]
×Ln[(Ξ4 + Ξ6)cos2θ + (Ξ0 + Ξ3)sin2θ ]
−[(Ξ0 + Ξ1)cos2θ + (Ξ2 + Ξ5)sin2θ ]
×Ln[(Ξ0 + Ξ1)cos2θ + (Ξ2 + Ξ5)sin2θ ]

+Ln

[
1 − √

D

2

]
+ Ln

[
1 + √

D

2

]}
(57)

Cz
re = 1

Ln2

{
(Ξ6cos2θ + Ξ0sin2θ)

×Ln

[
2(Ξ6cos2θ + Ξ0sin2θ)

(Ξ1 + Ξ6)cos2θ + (Ξ0 + Ξ2)sin2θ

]

+(Ξ1cos2θ + Ξ2sin2θ)

×Ln

[
2(Ξ1cos2θ + Ξ2sin2θ)

(Ξ1 + Ξ6)cos2θ + (Ξ0 + Ξ2)sin2θ

]

+(Ξ4cos2θ + Ξ3sin2θ)

×Ln

[
2(Ξ4cos2θ + Ξ3sin2θ)

(Ξ0 + Ξ4)cos2θ + (Ξ3 + Ξ5)sin2θ

]

+(Ξ0cos2θ + Ξ5sin2θ)

× Ln

[
2(Ξ0cos2θ + Ξ5sin2θ)

(Ξ0 + Ξ4)cos2θ + (Ξ3 + Ξ5)sin2θ

]}
, (58)

D = Ξ0
2 + 2Ξ0 cos 2θ [(Ξ1 − Ξ4 − Ξ6)cos2θ

+(Ξ2 − Ξ3 + Ξ5)sin2θ ]
+[(Ξ1 − Ξ4 − Ξ6)cos2θ + (Ξ2 − Ξ3 + Ξ5)sin2θ ]2.

(59)

3.2 The influences of various cosmic parameters on QC,
QD, BN, and NAQC

In order to explore the influences of the expansion rapidity on
QC, QD, BN, and NAQC, we plot QC, QD, BN, and NAQC
of the system as a function of σ in Fig. 1. One can reveal in
Fig. 1a that QC, QD, BN, and NAQC start at different values.
An increase in the expansion rapidity induces smooth degen-
erations in QC and QD. Of particular note is that QC and QD
are invariant with various values of σ when the expansion
rapidity reaches a critical value, signifying that the influences
of rapidity expansion on QC and QD are weaker than the
effects of rapidity expansion on BN and NAQC. In contrast,
an increase in the expansion rapidity is responsible for rapid
dissipation of BN and NAQC. Finally, BN and NAQC disap-
pear at the corresponding critical value of rapidity, and one
can only detect BN and NAQC at lower expansion rapidity.
As demonstrated in Fig. 1b, the characteristics of QC, QD,

Fig. 1 QC, QD, BN, and NAQC of the system with respect to the
expansion rapidity σ. a is the results of θ = 20o, and b is the results
of θ = 45o. For all graphs, ε = 19999.5, 
 = 2k, μA = μB = 0.1,

m = 0.01k, and k = 1

BN, and NAQC are similar to those in Fig. 1a when θ = 45o

is considered as parameter of initial two-qubit state (namely
maximally entangled state). Compared with the results in
Fig. 1a, the change of the initial state weakens the effects of
rapidity expansion on BN and NAQC, and BN and NAQC
disappear at higher critical rapidity.

Now, we direct our attention to exploring the influences
of ε on QC, QD, BN, and NAQC of bipartite-qubit detectors
subjected to scalar fields in an expanding spacetime. Figure 2
displays the dependences of QC, QD, BN, and NAQC on
the volume expansion, and these quantum resources start at
different values. As found in Fig. 2a, the volume expansion
does not influence QC, QD, BN, and NAQC. These quantum
resources are invariant with different ε. Subsequently, QC,
QD, BN, and NAQC decline with enhancing ε. NAQC is the
most fragile, it vanishes before ε = εmax = 19999.5, and
BN disappears when ε = εmax = 19999.5. Compared to
the influences of volume expansion on BN and NAQC, the
influences of volume expansion on QC and QD are weaker.
Even if the volume increases to εmax = 19999.5, the sudden
deaths of QC and QD do not take place. If the state parameter
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Fig. 2 QC, QD, BN, and NAQC of the system with respect to the
volume expansion ε. a is the results of θ = 20o, and b is the results
of θ = 45o. For all graphs, σ = 2k, 
 = 2k, μA = μB = 0.1,

m = 0.01k, and k = 1

θ = 45o (as depicted in Fig. 2b), the influences of volume
expansion on NAQC and BN are degenerative when 0 < ε <

εmax. The two quantum resources suddenly die only if the
volume expansion of the cosmos reaches εmax. In addition,
QC and QD do not disappear when the volume expansion
reaches the maximum. As a consequence, the increases of
quantum resources in initial state can effectively attenuate
the influences of volume expansion on QC, QD, BN, and
NAQC.

