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Abstract In curved spacetime, Maxwell’s equations can be
expressed in forms valid in Minkowski background, with the
effect of the metric (gravity) appearing as effective polariza-
tions and magnetizations. The electric and magnetic (EM)
fields depend on the observer’s frame four-vector. We derive
Maxwell’s equations valid in general curved spacetime using
the fields defined in the normal frame, the coordinate frame,
and two other non-covariant methods used in the literature.
By analyzing the case in the generic frame we show that
the EM fields, as well as the charge and current densities,
defined in non-covariant ways do not correspond to physical
ones measured by an observer. We show that modification of
the homogeneous part is inevitable to any observer, and such
a modification is difficult to interpret as the effective medium
property. The normal frame is the relevant one to use as it
gives the EM fields measured by an Eulerian observer.

1 Introduction

The special theory of relativity originated from Maxwell’s
electromagnetism. It showed that the electric and magnetic
(EM) fields, E and B, are not independent concepts, and their
nature depends on the observer’s motion [1]. Minkowski, by
introducing a field strength tensor Fab, has constructed the
spacetime covariant form of Maxwell’s equations valid in the
flat spacetime of special relativity [2]. With the completion of
the general theory of relativity, Einstein extended the space-
time covariant form of Maxwell’s equations by Minkowski,
now valid in curved spacetime [3]. In a curved spacetime,
besides their dependence on the motion of the observer, the
EM fields also depend on the metric, the curved nature of the
spacetime, through observer’s four-vector.

Using a generic timelike four-vector ua , Fab can be
decomposed into Ea and Ba in a spacetime covariant manner

a e-mail: hr@kasi.re.kr (corresponding author)

[4–6]; the charge and current densities, � and ja , are simi-
larly decomposed from the four-current Ja based on the same
four-vector. The four-vector ua depends on the observer.
Often used ones are the fluid four-vector corresponding to
the Lagrangian observer (comoving with the fluid), the nor-
mal four-vector na corresponding to the Eulerian observer,
the coordinate four-vector n̄a corresponding to an observer
attached with spatial coordinates, the coordinate observer;
in the following, the normal four-vector, the normal frame,
and the normal (or Eulerian) observer are used with the same
meaning indicating na .

In this work, we will consider the normal observer,
the coordinate observer, and the all encompassing generic
observer. As further two cases, we consider non-covariant
definitions of the EM fields, which are historically interest-
ing, partly coincide with flat spacetime results, and are often
used in the literature related to the gravitational wave detec-
tion and the gravity-medium analogy. However, these two
non-covariant definitions fail to identify the corresponding
observer’s four-vectors, and thus fail to introduce the external
charge and current densities properly [7]. We will show this
failure by analysing the generic frame; i.e., the non-covariant
definitions do not have corresponding frame four-vectors.
Without the observer’s four-vector identified, the actual exis-
tence of such a set of EM fields as measurable quantities by
any observer is in doubt. This also implies that the homoge-
neous part of Maxwell’s equations is inevitably modified by
gravity to any observer. Thus, the gravity-medium analogy
is not valid.

In [7], we derived Maxwell’s equations in the above four
different definitions of the EM fields, assuming linear order
perturbations in the Minkowski background metric, thus
assuming weak gravity. Maxwell’s equations were presented
in the Minkowski background, with the effect of weak gravity
appearing as the effective polarizations and magnetizations,
Ps andMs, often appearing in the homogeneous and/or inho-
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mogeneous parts of Maxwell’s equations. We showed why
the non-covariant definitions of the EM fields are not only
arbitrary but also wrong by missing the corresponding charge
and current densities and missing the observer who can mea-
sure such fields. That is, the variables introduced in that man-
ner are not EM fields in any sense.

Here we extend the case to the general spacetime metric.
Equations will be presented using the EM fields and current
density associated with the Euclidean three-space metric δi j
mixed with the Arnowitt–Deser–Misner (ADM) metric vari-
ables. The ADM metric variables can be expressed in terms
of the fully nonlinear and exact (FNLE) perturbation metric
variables where vector and tensor metric perturbation vari-
ables are associated with the Euclidean three-space metric
δi j and its inverse. We additionally present the case of the
generic four-vector and its weak gravity limit.

In Sect. 2 we present the spacetime covariant formulation
and the spatially covariant ADM formulation of Maxwell’s
equations. Section 3 presents Maxwell’s equations in four
different definitions of the EM fields. Section 4 presents the
equations in the generic frame and proves the inevitable
nature of the gravity-modified homogeneous part. In Sects. 5
and 6 we clarify a couple of misconceptions in the literature
and errors in the commonly used medium interpretation of
gravity in electrodynamics. In Sect. 7, we discuss the result.
Appendix A presents the ADM metric variables in terms of
variables associated with δi j and its inverse using the FNLE
formulation. Appendix B presents relations to the linear order
metric perturbation which will be useful to handle electro-
dynamics coupled with gravitational waves and the weak
gravity.

2 Covariant and ADM formulations

In the presence of helical coupling, the electromagnetic part
of Lagrangian is

L = −1

4
FabF

ab − gφγ

4
f (φ)FabF

∗ab + 1

c
Ja Aa, (1)

where the field strength tensor is Fab ≡ ∇a Ab − ∇b Aa with
its dual F∗

ab ≡ 1
2ηabcd Fcd ; φ is a scalar field with f = φ for

the conventional axion coupling [8]. A system together with
Einstein’s gravity, scalar field, and a general fluid is studied
in [9].

