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Abstract In this work, we present a new type of scalar
clouds supported by spherically symmetric horizonless com-
pact objects in the scalar-Gauss–Bonnet theory. Unlike the
previous spontaneous scalarization that is triggered by the
tachyonic instability, our scalarization arises from a nonlin-
ear instability that is non-spontaneous. We explore two types
of boundary conditions for the scalar field at the surface of the
compact objects and find an infinite countable set of scalar
clouds characterized by the number of nodes for both cases.
Our study demonstrates that boundary conditions have a sig-
nificant impact on the formation of scalar clouds. Specifi-
cally, for the Dirichlet boundary condition, scalarization is
more likely to occur for compact objects with medium radii
and becomes harder for ultra-compact and large ones. Con-
versely, for the Robin boundary condition, scalarization is
easier for more compact objects.

1 Introduction

Black holes (BHs) are one of the most intriguing predictions
of general relativity (GR) and have attracted extensive atten-
tion in recent decades due to their significance. The detec-
tion of gravitational waves [1] and the imaging of BHs [2]
provide compelling evidence of their existence. However,
several challenging issues, such as the information loss para-
dox [3] and the emergence of unphysical curvature singular-
ities [4], remain unresolved. To address these issues, physi-
cists have proposed several alternatives to BHs, collectively
known as exotic compact objects (ECOs) [5–13], whose mass
and compactness can closely match those of BHs, making
them potential candidates for explaining astronomical phe-
nomena attributed to BHs. Theoretically, BHs and ECOs may
be seen as distinct “species” of compact objects, which could
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co-exist in our universe. Notably, some recent gravitational
wave mergers have the possibility to involve ECOs [14]. Nev-
ertheless, our understanding of ECOs is significantly less
than that of BHs. The exploration of ECOs’ physical proper-
ties may help us to gain a deeper understanding of BHs and
quantum features of gravity. With advancements in astro-
nomical observations, particularly in the gravitational waves
channel, we expect to access the near-horizon (surface) struc-
ture of BHs (ECOs) soon and differentiate between them. For
a review, see [15,16].

A generic feature of ECOs is the replacement of the clas-
sical absorbing horizon by a reflective surface. A simple way
to model this feature is proposed in [13], in which space-
time geometry is only modified at some microscopic scale
near the would-be classical horizon while exterior geometry
is still described by the usual Kerr metric. Without causing
confusion, we will refer to this model as horizonless compact
objects in the following. In the framework of GR, one of the
most important properties of BHs is given by the no-hair the-
orem, which states that asymptotically flat stationary BHs are
uniquely characterized by only two physical parameters, their
mass and angular momentum, and cannot carry static scalar
or any other types of hair [17–19]. However, the no-hair the-
orem does not exclude the existence of time-dependent field
configurations in the exterior of BHs. Remarkably, as shown
in [20,21], rotating BHs can support stationary configura-
tions of minimally coupled massive scalar fields. Motivated
by these work, it is interesting to see how modification of the
structure close to the would-be horizon affects this theorem
and whether ECOs can carry additional hairs.

Interestingly, it is found that the no-hair theorem applies
not only to BHs but also to ECOs in general. In GR, it is found
that spherically symmetric horizonless compact objects with
a perfectly reflecting surface cannot support minimally cou-
pled scalar, vector or tensor clouds [22,23]. The theorem
also holds when the scalar field is non-minimally coupled

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12144-z&domain=pdf
mailto:sjzhang@zjut.edu.cn


950 Page 2 of 7 Eur. Phys. J. C (2023) 83 :950

to the Ricci scalar [24,25]. However, if the objects begin
to rotate, the situation changes and the no-hair theorem no
longer holds. It has been discovered that static scalar clouds,
massless or massive, can form for rapidly and ultra-spinning
horizonless compact objects with a perfectly reflecting sur-
face at certain discrete radii [26,27]. Physically, the forma-
tion of scalar clouds in this case can be understood from
the mechanism of superradiant instability. Namely, with the
absorbing horizon replaced by a reflecting surface, spinning
ECOs in general suffer from superradiant instability under
scalar perturbations [13], which results in the formation of
scalar clouds.

