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Abstract We investigate cosmological solutions of the
chameleon model with a non-minimal coupling between
the matter and the scalar field through a conformal factor
with gravitational strength. By considering the spatially flat
FLRW metric and the matter density as a non-relativistic per-
fect fluid, we focus on the matter-dominated phase and the
late-time accelerated-phase of the universe. In this regard, we
manipulate and scrutinize the related field equations for the
density parameters of the matter and the scalar fields with
respect to the e-folding. Since the scalar field fluctuations
depend on the background and the field equations become
highly non-linear, we probe and derive the governing equa-
tions in the context of various cases of the relation between
the kinetic and potential energies of the chameleon scalar
field, or indeed, for some specific cases of the scalar field
equation of state parameter. Thereupon, we schematically
plot those density parameters for two different values of the
chameleon non-minimal coupling parameter, and discuss the
results. In the both considered phases, we specify that, when
the kinetic energy of the chameleon scalar field is much less
than its potential energy (i.e., when the scalar field equation
of state parameter is � −1), the behavior of the chameleon
model is similar to the �CDM model. Such compatibility
suggests that the chameleon model is phenomenologically
viable and can be tested with the observational data.

1 Introduction

It has been suggested that the universe starts from an
extremely rapid accelerated-phase after the Planck era called
the inflationary epoch that remedy important problems of
the standard cosmological model (the �CDM model), see,
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e.g., Refs. [1–7]. The cosmic microwave background obser-
vations are well consistent with the predictions of such an
inflation hypothesis [8]. In the literature, a lot of work has
been carried to investigate the inflationary scenario, see, e.g.,
Refs. [9–17]. After the inflationary epoch, observations pre-
dict that the universe has a decelerating era during the early
phase of its evolution [18]. In fact, the universe undergoes a
radiation dominated epoch followed by a matter dominated
one. Afterward, the present accelerated-phase of the universe
starts which is dubbed as a dark energy era. Indeed, obser-
vations – such as the type Ia supernova, the baryon acoustic
oscillations, and the gravitational waves – confirm the late-
time cosmic acceleration [8,18–25]. But the driver of such
acceleration has not been identified by observations and has
no fully accepted theoretical model. However, since ordinary
matter cannot accelerate the universe, such dark energy (if it
exists) must be exotic matter for which many candidates have
been proposed and investigated. In most of these models, a
scalar field has been employed as dark sector with a dynam-
ical equation of state. On the other hand, modified gravi-
tational theories (e.g. Refs. [26–41] and references therein)
have also been proposed mainly to describe the accelerated
evolution of the universe without any sector as dark energy.
For these two issues see, e.g., Refs. [42–60] and references
therein. Furthermore, other observations – such as the behav-
ior of the galactic rotation curves and the mass discrepancy in
clusters of galaxies – indicate the consideration of an exotic
matter called dark matter [61–64]. A lot of alternative efforts
have also been performed on various modifications to the Ein-
stein field equations in order to deal with the question of dark
matter [45,47,65–71] and references therein. Howsoever, the
nature of both of these dark sectors (which constitute about
95% of the universe [8,18] and are well consistent with the
observational data [72]) is one of the most important issues
in physics.

Although general relativity provides accurate predic-
tions in describing some cosmological phenomena [73], the
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�CDM is the most acceptable model due to its high confor-
mity with the observational data of cosmology [74]. How-
ever, this model still confronts some challenges [75–83] and
other alternatives have been proposed for it. The scalar-tensor
theories of gravitation, which extend general relativity by
introducing a scalar field, have become the most popular
alternative to the Einstein gravitational theory [84–94].

In this work, we concentrate on the chameleon scalar field
theory, wherein unlike the common non-minimally coupled
scalar field theories, a chameleon field couples with matter
sector rather than the geometry. Such an interaction between
the scalar field and matter field causes the effective poten-
tial of the scalar field depends on the matter density of the
environment. Much work has been done on this theory, see,
e.g., Refs. [10,37,59,95–113] and references therein. This
change of properties of the mass of scalar field acts as a
buffer with respect to observational bounds. Accordingly, in
this type of theory, a screening mechanism is usually aimed
at modifying general relativity on large scales. Hence, the
chameleon scalar field theory can be employed to describe
the accelerated expansion of the universe while the effects of
non-minimal coupling parameter are hidden in the small scale
gravitational experiments, see, e.g., Refs. [95–98,101,102].

We have previously investigated the chameleon model
during inflation in Refs. [10,107], wherein we showed
through the proposed scenario that the effects of inflation
and chameleon can be described via a single scalar field dur-
ing the inflation and late-time. Also, we have probed the role
of the chameleon scalar field as dark energy in Ref. [59],
where it was claimed that such a model justifies dark energy
with stronger confirmation. Now, in this work, we intend
to investigate the cosmological solutions of the chameleon
model in the hope that these solutions can better justify the
observational data. Of course, since in the chameleon model,
the properties of the scalar fluctuations depend on the back-
ground, its field equations of motion become highly non-
linear. However, rather than solving the resulted equations
analytically, we restrict the solutions to proceed. Indeed, for
various cases of the relation between the kinetic and potential
energies of the chameleon scalar field (or actually, for some
specific cases of the scalar field equation of state parame-
ter), we solve the non-minimal coupled gravity equations
to understand the evolution of the scalar field. Meanwhile,
some attempts have been done to find analytic solutions for
the chameleon model, wherein these analytic solutions of
the chameleon model exist only for highly symmetric source
shapes such as spheres, plates, and ellipses [95,114,115]). If
the shape of the matter source is irregular, it will be more dif-
ficult to find analytical solutions to the equations of motion.
Nevertheless, in Ref. [116], a software package called SEL-
CIE has been introduced that provides tools for constructing
an arbitrary system of mass distributions and then comput-
ing the corresponding solution to the chameleon scalar field