Finally, we aim at examining the responsibilities of the
particle mass of the scalar field for QC, QD, BN, and NAQC
in Fig. 3. Here, we consider the strategy of ε = εmax due
to the aforementioned results that the εmax has remarkable
influences on QC, QD, BN, and NAQC. It turns out that QC
and QD start at different values. BN and NAQC start at zero
for different critical values of m. QC, QD, BN, and NAQC
increase with growing mass and eventually reach different
fixed values as the mass continues to enhance. Of particular
note is that BN and NAQC are very fragile under the effects
of different particle masses of the scalar field. One can not
witness BN and NAQC at smaller mass, even in the case of

Fig. 3 QC, QD, BN, and NAQC of the system with respect to the
particle mass m. a is the results of θ = 20o, and b is the results of
θ = 45o. For all graphs, ε = εmax = (
2/m2 − 1)/2, σ = 2k,

 = 2k, μA = μB = 0.1, and k = 1

θ = 45o. In contrast, QC and QD can be detected in case of
different particle masses of the scalar field.

4 Steering the quantum resources of bipartite-qubit
detectors subjected to scalar fields in an expanding
spacetime

From the results obtained in Sect. 3, one can reveal that
the different cosmic parameters remarkably influence QC,
QD, BN, and NAQC of bipartite-qubit detectors subjected
to scalar fields in an expanding spacetime. Here, we come
to increase QC, QD, BN, and NAQC of qubits detector sub-
jected to scalar fields in an expanding spacetime through
the local filtering operation. This operation is a non-trace-
preserving map [91,92]

F =
(√

1 − w 0
0

√
w

)
(60)
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with operator strength 0 < w < 1. We implement the local
filtering operation on qubit A of ρAB, and the output state is

ρF
AB =

⎛
⎜⎜⎝

ρF
11 0 0 0
0 ρF

22 ρF
23 0

0 ρF
32 ρF

33 0
0 0 0 ρF

44

⎞
⎟⎟⎠ (61)

with

ρF
11 = (w − 1)(Ξ4cos2θ + Ξ3sin2θ)

E
, (62)

ρF
22 = (w − 1)(Ξ0cos2θ + Ξ5sin2θ)

E
, (63)

ρF
33 = −w(Ξ6cos2θ + Ξ0sin2θ)

E
, (64)

ρF
44 = −w(Ξ1cos2θ + Ξ2sin2θ)

E
, (65)

ρF
23 = ρF

32 = −Ξ0 cos θ sin θ
√

(1 − w)w

E
, (66)

E = cos2 θ [(w − 1)Ξ0 − Ξ4 − w(Ξ1 − Ξ4 + Ξ6)]
−sin2θ [Ξ3 + w(Ξ0 + Ξ2 − Ξ3 − Ξ5) + Ξ5)]. (67)

QC of ρF
AB is

QC(ρF
AB) = 1

2Ln2

[
− F + G − J + K

E

]
, (68)

F = −2(w − 1)(Ξ0 cos2 θ + Ξ5sin2θ)Ln

[
(w − 1)(Ξ0 cos2 θ + Ξ5sin2θ)

E

]
, (69)

G = 2w(Ξ6 cos2 θ + Ξ0sin2θ)Ln

[−w(Ξ6 cos2 θ + Ξ0sin2θ)

E

]
, (70)

J =
[
(1 − w)Ξ0 cos2 θ + wΞ6 cos2 θ + wΞ0sin2θ + (1 − w)Ξ5sin2θ + √

J ′
]

×Ln

[
(−Ξ0 + wΞ0 − wΞ6) cos2 θ + (−wΞ0 − Ξ5 + wΞ5)sin2θ − √

J ′
2E

]
, (71)

K =
[
(w − 1)Ξ0 cos2 θ − wΞ6 cos2 θ − wΞ0sin2θ + (w − 1)Ξ5sin2θ + √

J ′
]

×Ln

[
(−Ξ0 + wΞ0 − wΞ6) cos2 θ + (−wΞ0 − Ξ5 + wΞ5)sin2θ + √

J ′
2E

]
, (72)

J ′ =
[
(Ξ0 − wΞ0 + wΞ6) cos2 θ + (Ξ5 − wΞ5 + wΞ0)sin2θ

]2 + 4w(w − 1)(Ξ0Ξ6 cos4 θ

+Ξ5Ξ6 cos2 θsin2θ + Ξ0Ξ5sin4θ). (73)