Maxwell’s equations in vacuum are

Fab
;b = 1

c
Ja − gφγ f,bF

∗ab, ηabcd Fbc,d = 0. (2)

The second equation is the same as F∗ab
;b = 0. Using it, the

first one becomes

Hab
;b = 1

c
Ja, (3)

with Hab ≡ Fab + gφγ f F∗
ab. Using Hab = − 1

2ηabcd H∗
cd

this can be written as

− 1

2
ηabcd H∗

bc,d = 1

c
Ja . (4)

Using a generic time-like four-vector ua , with uaua ≡
−1, we define the EM fields associated with the four-vector
[4–6]

Fab = uaEb − ubEa − ηabcdu
cBd ,

F∗
ab = ua Bb − ubBa + ηabcdu

cEd . (5)

We have Ea ≡ Fabub and Ba ≡ F∗
abu

b with Eaua ≡ 0 ≡
Baua . Thus, we have

Hab = uaDb − ubDa − ηabcdu
cHd ,

H∗
ab = uaHb − ubHa + ηabcdu

cDd , (6)

with

Da ≡ Ea + PA
a , PA

a ≡ gφγ f Ba,

Ha ≡ Ba − MA
a , MA

a ≡ gφγ f Ea . (7)

The effect of axion can be regarded as the effective polariza-
tion and magnetization. The current four-vector is decom-
posed using the same four-vector as

Ja ≡ �cua + ja, jau
a ≡ 0, (8)

where � and ja are charge and current densities, respectively,
measured by an observer with the same four-velocity ua .

Using the decompositions, Eq. (3) and the second one in
Eq. (2), respectively, give

1√−g

[√−g(uaDb − ubDa)
]
,b

− ηabcd(ucHd),b

= �ua + 1

c
ja, (9)

1√−g

[√−g(ua Bb − ubBa)
]
,b

+ ηabcd(ucEd),b = 0,

(10)

where g ≡ det(gab). As we have ηabcd = εabcd/
√−g with

εabcd an anti-symmetric symbol, Maxwell’s equations can be
written in forms with the effect of gravity (curved spacetime
metric) behaving as the effective polarizations and magneti-
zations appearing in the homogeneous and inhomogeneous
parts for a generic four-vector ua . In the following, we will
show that modification in the homogeneous part due to grav-
ity is inevitable to any observer even to the linear order per-
turbation. From now on, for clarity, we often indicate the
spacetime covariant quantities using an overtilde.

We often use spatially covariant formulation of the curved
spacetime. The ADM metric and its inverse are [10]

g00 ≡ −N 2 + Ni Ni , g0i ≡ Ni , gi j ≡ hi j ,

g00 = − 1

N 2 , g0i = Ni

N 2 , gi j = hi j − Ni N j

N 2 , (11)
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where hi j is an inverse of the three-space intrinsic metric hi j ,
thus hikh jk ≡ δij , and the index of Ni is raised and lowered

by hi j and its inverse; i, j . . . are spatial indices. We have

η0i jk = −Nηi jk = −N
√
hηi jk = −√−gηi jk,

η0i jk = 1

N
ηi jk = 1

N
√
h

ηi jk = 1√−g
ηi jk, (12)

where h ≡ det(hi j ), and indices of ηi jk and ηi jk are raised
and lowered using hi j and δi j , respectively, and their respec-
tive inverses.

The normal four-vector is introduced as

ni ≡ 0, n0 = −N , ni = −Ni

N
, n0 = 1

N
. (13)

For the EM fields and current density in the normal frame,
we set

B̃i ≡ Bi , B̃0 = Bi N
i , B̃i = Bi , B̃0 = 0, (14)

and similarly for Ea , Da Ha , and ja with Ẽi ≡ Ei etc.;
indices of Ei , etc., are raised and lowered by hi j and its
inverse. Based on the normal frame, from Eq. (5) we have

F0i = −NEi − ηi jk N
j Bk, Fi j = ηi jk B

k,

F∗
0i = −N Bi + ηi jk N

j Ek, F∗
i j = −ηi jk E

k, (15)

and similarly for Hab and H∗
ab with (Di , Hi ) replacing (Ei ,

Bi ).
Maxwell’s equations in the ADM formulation are pre-

sented in textbooks of numerical relativity [11–13]; see Eqs.
(65)-(73) in [9]. Equations can be arranged, including the
axion coupling, as

1√
h

(√
hD

i
)

,i
= �, (16)

1√
h

(√
hD

i
)

,0
− ηi jk∇ j (NHk − ηk�mN

�Dm)

= �Ni − 1

c
N ji , (17)

1√
h

(√
hB

i
)

,i
= 0, (18)

1√
h

(√
hB

i
)

,0
+ ηi jk∇ j (NEk + ηk�mN

�Bm) = 0. (19)

Using the vector notation, we have

∇ · D = �, (20)
1√
h

(√
hD

)
,0 − ∇ × (

NH − N × D
) = N� − 1

c
N j, (21)

∇ · B = 0, (22)
1√
h

(√
hB

)
,0 + ∇ × (

NE + N × B
) = 0, (23)

where the dot and cross products are associated with the
intrinsic metric hi j , and ∇ is a covariant derivative associated
with hi j .

3 Maxwell’s equations

In this section, we present exact forms of Maxwell’s equa-
tions in the general curved spacetime using the EM field
vectors associated with δi j as the metric. We present four dif-
ferent forms based on four different ways of defining the EM
fields. Two covariant methods are based on the normal frame
and the coordinate frame as the observer’s four-vectors. The
other two non-covariant methods are based on the coinci-
dences with the special relativistic equations noticed by Ein-
stein in his way to guess the spacetime covariant form of
Maxwell’s equation valid in general relativity [3]; these non-
covariant methods are also popularly used in the literature.

The two non-covariant definitions are not based on the
observer’s four-vector: the EM fields are directly read as
components of special relativistic forms of Fab and F∗

ab, both
with covariant indices. It turns out that, in this way, one can-
not identify the frame four-vectors allowing such definitions
of the EM fields, see Sect. 4. The situations are troublesome
because without the observer’s four-vectors specified, one
cannot introduce the charge and current densities associ-
ated with the respective EM fields. Without the associated
four-vector identified, the EM variables introduced in non-
covariant manner are not the EM fields that can be measured
by any observer.

3.1 Normal observer

The normal four-vector na is normal to the hypersurface and
is the four-velocity of an observer instantaneously at rest
in the chosen time slice. It can be interpreted as an Eule-
rian observer as its motion follows the hypersurface inde-
pendently of the coordinates chosen [12,14,15].