equation. In addition, through the dynamical systems tech-
nique [117,118], one can also study the full non-linearity of
these cosmological models. In this technique, usually nor-
malized dimensionless new variables are introduced, then
by finding the fixed/critical points of the system and their
stability, the evolution of the system can be pictured quali-
tatively near these points. The dynamical systems technique
has also been performed for the chameleon scalar field, see,
e.g., Refs. [100,103,105,112].

The work is organized as follows. In the next two sec-
tions, while benefiting from our previous works [10,59,107],
we first introduce the chameleon model and then, by con-
sidering the spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) metric, we obtain the corresponding field
equations of motion. Thereupon, in Sect. 3, we manipulate
and scrutinize the related field equations with respect to the
e-folding for better and more use in the later sections. In
Sects. 4 and 5, the cosmological solutions of the chameleon
model are respectively investigated for the matter-dominated
phase and the late-time accelerated-phase of the universe for
various cases of the relation between the kinetic and poten-
tial energies of the chameleon scalar field. Indeed, we probe
the results of the chameleon model for some specific cases
of the scalar field equation of state parameter. Meanwhile,
in Sect. 5, we take a brief look at the chameleon scalar field
profile. At last, we conclude the work in Sect. 6 with the
summary of the results.

2 Chameleon model with scalar field

We consider an action of the chameleon model with a scalar
field in four dimensions when there are a minimal coupling
between the Einstein gravity and that scalar field, and a non-
minimal coupling between matter species with it as

S =
∫

d4x
√−g

(
M2

PlR

2

)

−
∫

d4x
√−g

[
1

2
∂μφ∂μφ + V (φ)

]

+
∑
i

∫
d4x

√
−g̃(i)L

(m)
(i)

(
ψ

(m)
(i) , g̃(i)μν

)
. (1)

In this action, φ is a scalar field, V (φ) is a self-interacting
potential,ψ(i)s are various matter fields, L(m)

(i) s are Lagrangians
of matter fields, g̃(i)μνs are matter field metrics that are con-
formally related to the Einstein frame metric as

g̃(i)μν = e
2

β(i) φ

MPl gμν. (2)

Here, β(i)s are dimensionless constants that represent dif-
ferent non-minimal coupling parameter between the scalar
field and each matter species, however in this work, we only
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consider a single matter component. Also, the lower case
Greek indices run from zero to three, g is the determinant
of the metric, R is the Ricci scalar, and the reduced Planck
mass is MPl ≡ (8πG)−1/2 ≈ 1027 eV in the natural units of
h̄ = 1 = c. Typically in the literature, the common power-
law chameleon potential

V (φ) = M4+n

φn
(3)

is usually used, where n is a positive or negative integer con-
stant1 and M is some positive constant mass scale.

The variation of action (1) with respect to the scalar field
gives the field equation

�φ = dV (φ)

dφ
− β

MPl
e

4 βφ
MPl g̃μν T̃ (m)

μν , (4)

where the box symbol � ≡ ∇α∇α corresponds to the met-
ric gμν , and T̃ (m)

μν is the energy–momentum tensor of matter
(which is conserved in the Jordan frame) defined as

T̃ (m)
μν = − 2√−g̃

(
δ
√−g̃L(m)

)

δg̃μν
. (5)

Also, the variation with respect to the metric gμν associated
to the Einstein frame gives

Gμν = 1

M2
Pl

(
T (φ)

μν + T (m)
μν

)
= 1

M2
Pl

(
T (φ)

μν + e
2 βφ
MPl T̃ (m)

μν

)
,

(6)

where T (φ)
μν is the energy–momentum tensor of the scalar field

as

T (φ)
μν = −1

2
gμν∂

αφ∂αφ − gμνV (φ) + ∂μφ∂νφ. (7)

In addition, we assume the matter field as a perfect fluid
in the Jordan frame with the linear barotropic equation
of state p̃(m) = wρ̃(m). Hence, one obtains the trace of
the energy–momentum tensor (5), with the signature +2,
as

T̃ (m) = g̃μν T̃ (m)
μν = −(1 − 3w)ρ̃(m), (8)

where the relation between the matter density in the Einstein
frame with the Jordan frame is

ρ(m) = e
4 βφ
MPl ρ̃(m). (9)

The matter density ρ̃(m) is conserved in the Jordan frame,
i.e.

˙̃ρ(m) + 3H̃ (1 + w) ρ̃(m) = 0, (10)

1 Consistent values of β with the allowed integers n have been men-
tioned in, e.g., Refs. [106,119].

however, it is not conserved in the Einstein frame. Neverthe-
less, the mathematical quantity

ρ(t) ≡ e
3(1+w)

βφ
MPl ρ̃(m), (11)

independent of the scalar field and with the same equation of
state parameter, is a conserved quantity in this frame, i.e.

