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Abstract Hubble tension is one of the most important prob-
lems in cosmology. Although the local measurements on
the Hubble constant with Type Ia supernovae (SNe Ia) are
independent of cosmological models, they suffer the prob-
lem of zero-point calibration of the luminosity distance. The
observations of gravitational waves (GWs) with space-based
GW detectors can measure the luminosity distance of the
GW source with high precision. By assuming that massive
binary black hole mergers and SNe Ia occur in the same host
galaxy, we study the possibility of re-calibrating the luminos-
ity distances of SNe Ia by GWs. Then we use low-redshift
re-calibrated SNe Ia to determine the local Hubble constant.
We find that we need at least 7 SNe Ia with their luminos-
ity distances re-calibrated by GWs to reach a 2% precision
of the local Hubble constant. The value of the local Hubble
constant is free from the problems of zero-point calibration
and model dependence, so the result can shed light on the
Hubble tension.

1 Introduction

The value of the Hubble constant is crucial for us to under-
stand the evolution of the Universe because it characterizes
the current expansion rate of the Universe. Over the years, the
measurement precision of the Hubble constant has been dras-
tically improved [1–21]. By recalibrating the extragalactic
distance ladder using a sample of Milky Way Cepheids with
the Hubble Space Telescope photometry and Gaia EDR3 par-
allaxes, the SH0ES (Supernovae and H0 for the equation of
state) team determined the local Hubble constant from Type
Ia supernovae (SNe Ia) data as H0 = 73.15±0.97 km/s/Mpc
[7]. Applying the tip of the red giant branch method to SNe
Ia data from Carnegie Supernova Project results the Hubble
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constant, H0 = 69.8 ± 0.6 (stat) ±1.6 (sys)km/s/Mpc [8].
Combining the strong lensing time delay data and type Ia
supernova (SN Ia) luminosity distances, it was found that
H0 = 74.2+3.0

−2.9 km/s/Mpc [22]. However, the measurements
of the anisotropies in the cosmic microwave background
(CMB) by Planck 2018 based on the ΛCDM model gave
H0 = 67.4 ± 0.5 km/s/Mpc [19]. These results showed that
the values of the Hubble constant determined from differ-
ent observations are in discrepancy and suggested that the
local measurements and the values inferred from CMB are
in significant tension [23]. As the measurement precision
improves, the tension becomes more significant, we are at
a crossroads [24]. As discussed above, the results from the
early Universe probe of CMB depend on the ΛCDM model.
The local measurements from SN Ia standard candles are
independent of cosmological models, but they suffer the zero-
point calibration problem due to the uncertainties of the abso-
lute calibration of the peak luminosity for SN Ia and the
determination of the absolute distance scale for the luminos-
ity distances. Furthermore, if we consider the dependence of
intrinsic luminosity on color and redshift, the measured value
of the Hubble constant changes [25,26].

The observations of gravitational waves (GWs) can mea-
sure the luminosity distance of the GW source with high
precision, providing an independent method of measuring
cosmological distances. In 1986, Schutz proposed to deter-
mine the Hubble constant with GWs from binary neutron
stars (BNS) [27]. If electromagnetic counterparts of the coa-
lescence of massive binary black hole (MBBH) or BNS can
be identified, then the redshift of the GW source is deter-
mined and the luminosity-redshift relation provided by GWs
as standard sirens [28] can be used to study the evolution of
the Universe [29–37]. In addition to being standard sirens,
the propagation of GWs can also probe the evolution of the
Universe [38,39]. Since the first direct observation of GWs
by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) Scientific Collaboration and the Virgo Collabora-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12134-1&domain=pdf
http://orcid.org/0000-0002-9093-9059
http://orcid.org/0000-0001-5065-2259
mailto:Luxc@hust.edu.cn
mailto:yggong@hust.edu.cn


949 Page 2 of 11 Eur. Phys. J. C (2023) 83 :949

tion in 2015, there have been reported tens of GW detections
[40–44]. The first observed BNS merger GW170817 and its
counterpart GRB 170817A gives H0 = 70.0+12.0

−8.0 km/s/Mpc
[45]. In the absence of a counterpart one can employ sta-
tistical methods, by establishing a correlation between GW
source and its potential galaxy catalog, to get the redshift
of GW source. Applying this method to 47 GWs from
the Third LIGO-Virgo-KAGRA Gravitational-Wave Tran-
sient Catalog (GWTC-3), LIGO-Virgo-KAGRA collabora-
tions obtained H0 = 68+8

−6 km/s/Mpc based on the ΛCDM
model [46]. The independent determination of the Hubble
constant with GW standard sirens enables the potential of
not only shedding light on the the Hubble tension but also
constraining other cosmological parameters [47]. There are
lots of studies on the precise determination of the Hubble
constant with GW standard sirens in the literature [47–61].
There are also discussions on the uncertainties of GW stan-
dard sirens [61,62].