We introduce

Bi ≡ Bi , B
i = hi j B j = hi j B j , (24)

or directly,

B̃i ≡ Bi , B̃0 = Bi N
i , B̃i = h

i j
B j , B̃0 = 0, (25)

where the index of Bi is raised and lowered using δi j and its
inverse; similarly we introduce Ei , Di , Hi , and ji . Equations
(5) and (8) give

F0i = −NEi − ηi jk

√
hN jhk�B�, Fi j = ηi jk

√
hhk�B�,

J 0 = �c
1

N
, J i = −�c

Ni

N
+ hi j j j , (26)
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and similarly for Hab. Notice that we are using mixed nota-
tion associated with δi j and hi j and their respective inverses:
the indices of Ni and hi j are associated with the intrinsic
metric hi j , whereas indices of ηi jk , Ei , etc., are raised and
lowered using δi j and its inverse. In Appendix A we will
express the ADM metric variables in terms of metric pertur-
bation variables associated with δi j and its inverse. In this
way, all variables in the following can be expressed entirely
using variables associated with δi j .

Using Eqs. (26), (2) gives

(
√
hhi j D j ),i =

√
h�, (27)

(
√
hhi j D j ),0 − ηi jk∇ j (NHk − ηk�m

√
hN �hmnDn)

=
√
hNi� − 1

c
N

√
hhi j j j , (28)

(
√
hhi j B j ),i = 0, (29)

(
√
hhi j B j ),0 + ηi jk∇ j (NEk + ηk�m

√
hN �hmn Bn) = 0,

(30)

where ∇i is an ordinary derivative associated with δi j . Useful
relations needed for the derivation can be found in [9]. In
terms of the effective polarization and magnetization vectors,
these can be arranged as

(Ei + Pi
E),i =

√
h�, (31)

(Ei + Pi
E),0 − ηi jk∇ j (Bk − ME

k )

=
√
hNi� − 1

c
N

√
hhi j j j , (32)

(Bi + Pi
B),i = 0, (33)

(Bi + Pi
B),0 + ηi jk∇ j (Ek − MB

k ) = 0, (34)

where the effective Ps and Ms caused by the metric are

Pi
E ≡

√
hhi j D j − Ei ,

ME
i ≡ Bi − NHi + ηi jk

√
hN jhk�D�,

Pi
B ≡

√
hhi j B j − Bi ,

MB
i ≡ (1 − N )Ei − ηi jk

√
hN jhk�B�. (35)

To the normal frame observer, the gravitational field appears
as effective Ps and Ms in both the homogeneous and inho-
mogeneous parts of Maxwell’s equations.

3.2 Coordinate observer

In the literature, we often find a frame choice with ui ≡ 0
[11,15,16]. This corresponds to the coordinate frame where
the observer is attached with the coordinate, see below Eq.
(63). In the coordinate frame, we have

n̄i = Ni√
N 2 − NkNk

, n̄0 = −
√
N 2 − NkNk,

n̄i ≡ 0, n̄0 = 1√
N 2 − NkNk

, (36)

and the observer is at rest in the spatial coordinate, thus is a
coordinate observer.

For the EM fields and current density in the coordinate
frame, we set

B̃i ≡ B̄i , B̃0 = 0,

B̃i =
(
hi j − Ni N j

N 2

)
B̄ j , B̃0 = Ni

N 2 B̄i , (37)

and similarly for Ēa , D̄a , H̄a , and j̄a with Ẽi ≡ Ēi etc.;
indices of B̄i , etc., are raised and lowered using δi j and its
inverse. Equations (5) and (8) give

F0i = −
√
N2 − NkNk Ēi , Fi j = 1√

N2 − NmNm

×
[
Ni Ē j − N j Ēi + ηi jk N

√
h

(
hk� − NkN�

N2

)
B̄�

]
,

J0 = 1√
N2 − NkNk

�̄c + Ni

N2 j̄i , J i =
(
hi j − Ni N j

N2

)
j̄ j ,

(38)

and similarly for Hab. Maxwell’s equations follow from Eq.
(2) as

{
N

√
h√

N2 − N�N�

[(
hi j − Ni N j

N2

)
D̄ j − ηi jk

1

N
√
h
N j H̄k

]}

,i

=
√
h

(
N√

N2 − Nk Nk
�̄ + 1

c

Ni

N
j̄i

)
, (39)

{
N

√
h√

N2 − N�N�

[(
hi j − Ni N j

N2

)
D̄ j − ηi jk

1

N
√
h
N j H̄k

]}

,0

−ηi jk∇ j

(√
N2 − N�N� H̄k

)

= − 1

c
N

√
h

(
hi j − Ni N j

N2

)
j̄ j , (40)

{
N

√
h√

N2 − N�N�

[(
hi j − Ni N j

N2

)
B̄ j + ηi jk

1

N
√
h
N j Ēk

]}

,i

= 0,

(41){
N

√
h√

N2 − N�N�

[(
hi j − Ni N j

N2

)
B̄ j + ηi jk

1

N
√
h
N j Ēk

]}

,0

+ηi jk∇ j

(√
N2 − N�N� Ēk

)
= 0. (42)

Similarly as in Eqs. (31)–(34), these equations can also be
expressed using effective P̄s and M̄s appearing in both the
homogeneous and inhomogeneous parts of Maxwell’s equa-
tions.

Although we suggest the normal frame as the one to use
because it corresponds to the frame of an Eulerian observer,
as both frames are introduced in covariant manner, any frame
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is fine mathematically. Relations among parameters (the EM
fields and charge and current densities) between the two
frames can be easily read by evaluating Eqs. (5) and (8) in
both frames. These are

Ei = N√
N2 − NmNm

[ (
δ
j
i − Ni N

j

N2

)
Ē j

−ηi jk

√
h

N
N j hk� B̄�

]
,

Bi = N√
N2 − NmNm

[ (
δ
j
i − Ni N

j

N2

)
B̄ j

+ηi jk

√
h

N
N j hk� Ē�

]
,

Ēi = N√
N2 − NmNm

(
Ei + ηi jk

√
h

N
N j hk�B�

)
,

(
δ
j
i − Ni N

j

N2

)
B̄ j = N√

N2 − NmNm

[ (
δ
j
i − Ni N

j

N2

)
B j

−ηi jk

√
h

N
N j hk�E�

]
;

� = �̄
N√

N2 − NkNk
+ 1

c

Ni

N
j̄i ,

ji = j̄i + �̄c
Ni√

N2 − NkNk
,

�̄ = N√
N2 − NkNk

(
� − 1

c

Ni

N
ji

)
,

(
δ
j
i − Ni N

j

N2

)
j̄ j = ji − �c

Ni

N
, (43)

and similarly between (Di , Hi ) and (D̄i , H̄i ). The coordinate
frame coincides with the normal frame for Ni = 0.