ρ̇ + 3H (1 + w) ρ = 0. (12)

Of course, this ρ(t) is not a physical matter density. Fur-
thermore, substituting definition (11) into Eq. (4) yields the
dynamic of the scalar field governed by an effective potential,
i.e.

�φ = dVeff (φ)

dφ
, (13)

where

Veff(φ) ≡ V (φ) + ρe
(1−3w)

βφ
MPl = V (φ) + ρ(m), (14)

which depends explicitly on the matter density. Additionally,
the mass of the chameleon field, which is sufficiently large
to evade local constraints [95,120], is

m2
eff,min=V ′′

eff (φmin) =V ′′ (φmin) + β2

M2
Pl

(1−3w)2ρe
βφmin
MPl .

(15)

In the following, we derive the relevant field equations
in order to investigate the cosmology of such a chameleon
model.

3 Scrutinizing field equations

In this section, we intend to manipulate and scrutinize the
cosmological equations of the chameleon model while con-
sidering the spatially flat FLRW metric in the Einstein frame,
namely

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (16)

where a(t) is the scale factor as a function of the cosmic time
t . In this respect, first, the field equation (13) gives the wave
equation

φ̈ + 3H φ̇ + dVeff (φ)

dφ
= 0, (17)

where we have also considered the scalar field just as a
function of the cosmic time, dot denotes the derivative with
respect to this time, and H(t) ≡ ȧ/a is the Hubble parameter.
Furthermore by metric (16), Eq. (6) gives the corresponding
Friedmann and Raychaudhuri equations as

H2 = 1

3M2
Pl

(
1

2
φ̇2 + V (φ) + ρe

(1−3w)
βφ
MPl

)
(18)
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and

− M2
Pl

(
2ä

a
+ H2

)
= 1

2
φ̇2 − V (φ) + wρe

(1−3w)
βφ
MPl .

(19)

Also, relation (7) gives the energy and the pressure densities
as

ρ(φ) = 1

2
φ̇2 + V (φ) and p(φ) = 1

2
φ̇2 − V (φ) . (20)

Accordingly, Eqs. (18) and (19) can be rewritten as

H2 = 1

3M2
Pl

(
ρ(φ) + ρ(m)

)
= 1

3M2
Pl

ρ(tot), (21)

ä

a
= − 1

6M2
Pl

[
ρ(φ) + ρ(m) + 3

(
p(φ) + p(m)

)]

= − 1

6M2
Pl

(
ρ(tot) + 3p(tot)

)
, (22)

where ρ(tot) ≡ ρ(φ) + ρ(m) and p(tot) ≡ p(φ) + p(m) are
the total energy and pressure densities. The field equations
(21) and (22) indicate that ρ(tot) is conserved in the Einstein
frame, i.e.

ρ̇(tot) + 3H
(
ρ(tot) + p(tot)

)
= 0. (23)

However, in general, the scalar and matter fields are not sepa-
rately conserved in this frame, and an interacting term stands
among those, i.e.

ρ̇(m) + 3H
(
ρ(m) + p(m)

)
= β (1 − 3w)

MPl
ρ(m)φ̇ (24)

and

ρ̇(φ) + 3H
(
ρ(φ) + p(φ)

)
= −β (1 − 3w)

MPl
ρ(m)φ̇, (25)

wherein the interacting term depends on the scalar field and
the background matter density of the environment. However,
for an ultra-relativistic matter, with w = 1/3, such an inter-
acting term is identically zero. That is, for the radiation dom-
inated epoch of the universe, the scalar and matter fields are
separately conserved.

In the following analysis, we consider the matter density as
a non-relativistic perfect fluid,2 i.e. dust matter with w = 0.
Accordingly, Eqs. (24) and (25) read

ρ̇(m) + 3Hρ(m) = β

MPl
ρ(m)φ̇ (26)

and

ρ̇(φ) + 3Hρ(φ)
(

1 + w(φ)
)

= − β

MPl
ρ(m)φ̇, (27)

2 We mean all types of matter, i.e. baryonic and non-baryonic matter
(including dark matter).

wherew(φ) = p(φ)/ρ(φ). Moreover, we present the equations
via the dimensionless density parameters defined as

�(m) ≡ ρ(m)

ρ
(crit)
0

and �(φ) ≡ ρ(φ)

ρ
(crit)
0

, (28)

where ρ
(crit)
0 ≡ 3H2

0 M
2
Pl is the critical density of the universe

at the present-time. Hence, Eq. (21) can be rewritten as

H2 = H2
0

[
�(φ) + �(m)

]
, (29)

which in turn imposes constraint

�
(φ)
0 + �

(m)
0 = 1 (30)

on the initial values at the present-time.
On the other hand, by employing the e-folding variable

N = ln

[
a(t)

a(t0)

]
, (31)

we have

d

dt
= H

d

dN
. (32)

Also from relations (20) and (28), we obtain

φ̇ = ±
√

ρ(φ) + p(φ) = ±H0MPl

√
3�(φ)

(
1 + w(φ)

)
. (33)

It has been shown [120] that the monotonic increase of the

matter coupling factor e
βφ
MPl , when corresponds to φ̇ > 0,

leads to a minimum for Veff (φ). Moreover, It has been stated
[121] that φ̇ > 0 is satisfactory from the astrophysical point
of view [122]. Hence, we confine our investigation3 to the
positive sign in relation (33) to proceed, and the general-
ization to the negative sign can be performed with similar
considerations. Thus, Eqs. (26) and (27) read

�′(m) + 3�(m) = βH0

H
�(m)

√
3�(φ)

(
1 + w(φ)

)
(34)

and

�′(φ) + 3�(φ)
(

1 + w(φ)
)

= −βH0

H
�(m)

√
3�(φ)

(
1 + w(φ)

)
, (35)

where the prime denotes the derivative with respect to the
e-folding.

