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Abstract In this paper, we introduce an anisotropic model
using a dark matter (DM) density profile in Einstein–Gauss–
Bonnet (EGB) gravity using a gravitational decoupling
method introduced by Ovalle (Phys Rev D 95:104019, 2017),
which has provided an innovative approach for obtaining
solutions to the EGB field equations for the spherically sym-
metric structure of stellar bodies. The Tolman and Finch–
Skea (TFS) solutions of two metric potentials, gtt and grr ,
have been used to construct the seed solution. Additionally,
the presence of DM in DM halos distorts spacetime, causing
perturbations in the grr metric potential, where the quantity
of DM is determined by the decoupling parameter β. The
physical validity of the solution, along with stability and equi-
librium analysis, has also been performed. Along with stabil-
ity and equilibrium analysis, the solution’s physical validity
has also been examined. Additionally, we have shown how
both constants affect the physical characteristics of the solu-
tion. Using a M−R diagram, it has been described how the
DM component and the GB constant affect the maximum
permissible masses and their corresponding radii for vari-
ous compact objects. Our model predicts the masses beyond
the 2 M� and maximum radii 11.92+0.02

−0.01 and 12.83+0.01
−0.02

for larger value of α under density order 1015 g/cm3 and
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1014 g/cm3, respectively, while the radii become 11.96+0.01
−0.01

and 12.81+0.01
−0.02 for larger value of β.

1 Introduction

Compact stars (CSs) are a family of stellar bodies such as
white dwarfs (WDs), neutron stars (NSs), and quark stars
(QSs), with very high density and matter extremely packed
inside them. Their exact nature and the physics of the inte-
rior of CSs are still not completely known. Theorists have
been investigating several different models to come up with
a concrete theory of these objects. So far, these have been an
enigma to all of us. Among many approaches, researchers
have considered charge, anisotropy, and many other con-
siderations in order to estimate the matter distribution of
these objects. Also, alongside general relativity (GR), sev-
eral modified gravities have also been used to model these
objects. A particular approach has been very interesting, as
some researchers have considered the existence of DM inside
CSs. Before going into that, let us discuss some brief insights
about DM.

In the present time, the dark contents of the universe are
perhaps one of the most challenging aspects for scientists
to understand. Despite its existence in the Λ-CDM model,
the DM has not been detected anywhere. According to the
Λ-CDM model, about 27% of the total mass of the Universe
comes from DM [1,2]. The analysis of spiral galaxies and
their rotational curve first hinted at these enigmatic com-
ponents [3–5]. Several efforts have been made to explain
this since then, and among many approaches, Neutralino has
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been one of the main candidates as the key constituent in the
search for the origin of DM. This Neutralino is a member
of the lightest supersymmetric particle group [6–8]. Interest-
ingly, CSs made of DM were proposed in a model [9], where
the DM was represented as fermion gauge singlets in the
standard model (SM) in a background made of dark energy
(DE). This comes from the prediction of pseudo-complex
GR. Several other works have been done to model CSs with
DM. In the work of [10], the mass–radius ratio was analysed
for varying DM profiles. In [11,12], the polytropic equation
of state (EoS) was used to model NSs, and it was studied how
self-interacting and spin-polarised DM influence it. Further-
more, how the CSs made of condensed DM affect gravity
was studied in [13,14]. In [15], the potential of the existence
of NS having a DM core was investigated.

The matter distribution of CSs is another interesting topic.
It can be isotropic, anisotropic, or even contain charge. How-
ever, there are a very handful of exact interior solutions to Ein-
stein’s field equations considering isotropic matter distribu-
tion. Whereas, there are many anisotropic solutions obtained
by generalising the known isotropic solutions. Now, when
the nuclear matter is packed in extremely dense conditions,
it is less probable that the matter distribution may remain
isotropic. This can be attributed to several facts, including
energy dissipation due to the emission of low-mass or mass-
less particles, exotic phase transitions, and an increase in
viscosity. This was explained in a detailed manner in a paper
by Herrera and Santos [16]. In fact, Ruderman [17] showed
that when densities exceed the order of 1015 g/cm3, then the
pressure breaks into radial and tangential components with
different magnitudes, resulting in pressure anisotropy. Sev-
eral works have been done considering CSs with anisotropic
matter distribution in various scenarios [18–45].