Another physical mechanism that may endow ECOs with
scalar cloud is the tachyonic instability. This phenomenon
is inspired by the spontaneous scalarization of BHs in cer-
tain modified gravity theories [28–33] (see also [34] for a
recent review). The Einstein-scalar-Maxwell (EsM) theory
and the scalar-Gauss–Bonnet (sGB) theory are two well-
known models of spontaneous scalarization, in which the
scalar field is non-minimally coupled to the Maxwell term
and the Gauss–Bonnet term, respectively. In both models, it
is found that the scalar field perturbation of spherically sym-
metric horizonless compact objects with perfectly reflecting
surface acquires a negative effective mass square, triggering
the tachyonic instability, which results in the formation of
scalar clouds [35,36].

Recently, a new physical mechanism that could induce
scalar hair on BHs in EsM or sGB has been discovered
[37,38], named as nonlinear instability. Different from the
tachyonic instability, this type of instability occurs only when
the scalar field perturbation becomes relatively large and
scalar hair formed are thus non-spontaneous. Motivated by
these works, we investigate whether ECOs can also support
scalar clouds through this mechanism. This is the main goal
of this paper.

The paper is organized as follows. In the next section, we
will give a brief review of our model. In Sect. 3, we perform
time evolution of scalar perturbations of spherically sym-
metric horizonless compact objects with Dirichlet boundary
condition and show the occurrence of the nonlinear instabil-
ity. In Sect. 4, we construct the scalar clouds with Dirichlet
boundary condition induced by the nonlinear instability. In
Sect. 5, we consider Robin boundary condition to show the
influences of different boundary conditions on the formation
of scalar clouds. The last section is the Summary and Dis-
cussions.

2 The model

We consider the scalar-Gauss–Bonnet (sGB) theory with the
action [28–31]

S =
∫

d4x
√−g

(
R − 2∇μϕ∇

μϕ+λ
2 f (ϕ)RGB

)
, (1)

where the scalar field ϕ is coupled to the Gauss–Bonnet term
RGB ≡ R2 + Rμνρσ Rμνρσ − 4RμνRμν through the Gauss–
Bonnet coupling constant λ and the coupling function f (ϕ).
As our main goal in this work is to search non-spontaneous
scalarization of ECOs, we choose the coupling function to
satisfy two following conditions

d f

dϕ
(ϕ = 0) = 0,

d2 f

dϕ2 (ϕ = 0) = 0. (2)

With the first condition, the theory admits GR vacuum solu-
tions with vanishing scalar field—the Kerr metric. In this
work, following the approach proposed in [13], we con-
sider a spherically symmetric horizonless compact object
whose exterior geometry can be well described by the
Schwarzschild metric

ds2 = −g(r)dt2 + 1

g(r)
dr2 + r2 (

dθ2 + sin2θdφ2) , r > rs ,

(3)

where g(r) = 1 − 2M
r with M being the mass of the object.

The object surface locates at r = rs which should be outside
the would-be horizon r = rh = 2M . On this background,
dynamics of the scalar field outside the object is governed by
the modified Klein–Gordon equation

∇μ∇μϕ = −λ2

4

d f (ϕ)

dϕ
RGB, (4)

with RGB = 48M2

r6 . From it, one can see that the scalar field

acquires an effective mass square m2
eff = −λ2

4
d2 f (ϕ)

dϕ2 (ϕ =
0)RGB , which vanishes identically with the second condition
of Eq. (2). This thus excludes the occurrence of the tachyonic
instability, and so the scalarization, if exists, will be non-
spontaneous.