3.3 Special relativistic Fab or F∗
ab

In this subsection we ignore the axion contribution for clarity
of the argument. In his way of arriving at Eq. (2) in general rel-
ativity, in [3] Einstein noticed a couple of exact coincidences
with the special relativistic Maxwell’s equations based on
two different definitions of the EM fields. These are

F0i ≡ −Êi , Fi j ≡ ηi jk B̂
k, (44)

and

F∗
0i ≡ −B̆i , F∗

i j ≡ −ηi jk Ĕ
k, (45)

where indices of Êi , B̂i , Ĕi , and B̆i are raised and lowered
using δi j and its inverse. Notice that these definitions of EM
fields, directly associating the physical EM fields to compo-
nents of tensors, are not covariant. The merit of these two
definitions noticed by Einstein [3] is that, in these ways, the
second part of Eq. (2) using Eqs. (44) and (4) using Eq.

(45), in the absence of the external current four-vector, natu-
rally gives the homogeneous part of Maxwell’s equations in
exactly special relativistic form as

Ĕ i
,i = 1

c

√−gJ 0, (46)

Ĕ i
,0 − ηi jk∇ j B̆k = −1

c

√−gJ i , (47)

B̂i
,i = 0, (48)

B̂i
,0 + ηi jk∇ j Êk = 0. (49)

This set is a combination of parts of two sets of Maxwell’s
equations associated with two different definitions of the EM
fields in Eqs. (44) and (45). The more complicated comple-
mentary parts are ignored, see below.

Notice that for the external source terms, we kept the com-
ponents of the four-current without decomposing it into the
charge and current densities. The two non-covariant ways of
defining EM fields in Eqs. (44) and (45) do not guarantee
the presence of the corresponding observer’s four-vectors:
the normalized four-vector only has three degrees of free-
dom, whereas in Eqs. (44) or (45) six degrees of freedom are
used. It turns out that even to the linear order perturbations in
the metric we cannot find the four-vectors for the EM fields
satisfying these conditions, see [7]. Without the observer’s
four-vector, we cannot introduce the charge and current den-
sities associated with the observer, which is true even for
the EM fields as well. For further trouble with these non-
covariant ways of identifying physical quantities as tensor
components, see [17].

Comparing Eq. (26) with Eqs. (44) and (45) we have rela-
tions to EM fields in the normal frame

Êi = NEi + ηi jk

√
hN jhk�B� = Ei − MB

i ,

B̂i =
√
hhi j B j = Bi + Pi

B.

Ĕ i =
√
hhi j E j = Ei + Pi

E,

B̆i = N Bi − ηi jk

√
hN jhk�E� = Bi − ME

i . (50)

These can be inverted to give

Ei = 1

N
(Êi − ηi jk N

j B̂k), Bi = 1√
h
hi j B̂

j ,

Ei = 1√
h
hi j Ĕ

j , Bi = 1

N
(B̆i + ηi jk N

j Ĕk). (51)

Equations (46)–(49) look deceivingly simple: in the
absence of the four-current, and if we ignore (we cannot, of
course) the difference between (Êi , B̂i ) and (Ĕi , B̆i ), these
are exactly the same as Maxwell’s equations in special rela-
tivity. If we express the two sets using consistent notations,
the other parts of equations become quite complicated. From

F∗
ab = 1

2
ηabcdg

cegd f Fef , (52)
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and its inverse relation, we can derive the relation between
the two EM fields

Ĕ i =
√
h

N
hi j

(
Ê j − η jk�N

k B̂�
)

≡ Ê i + P̂i
E,

B̆i = N√
h

[(
1 − NkNk

N 2

)
hi j + Ni N j

N 2

]
B̂ j

−
√
h

N
ηi jk N

j hk� Ê� ≡ B̂i − M̂E
i ,

B̂i =
√
h

N
hi j

(
B̆ j + η jk�N

k Ĕ�
)

≡ B̆i + P̆i
B,

Êi = N√
h

[(
1 − NkNk

N 2

)
hi j + Ni N j

N 2

]
Ĕ j

+
√
h

N
ηi jk N

j hk� B̆� ≡ Ĕi − M̆B
i , (53)

which Einstein called “pretty complex relationship” [3].
Using these relations between the two definitions in Eq.

(53), two complete sets of Maxwell’s equations can be written
individually. In terms of Êi and B̂i , we have

(Ê i + P̂i
E),i = 1

c

√−gJ 0, (54)

(Ê i + P̂i
E),0 − ηi jk∇ j (B̂k − M̂E

k ) = −1

c

√−gJ i , (55)

B̂i
,i = 0, (56)

B̂i
,0 + ηi jk∇ j Êk = 0, (57)

where P̂E and M̂E are defined in Eq. (53). The effective P
and M appear only in the inhomogeneous part of Maxwell’s
equations, and in such a case the effect of gravity can be
interpreted as the effective medium property.

In terms of B̆ and Ĕ, however, Eqs. (58)–(57) give

Ĕ i
,i = 1

c

√−gJ 0, (58)

Ĕ i
,0 − ηi jk∇ j B̆k = −1

c

√−gJ i , (59)

(B̆i + P̆i
B),i = 0, (60)

(B̆i + P̆i
B),0 + ηi jk∇ j (Ĕk − M̆B

k ) = 0, (61)

where P̆B and M̆B are defined in Eq. (53). The effectiveP and
M now appear in the homogeneous part which is opposite to
the previous choice.