In this current article, a specific kind of gravity theory
named 5D EGB gravity has been used. Let us shed light on
this 5D EGB gravity. Despite being one of the most ground-
breaking and pioneering theories, Einstein’s GR theory failed
to answer several questions later on. The most prominent of
them is the accelerated expansion of the Universe and its
dark components. Researchers have been trying to find suit-
able DM components, and some researchers are trying to
formulate modified theories of gravity that explain all the
observable phenomena that GR has failed to explain until
now. One such theory is 5D EGB gravity. When the fields
are quantized in curved spacetime, the higher curvature mod-
ifications need to be done in the Einstein–Hilbert action [46].
So, this motivated a recent interest in exploring the possibil-
ities of higher-order gravity theories containing higher-order
derivative curvature terms, and among them, the most recog-
nised theory is Lovelock gravity. This was first incorporated
by Lanczos [47] in 1938, and it was used again much later by
Lovelock [48,49] in the 1970s. One of the key features of the
Lovelock gravity is that it is truncated after the second-order

derivatives of the metric. Also, in this theory, the Bianchi
identities are included, which makes sure that the energy
is conserved, i.e., Δi Ti j = 0. When the linearized theory
is quantized, it is free of ghosts [50,51]. So it can be said
that the Lovelock theory is a generalisation of Einstein’s GR
theory to contain higher curvature terms, and it provides an
ideal way to test how higher curvature terms affect the grav-
itational effects. Now, it is worthwhile mentioning that the
third term of the Lovelock Lagrangian is named the Gauss–
Bonnet (GB) term, which is a second-order curvature term.
Now, Einstein–Hilbert action containing the quadratic term,
or the GB term, is famously called EGB gravity. In heterotic
string theory, at low energy, the effective action is similar
to this kind of action [52,53]. In 4D, a scalar field can be
included with the GB term, and its contribution is non-trivial
[54]. In this way, some researchers included static and spher-
ically symmetric black hole solutions [55,56]. Several other
works in EGB gravity have been done by the researchers in
various scenarios, including CS solutions [57–67].

Our objective in the current work is to use gravitational
decoupling via the MGD technique to investigate the feasi-
bility of anisotropic stars within DM haloes under 5D EGB
gravity. The analysis’s intriguing finding is that the self-
gravitating system’s mass and stability are increased with
the inclusion of a DM component through MGD. In this
respect, studies on CS objects and a number of astrophysical
phenomena conducted on the basis of both modified gravity
theories and conventional GR are contained in the following
Refs. [68–82] (The following references include a thorough
explanation of many current applications, including black
holes [83–89]).

The structure of the current paper is as follows: After a
short introduction, we examine the foundations of the MGD-
decoupling in Sect. 2 as it is applied to a static, spheri-
cally symmetric arrangement formed of an anisotropic star
within the context of EGB gravity. The study of stellar
anisotropic solutions produced by applying the well-known
Finch–Skea spacetime and pseudo-isothermal density pro-
files using the MGD approach is covered in Sect. 3, which is
divided into two subsections: Sect. 3.1. Seed solution via the
Tolman–Finch–Skea (TFS) ansatz, and Sect. 3.2. Mimick-
ing the density constraint to pseudo-isothermal density pro-
files, we match the anisotropic interior solution controlled by
the anisotropic fluid to an external Boulware–Deser vacuum
solution at a junction interface in Sect. 4. The physical char-
acteristics of CSs, along with the stability and equilibrium
conditions that resulted from gravitational decoupling using
the MGD technique, are studied in Sects. 5 and 6. In Sect. 7,
we discussed the analysis of physical parameters on the r−α

planes and maximum mass constraints via the M−R curve.
The concluding remarks are in the last Sect. 8.
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2 Revisit of basic field equations of EGB gravity in
gravitational decoupling

We begin with the action of the 5-dimensional EGB gravity
for the matter field as follows:

IG = 1

16π

∫
d5x

√−g [R − 2Λ + αLGB + Smatter]