Taking into account the conditions (2) and also the possi-
ble existence of stable scalar clouds, we consider the coupling
function to take an exponential form

f (ϕ) = 1

4κ

(
1 − e−κϕ4

)
, (5)

with κ being a parameter. This kind of coupling function
has also been considered to discuss non-spontaneous scalar-
ization of BHs in sGB [38]. Although the coupling func-
tion is a nonlinear function of the scalar field, in the follow-
ing we work in the “decoupling limit”, where the influence
of the scalar configurations on the background geometry is
neglected. This limit has been shown its ability to capture the
qualitative features of the fully nonlinear dynamics [39,40].
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Fig. 1 Time evolution of the scalar field perturbations on the spher-
ically symmetric horizonless compact object with Dirichlet bound-
ary condition. The perturbation is a Guassian pulse ϕ(t = 0, x) =

Ae− (x−xc )2
2σ with xc = 20 and σ = 2. Signal is extracted at x = 20. We

fix M = 1 and all quantities are measured in units of M

3 Nonlinear instability

In this section, we will first study the wave dynamics of the
scalar field on the background (3). As will show later, with
this kind of coupling function (5), the scalar field will expe-
rience a kind of nonlinear instability.

For simplicity, we assume the scalar field perturbation to
be spherical symmetric, ϕ = ϕ(t, r). In tortoise coordinate
dx ≡ dr

g(r) , the scalar field equation (4) becomes

− ∂2
t ϕ + ∂2

xϕ + 2g(r)

r
∂xϕ + λ2g(r)

4

d f (ϕ)

dϕ
RGB = 0, (6)

which can be solved numerically by adopting the method of
line [41]. To solve the equations, physical boundary condi-
tions are needed. At the object surface r = rs , there are usu-
ally two boundary conditions considered, the Dirichlet and
Robin boundary conditions. We will give more comments
on the two boundary conditions in the last section. Let us
first consider a Dirichlet boundary condition, so the physical
boundary conditions we need to impose are that the scalar
field vanishes at the object surface and is outgoing at infinity.

We consider the initial perturbation to be a time-symmetric
Gaussian pulse

ϕ(t = 0, x) = Ae− (x−xc)2
2σ , (7)

with xc = 20M, σ = 2M and A the perturbation amplitude.
There are four free parameters in the model, {M, rs , κ, λ}. We
fix M = 1 and so all quantities are measured in units of it. By
performing time evolution of the scalar field perturbation, we
found that, depending on values of the parameters, nonlinear
instability may be triggered. In Fig. 1, two typical examples
are given. From the figure, one can see that the occurrence of
the instability depends on the amplitude of the perturbation:
When the amplitude A is small, the perturbation will exhibit
a decaying late-time tail; While A becomes larger, the non-

linear term of ϕ in the equation enters the game and the scalar
field finally settles down to a equilibrium state indicating the
formation of scalar cloud. This kind of instability, named as
nonlinear instability, has already been observed in the BH
scenario [38].

4 Scalar clouds with Dirichlet boundary condition

In the last section, we have observed that the scalar field may
experience a nonlinear instability, which is a signal of the
formation of the scalar cloud. In this section, we will con-
struct the scalar cloud explicitly. For simplicity, we consider
the scalar cloud outside the object to be static and spherical,
i.e., ϕ = ϕ(r). After substituting the metric (3) into (4), the
scalar field equation becomes

ϕ′′(r) +
[

2

r
+ g′(r)

g(r)

]
ϕ′(r) + λ2

4g(r)

d f (ϕ)

dϕ
RGB = 0. (8)

To solve the above equation, physical boundary conditions
are needed. Assuming that a Dirichlet boundary condition at
the object surface and the scalar field outside the object is
regular and bounded, we have the boundary conditions

ϕ(rs) = 0, ϕ(∞) = 0. (9)

Now, the model contains four free parameters {M, rs , λ, κ}.
We can directly integrate the scalar field equation (8) from the
object surface to infinity for fixed values of these parameters.
The number of free parameters can be reduced by noting that
the scalar field equation (8) possess two scaling symmetries

r → ar, M → aM, λ → aλ, (10)

and

ϕ → bϕ, λ → b−1λ, κ → b−4κ, (11)
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Fig. 2 Configurations of the scalar clouds with Dirichlet boundary condition for various coupling constant {λ(κ, rs; n)}n=5
n=0. n labels the number

of nodes that the solution possesses between the object surface and radial infinity. We fix κ = 1, rs = 2.5M (left panel) and rs = 5M (right panel)