The above two non-covariant definitions are widely used
in the literature of handling the effect of gravitational waves
[18–21], and interpreting the effect of gravity as a medium
property [4,16,22–26]. In these non-covariant definitions one
cannot identify the four-vectors of corresponding observers
who may measure such EM fields. Consequently, one cannot
introduce the corresponding charge and current densities. We
will elaborate our criticism on previous literature in Sects. 5
and 6.

Einstein in [3] used these two separate coincidences with
special relativity as the guide to suggest the covariant form
of Maxwell’s equations in (2). However, he suggested none
of these two as the definition of the EM fields [3].

4 Generic observer

In the literature of gravitational wave detection using electro-
magnetic means, a special choice of the EM fields, assuming
Fab (with two covariant indices) independent of the metric
perturbations, is popular [18–21]. In this way, the homoge-
neous part of Maxwell’s equations becomes independent of
gravity with apparent merit: the perturbed metric (including
gravitational waves) appears only as the effective polariza-
tion and magnetization in ordinary Maxwell’s equations in
flat spacetime, similarly as in the axion case.

In the following, using a generic observer we will show
that in the curved spacetime, such an ad hoc choice of the EM
fields in Eqs. (44) or (45) is not possible for any observer. For
the gravitation, it is inevitable to have effective polarizations
and magnetizations appearing in both the homogeneous and
inhomogeneous parts of Maxwell’s equations. Gravitational
wave detection should take this complication compared with
the axion into account; for correct equations in the normal
frame, see [7].

The fluid four-vector of a generic observer is introduced
as [9]

ui ≡ γ Vi , u0 = γ
(
NiV

i − N
)

,

ui = γ

(
V i − 1

N
Ni

)
≡ γ

N
V
i
, u0 = 1

N
γ, (62)

with the Lorentz factor

γ ≡ −ncu
c = Nu0 = 1√

1 − V kVk
, (63)

where indices of V i and V i are raised and lowered by hi j and
its inverse; Vi is the fluid velocity measured by the Eulerian
observer with na [12,14,15], and V i ≡ ui/u0 = dxi/dx0

is the coordinate velocity of the fluid measured by the coor-
dinate observer [11,15]. For Vi = 0 we have the normal
frame of an Eulerian observer, and for V i ≡ 0 we have the
coordinate frame n̄a .

We introduce B̃i ≡ Bi with the index of Bi associated
with hi j as the metric. We have

B̃i ≡ Bi , B̃0 = (Ni − NV i )Bi ,

B̃i = B
i − Ni

N
V j B j , B̃0 = 1

N
V i Bi , (64)

and similarly for Ei , Di , Hi , and j i .
Equations (9) and (10), with a = 0 and i , respectively,

give
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1√
h

[√
hγ

(
Di − V iV j D j − ηi jkVj Hk

)]
,i

= γ � + 1

c
V i j i , (65)

1√
h

[√
hγ

(
Di − V iV j D j − ηi jkVj Hk

)]
,0

−ηi jk∇ j

{
γ
[
(N − N�V

�)Hk + (N � − NV �)H �Vk
]

−γ ηk�m

[
(N � − NV �)Dm − V �NmV nDn

] }

= γ �(Ni − NV i ) − 1

c
(N ji − NiV j j j ), (66)

1√
h

[√
hγ

(
Bi − V iV j B j + ηi jkVj Ek

)]
,i

= 0, (67)

1√
h

[√
hγ

(
Bi − V iV j B j + ηi jkVj Ek

)]
,0

+ηi jk∇ j

{
γ
[
(N − N�V

�)Ek + (N � − NV �)E�Vk
]

+γ ηk�m

[
(N � − NV �)Bm + V �NmV nBn

] }
= 0.

(68)

The left-hand sides of Eqs. (65)–(68) can be arranged
so that the effect of gravity can be interpreted as the effec-
tive polarizations and magnetizations appearing in both the
homogeneous and inhomogeneous parts as

1√
h

[√
h(Ei + Pi

E)
]
,i

= γ � + 1

c
V i j i , (69)

1√
h

[√
h(Ei + Pi

E)
]
,0

− ηi jk∇ j (Bk − ME
k )

= γ �(Ni − NV i ) − 1

c
(N ji − NiV j j j ), (70)

1√
h

[√
h(Bi + Pi

B)
]
,i

= 0, (71)

1√
h

[√
h(Bi + Pi

B)
]
,0

+ ηi jk∇ j (Ek − MB
k ) = 0, (72)

where indices of Pi
E, etc., are associated with hi j . The effec-

tive Ps and Ms caused by the metric and the axion are

Pi
E ≡ γ

(
Di − V iV j D j − ηi jkVj Hk

)
− Ei ,

ME
i ≡ −γ

[
(N − N jV

j )Hi + (N j − NV j )H jVi
]

+γ ηi jk

[
(N j − NV j )Dk − V j NkV �D�

]
+ Bi ,

Pi
B ≡ γ

(
Bi − V iV j B j + ηi jkVj Ek

)
− Bi ,

MB
i ≡ −γ

[
(N − N jV

j )Ei + (N j − NV j )E jVi
]

−γ ηi jk

[
(N j − NV j )Bk + V j NkV �B�

]
+ Ei .

(73)

The effect due to axion is included in Di and Hi .

4.1 The non-covariant definitions do not lead to measurable
EM fields

We will show that in the curved spacetime, the non-covariant
definitions of the EM fields in Eqs. (44) or (45) are not pos-
sible for any observer. As a consequence, we will show that
gravity inevitably causes modifications in both the homoge-
neous and inhomogeneous equations. From Eqs. (5) and (6),
we have

F0i = −γ (N − N jV
j )Ei − γ Vi (N

j − NV j )E j

+γ ηi jk

[
(NV j − N j )Bk − V j NkV �B�

]
,

Fi j = γ (Vi E j − Vj Ei ) + γ ηi jk(B
k − V kV �B�), (74)

where the choice of observer’s frame corresponds to choos-
ing Vi . These conditions relate the six Fab to the six EM
fields. We cannot achieve arbitrary relations between them
using only three conditions available in Vi , which turns out
to be the case for achieving Fab (or whatever combinations
including F∗

ab) independent of the metric perturbations even
to the linear order [7].