Due to the short arm length and various ground noises,
ground-based detectors are not sensitive to GWs below 1 Hz,
and a single detector cannot locate the source. Space-based
detectors such as the Laser Interferometer Space Antenna
(LISA) [63,64], Taiji [65] and TianQin [66], are sensitive
to GWs in the frequency range 10−4 − 10−1 Hz, can detect
and locate mergers of distant MBBHs. Furthermore, the net-
work of LISA, TianQin and Taiji can significantly improve
the accuracy of parameter estimation [67–72]. Since the local
measurement of the Hubble constant from SNe Ia data is inde-
pendent of cosmological models, if we can use the accurate
distance measurement from GWs to calibrate the luminosity
distances of SNe Ia data, then we can use SNe Ia to determine
the local Hubble constant without the problem of zero-point
calibration. The idea of using GWs as a new cosmic distance
ladder for an independent calibration of distances to SNe Ia
was discussed for mergers of BNS in [73,74]. Zhao and San-
tos used the event GW170817 to measure the absolute mag-
nitude of SNe Ia [73]. In Ref. [74], the authors found that
a third-generation ground-based GW detector network will
measure distances with an accuracy of ∼ 0.1%−3% for BNS
within ≤ 300 Mpc. However, the calibration method with
BNS as standard sirens applies to low-redshift SNe Ia only
and it may miss the possible variation in the absolute mag-
nitude with the redshift. The calibration of distances to SNe
Ia with MBBH mergers is more interesting and beneficial.
Exploring the calibration over a substantial redshift range
might allow for a study of potential variation in the abso-
lute magnitude with the redshift. Moreover, the merger of
MBBHs could also be used to calibrate Gamma-Ray Bursts
at high redshifts [75,76]. LISA will detect MBBH mergers up
to the redshift ∼ 15–20 [77]. As much more SNe Ia data and
GW detections with space-based GW detectors will be avail-
able in the future, it is highly possible that MBBH merges
and SNe Ia occur in the same host galaxy. Although there

are many estimates on the merger rates of MBBHs [31,77–
82], there is a great uncertainty about the detection rates of
MBBH mergers with LISA [78–82]. However, the Athena
and LISA observatories will open the exciting possibility of
truly concurrent electromagnetic and GW studies of MBBHs
[83].

In this paper, we consider the possibility of re-calibrating
the luminosity distances of SNe Ia by GWs from MBBH
merges and the precision of the Hubble constant determined
with the re-calibrated SNe Ia data. Even though we only
use low-redshift SNe Ia data to determine the local Hubble
constant so that the result is independent of cosmological
models, the calibration of the absolute distance scale for the
luminosity distances is not limited to low-redshift SNe Ia
data. We consider all possible coincidences of MBBH merges
and SNe Ia to re-calibrate the luminosity distances of SNe
Ia with GWs, these re-calibrated SNe Ia include all possible
redshift ranges. Once we solve the problem of zero-point
calibration for SNe Ia data, we use low-redshift SNe Ia data
to determine the local Hubble constant.

The paper is organized as follows. In Sect. 2, we use the
Fisher information matrix (FIM) method to estimate the accu-
racy of the luminosity distance from GW observations. In
Sect. 3, we discuss the accuracy of the absolute magnitude
of SNe Ia calibrated by GWs. Then we determine the local
Hubble constant from the SNe Ia data in Sect. 4. The con-
clusion is drawn in Sect. 5.

2 The measurement of luminosity distance with
space-based GW detectors

In terms of the polarization tensor eAi j with A = +,× rep-
resenting the plus and cross polarizations, the time-domain
GW signal is expressed as

hi j (t) =
∑

A=+,×
eAi j hA(t), (1)

where i, j = 1, 2, 3 denote the spatial components and t
is the coordinate time. The output of the GW signal in the
detector α is

sα(t) =
∑

A

F A
α hA(t)eiφD(t) + n̂α(t), (2)

where F A
α is the response function, n̂α(t) is the detector noise

and φD(t) is the Doppler phase. The Doppler phase φD is

φD(t) = 2π f R

c
sin θ cos

(
2π t

P
− φ − φα

)
, (3)

where the distance R between the earth and the sun is 1 AU,
θ and φ are the angular coordinates of the GW source, c is the
speed of light, φα is the detector’s ecliptic longitude at t = 0
and P = 1 year is the rotational period. For GWs propagating
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in the direction ω̂, the response function F A
α = ∑

i, j D
i j
α eAi j ,

where the detector tensor Di j
α is

Di j = 1

2

[
ûi û j T ( f, û · ω̂) − v̂i v̂ j T ( f, v̂ · ω̂)

]
, (4)

û and v̂ are the unit vectors for the two arms of the interfer-
ometer, the transfer function T ( f, û · ω̂) for the detector is
[84,85],

T ( f, û · ŵ) = 1

2

{
sinc

[
f (1 − û · ω̂)

2 f ∗

]
exp

[
f (3 + û · ω̂)

2i f ∗

]

+ sinc

[
f (1 + û · ω̂)

2 f ∗

]
exp

[
f (1 + û · ω̂)

2i f ∗

]}
, (5)

sinc(x) = sin(x)/x , and f ∗ = c/(2πL) is the transfer fre-
quency of the detector with the arm length L .