Fig. 3 {λ(κ, rs; n)}n=5
n=0 as a

function of rs for Dirichlet
boundary condition. rh = 2M is
the would-be horizon

where a, b are arbitrary scaling parameters. With the two
symmetries, it is convenient for numerical calculations to fix
M = 1 and ϕ1 ≡ ϕ′(rs) = 1, where ϕ1 is the first radial
derivative of the scalar field at the surface. So finally, there
are left only three free parameters {rs , λ, κ}. For a given κ and
rs , the solution is determined uniquely by λ. However, not
every value of λ will produce a bounded solution that satisfies
ϕ(∞) = 0. Ony for certain discrete values of λ can produce
bounded solutions. For a fixed κ and rs , we found an infi-
nite countable set of the coupling constant, {λ(κ, rs; n)}n=∞

n=0 ,
which can support the bounded scalar clouds. Here a larger
integer n labels a larger λ.

In Fig. 2, we show configurations of the scalar clouds
for {λ(κ = 1, rs; n)}n=5

n=0 with rs = 2.5M and rs = 5 M
as examples. From the figure, one can see that the scalar
clouds exhibit a standing-wave-like profile with n indicating
the number of nodes that the solution has between the object
surface and radial infinity. Moreover, radial oscillations of the
scalar clouds are concentrated in the region near the object
surface. As the object radius rs increases, the oscillations
move outward.

To survey the relation between rs and the coupling con-
stant λ, we plot {λ(κ, rs; n)}n=5

n=0 as a function of rs in Fig. 3.

From the figure, one can see that, for each n, λ(κ, rs; n) is a
convex function of rs with a minimum value λ(κ, rs; n)min .
It is interesting to note that for any n, the minimum
value appears at rs ≈ 2.5M , which is smaller than the
radius r = 3M that characterizes the photon sphere of the
Schwarzschild spacetime. This suggests that scalar clouds are
most likely to form when the object is very compact and has
radius about rs ≈ 2.5M . When λ < λ(κ, rs; n = 0)min ≈
21.45, no scalar cloud can be supported for any rs . When
λ(κ, rs; n = 0)min ≤ λ < λ(κ, rs; n = 1)min , only funda-
mental solution with n = 0 exist. As λ increases, excited
solutions with higher n emerge. Moreover, as rs approaches
the would-be horizon rh = 2 M , {λ(κ, rs; n)} show a diver-
gent behavior, which implies that ultra-compact objects are
hard to support scalar clouds.

5 Scalar clouds with Robin boundary condition

In the above, we have shown that compact objects can support
scalar clouds with Dirichlet boundary condition. Another
boundary condition usually considered is the Robin bound-
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Fig. 4 Time evolution of the scalar field perturbations on the spheri-
cally symmetric compact object with Robin boundary condition. The

perturbation is a Guassian pulse ϕ(t = 0, x) = Ae− (x−xc )2
2σ with

xc = 20 and σ = 2. Signal is extracted at x = 20. We fix M = 1
and all quantities are measured in units of M

ary condition [13]

d(rϕ)

dr
(rs) = 0. (12)

As in the case with Dirichlet boundary condition, the
scalar field perturbations may also trigger nonlinear instabil-
ity in the presence of Robin boundary condition, as demon-
strated in Fig. 4. Compared to the Dirichlet case in Fig. 1,
we can see that, for small A, the perturbation experiences a
longer ringdown phase before the late-time decaying. Addi-
tionally, triggering nonlinear instability requires a smaller
perturbation amplitude A for the Robin boundary condition
compared to the Dirichlet counterpart. Therefore, scalariza-
tion is more easily achieved under the Robin boundary con-
dition.