To the linear order in metric perturbations and Vi , we have

F0i = −NEi + ηi jk(NV j − N j )Bk,

Fi j = Vi E j − Vj Ei + ηi jk B
k . (75)

Thus, even to the linear order in metric perturbations, one
cannot remove the metric dependence of Fab by choosing
Vi . This conclusion is independent of the gauge conditions.
For example, for the normal frame with Vi ≡ 0, synchronous
gauge condition with N = 1 and Ni = 0 still leaves depen-

dence on
√
h and hi j through ηi jk and Bi .

Therefore, the non-covariant definitions of the EM fields
introduced in [4,18–21,26], naïvely assigning the EM fields
to components of the field strength tensor as in Eq. (44) can-
not be regarded as any measurable EM fields. That is, as these
variables cannot be measured as EM fields by any observer
with their own four-vector, these are disqualified as the EM
field variables. We can similarly show the non-covariant def-
inition in Eq. (45) is not allowed.

4.2 Using flat spacetime variables

In terms of variables associated with δi j , we introduce Bi ≡
Bi with the index of Bi associated with δi j , thus Bi = hi j B j ,
and similarly for Ei , Di , Hi , and ji . We also introduce Vi ≡
vi/c with the index of vi associated with δi j , thus V i =
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hi jv j/c. Equations (69)–(73) become

(Ei + Pi
E),i =

√
h

(
γ � + 1

c
V i ji

)
, (76)

(Ei + Pi
E),0 − ηi jk∂ j (Bk − ME

k )

=
√
h

[
γ �(Ni − NV i ) − 1

c
(N ji − NiV j j j )

]
, (77)

(Bi + Pi
B),i = 0, (78)

(Bi + Pi
B),0 + ηi jk∂ j (Ek − MB

k ) = 0, (79)

where the effective Ps and Ms caused by the metric and the
axion are

Pi
E =

√
hhi j (E j + PE

j ) − Ei , ME
i = ME

i ,

Pi
B =

√
hhi j (Bj + PB

j ) − Bi , MB
i = MB

i . (80)

For vi ≡ 0 we recover Eqs. (31)–(35) in the normal frame,
and for V i ≡ Ni/N we recover Eqs. (39)–(42) in the coor-
dinate frame.

4.3 Linear order metric perturbations

To the linear order, using Eq. (B2), we have

F0i = −
(

1 + 1

2
h0

0

)
Ei − ηi jk

(
h j

0 − v j

c

)
Bk,

Fi j = vi

c
E j − v j

c
Ei + ηi jk

[(
1 + 1

2
h�

�

)
Bk − hk�B�

]
,

(81)

and

(Ei + Pi
E),i = �

(
1 + 1

2
hii

)
+ vi

c2 ji , (82)

(Ei + Pi
E),0 − ηi jk∇ j (Bk − ME

k ) =
(
hi0 − vi

c

)
�

−1

c

(
1 + 1

2
h j
j + 1

2
h0

0

)
j i + 1

c
hi j j j , (83)

(Bi + Pi
B),i = 0, (84)

(Bi + Pi
B),0 + ηi jk∇ j (Ek − MB

k ) = 0, (85)

with

Pi
E ≡ Di − Ei + 1

2
h j
j D

i − hi j D j − ηi jk
v j

c
Hk,

Mi
E ≡ Bi − Hi − 1

2
h0

0H
i + ηi jk

(
h0 j − v j

c

)
Dk,

Pi
B ≡ 1

2
h j
j B

i − hi j B j + ηi jk
v j

c
Ek,

Mi
B ≡ −1

2
h0

0E
i − ηi jk

(
h0 j − v j

c

)
Bk . (86)

From Eq. (81) we can see that it is not possible to remove
dependence on the metric perturbation (hab) by choosing
a frame (vi ) [7]. For vi = 0 and vi/c = h0i we recover

the equations in the normal frame and the coordinate frame,
respectively [7].

5 Misconceptions in the literature

There are two wrong arguments [20,21] used to support the
absence of metric in the definition of EM fields using Fab with
two covariant indices; equivalently, the absence of metric in
the homogeneous Maxwell’s equations.

Authors of [20] argued for metric independence of the
homogeneous Maxwell’s equation using the topological
nature of the equation in terms of form algebra. On this
regards, however, the inhomogeneous equation is also topo-
logical, with no relation to metric. According to [27],
“Remarkably, neither equation makes any reference what-
soever to metric. [T]he concepts of form and exterior deriva-
tive are metric-free. Metric made an appearance only in one
place, in the concept of duality (“perpendicularity”) that car-
ried attention from F to the dual structure F∗.” Thus, the
authors of [20] confused the topological nature of the homo-
geneous Maxwell’s equation as the absence of metric in the
EM field decomposition. The metric appears when we related
the two parts, and also in the decomposition of field strength
tensor into the EM fields.

Authors of [21] similarly argued for metric independence
of Fab using the absence of the metric in the relation between
Fab and the four-potential Aa , i.e.,

Fab ≡ Ab,a − Aa,b. (87)

This, however, does not imply the absence of metric between
Fab and the EM fields. In the normal-frame, Eq. (26) can be
inverted to gives

Ei = − 1

N
F0i − N j

N
Fi j , Bi = 1

2
√
h
hi jη

jk�Fk�. (88)

Using Eq. (87), we have

Ei = 1

N

[
∂i A0 − Ai,0 − (∂i A j − ∂ j Ai )N

j
]
,

Bi = 1√
h
hi jη

jk�∂k A�. (89)

Thus, metric is heavily involved in the relation between the
EM fields and four-potential. Only in Minkowski spacetime,
we recover the well-known relations E = ∇A0 − A,0 and
B = ∇ × A.

Thus, the authors of [21] confused the absence of metric
in its relation to the four-potential as the absence of the met-
ric in the EM field decomposition of Fab. The second one
(homogeneous part) in Eq. (2) is naturally satisfied by using
Aa ; i.e., written in terms of the four-potential, the homoge-
neous part is identically satisfied without metric influence.
However, in terms of the EM fields, the homogeneous part
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is still coupled with the metric because the EM fields are
non-trivially related to the four-potential for any choice of
the frame four-vector; see Eq. (89) for the relation to the
EM fields in the normal frame. As we show below, in curved
spacetime the EM variables defined in the simple relations in
Eq. (90) are nothing but Êi and B̂i which do not correspond
to measurable EM fields.