We usually work in the frequency domain, so we Fourier
transform hA(t) and n(t) to hA( f ) and n( f ). By assuming
that the noises of the detector are stationary and Gaussian,
we describe the noise with the spectral density Pn( f ),

〈
n( f )n

(
f ′)∗〉 = 1

2
δ
(
f − f ′) Pn( f ), (6)

where 〈...〉 denotes the “expectation value” over many noise
realizations and n∗( f ) is the complex conjugate of n( f ). For
space-based GW detectors, the noise curve is [86]

Pn( f ) = Sx
L2 + 2

[
1 + cos2 ( f/ f ∗)

]
Sa

(2π f )4L2
[
1 + (0.4mHz/ f )2

]
,

(7)

where Sx is the position noise and Sa is the acceleration
noise. For LISA [64], Sx = (1.5 × 10−11 m)2 Hz−1, Sa =
(3 × 10−15 m s−2)2 Hz−1, L = 2.5 × 109 m and f ∗ =
19.09 mHz. For TianQin [66], Sx = (10−12 m)2 Hz−1, Sa =
(10−15 m s−2)2 Hz−1, L = √

3 × 108 m and f ∗ = 0.2755
Hz. For Taiji [67], Sx = (8 × 10−12 m)2 Hz−1, Sa = (3 ×
10−15 m s−2)2 Hz−1, L = 3 × 109 m and f ∗ = 15.90 mHz.

For LISA and Taiji, we also consider the confusion noise
[86]

Sc( f ) = 2.7 × 10−45 f −7/3

1 + 0.6( f/0.01909)2 e
− f 0.138−221 f sin(521 f )

× [1 + tanh(1680(0.00113 − f ))] Hz−1. (8)

In the frequency domain, the GW waveform hA( f ) for
the dominant harmonic is

h+( f ) = 1 + cos2(ι)

2
A ( f )eiΨ ( f ),

h×( f ) = i cos(ι)A ( f )eiΨ ( f ), (9)

where ι is the inclination angle of the orbit relative to the line
of sight. For simplicity, we consider the PhenomA waveform
for a coalescing binary. In the inspiral stage, the amplitude
A and the phase up to the second order post-Newtonian
approximation for the PhenomA waveform are [87,88]

A ( f ) =
√

5

24

(
GMc/c3

)5/6
f −7/6

π2/3 (dL/c)
, (10)

Ψ =2π f tc − φc − π

4
+ 3

128η

[
ν−5 +

(
3715

756
+ 55

9
η

)
ν−3

−16πν−2 +
(

15293365

508032
+ 27145

504
η + 3085

72
η2

)
ν−1

]
,

(11)

where ν = (πGM f/c3)1/3, M = m1 + m2 is the total mass
of the binary, Mc = (m1m2)

3/5/M1/5 is the chirp mass,
η = m1m2/M2 is the symmetric mass ratio, the luminosity
distance

dL(z) = c(1 + z)
∫ z

0

dz′

H (z′)
(12)

for a flat Universe, z is the redshift, the Hubble parameter

H(z) = H0

√
Ωm0(1 + z)3 + ΩΛ (13)

for the flat ΛCDM model, the energy density for the cosmo-
logical constant ΩΛ = 1−Ωm0, Ωm0 is the fractional matter
energy density at present and H0 is the Hubble constant.

2.1 The FIM method

To use the method of match filtering to analyze signals, we
define the noise-weighted inner product for two signals s1( f )
and s2( f ) as

(s1|s2) = 2
∫ fup

flow

s1( f )s∗
2 ( f ) + s∗

1 ( f )s2( f )

Pn( f )
d f, (14)

where the upper cutoff frequency fup is chosen as the fre-
quency fISCO at the innermost stable orbit (ISCO),

fISCO = c3

6
√

6πGM
. (15)

Since space-based GW detectors are insensitive to GWs with
frequencies below around 2 × 10−5 Hz [89], so we take 2 ×
10−5 Hz as the lower cutoff frequency. For the observation
of one year, we calculate the frequency f0 one year before
the ISCO, then we set flow = max( f0, 2 × 10−5).