+β

∫
Sθ

√−g d5x, (1)

where Λ and R are the cosmological constant and the fifth-
dimensional Ricci scalar, respectively. Since the Lagrangian
of the matter field is Smatter and the Lagrangian of the addi-
tional field is Sθ . According to string theory, the coupling
constant α, which is associated with the inverse string ten-
sion, should have a positive value [90] and a dimension of
[length2], but β has no dimension. However, for the sake
of generality, some scientists may have taken into account
both scenarios as α > 0 and α < 0 (for a few other issues
with positive and negative “α,” see the following debates
in [91,92]). We only consider the situation of positive α in
this study; for more current developments and references,
see Refs. [93,94]. Furthermore, the effect of cosmological
constant Λ on star stellar system is negligible because its
observed value is 10−34/km2. For the purposes of the study,
we therefore assume it to be zero. The Ricci scalar, Ricci
tensor, and Riemann curvatures are specifically combined to
form the GB Lagrangian, which is given by

LGB = Ri jklRi jkl − 4Ri jRi j + R2, (2)

where all indices run from 0 to 4. The variation of the action
(1) relative to the coordinates gi j may be used to directly
calculate the equation of motion as,

Gi j + αHi j = 8πT eff
i j , where T eff

i j = Ti j + β T θ
i j , (3)

with

Ti j = − 2√−g

δ
(√−gSm

)
δgi j

, and T θ
i j = 2√−g

δ
(√−gSθ

)
δgi j

.

(4)

The symbol Hi j serves as the part of the GB factor and Gi j

denotes the Einstein tensor having the corresponding equa-
tion

Gi j = Ri j − 1

2
R gi j ,

Hi j = 2
(
RRi j − 2RikR

k
j − 2Ri jklR

kl − RiklδR
klδ
j

)

−1

2
gi j LGB, (5)

where, accordingly, R is the Ricci scalar, Ri jkl is the Rie-
mann tensor, and Ri j is the Ricci tensor. It should be empha-
sised that the gravitational dynamics in 4D spacetime are
unaffected by the GB term.

For compact star modeling, we consider a static, spheri-
cally symmetric metric in a 5-dimensional spacetime as

ds2
5 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dΣ2

3 , (6)

where r is a radial coordinate and ν(r) and λ(r) are metric
potentials. The line element of a three-dimensional hypersur-
face with constant scalar curvature k is denoted by the word
dΣ2

3 in the metric above. Without losing generality, k can be
adjusted to k = 1, 0, or −1, which, respectively, represent a
sphere, plane, and hyperbola. Boulware and Deser [90] origi-
nally discovered a static black hole solution using spherically
symmetric under EGB theory in 1985 by assuming k = 1.

After that, generalising black hole solutions with complex
horizon topology were investigated using the cosmological
constant [95]. These black holes in particular have an event
horizon that can have a zero along with positive or negative
constant curvature. They are also asymptotically anti-de Sit-
ter black holes. See Ref. [96] for a similar solution that was
discovered without the necessity for a cosmological constant
component. In this article, we shall limit the range to k = 1,
which is the spherically symmetric solution.

Here, we make the assumption that the fluid inside the CS
is anisotropic, as shown by the stress–energy tensor Ti j

Ti j = ρuiu j + Pt (uiu j + gi j − χi χ j ) + Prχi χ j , (7)

where, correspondingly, ρ(r) indicates the energy density
of matter and Pr (r) and Pt (r) indicate the radial and tan-
gential pressures. Here, u j and χ i = √

1/grr δi1 are called
the 5-velocity contravariant and unit space-like vector in the
direction of the radial coordinate, respectively. These vectors
obey the relation: χ iχi = −u ju j = 1. Hence, the effective
stress–energy tensor (Ti j ) is now defined as

T eff
i j =(ρeff+Peff

t ) u ju j+Peff
t gi j+(Peff

r −Peff
t )χi χ j ,

(8)

where Peff
r = Pr − βPθ

r and Peff
t = Pt − βPθ

t describe
the radial and tangential pressures with ρeff

r = ρ + βρθ ,
which denotes the energy density for the matter tensor T eff

i j .

Additional anisotropic impact on T eff
i j is introduced by the

existence of the θ -term. It is well known that the covariant
derivatives of the Einstein tensor Gi j and Gauss–Bonnet ten-
sor Hi j is zero [97,98], then the covariant derivative of the
effective energy-momentum tensor given in Eq. (3) informs
us that T eff

i j is also divergence-free i.e.