In addition, in the case of w = 0, the defined total equation
of state parameter for this model is

w(tot) ≡ p(tot)

ρ(tot)
= p(φ)

ρ(m) + ρ(φ)
. (36)

Also, using the deceleration parameter, i.e. q ≡ −äa/ȧ2 =
−ä/(aH2), while substituting Eqs. (21) and (22), with

3 We neglect the oscillatory case of the chameleon scalar field.
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employing the definition of the total equation of state param-
eter, into it, leads to

q = 1 + 3w(tot)

2
. (37)

Obviously if q < 0 (which is equal to w(tot) < −1/3), it will
describe an accelerated-phase in evolution of the universe.

In the continuation of the work, we intend to investigate
the cosmological solutions of the chameleon model for two
important phases of the cosmos.

4 Matter-dominated phase

Under assumption ρ(m) � ρ(φ), which corresponds to
�(m) � �(φ), the total equation of state parameter (36)
yields

w(tot) � p(φ)

ρ(m)
. (38)

Now, if the chameleon potential V (φ) being positive, then
relations (20) will indicate that p(φ) < ρ(φ), and in turn
ρ(m) � p(φ), hence relation (38) gives

w(tot) � 0, (39)

for the matter density as a non-relativistic perfect fluid. Fur-
thermore, in this situation, the deceleration parameter (37)
is

q � 1

2
, (40)

i.e. the expansion of the universe is a decelerated evolution.
On the other hand, in the matter-dominated phase, Eq. (21)

reduces to

H2 � H2
0 �(m), (41)

and hence, Eqs. (34) and (35) read

�′(m) + 3�(m) � β

√
3�(m) �(φ)

(
1 + w(φ)

)
(42)

and

�′(φ)+3�(φ)
(

1+w(φ)
)

� −β

√
3�(m) �(φ)

(
1+w(φ)

)
.

(43)

In the above, one obviously has ρ(m) > 0 and H > 0,
wherein we have assumed that4 ρ(φ) > 0, i.e. φ̇2/2 >|
V (φ) | for negative potentials. Also, we have assumed that

w(φ) ≥ −1, (44)

which, with relations (20) and the assumption ρ(φ) > 0, it is
already satisfied.

4 Note that, by considering relations (20) plus the case p(φ) = w(φ)ρ(φ),
it leads that ρ(φ) cannot be zero.

At this stage, it is more instructive to define two new
parameters y ≡ √

�(m) and x ≡ √
�(φ). Thus, we can

rewrite Eqs. (42) and (43) as the following coupled first
derivative equations for x and y, namely

2y′ + 3y � βx
√

3
(
1 + w(φ)

)
(45)

and

2x ′ + 3x
(

1 + w(φ)
)

� −βy
√

3
(
1 + w(φ)

)
. (46)

However, rather than solving these coupled equations ana-
lytically, we restrict the solutions to proceed. Indeed, in the
following subsections, we investigate the solutions of these
coupled differential equations for various cases of the relation
between the kinetic and potential energies of the chameleon
scalar field. Actually, we probe the results of the chameleon
model for four specific cases of the scalar field equation of
state parameter.

4.1 Case φ̇2/2 �| V (φ) |

In this case, one obviously has w(φ) � +1, hence Eqs. (45)
and (46) read

2y′ + 3y � √
6 βx, (47)

2x ′ + 6x � −√
6 βy. (48)

Now, by applying the upper bound value of the β = 3.7×102

(which this value of the non-minimal coupling parameter in
the chameleon model has been shown [123] to be consis-
tent with the experimental constrain), the solutions of these
equations are

y (N ) = −e− 9
4 N

1480

×
[(

C1
√

6 − C2
√

2190394
)

sin

(√
3285591

4
N

)

+
(
C1

√
2190394 + C2

√
6
)

cos

(√
3285591

4
N

)]
(49)

and

x (N ) = e− 9
4 N

[
C1 sin

(√
3285591

4
N

)

+C2 cos

(√
3285591

4
N

)]
, (50)

whereC1 andC2 = x(0) are constants of integrations. Using
solutions (49) and (50), we have plotted �(m) = y2 and
�(φ) = x2 in Fig. 1, wherein (without loss of generality) the
present values of the parameters have been used to specify
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Fig. 1 For solutions (49) and (50) with β = 3.7 × 102, the figure
schematically (i.e., scale-free) shows the parameters �(m) and �(φ)

versus N as solid and dashed lines, respectively. Besides, the present
values of the parameters, i.e. �

(m)
0 � 0.3 and �

(φ)
0 � 0.7 (the current

observational data for all matter is up to 32% and for dark energy roughly
68% of the universe [18]), have been used as the initial conditions, and
a(t0) = 1