The SNR ρ for a signal s( f ) is

ρ2 = (s|s). (16)

The threshold of detecting a signal is set as ρ ≥ 8. For
parameter estimation, we define the FIM in the frequency
domain as

Γi j =
(

∂s( f )

∂λi

∣∣∣∣
∂s( f )

∂λ j

)
, (17)
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where λi is the parameter of the GW source. The covariance
matrix σi j between the parameter errors Δλi = λi − 〈λi 〉
and Δλ j in the large SNR limit is

σi j = 〈
ΔλiΔλ j

〉 ≈
(
Γ −1

)

i j
. (18)

The root mean square error of the parameter λi is

σi = √
σi i ≈

√(
Γ −1

)
i i . (19)

In this way, the error of the luminosity distance can be esti-
mated from the FIM Γi j .

For a network with n detectors, the SNR and FIM are
ρ2 = Σn

α=1ρ
2
α and Γi j = ∑n

α=1 Γ α
i j , respectively.

2.2 The accuracy of the luminosity distance

We consider a nonspinning MBBH with 9 parameters: the
chirp mass Mc, the symmetric mass ratio η, the luminosity
distance dL , the sky location (θ, φ), the inclination angle ι,
the polarization angle ψ and the coalescence phase φc at the
coalescence time tc, i.e., λ = (Mc, η, dL , θ, φ, ι, ψ, tc, φc).
For equal-mass MBBHs we considered, η = 0.25. The
parameters ι, ψ , φc, tc are chosen randomly in the following
range: ι ∈ [0, π ], ψ ∈ [0, 2π ], φc ∈ [0, 2π ], and tc ∈ [0, 1]
in the unit of year. The angular uncertainty of the sky local-
ization is evaluated as

ΔΩs = 2π |sin θ |
√

σθθσφφ − σ 2
θφ. (20)

For each GW source, we assume that we can find an SN Ia
which is in the same host galaxy as the GW source, so we use
the same parameters (θ , φ, z) from the SNe Ia data for the GW
source. In this paper, we use the Pantheon sample of SNe Ia
data [90]. The Pantheon sample compiles 1048 SNe Ia data,
covering the redshift range 0.01 < z < 2.26. We use the
ΛCDM model to calculate the luminosity distance dL from
the redshift z. The cosmological parameters are chosen as
the Planck 2018 results: H0 = 67.27 km/s/Mpc, and Ωm0 =
0.3166 [19].

MBHs are assumed to form from seed BHs through merger
and gas accretion [91,92]. For MBBHs, following Ref.
[31,59], we consider the three widely accepted population
models: pop III, Q3d, and Q3nod. The pop III model assumes
that the MBH seeds are the remnants of population III stars
with initial masses centered around 300M� at z ≈ 15 ∼ 20.
Both the Q3d and Q3nod models assume MBHs seed from
the collapse of protogalactic disks and already have masses
around 105M� at the redshift z ≈ 15 ∼ 20, but the former
model takes into account the delays between the formation
of MBHs and galaxy mergers, while the latter model does
not. The distributions of the redshift and mass of MBBHs for
the three seed models can be found in the Fig. 1 of Ref. [59].
From the distributions of the redshift and the total mass of
MBBHs based on the three population models, we generate a

Fig. 1 The 1σ errors of the luminosity distance with LISA and the
LISA-Taiji-TianQin network for the pop model. In the top panel, the
luminosity distances along with their estimated 1σ errors in the unit
of 1 Gpc are shown. In the bottom panel, we show ΔdL in the unit of
100 Mpc, the red dashed lines represent the estimated 1σ error bar with
LISA, and green solid lines represent the estimated 1σ error bar with
the LISA-Taiji-TianQin network

set of MBBHs with some chirp mass Mc and redshift deter-
mined by the distribution. Using GWs from these MBBH
mergers, we estimate the luminosity distance error and the
angular resolution with the FIM method and the results are
shown in Fig. 1 and Table 1. The results for the three mod-
els are similar, so we only show the results obtained with
the pop III model in Fig. 1 and all the figures in the follow-
ing discussions. The results are consistent with those in Ref.
[67,71,72,88,93]. For the same detection threshold ρ ≥ 8,
the LISA-Taiji-TianQin network can detect some GW signals
that can not be detected by LISA alone, this is the reason why
some results with the network only appear in Fig. 1.