∇ i T eff
i j = 0, (9)

which gives an equation

ν′(ρeff + Peff
r ) + (Peff

r )′ + 3

r
(Peff

r − Peff
t ) = 0. (10)

The above equation is called a generalised hydrostatic equa-
tion in 5D-EGB gravity for the spacetime (6). Now, by utilis-
ing Eqs. (6) and (8) with the gravitational field equations (3),
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one may derive the non-vanishing components as follows:

8πρeff = −3
(
4αλ′ + re2λ − re4λ − r2e2λλ′ − 4αe2λλ′)

e4λr3 ,

(11)

8π Peff
r =

3
( − re4λ +

(
r2ν′ + r + 4αν′) e2λ − 4αν′)

e4λr3 , (12)

8π Peff
t = e−4λ

r2

( − 4αν′′ − e4λ + 4αν′(3λ′ − ν′)

+ e−2λ

r2

[
1 + 2r(ν′ − λ′) − r2ν′(λ′ − ν′]

+ e−2λ

r2

[
(r2 + 4α)ν′′ − 4αν′(λ′ − ν′)

]
. (13)

Here, the differentiation with regard to r is denoted by ‘′’. For
an anisotropic fluid, the hydrostatic equilibrium condition is
found by solving the equation Eq. (9) as,

ν′(ρ + Pr ) + P ′
r + 3

r
(Pr − Pt ) + β

[
ν′(ρθ − Pθ

r )

−(Pθ
r )′ − 3

r
(Pθ

r − Pθ
t )

]
= 0. (14)

By using geometric deformation in the metric functions, it is
possible to introduce the contribution of the source θi j in the
system, which is given by

ν(r) −→ ξ(r) + β h(r), (15)

λ(r) −→ −1

2
ln[μ(r) + β f (r)], (16)

where the geometric deformations of the radial and temporal
metric components, respectively, are h and f , respectively,
and β is an unrestricted parameter that “controls” the amount
of deformation. The EGB solution is made to appear as a solu-
tion in the new gravitational sector via the MGD technique,
as illustrated in the schematic figure in Fig. 1. Note that it can
automatically restore in the domain of EGB when β = 0.

Here, we are interested in the MGD technique; therefore
f (r) �= 0 with h(r) = 0 must be set. Since MGD implies the
deformation in the radial metric component only because the
opposite (deformation only temporally and not radially) has
no physical relevance, as it turns out to be a mere reparame-
terization. In this case, the radial deformation (16) introduces
anisotropy into the system through the new source tensor T θ

i j .
The field equations (11)–(13) are divided into two sets by

the transformation of (16). The system simplifies to being
dependent on the gravitational potentials μ and ν when β =
0, so first we present the conventional EGB field equations
that apply to the anisotropic situation as

8πρ =
[
12αμ′2 − 12αμ′ − 3rμ′r − 6rμ + 6r

]
2r3 , (17)

8π Pr =
[
12αμ′2ν′ − 12αμ′ν′ + 3 rν′μr + 3 rμ − 3 r

]
r3 , (18)

8π Pt = 1

2r2

[
(8αμ − 8αμ2)(ν′2 + ν′′) + 4αμ′ν′

−12αμμ′ν′ + 2μ(ν′′r2 + ν′2r2 + 2rν′ + 1)

+μ′(ν′r2 + 2r) − 2
]
. (19)

Under the aforementioned supposition, the conservation
equation (14) becomes

ν′ (ρ + Pr ) + P ′
r + 3

r
(Pr − Pt ) = 0. (20)

As a result, internal spacetime is represented as

ds2
5 = −e2ν(r)dt2 + dr2

μ(r)
+ r2dΣ2

3 . (21)

The field equations for the second set of solutions, which
includes the source T θ

i j , rely on the three unknown functions
μ, ν, and f as

8πρθ =
[
12α(β f f ′ + f ′(μ − 1) + f μ′) − 3 r(r f ′ + 2 f )

]
2r3 , (22)

8π Pθ
r = −3 f

[
ν′ (−4 α fβ − 8 α μ + 4 α + r2) + r

]
r3 , (23)

8π Pθ
t = − 1

2r2

[ − 4α {2[β f 2 − 2(1 − 2μ) f ]ν′′

+(3μ + 3β f − 1)ν′ f ′ + (2β f ν′ + 2ν′(2μ − 1) + 3μ′) f ν′}
+2r f ′ + r2 f ′ν′ + 2(1 + r2ν′2 + r2ν′′ + 2ν′r) f

]
. (24)

The conservation equation ∇ i T θ
i j = 0 explicitly read

− ν′(ρθ − Pθ
r ) + (Pθ

r )′ + 3

r
(Pθ

r − Pθ
t ) = 0. (25)

Therefore, we draw the conclusion that the MGD can suc-
cessfully decouple the two sources Ti j and T θ

i j . In the MGD
condition, it is possible to observe a decoupling without an
energy transfer between the sources [99].