Fig. 2 For solutions (51) and
(52) with β = 1, the figure
schematically (i.e., scale-free)
shows the parameters �(m) and
�(φ) versus N as solid and
dashed lines, respectively.
Besides, the present values of
the parameters, i.e. �

(m)
0 � 0.3

and �
(φ)
0 � 0.7, have been used

as the initial conditions, and
a(t0) = 1

the constants.5 This figure indicates that the behavior of the
matter density and the chameleon scalar field density are both
damped oscillations, i.e. the value of both densities decreases
over time. Note that, the negative values of the e-folding in
this figure (and also in the subsequent figures) are because
we have assumed the value of the scale factor to be equal to

5 Note that, since the chameleon scalar field can cause the late-time
accelerated expansion of the universe (see, e.g., Refs. [59,99]), we have
used the data of dark energy for it. Besides, although we consider the
matter-dominated phase, we have used the initial values at the present-
time because the path of the functions eventually passes through this
point. Moreover, the current value of the matter density is still a suitable
value even at almost higher redshift from the present-time [29].

one at the present-time, i.e. a(t0) = 1. We should also remind
that the zero values of �(m) and �(φ) must be disregarded in
all the figures.

On the other hand, by considering the non-minimal cou-
pling parameter as β = 1, Eqs. (47) and (48) lead to solutions

y (N ) = −e− 9
4 N

4

[(
C3

√
6 − C4

√
10

)
sin

(√
15

4
N

)

+
(
C3

√
10 + C4

√
6
)

cos

(√
15

4
N

)]
(51)

and
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x (N ) = e− 9
4 N

[
C3 sin

(√
15

4
N

)
+ C4 cos

(√
15

4
N

)]
,

(52)

where C3 and C4 = x(0) are constants of integrations. Also,
using solutions (51) and (52), we have plotted �(m) and �(φ)

in Fig. 2. This figure indicates that at the beginning of this
phase of the universe the matter density dominates, and then
at the end of its dominance era, the chameleon scalar field
density is dominant.

4.2 Case φ̇2/2 = V (φ)

In this case, the chameleon potential must be positive, and
accordingly relations (39) and (40) will hold. In addition, one
gets w(φ) = 0, hence Eqs. (45) and (46) read

2y′ + 3y � √
3 βx, (53)

2x ′ + 3x � −√
3 βy. (54)

The solutions to these equations with β = 3.7 × 102 are

y (N ) = −e− 3
2 N

[
C5 cos

(
185

√
3N

)

−C6 sin
(

185
√

3N
) ]

(55)

and

x (N ) = e− 3
2 N

[
C5 sin

(
185

√
3N

)

+C6 cos
(

185
√

3N
)]

, (56)

where C5 = −y(0) and C6 = x(0) are constants of integra-
tions. Using solutions (55) and (56), we have plotted �(m)

and �(φ) in Fig. 3.
This figure indicates that the behavior of the matter density

and the chameleon scalar field density are both also damped
oscillations and their values decrease over time.

However, using the non-minimal coupling parameter β =
1, Eqs. (53) and (54) lead to

y (N ) = −e− 3
2 N

[
C7 cos

(√
3

2
N

)
− C8 sin

(√
3

2
N

)]

(57)

and

x (N ) = e− 3
2 N

[
C7 sin

(√
3

2
N

)
+ C8 cos

(√
3

2
N

)]
,

(58)

where C7 = −y(0) and C8 = x(0) are constants of integra-
tions. Again, we have plotted �(m) and �(φ) from solutions
(57) and (58) in Fig. 4.

This figure also indicates that at the beginning of this phase
the matter density dominates, and then at the end of its dom-
inance era, the chameleon scalar field density is dominant.

4.3 Case φ̇2/2 = V (φ) /2

In this case, the chameleon potential must again be positive,
and hence relations (39) and (40) will hold. Although, one
gets w(φ) = −1/3, that is why we have highlighted this

Fig. 3 For solutions (55) and (56) with β = 3.7 × 102, the figure schematically (i.e., scale-free) shows the parameters �(m) and �(φ) versus N as
solid and dashed lines, respectively. Besides, the present values of the parameters, i.e. �

(m)
0 � 0.3 and �

(φ)
0 � 0.7, have been used as the initial

conditions, and a(t0) = 1
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Fig. 4 For solutions (57) and
(58) with β = 1, the figure
schematically (i.e., scale-free)
shows the parameters �(m) and
�(φ) versus N as solid and
dashed lines, respectively.
Besides, the present values of
the parameters, i.e. �

(m)
0 � 0.3

and �
(φ)
0 � 0.7, have been used

as the initial conditions, and
a(t0) = 1

Fig. 5 For solutions (61) and (62) with β = 3.7 × 102, the figure schematically (i.e., scale-free) shows the parameters �(m) and �(φ) versus N as
solid and dashed lines, respectively. Besides, the present values of the parameters, i.e. �

(m)
0 � 0.3 and �

(φ)
0 � 0.7, have been used as the initial

conditions, and a(t0) = 1

case, which also brings almost different results. Accordingly,
Eqs. (45) and (46) read

2y′ + 3y � √
2 βx, (59)

2x ′ + 2x � −√
2 βy. (60)

The solutions to these equations with β = 3.7 × 102 are

y (N ) = e− 5
4 N

1480

[(
7C10

√
44702 − C9

√
2
)

× sin

(
7
√

22351

4
N

)
−

(
7C9

√
44702 − C10

√
2
)

× cos

(
7
√

22351

4
N

)]
(61)

and

x (N ) = e− 5
4 N

[
C9 sin

(
7
√

22351

4
N

)

+C10 cos

(
7
√

22351

4
N

)]
, (62)

where C9 and C10 = x(0) are constants of integrations. This
time, using solutions (61) and (62), we have plotted �(m) and
�(φ) in Fig. 5.