From Fig. 1 and Table 1, we see that the median value
of the relative error of the luminosity distance is larger than
1% and the median value of the angular resolution is bigger
than 0.1 deg2 with LISA. The Q3nod model gives a better
constraint on the luminosity distance at redshift z � 1.5, but
the pop model gives a better constraint on the angular reso-
lution. To improve the accuracy of the distance measurement
and the sky localization of the source, we use the network
of LISA, Taiji and TianQin (LISA-Taiji-TianQin) to make
parameter estimation [68–72] and the results are shown in
Fig. 1 and Table 1. With the LISA-Taiji-TianQin network, the
Q3d model can give the luminosity distance at the precision
level of 0.03% and improve the angular resolution to reach
1.7 × 10−5 deg2. Therefore, the network improves the accu-
racy of the sky localization and the luminosity distance than
that with LISA alone by several orders of magnitude. Take
the median values obtained with the Q3nod model and the
LISA-Taiji-TianQin network: dL ∼ 1300 Mpc, ΔdL ∼ 0.8
Mpc, ΔΩs ∼ 5.1×10−5 deg2, we estimate the uncertainty of
the volume that the source is located in as ΔV ∼ 6.7×10−8

Gpc3. Since the number density of galaxies is about 3 × 106

Gpc−3 [74], the error of the localized volume will contain no
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Table 1 The median values of the relative error of the luminosity distance and the angular resolution with LISA and the LISA-Taiji-TianQin
network for different population models

Luminosity distance Angular resolution (deg2)

Models Pop (%) Q3d (%) Q3nod (%) Pop Q3d Q3nod

LISA 2.08 1.58 1.28 1.5 × 10−1 3.8 × 10−1 2.1 × 10−1

Network 0.25 0.03. 0.06 4.8 × 10−4 1.7 × 10−5 5.1 × 10−5

more than one field galaxy. Once the MBBH is located within
one galaxy, then the host galaxy can be identified and we can
determine whether there is a SN Ia occurred in the same
galaxy. If MBBH mergers and SNe Ia occur in the same host
galaxy, then we can calibrate standard candles with standard
sirens.

3 The calibration error of the absolute magnitude

In this section, we assume that an MBBH merger and an
SN Ia are in the same host galaxy so that we can use the
luminosity distance of the MBBH with GW measurement to
calibrate the SN Ia. At the redshift z, the apparent magnitude
mB(z) of an SN Ia is

mB(z) = 5 log10

[
dL(z)

Mpc

]
+ 25 + MB, (21)

where MB is the absolute magnitude. The error in the esti-
mation of the absolute magnitude (calibration error) mainly
comes from the measurement uncertainties of the apparent
magnitude σmB and the luminosity distance σdL , so the error
of the absolute magnitude is

σMB =
√

(σmB )2 +
(

5σdL

ln 10 dL

)2

. (22)

For convenience, we define

σ∗ = 5σdL

ln 10 dL
. (23)

The error of the luminosity distance can be large at some
locations. To reduce the calibration error of the absolute mag-
nitude, we discard those GW events with the signal-to-noise
ratio ρ < 8 and σ∗ > σmB detected by LISA. With this
cutoff, we are left with 679 SNe Ia data for the pop model,
743 SNe Ia data for the Q3d model and 804 SNe Ia data for
the Q3nod model. Note that we already applied this cutoff in
Fig. 1.

With the estimated luminosity and the observed apparent
magnitude for each SN Ia, we calculate MB and σMB for
each SN Ia and the results are shown in Fig. 2. We also
summarize the median, mean and minimum values of σmB

and σMB for all the SNe Ia data in Table 2. From Table 2, we
see that the error of the luminosity distance accounts for less

Fig. 2 The absolute magnitude MB with 1σ uncertainty calibrated by
GWs with the pop model. The top panel shows the observed apparent
magnitude, i.e., no error of dL is included. In the middle and bottom
panels, we include the errors of dL measured by LISA and the LISA-
Taiji-TianQin network, respectively

than 10% error of the absolute magnitude. In particular, for
the LISA-Taiji-TianQin network, σMB is almost the same as
σmB , so the contribution of σ∗ to σMB is almost negligible.
Figure 2 also shows that the calibration error is mainly from
the measurement uncertainty of the apparent magnitude.

The above discussion assumes that we have only one cali-
brator. Now we consider the calibrations of more than one SN
Ia. In other words, we assume that we can locate N pairs of
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Table 2 The median, mean and minimum values of σmB and σMB . σMB (LISA) means the result for σMB with LISA, and σMB (Network) means
the result for σMB with the LISA-Taiji-TianQin network

Median value Mean value Minimum value

Models Pop Q3d Q3nod Pop Q3d Q3nod Pop Q3d Q3nod

σmB 0.1353 0.1360 0.1354 0.1396 0.1401 0.1403 0.0854 0.0939 0.0854

σMB (LISA) 0.1428 0.1422 0.1415 0.1485 0.1488 0.1467 0.0962 0.0981 0.0963

σMB (Network) 0.1363 0.1360 0.1356 0.1407 0.1410 0.1403 0.0854 0.0939 0.0854

Fig. 3 The dependence of σMB on the number of calibrators N for
the pop model. The red solid line and the green dash-dot line represent
the estimated 1σ error of MB for the best scenario and the random
scenario with LISA, the magenta dashed line represents the estimated
1σ error of MB for the worst scenario with LISA, the blue dotted line
represents the estimated 1σ error of MB for the worst scenario with the
LISA-Taiji-TianQin network