Similarly, we can construct the scalar cloud explicitly. In
this case, it is convenient for numerical calculations to set
M = 1 and ϕ(rs) = 1 with the two scaling symmetries
(10) and (11). At infinity, we also have ϕ(∞) = 0. As the
case with Dirichlet boundary condition, for given values of

parameters {κ, rs}, there also exists an infinite countable set
{λ(κ, rs; n)}n=∞

n=0 which supports the scalar clouds. Samples
are shown in Fig. 5. Similar to the case with Dirichlet bound-
ary condition, the scalar clouds also exhibit a standing-wave-
like profile with the integer number n labeling the number of
nodes that they possess between the object surface and infin-
ity. Compared to Fig. 2, we can see that radial oscillations
of the scalar clouds with Robin boundary condition are more
concentrated in the region near the surface. And as the object
radius rs increases, the oscillations move inward instead.

The relation between the object radius rs and the coupling
constant λ is shown in Fig. 6. From the figure, it is evident
that, for each n, λ is a monotonically increasing function
of rs . In contrast to the situation with the Dirichlet bound-
ary condition, this implies that scalarization is facilitated by
more compact objects subject to the Robin boundary condi-
tion. Furthermore, smaller coupling constant λ is sufficient
for the formation of the scalar cloud in the Robin bound-
ary condition as compared to the situation with the Dirichlet
boundary condition. This confirms our previous conclusion
that scalarization is easier to achieve under the Robin bound-
ary condition.

6 Summary and discussions

In this work, we construct a novel type of scalar clouds for
spherically symmetric horizonless compact objects in sGB
theory. These scalar clouds are not formed due to tachy-
onic instability, but rather due to nonlinear instability, which
requires a certain threshold of perturbation magnitude. We
find that there exists an infinite countable set of coupling
constants λ(κ, rs; n)n=∞

n=0 (where n is the number of nodes
between the surface of horizonless compact objects and infin-
ity) that can support the scalar clouds for a fixed radius rs ,
given other parameter values. Moreover, we show that bound-

Fig. 5 Configurations of the scalar cloud with Robin boundary condition for various coupling constant {λ(κ, rs; n)}n=5
n=0. n labels the number of

nodes that the solution possesses between the object surface and radial infinity. We fix κ = 1, rs = 2.5M (left panel) and rs = 5M (right panel)
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Fig. 6 {λ(κ, rs; n)}n=5
n=0 as a

function of rs for Robin
boundary condition. rh = 2M is
the would-be horizon

ary condition (either Dirichlet or Robin) significantly affects
the formation of scalar clouds.

With Dirichlet boundary condition, λ(κ, rs; n) is a convex
function of rs , indicating that scalarization is most likely for
compact objects with medium radii and becomes more diffi-
cult for ultra-compact and large ones. However, with Robin
boundary condition, λ(κ, rs; n) is a monotonically increas-
ing function of rs , suggesting that scalarization is easier for
more compact objects. In both cases, there exists a thresh-
old coupling constant λ below which no scalar clouds can be
supported. As λ increases, fundamental solution with n = 0
and excited solutions with higher n emerge successively.

In the context of Einstein’s gravity with minimally cou-
pled scalar field, these boundary conditions are commonly
associated with a perfectly reflecting surface [13]. However,
this interpretation is no longer valid in our theory due to the
presence of a nonlinear term in ϕ, which prevents the scalar
field perturbation Eq. (6) from taking a wave-like form at the
surface. Only when the perturbation is sufficiently small can
we ignore the nonlinear term and regain this physical mean-
ing. For general perturbations, the physical meaning of these
boundary conditions is unclear and requires further investi-
gation.

The coupling function we consider takes an exponential
form with the exponent proportional to ϕ4. We have also
examined some other exponential forms, such as the one with
exponent ϕ6, and found similar instability and scalar clouds.

There are several possible extensions of this work. We
work in the “decoupling limit” where the influence of the
scalar clouds on the background geometry is neglected. It
would be interesting to go beyond this limit and develop
complete hairy solutions for further investigation. This would
require specifying the explicit equation of state of the object
and doing analysis model by model. In this paper we only
consider spherically symmetric ECOs. A natural extension
is to study the rotating case, where more than one physi-
cal mechanism may affect the formation of scalar clouds.

Another intriguing question is whether other types of ECOs
can support such scalar clouds.
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