Authors of [19] derived perturbed Maxwell’s equations
via variation of the four-potential Aa . As we mentioned, this
corresponds toassuming Fab with two covariant indices inde-
pendent of the metric. Thus, the Maxwell’s equations derived
in this way correspond to the ones using Êa and B̂a , i.e.,

Êi = ∂i A0 − ∂0Ai , B̂i = ηi jk∂
j Ak . (90)

Using Eq. (89), we can show that the relation between
(Ei , Bi ) and (Ê i , B̂i ) is the same as in Eq. (51). We have
expounded in this work that Ê i and B̂i do not correspond to
EM fields measured by any observer. Thus, the EM variables
used in Maxwell’s equations derived in such a way should
be translated to the proper EM fields based on the observer’s
four-vector, for example, using Eq. (51) or (89) for the Eule-
rian observer.

The presence of metric in the decomposition of Fab and
F∗
ab into the EM fields is partly related to the presence of

metric in the four-vector in gravitational environments. The
generic four-vector in Eq. (62) shows that for any choice of
Vi , it is not easy to have the special relativistic form of the
normal four-vector na = (−1, 0, 0, 0). In the normal frame,
by imposing synchronous gauge condition with N ≡ 1 and
Ni ≡ 0, we can achieve this form with na = (1, 0, 0, 0). But,
even in such a case, Eq. (26) shows that Fi j still depends on
the metric through hk� and h.

The presence of metric in the decomposition of Fab into
EM fields directly leads to the presence of metric in the homo-
geneous part of Maxwell’s equations. Therefore, proposals
for gravitational wave detection using the axion haloscope in
[20,21] are based on wrong Maxwell’s equations. Although
the effect of axion can be treated as an effective medium, the
effect of gravity is more complicated, as explained in this
work. Proper study should use Maxwell’s equations in the
normal frame in Eqs. (27)–(30) or Eqs. (31)–(35).

6 Errors in medium interpretation

It is well known that the effect of axion coupling to electro-
dynamics in flat spacetime can be interpreted as an effective
medium property in electrodynamics [8,28,29]. There are
numerous works interpreting the effect of gravity similarly
as an effective medium property. To our knowledge, how-
ever, all the previous literature on the subject are, in fact,
based on the two non-covariant identifications of the EM
fields [4,16,22–26], and thus are in error.

Most of the literature concerning medium interpretation
of gravity follow Plebanski [24]. Plebanski defined the EM
fields in vacuum as

F0i ≡ −Ei , Fi j ≡ ηi jk B
k, (91)√−gF0i ≡ Di ,

√−gFi j ≡ ηi jk Hk, (92)

where indices of Ei , Bi , Di , and Hi are associated with δi j
and its inverse. Using Eqs. (12), (92) is the same as

F∗
0i ≡ −Hi , F∗

i j ≡ −ηi jk D
k . (93)

Using Eqs. (91) and (92), Eq. (2), ignoring the axion cou-
pling, gives

Di
,i = 1

c

√−gJ 0, (94)

Di
,0 − ηi jk∇ j Ĥk = −1

c

√−gJ i , (95)

Bi
,i = 0, (96)

Bi
,0 + ηi jk∇ j Ek = 0. (97)

These are ordinary Maxwell’s equations in flat spacetime
which Minkowski has derived in [2]; notice that we kept the
four-current instead of the charge and current densities, see
below.

In order to derive the effective constitutive relations, Ple-
banski used
√−gFab = √−ggacgbd Fcd . (98)

Using Eq. (92), we can show

Di = εi j E j + γ i j H j , Bi = μi j H j − γ i j E j , (99)

with

εi j = μi j = N
√
h

N 2 − NkNk

(
h
i j − Ni N j

N 2

)
=

√−g

−g00
gi j ,

γ i j = ηi jk Nk

N 2 − N �N�

= ηi jk
g0k

−g00
, (100)

where εi j and μi j are the permittivity and permeability ten-
sors, respectively, and γ i j is the electromagnetic mixing
term; indices of εi j , etc., are associated with δi j and its
inverse.

Notice that definitions in Eqs. (91) and (93) exactly corre-
spond to the non-covariant definitions in Eqs. (44) and (45),
respectively. Thus, (Ei , Bi ) and (Di , Hi ) are nothing but our
non-covariant definitions (Êi , B̂i ) and (D̆i , H̆i ), respectively.
As explained in previous sections, in these non-covariant
ways of defining the EM fields, one cannot identify the four-
vector allowing these definitions and consequently cannot
introduce the accompanying charge and current densities,
even to the linear order in gravity [7]; this is why we kept the
four-current in Eqs. (94) and (95).
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The non-covariant definitions of EM fields introduced in
[4,26] differ from the ones in Plebanski by using the three-
space covariant metric γ i j , defined as γ i j ≡ gi j , instead of
δi j used in [24]; see Sect. 115 in [4] and Sect. 90 in [26].
In this way, we can show that the constitutive relations (thus
the medium property) differ from Plebanski’s [30]. Using the
non-covariant definitions of EM fields in gravity systems, the
dependence of medium property on the spatial decomposi-
tion method and the coordinate used are also noticed in [31].
We will analyse the errors in previous literature concerning
the medium interpretation in detail in a subsequent work [30].

In Sect. 4 we showed that the above non-covariant def-
initions do not have corresponding observer’s four-vectors,
thus these are not measurable EM fields by any observer.
We also proved that any choice of the observer’s four-vector
leads to the presence of metric in the relation between
the field strength tensor (in any form) and the EM fields.
As a direct consequence, gravity causes modification of
Maxwell’s equations in both the homogeneous and inhomo-
geneous parts. The presence of metric in the homogeneous
Maxwell’s equations cannot be interpreted as the medium
property in ordinary sense. In this way, the medium interpre-
tation of gravity in previous literature is in error.