MBBH mergers and SNe Ia that each pair is in the same host
galaxy, so that we have N GW-calibrated SNe Ia to reduce
statistical error. We discuss three cases, the best scenario con-
siders those SNe Ia with the smallest measurement error on
the apparent magnitude, the worst scenario considers those
SNe Ia with the biggest σmB , and the random scenario selects
SNe Ia randomly. To constrain MB with N calibrators, we
minimize

χ2 =
N∑

i=1

[
mi

B − mB
(
diL , MB

)

σ i

]2

(24)

with iminuit [94], and the results of σMB versus the number
N are shown in Fig. 3. Here mi

B is the observed apparent
magnitude for the SN Ia at the redshift zi , mB(diL , MB) is
obtained with Eq. (21) and σ i is

σ i =
√

(σ i
mB

)2 + (σ i∗)2. (25)

From Fig. 3, we see that the error of MB decreases as
the number of calibrators increases. Due to the observational
limit set by σmB , the improvement on σMB by larger N is not
significant once N reaches a certain value, and the results
from LISA alone and the LISA-Taiji-TianQin network are
similar for the best and random scenarios. For the best sce-
nario, with 10 calibrators, σMB can reach 0.03 mag for all

three population models; If N = 20, σMB can reach 0.023
mag for all three population models. For N = 10, the high-
est redshift in SNe Ia data is z = (0.30, 0.37, 0.30) with
the model (pop, Q3d, Q3nod) for MBBHs. For N = 20, the
highest redshift in SNe Ia data is z = (0.30, 0.37, 0.37) with
the model (pop, Q3d, Q3nod) for MBBHs. For the random
scenario, with 10 calibrators, σMB can reach 0.04 mag for all
three population models; If N = 20, σMB can reach 0.028
mag for the Q3nod model. For N = 10, the highest redshift
in SNe Ia data is z = (0.53, 0.70, 1.33) with the model (pop,
Q3d, Q3nod) for MBBHs. For N = 20, the highest red-
shift in SNe Ia data is z = (0.78, 0.70, 1.33) with the model
(pop, Q3d, Q3nod) for MBBHs. For the worst scenario, with
20 calibrators, σMB can reach 0.05 mag for all three pop-
ulation models; If N = 40, σMB can reach 0.034 mag for
all three population models. For N = 20 or N = 40, the
highest redshift is z = 1.7 for all three models. The uncer-
tainty σMB with the LISA-Taiji-TianQin network is better
than that with LISA alone in the worst scenario case. Even
though the LISA-Taiji-TianQin network does not help much
on the reduction of σMB for the best and random scenarios,
the much more accurate localization of the GW source with
the network may be helpful in finding a companion SN Ia.

4 The uncertainty of Hubble constant

In the last section, we discussed the calibrations of the Pan-
theon sample of SNe Ia data by GWs. Now we can use the cal-
ibrated SNe Ia data to measure the Hubble constant H0. Since
the calibration of the luminosity distance by GWs involves
only one-step distance ladder, the measured Hubble constant
can overcome the the problem from electromagnetic distance
ladder. To avoid the dependence of cosmological models, we
use the kinematic dL −z relation from Taylor expansion [95],

dL(z) = cz

H0

[
1 + (1 − q0) z

2
+ O

(
z2

)]
, (26)

to fit low-redshift SNe Ia data, where q0 is the deceleration
parameter. Following Ref. [4], to avoid the possibility of a
coherent flow in the more local volume, we use 237 SNe
Ia in the redshift range 0.023 < z < 0.15 to constrain the
Hubble constant H0 with the cosmographic expansion (26).
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As discussed in [17], the minimum cutoff of z is large enough
to reduce the impact of cosmic variance, and the maximum
z is small enough to avoid the dependence on cosmological
models.

Now we determine cosmological parameters H0 and q0

by marginalizing over MB with the Bayesian analysis,

f (H0, q0|SN) =
∫

dMB f (H0, q0, MB |SN) , (27)

f (H0, q0, MB |SN) = f (H0) f (q0) f (MB)L (SN|H0, q0, MB)

E
,

(28)

where f (H0), f (q0) and f (MB) are the prior distributions
of H0, q0 and MB , respectively, f (MB) is a Gaussian dis-
tribution with the mean MB and the 1σ error σMB given in
the last section, L is the likelihood, E is the evidence, and
SN stands for the given SNe Ia data in the redshift range
0.023 ≤ z ≤ 0.15 [90]. The likelihood L is

L (SN | H0, q0, MB) = |2πΣ |−1/2e− 1
2 χ2(H0,q0,MB ), (29)

where χ2 is

χ2 =
[
mi

B − mB (zi )
]
Σ−1

i j

[
m j

B − mB
(
z j

)]
, (30)

Σ is the covariance matrix of the 237 SNe Ia data, andmB(zi )
is the predicted apparent magnitude at the redshift zi from
Eqs. (21) and (26).