This figure indicates that the behavior of the matter density
and the chameleon scalar field density are both also damped
oscillations and their values decrease over time.

123



Eur. Phys. J. C (2023) 83 :975 Page 9 of 16 975

Fig. 6 For solutions (63) and
(64) with β = 1, the figure
schematically (i.e., scale-free)
shows the parameters �(m) and
�(φ) versus N as solid and
dashed lines, respectively.
Besides, the present values of
the parameters, i.e. �

(m)
0 � 0.3

and �
(φ)
0 � 0.7, have been used

as the initial conditions, and
a(t0) = 1

On the other hand, by considering the non-minimal cou-
pling parameter as β = 1, Eqs. (59) and (60) lead to solutions

y (N ) = −e− 5
4 N

4

[(
C11

√
2 + C12

√
14

)
sin

(√
7

4
N

)

+
(
C12

√
2 − C11

√
14

)
cos

(√
7

4
N

)]
(63)

and

x (N ) = e− 5
4 N

[
C11 sin

(√
7

4
N

)
+ C12 cos

(√
7

4
N

)]
,

(64)

where C11 and C12 = x(0) are constants of integrations.
Again using solutions (63) and (64), we have plotted �(m)

and �(φ) in Fig. 6.
This figure also shows that at the beginning of this phase,

the matter density dominates as assumed, but at the end of its
dominance era, the chameleon scalar field density is domi-
nant.

4.4 Case φ̇2/2 
 V (φ)

Once again, in this case, the chameleon potential must be
positive,6 and accordingly relations (39) and (40) will hold.
Moreover, we obviously have w(φ) � −1, hence Eqs. (45)
and (46) read

2y′ + 3y � 0, (65)

2x ′ � 0. (66)

These equations do not depend on the β parameter, and we
have the solutions

y (N ) = y (0)e− 3
2 N (67)

6 Note that, as we have assumed ρ(φ) > 0, we do not consider the case
φ̇2/2 
| V (φ) | for negative potentials.

and

x (N ) = x (0), (68)

where y (0) =
√

�
(m)
0 and x (0) =

√
�

(φ)
0 are the initial

conditions at the present-time.7 Once again, using solutions
(67) and (68), we have plotted �(m) and �(φ) in Fig. 7.

This figure also indicates that at the beginning of this
phase, the matter density dominates as assumed, but at the end
of its dominance era, the constant density of the chameleon
scalar field is dominant.

5 Late-time accelerated-phase

In this section, we investigate the evaluation of the late-time
accelerated-phase of the universe via the chameleon scalar
field. In this regard, in this accelerated-phase of the universe,
by reducing the dust matter density over time, we can assume
ρ(φ) � ρ(m). Hence, the equation of state parameter (36)
reduces to

w(tot) � p(φ)

ρ(φ)
= w(φ), (69)

which gives the deceleration parameter (37) as q �(
1 + 3w(φ)

)
/2. Then, in order to achieve q ≤ 0 in this phase

of the universe, one must use w(φ) ≤ −1/3, which leads to
the constraint φ̇2 ≤ V (φ) with positive potentials in the
chameleon model.

On the other hand, in the accelerated-phase of the universe,
Eq. (21) yields

H2 � H2
0 �(φ). (70)

7 Considering relation (31), N = 0 is obviously related to t0 and in turn
to z = 0.
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Fig. 7 For solutions (67) and
(68), the figure schematically
(i.e., scale-free) shows the
parameters �(m) and �(φ)

versus N as solid and dashed
lines, respectively. Besides, the
present values of the parameters,
i.e. �

(m)
0 � 0.3 and �

(φ)
0 � 0.7,

have been used as the initial
conditions, and a(t0) = 1

Fig. 8 For solutions (75) and
(76) with β = 3.7 × 102, the
figure schematically (i.e.,
scale-free) shows the parameters
�(m) and �(φ) versus N as solid
and dashed lines, respectively.
Besides, the present values of
the parameters, i.e. �

(m)
0 � 0.3

and �
(φ)
0 � 0.7, have been used

as the initial conditions, and
a(t0) = 1

Substituting Eq. (70) into Eqs. (34) and (35) gives

�′(m) + 3�(m) � β�(m)
√

3
(
1 + w(φ)

)
(71)

and

�′(φ) + 3�(φ)
(

1 + w(φ)
)

� −β�(m)
√

3
(
1 + w(φ)

)
. (72)

Once again, in the following subsections, we probe these
solutions for various cases of the relation between the kinetic
and potential energies of the scalar field that satisfy the
φ̇2/2 ≤ V (φ) /2 constraint with positive potentials in the
chameleon model. Meanwhile, while using the common
power-law chameleon potential (3), we take a brief look at
the chameleon scalar field profile in this phase.