QD of ρF
AB is

QD(ρF
AB) = min{QF

1 , QF
2 }, (74)

QF
1 = H(ρF

11 + ρF
33) +

4∑
i=1

λF
i log2λ

F
i + qF

1 , (75)

QF
2 = H(ρF

11 + ρF
33) +

4∑
i=1

λF
i log2λ

F
i + qF

2 , (76)

qF
1 = H((1 + κF )/2),

(77)

κF =
√

[1 − 2(ρF
33 + ρF

44)]2 + 4(
∣∣ρF

14

∣∣+ ∣∣ρF
23

∣∣)2
, (78)

qF
2 = −

∑
i
ρF
ii log2ρ

F
ii − H(ρF

11 + ρF
33), (79)

λF
1 = −w(Ξ1cos2θ + Ξ2sin2θ)

E
, (80)

λF
2 = (w − 1)(Ξ4cos2θ + Ξ3sin2θ)

E
, (81)

λF
3 = � F− − √

J ′
2E

, (82)

λF
4 = � F+ + √

J ′
2E

, (83)

� F− = (−Ξ0 + wΞ0 − wΞ6) cos2 θ

+(−wΞ0 − Ξ5 − wΞ5)sin2θ, (84)
� F+ = (−Ξ0 + wΞ0 − wΞ6) cos2 θ

+(−wΞ0 − Ξ5 + wΞ5)sin2θ. (85)

BN of ρF
AB is

BN (ρF
AB) = Max

{
0, Max

{
BF

1 , BF
2

}
− 2
}

, (86)

BF
1 = 4

√
2w(1 − w)Ξ2

0 cos2θsin2θ

E2 , (87)

BF
2 = 2

√
4w(1 − w)Ξ2

0 cos2θsin2θ + E2

E2 . (88)
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NAQC of ρF
AB is

N AQC(ρF
AB) = Max

⎧⎨
⎩0,

∑
i=x,y,z

Ci−F
re − 2.232

⎫⎬
⎭ , (89)

where

Cx−F
re = Cy−F

re

= − 1

2ELn2

⎧⎨
⎩− 2

√
MN + N 2arccoth

[
E√

MN + N 2

]

+OLn(
O

E
) + PLn(

P

E
) − ELn

[
1

2
−

√
MN + N 2

2E

]

−Ln

[
1 +

√
MN + N 2

E

]⎫⎬
⎭ , (90)

Cz−F
re = 1

ELn2

{−w(Ξ6cos2θ + Ξ0sin2θ)

×Ln

[
2(Ξ6cos2θ + Ξ0sin2θ)

(Ξ1 + Ξ6)cos2θ + (Ξ0 + Ξ2)sin2θ

]

−w(Ξ1cos2θ + Ξ2sin2θ)

×Ln

[
2(Ξ1cos2θ + Ξ2sin2θ)

(Ξ1 + Ξ6)cos2θ + (Ξ0 + Ξ2)sin2θ

]

+(w − 1)(Ξ4cos2θ + Ξ3sin2θ)

×Ln

[
2(Ξ4cos2θ + Ξ3sin2θ)

(Ξ0 + Ξ4)cos2θ + (Ξ3 + Ξ5)sin2θ

]

+(w − 1)(Ξ0cos2θ + Ξ5sin2θ)

× Ln

[
2(Ξ0cos2θ + Ξ5sin2θ)

(Ξ0 + Ξ4)cos2θ + (Ξ3 + Ξ5)sin2θ

]}
, (91)

M = Ξ2
0 [(w − 1)cos2θ − wsin2θ ]2

−2Ξ0[(w − 1)cos2θ + wsin2θ ], (92)
N = [−Ξ4 + w(Ξ1 + Ξ4 − Ξ6)]cos2θ

+[−Ξ3 + w(Ξ2 + Ξ3 − Ξ5) + Ξ5]sin2θ, (93)
O = [(w − 1)Ξ4 − wΞ6]cos2θ

−[w(Ξ0 − Ξ3) + Ξ3]sin2θ, (94)
P = [(w − 1)Ξ0 − wΞ1]cos2θ

−[w(Ξ2 − Ξ5) + Ξ5]sin2θ. (95)

In order to reveal the influences of the filtering opera-
tion on various quantum resources of bipartite-qubit detec-
tors subjected to scalar fields in an expanding spacetime, and
realize the controls of these quantum resources, Fig. 4. char-
acterizes the curves of QC, QD, BN, and NAQC with respect
to the cosmic parameters (σ, ε, and m) under different oper-
ator strengths (no filtering operation, w = 0.6, and w = 0.9,

respectively) of filtering operation. The solid curves are the
results with no filtering operation. The dashed curves (dotted
curves) are the results of w = 0.6 (w = 0.9). One can con-
firm in Fig. 4a that QC and QD are strengthened by imple-
menting filtering operation. The higher operation strength
(w = 0.9) is responsible for more significant increases in
QC and QD. It deserves to be emphasized that the effects of