For the best scenario, the relative error of H0 can be less
than 2% for the three models with 7 calibrators; If N = 20,
the relative error of H0 can reach 1.6% for all three models.
The results are almost the same either with LISA alone or
with the LISA-Taiji-TianQin network for all three scenarios.
For the random scenario, the relative error of H0 can reach
below 2% with 12, 14, and 11 calibrators for the pop, Q3d,
and Q3nod models, respectively; If N = 20, σH0/H0 can be
less than 1.9% for all three models. For the worst scenario, the
relative error of H0 can reach below 2% with 31, 32, and 32
calibrators for the pop, Q3d, and Q3nod models, respectively;
If N = 40, σH0/H0 can be less than 1.99% for all three
models. These results are shown in Fig. 4. The results tell us
that we can get a better than 2% determination of the local
value of the Hubble constant from SNe Ia in the redshift range
0.023 ≤ z ≤ 0.15 in a model independent way by calibrating
the luminosity distances of about 10 SNe Ia with GWs. Due
to the measurement uncertainty of the apparent magnitude
for SNe Ia, more calibrated SNe Ia can hardly reduce the
relative error of H0 further. Since the luminosity distances
of MBBHs were simulated with the flat ΛCDM model, the
central value of H0 obtained here may not be trusted, but the
estimated error of H0 is independent of the model. Once
the observations of GWs from MBBHs with space-based
GW detectors are available, the method presented here can
determine the local value of H0 with better than 2% precision.

Fig. 4 The relative error of H0 with the pop model. The triangle rep-
resents the smallest number of calibrators N needed for the relative
error reaching below 2%. The red solid line and the green dash-dot line
represent the constrained relative error of H0 for the best scenario and
the random scenario with LISA, the magenta dashed line represents the
constrained relative error of H0 for the worst scenario with LISA, the
blue dotted line represents the constrained relative error of H0 for the
worst scenario with the LISA-Taiji-TianQin network

However, the relative error of deceleration parameter q0 is
around 30%.

The above simulation is based on the flat ΛCDM model
with H0 = 67.27 km/s/Mpc. To investigate the impact of the
choice of the value of cosmological parameters, we also did
the simulation with the cosmological parameters H0 = 73.00
km/s/Mpc and Ωm0 = 0.3166 [6], and we find that the results
are similar. For the best scenario, the relative error of H0 can
be less than 2% with 7 calibrators by LISA or the LISA-Taiji-
TianQin network. For the random scenario, the relative error
of H0 can reach below 2% with 13 calibrators by LISA.
For the worst scenario, the relative error of H0 can reach
below 2% with 38 calibrators by LISA. If we use the LISA-
Taiji-TianQin network, the number of calibrators needed to
reach 2% accuracy for the random and worst scenarios is
12 and 32, respectively. Therefore, the model independent
determination of the local Hubble constant from SNe Ia data
calibrated by GWs can shed light on the Hubble tension.

For comparison, we also consider those GWs which cali-
brate SNe Ia as standard sirens to constrain the Hubble con-
stant. Since the redshift of MBBHs is as large as z ∼ 0.3
for the best scenario, z ∼ 1.3 for the random scenario, and
z ∼ 1.7 for the worst scenario, we cannot use the cosmo-
graphic expansion (26) and a cosmological model must be
invoked. For simplicity, we consider the constraint on the
Hubble constant from the standard siren based on the ΛCDM
model. In Fig. 5, we show the relative error of H0 determined
from N GW standard sirens with LISA. The results show that
the relative error can reach below 1% with N � 4 for all sce-
narios. The result is consistent with that in Refs. [96,97]. For
the LISA-Taiji-TianQin network, the relative error of H0 is
less than 0.1%. As discussed above, the results from GWs as
standard sirens depend on cosmological models even though
the relative error is much smaller.
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Fig. 5 The relative error of H0 determined from N GW standard sirens
with LISA for the pop model. The red solid line, the green dash-dot line,
and the blue dotted line represent the constrained 1σ relative error of
H0 for the best scenario, the random scenario, and the worst scenario,
respectively