5.1 Case φ̇2/2 = V (φ) /2

In this case, we have w(φ) = −1/3, and in turn q = 0, which
is the transition point between the decelerated-epoch and the

accelerated-phase in the evaluation of the universe. Hence,
Eqs. (71) and (72) with β = 3.7 × 102 read

�′(m)

�(m)
� 3.7 × 102

√
2 − 3 (73)

and

�′(φ)

�(φ)
� −3.7 × 102

√
2

(
�(m)

�(φ)

)
− 2. (74)

The solutions to these equations are

�(m)(N ) = �
(m)
0 e

(
3.7×102

√
2−3

)
N

(75)

and

�(φ)(N ) =
{

�
(φ)
0 + 3.7 × 102

√
2 �

(m)
0

273799

(
1+3.7×102

√
2
)

[
1 − e

(
3.7×102

√
2−1

)
N
] }

e−2N . (76)
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Fig. 9 For solutions (79) and
(80) with β = 1, the figure
schematically (i.e., scale-free)
shows the parameters �(m) and
�(φ) versus N as solid and
dashed lines, respectively.
Besides, the present values of
the parameters, i.e. �

(m)
0 � 0.3

and �
(φ)
0 � 0.7, have been used

as the initial conditions, and
a(t0) = 1

We have plotted �(m) and �(φ) in Fig. 8.
This figure shows that, in this phase of the universe,

although the matter density increases slightly, its amount is
very negligible all along the path, and the chameleon scalar
field density, while decreasing, is dominant at all times.

On the other hand, for β = 1, Eq. (71) gives

�′(m)

�(m)
� √

2 − 3 (77)

and, while using the assumption �(m) 
 �(φ) in the late-
time accelerated-phase of the universe, Eq. (72) yields

�′(φ)

�(φ)
+ 2 � 0. (78)

The solutions to Eqs. (77) and (78) are

�(m)(N ) = �
(m)
0 e

(√
2−3

)
N

(79)

and

�(φ)(N ) = �
(φ)
0 e−2N . (80)

We have plotted �(m) and �(φ) in Fig. 9.
This figure indicates that the non-relativistic matter den-

sity and the chameleon scalar field density both decrease with
increasing the scale factor. Although the decrease in the mat-
ter density during this epoch of the evolution of the universe
is less than that of the chameleon, the chameleon scalar field
density dominates at all times.

Continuing the analysis, let us take a brief look at the
chameleon scalar field profile while using the common
power-law chameleon potential (3). In the case of this sub-
section, such a potential leads to

φ̇ = ±
√

M4+n

φn
. (81)

Therefore, the chameleon scalar field is

φ
n
2 +1(t) = ±

(n
2

+ 1
) √

M4+n t + A(t = 0), (82)

where A(t = 0) is an integration constant. Furthermore, the
constraint V (φ) > 0 indicates that, for the case φ > 0, the
parameter n can be both odd and even, but for case φ < 0,
the parameter n can only be even.

5.2 Case φ̇2/2 
 V (φ)

In this case, we have w(φ) � −1, and in turn q < 0, hence
Eqs. (71) and (72) read

�′(m) + 3�(m) � 0 (83)

and

�′(φ) � 0. (84)

These equations do not depend on the β parameter, and we
have the solutions

�(m)(N ) = �
(m)
0 e−3N (85)

and

�(φ)(N ) = �
(φ)
0 . (86)

We have plotted solutions (85) and (86) in Fig. 10.
This figure illustrates that first the matter density domi-

nates, then with the increase of the scale factor, the chameleon
scalar field density, while always remaining constant, domi-
nates the late-time accelerated-phase of the universe.

Also, in the case of subsection 5.2, the common power-law
chameleon potential (3) leads to

φ̇ 
 ±
√

2M4+n

φn
. (87)
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Fig. 10 For solutions (85) and
(86), the figure schematically
(i.e., scale-free) shows the
parameters �(m) and �(φ)

versus N as solid and dashed
lines, respectively. Besides, the
present values of the parameters,
i.e. �

(m)
0 � 0.3 and �

(φ)
0 � 0.7,

have been used as the initial
conditions, and a(t0) = 1

Hence, the chameleon scalar field is

φ
n
2 +1(t) 
 ±

(n
2

+ 1
)√

2M4+n t + B(t = 0), (88)

where B(t = 0) is an integration constant.
Now, to make our investigations more instructive, let

us compare our results with the corresponding one in the
�CDM model. For the �CDM model, we have

S =
∫

d4x
√−g

[
M2

Pl

2
(R − 2�) + L(m)

(
ψ(m), gμν

)]
,

(89)

with the field equations

Gμν = 1

M2
Pl

(
T (�)

μν + T (m)
μν

)
, (90)

where the energy–momentum tensor of the cosmological
constant is defined as

T (�)
μν ≡ −M2

Pl�gμν. (91)

This tensor describes a vacuum state with a constant energy
density ρ(�) and a constant isotropic pressure density p(�)

as

ρ(�) = M2
Pl� = −p(�). (92)

Assuming the FLRW metric (16) with the matter density
as a dust matter perfect fluid, one obtains the Friedmann
equations for the �CDM model as

H2 = �

3
+ ρ(m)

3M2
Pl

, (93)

ä

a
= �

3
− ρ(m)

6M2
Pl

. (94)

Furthermore, the energy–momentum conservation in this
model leads to

ρ̇(m) + 3Hρ(m) = 0, (95)

ρ̇(�) = 0. (96)

Using the dimensionless density parameters, these are

�′(m) + 3�(m) = 0, (97)

�′(�) = 0 (98)

that lead to solution (85) and solution like (86), respectively.
Therefore, in the case φ̇2/2 
 V (φ) with positive poten-

tials in the chameleon model, i.e. subsections 4.4 and 5.2,
the behavior obtained for the presented chameleon model is
similar to the �CDM model.