Fig. 4 The results of QC, QD, BN, and NAQC under different operator
strengths of the filtering operation. a is the results of θ = 20o, ε =
19999.5, 
 = 2k, μA = μB = 0.1, and m = 0.01k. b is the results
of θ = 20o, σ = 2k, 
 = 2k, μA = μB = 0.1, and m = 0.01k. c is
the results of θ = 20o, ε = εmax = (
2/m2 − 1)/2, σ = 2k, 
 = 2k,
and μA = μB = 0.1. For all graphs, k = 1. The solid curves are the
results with no filtering operation, the dashed curves are the results of
w = 0.6, and the dotted curves are the results of w = 0.9

the filtering operation on QC and QD degenerate as σ contin-
ues to grow. Even if w = 0.9, the influences of the filtering
operation on QC and QD are not significant at higher rapid-
ity, which are revealed by the green and brown dotted curves
in Fig. 4a. As demonstrated by the purple (red) dashed curve
and dotted curve in Fig. 4a, the filtering operation can effec-
tively increase BN (NAQC) under different expansion rapid-
ity, and thus can control the sudden death of BN (NAQC).

123



966 Page 10 of 12 Eur. Phys. J. C (2023) 83 :966

The stronger the w, the greater the critical rapidity of the
sudden death is. It can be concluded in Fig. 4b that the filter-
ing operation can also enhance QC, QD, BN, and NAQC in
the process of volume expansion of the cosmos. Of particular
note is that the operation can be used to avoid the disappear-
ance of NAQC before the ε reaches the maximum, and the
phenomena are uncovered by the red dashed curve and dotted
curve in Fig. 4b. Besides, the filtering operation is ineffective
in increasing QC, QD, BN, and NAQC if the volume reaches
the maximum. By performing filtering operation with oper-
ation strength w = 0.6 and w = 0.9, QC and QD enhance
with different values of m in Fig. 4c. However, the smaller
the mass, the less obvious the influence of filtration opera-
tion is. Fig. 4c also uncovers that the filtering operation can
effectively steer and strengthen BN and NAQC. Significant
for what follows, the filtration operation is responsible for the
fact that BN and NAQC can be achieved at smaller particle
mass, and the characteristics are illuminated by the purple
and red dotted curve in Fig. 4c. That is to say, the decreases
in quantum resources of bipartite-qubit detectors subjected
to scalar fields in an expanding spacetime can be controlled
and suppressed by implementing filtering operation on one
of qubits.

5 Conclusions

To conclude, we have investigated the quantum resources
of bipartite-qubit detectors subjected to scalar fields in an
expanding spacetime. QC, QD, BN, and NAQC of the sys-
tem are characterized, and the influences of different cosmic
parameters on QC, QD, BN, and NAQC are explored. More-
over, we design the scenario that can be used to effectively
increase the quantum resources of bipartite-qubit detectors
subjected to scalar fields in an expanding spacetime. It can
be concluded that an enlargement in expansion rapidity is
responsible for reductions of QC, QD, BN, and NAQC.
Among of them, the effects of the expansion rapidity on QC
and QD are weaker, and they are invariant when the expan-
sion rapidity reaches corresponding critical values. BN and
NAQC sharply decline and then disappear at the correspond-
ing critical rapidity. The invariant characteristics of QC, QD,
BN, and NAQC appear in the process of volume expansion.
After that, these quantum resources rapidly reduce as vol-
ume continues to expand. One can observe QC and QD in
the interval of 0 ≤ ε ≤ εmax. Nevertheless, NAQC and BN
disappear when the volume expansion of cosmos approaches
εmax. Considering ε = εmax, an increase in the particle mass
of the scalar field results in enlargements of QC, QD, BN, and
NAQC. Subsequently, these quantum resources are invariant
with different values of mass. It is worth noting that BN and
NAQC can not be captured when the particle mass of the
scalar field is too small. With the help of the filtering opera-

tion, one can enhance the quantum resources of bipartite-
qubit detector subjected to scalar fields in an expanding
spacetime. Of particular note is that NAQC and BN can be
detected at higher rapidity or smaller particle mass under the
influence of the filtering operation, and these results can not
be realized when we do not perform the filtering operation.
The influences and controls of the filtering operation on QC,
QD, BN, and NAQC are very significant at lower expansion
rapidity, larger particle mass, and different volume expan-
sions.
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