7 Discussion

Our main results are Maxwell’s equations in a general curved
spacetime presented in forms valid in Minkowski back-
ground with effects of gravity appearing as effective Ps and
Ms. The ADM metric variables are expressed in terms of the
metric perturbation variables associated with δi j using the
FNLE formulation, see Eq. (A2). We consider four differ-
ent definitions of the EM fields, two based on the covariant
decomposition, and two others using non-covariant identi-
fications directly matching the EM fields with tensor com-
ponents of Fab and F∗

ab. We also presented the case for the
generic observer.

The two non-covariant definitions of EM fields lead to
trouble as these fail to identify the observer’s four-vectors,
who may measure such fields, thus failing to identify the
corresponding external charge and current densities, which
also depend on the same four-vector (observer). This trou-
ble was noticed even in the weak gravity case [7]. Here, we
prove that such definitions are not possible for the EM fields
using the analysis for a generic observer. As a consequence,
to any observer the gravity causes the homogeneous part of
Maxwell’s equations modified in addition to the inhomoge-
neous part. We propose the normal frame as the one to use
as it corresponds to the Eulerian observer. Relations to the
other definitions of the EM fields, including the non-covariant
ones, are derived in this work.

In Laboratory situations, like in the Earth’s gravitational
field, in measuring passing gravitational waves using elec-
tromagnetic means, in inverse designing medium property
for desired optical path using curved geometry, and in given
weak gravitational fields, Maxwell’s equations are enough
with the gravity encoded in a given spacetime metric. The
previous literature, however, rely on defining the EM fields
in non-covariant manner. Here we showed that the EM fields
defined in non-covariant manner are not the EM fields mea-
sured by any observer. Consequently, gravity causes modifi-
cations in both homogeneous and inhomogeneous parts, and
the gravity-medium analogy is not valid. In the presence of
gravity, for optical properties we should analyze Maxwell’s
equations directly. In the normal-frame, these are Eqs. (27)–
(30) or Eqs. (31)–(35) in general curved spacetime.

In realistic astrophysical situations, Maxwell’s equations
should be dynamically combined with Einstein’s equation
with accompanying fluids and other fields. The complete sets
of Einstein’s equation with a fluid and a scalar field (with
additional helical coupling with the EM fields) in the covari-
ant, the ADM, and the FNLE formulations are presented in
[9]. Maxwell’s equations in the general curved spacetime
derived in different forms in this work are applicable in
all these situations. The cosmological FNLE formulation of
Maxwell’s equations presented in [9] considered the normal
frame and ignored the tensor-type perturbations. Cosmologi-
cal extension of the present work using the FNLE formulation
is trivial.
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Appendix A: FNLE formulation

The FNLE formulation is designed to handle cosmological
perturbations to fully nonlinear order [32,33]. The final equa-
tions are exact and the metric variables are directly visible in
the equations. The essential point is that we can derive exact
inverse metric for the most general nonlinear perturbations of
the Friedmann background without imposing the gauge con-
dition. In Minkowski background, simply setting the scale
factor to unity in [32,33], the FNLE metric convention is

ds2 = −(1 + 2α)(dx0)2 − 2Bidx
0dxi + [

(1 + 2ϕ)δi j

+2γ,i j + Ci, j + C j,i + 2Ci j
]
dxidx j , (A1)

where x0 = ct and indices of Bi , Ci , and Ci j are raised and
lowered by δi j and its inverse;Ci is transverse (Ci

,i ≡ 0), and

Ci j is symmetric, transverse, and trace-free (C j
i, j ≡ 0 ≡ Ci

i ).
The perturbation variables may have arbitrary amplitudes
only subject to the gravitational field equation. Without los-
ing generality and mathematical convenience we can impose
γ ≡ 0 ≡ Ci as the spatial gauge condition; this is the
unique spatial gauge condition which removes the spatial
gauge degrees of freedom completely, thus the remaining
variables (together with similar temporal gauge condition)
are gauge invariant to fully nonlinear order in perturbations
[32,34]; in this gauge condition we set Bi = χi .

The ADM metric quantities are derived in terms of the
FNLE metric for the above general metric perturbations in
[33]. Imposing γ ≡ 0 ≡ Ci as the spatial gauge conditions,
we have

N =
√

1 + 2α + δi j + Hi j

a(1 + 2ϕ̂)
χiχ j ,

Ni = −χi , Ni = −δi j + Hi j

1 + 2ϕ̂
χ j ,

hi j = (1 + 2ϕ)δi j + 2Ci j , h
i j = δi j + Hi j

1 + 2ϕ̂
,

h ≡ det(hi j ) = [(1 + 2ϕ)2 − 2Ci jCi j ](1 + 2ϕ̂),

Hi j ≡ −2
(1 + 2ϕ)Ci j − 2CikC j

k

(1 + 2ϕ)2 − 2C�mC�m
,

ϕ̂ ≡ ϕ + 2

3

2Ci jCi
kC

jk

(1 + 2ϕ)2 − 2C�mC�m
. (A2)

For the general case without imposing the spatial gauge
condition, see Sect. 2 of [33]. Notice that we have not
imposed the temporal gauge (hypersurface or slicing) con-
dition; for several gauge conditions valid to fully nonlinear
order, see [32–34]. With these ADM metric quantities deter-
mined in terms of the metric variables associated with δi j ,
Maxwell’s equations in this work can be expressed as the ones
in flat spacetime with the effect of gravity (metric) appearing
as effective Ps and Ms.

Appendix B: Linear perturbation

To the linear order perturbations in the metric, using the nota-
tion in [7], i.e., gab ≡ ηab+hab with indices of hab associated
with ηab as the metric, we have

h00 = −2α, h0i = −χi , hi j = 2ϕδi j + 2Ci j , (B1)

thus

N = 1 − 1

2
h00, Ni = h0i , Ni = hi0,

hi j = δi j + hi j , hi j = δi j − hi j , h = 1 + hii . (B2)

These relations are valid even in the presence of γ and Ci ,
thus for general linear metric perturbations without any con-
dition. Using these relations between the FNLE metric and
the linear perturbations, all the Maxwell’s equations in this
work reduce to the ones in [7] which are valid to linear order
in metric perturbations.
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