After learning that at least 7 SNe Ia with their luminosity
distances calibrated by GWs are needed to reach a 2% deter-
mination of the local Hubble constant, we can now assess
whether it will be possible to be realized within this the next
decade of the operation of space-based detectors. According
to [98], the galaxies number density is ≈ 2 × 107 Gpc−3, so
there are 8.2 × 1010 galaxies below redshift z = 2 (dL ≈ 16
Gpc by ΛCDM model with H0 = 67.27 km/s/Mpc and
Ωm0 = 0.3166), and let us consider that MBBHs and SNe Ia
uniformly distributed in the co-moving volume between red-
shift z of 0 and 2. The estimate of SN Ia rate in redshift z = 1
is roughly 1.2×105 Gpc−3 year−1 [99], which represents the
SN Ia density at reshift [0, 2]. The estimate of MBBH rate in
redshift range [0, 2] is roughly 2 × 10−3 Gpc−3 year−1 [31]
that there are 8 MBBHs below redshift z = 2 per year. To
ensure that these signals can be recognized by the LISA-Taiji-
TianQin network, we simulated 3600 GW signals, where the
selection of redshift and mass are according to [31], and other
parameters are randomly chosen. We found that 2824 merg-
ers are ρ > 8 with the detector network. In other words,
about 3/4 of the MBBH GW signals within the redshift [0, 2]
can be detected by the LISA-Taiji-TianQin network. Hence,
SN Ia and MBBH singly occur in a galaxy roughly about
once every 170 year and 1.25 × 1010 year. Thus, the odds of
both SN Ia and MBBH occurring in a single galaxy over 10
years are approximately 1 in 2.1 × 1010 per galaxy. So as a
rough estimate, we can observe 3.7 calibrators in a decade of
space-based detectors. For a longer period of detection, we
can detect 7 and 30 calibrators in 14 years and 30 years.

5 Conclusion

The main problem of the model independent determination
of the local Hubble constant from SNe Ia is the absolute cal-
ibration of the peak brightness for SNe Ia. The observations

of GWs as one-step standard sirens can be used to calibrate
the luminosity distances of SNe Ia if an SN Ia and an MBBH
merger occur in the same host galaxy. If one SN Ia is cali-
brated with a GW standard siren, we find that the measure-
ment error of the luminosity distance with LISA accounts for
less than 10% error of the absolute magnitude. Furthermore,
the contribution of the measurement error of the luminos-
ity distance to σMB is almost negligible for the LISA-Taiji-
TianQin network. We conclude that the calibration error for
SNe Ia is mainly from the measurement uncertainty of the
apparent magnitude.

For N calibrators, we discussed three cases, the best-case
scenario assumes that N SNe Ia with the smallest measure-
ment error on the apparent magnitude and MBBH merg-
ers occur in the same host galaxy, the worst-case scenario
assumes that N SNe Ia with the biggest σmB and MBBH
mergers occur in the same host galaxy, and the random-
case scenario assumes that N randomly selected SNe Ia and
MBBH mergers occur in the same host galaxy. For each case,
the measured luminosity distances are used to calibrate the
absolute magnitude of N SNe Ia. For the best-case scenario,
σMB can reach 0.023 mag for all three population models.
The uncertainty of the absolute magnitude can be as small
as 0.034 mag even for the worst-case scenario. Note that the
redshift of the calibrated SNe Ia is not limited to be small
and it can be arbitrarily large.

After re-calibrating the absolute magnitude of the Pan-
theon SNe Ia data, we use 237 SNe Ia in the redshift range
0.023 < z < 0.15 to constrain the local Hubble constant.
Note that for the calibration, we are not limited to the 237
SNe Ia in the redshift range 0.023 < z < 0.15, we consid-
ered all possible coincident SNe Ia and MBBH mergers to
calibrate the whole Pantheon sample of SNe Ia data. For the
best-case scenario, the relative error of H0 can be less than
2% for the three population models with 7 calibrators. For
the random-case scenario, the relative error of H0 can reach
below 2% with 12, 14, and 11 calibrators for the pop, Q3d,
and Q3nod models, respectively. For the worst-case scenario,
the relative error of H0 can reach below 2% with 31, 32, and
32 calibrators for the pop, Q3d, and Q3nod models, respec-
tively. The uncertainty of the local Hubble constant can be
reduced a little bit with more number of calibrators, but the
reduction of the uncertainty is insignificant. If we use those
GWs that calibrate the luminosity distance of SNe Ia as stan-
dard sirens to determine the Hubble constant, we can get a less
than 1% precision with LISA and less than 0.1% precision
with the LISA-Taiji-TianQin network. However, the results
based on standard sirens depend on cosmological models.
Subtleties may arise if we consider the relative positions of
SNe Ia and the host galaxy of the MBBH mergers, and the
peculiar velocity of the host galaxy.

We conclude that at least 7 SNe Ia with their luminosity
distances calibrated by GWs are needed to reach a 2% deter-
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mination of the local Hubble constant. The value of the local
Hubble constant is free from the problems of zero-point cal-
ibration and model dependence. Therefore, the model inde-
pendent determination of the local Hubble constant from SNe
Ia data calibrated by GWs can shed light on the Hubble ten-
sion.
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