6 Conclusions

By considering the spatially flat FLRW line element as the
background geometry, we have investigated the cosmological
solutions of the chameleon model. In this model, the scalar
field non-minimally couples with the matter field, and its
interaction with the ambient matter goes through a conformal
factor that leads to a dependence of the chameleon mass on
the matter density. Accordingly, the equations of motion of
the chameleon scalar field become highly non-linear, hence
rather than solving the resulted equations analytically, we
have restricted the solutions to proceed.

After deriving the corresponding Friedmann and Ray-
chaudhuri equations, we have manipulated and scrutinized
the related field equations for the dimensionless density
parameters of the matter field and the scalar field with respect
to the e-folding while treating the matter density as a non-
relativistic perfect fluid and all variables simply as a func-
tion of the cosmic time. Then, we have focused and inves-
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tigated the cosmological solutions of the chameleon model
in the matter-dominated phase and the late-time accelerated-
phase of the universe in the context of various cases of the
relation between the kinetic and potential energies of the
chameleon scalar field, or indeed, for some specific cases of
the scalar field equation of state parameter. Thereupon, we
have schematically plotted those density parameters versus
the e-folding for two different values on the chameleon non-
minimal coupling parameter. Meanwhile, we have shown
that the assumption of the matter density much more than
the chameleon density corresponds to the matter-dominated
phase with a decelerated evolution for positive chameleon
potential energies. However conversely, the assumption of
the chameleon density much more than the matter density
can correspond to an accelerated-phase when the scalar field
equation of state parameter is less than or equal to −1/3 (in
this case, the equality corresponds to the deceleration param-
eter being zero, i.e. the transition point). This situation leads
to the case that the kinetic energy of the chameleon scalar
field must be less than or equal to half of its potential energy
for positive chameleon potentials.

More clearly, for the described chameleon model in the
matter-dominated phase, with the non-minimal coupling
parameter β = 1, we have indicated that, when the kinetic
energy of the chameleon scalar field is much more than the
absolute value of, equal to, and equal to half of its potential
energy8 (which respectively correspond to the scalar field
equation of state parameter of approximately +1, 0, and
−1/3), the matter density dominates at the beginning, but
then, at the end of its dominance era, the chameleon scalar
field density is dominant. Conversely, if the kinetic energy
of the chameleon scalar field is much less than its potential
energy for positive chameleon potential energies (i.e., when
the scalar field equation of state parameter is approximately
−1), the final result will still be the same as above, but for any
non-minimal coupling parameter. That is, the result of this
case does not depend on the non-minimal coupling parame-
ter. Also, in this phase with the strong non-minimal coupling
parameter β = 3.7 × 102, the behavior of the matter density
and the chameleon scalar field density, in the first three cases
mentioned above, are both damped oscillations, i.e. the value
of both densities decreases with increasing scale factor over
time.

Furthermore, in the late-time accelerated-phase, first, the
plausible assumption of the chameleon density much more
than the matter density leads to the total equation of state
parameter being almost identical to the scalar field equa-
tion of state parameter, the one described at the end of the
second paragraph. Then, in the case that the kinetic energy
of the chameleon scalar field is equal to half of its poten-
tial energy, with the strong non-minimal coupling parameter

8 Obviously, in the last two cases, the potential energy must be positive.

β = 3.7 × 102, we have indicated that, although the matter
density increases slightly, its amount is very negligible all
along the path and the chameleon scalar field density, while
decreasing, is dominant at all times. In this case with the
non-minimal coupling parameter β = 1, the matter density
and the chameleon scalar field density both decrease, and
although the decrease of the matter density is less than that
of the chameleon, the chameleon scalar field density dom-
inates at all times. On the other hand, in the case that the
kinetic energy of the chameleon scalar field is much less
than its potential energy (i.e., when the scalar field equa-
tion of state parameter is approximately −1), the behavior
of the matter density and the chameleon scalar field density
do not depend on the non-minimal coupling parameter. In
this case, we have shown that first the matter density domi-
nates, then with the increase of the scale factor, the chameleon
scalar field density, while always remaining constant, domi-
nates the late-time phase. Also, we have taken a brief look at
the chameleon scalar field profile while using the common
power-law chameleon potential.

Finally, in both the matter-dominated phase and the late-
time accelerated-phase, we have specified that, when the
kinetic energy of the chameleon scalar field is much less
than its potential energy (i.e., when the scalar field equa-
tion of state parameter is approximately −1), the behav-
ior obtained for the presented chameleon model is similar
to the �CDM model. Such compatibility suggests that the
chameleon model is phenomenologically viable and can be
tested with the observational data.
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