3 Minimally deformed dark star in 5D EGB gravity

3.1 Seed solution via the Tolman-Finch–Skea (TFS) ansatz

Since we are dealing with two systems of equations that are
highly non-linear differential equations in ν and μ given by
Eqs. (17–19) and (22–24), respectively. It should be empha-
sised that the first system’s solution is necessary for the sec-
ond system’s solution. Here, we are going to show how the
minimum geometric deformation (MGD) technique in 5D
EGB gravity may be used to construct a precise and physi-
cally viable solution.

The first apparent concern is what limitations we should
put in place in order to close the seed system (17)–(19), yet
there is no recognised solution to this problem. To set the
scenario, we ought to keep the acceptable physics as much
as required for a consistent stellar structure. In this direction,
Delgaty and Lake [100] proposed a list of more than 130
isotropic solutions, in which only a small number of solutions
that met the physical requirements could be categorised as
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physically relevant. Furthermore, recently a new methodol-
ogy was proposed to generate some isotropic solutions using
gravitational decoupling technique [101–103]. The isotropic
Tolman IV [104], Durgapal [105], and Finch–Skea [107],
Buchdahl [106] solutions are a few of the well-known models
among them. These models were used by many researchers
to build and analyse consistent astrophysical models for com-
pact objects. In order to succeed in the aforementioned, let’s
begin by taking into account a recently presented precise
interior solution, known as the TFS metric ansatz,

ν(r)=2 ln[B(1 + L r2)] and μ(r)=1/(1 + N r2),

(26)

where B is a constant with no dimension and A andC are pos-
itive constants having a dimension of [Length]−2. The met-
ric potentials in the aforementioned form have been selected
carefully to meet our requirements and allow us to observe
the role of the decoupling function f (r). After that, the solu-
tions of (17)–(19) are obtained by using metric potentials
as,

8π ρ = 3N (2 + 4αN + 3Nr2 + N2r4)

(1 + Nr2)3 , (27)

8π Pr = 3
[
N (1 + Nr2) + L(4 + 16αN + 3Nr2 − N2r4)

]
(1 + Lr2)(1 + Nr2)2 ,

(28)

8π Pt = P(r) + L2r2[S(r) + 16αN (5 + 2Nr2)]
(1 + Lr2)2(1 + Nr2)3 , (29)

where P(r) = 2L(−N 3r6+7Nr2+24αN+6)−N (N 2r4+
4Nr2 + 3) and S(r) = 12N 2r4 − N 3r6 + 33Nr2 + 20.

Next, we want to use the DM density profile to find the
decoupling function f (r). Therefore, we consider a mimic
approach to solving the second system of equations (22)–
(24), which is presented in the next section:

3.2 Mimicking the density constraint to the
pseudo-isothermal density profile

To solve the θ -sector, we introduce a pseudo-isothermal den-
sity profile,

ρP I = a

1 + b r2 . (30)

For specific parameter values of a and b, research findings
on DM halos and galaxies’ rotation curves may be found
in Refs. [111,112]. In our present investigation, however,
we treated constants a and b as a free parameter. As we
can see, the density profile ρP I in any finite area is regular,
singularity-free, and monotonously decreases with increas-
ing radial coordinate r .

We discover the following differential equation by repli-
cating ρθ with ρP I , or by equating ρθ and ρP I ,

3(1 + br2)
[
4α

(
μ′ f + f ′(β f + μ − 1)

) − r
(
r f ′ + 2 f

) ]
−2αr3 = 0. (31)

After substituting μ form Eq. (26) in the above differential
equation and solving it, we find the decoupler function f (r)
as,

f (r) = 1

12

[
3r2

αβ
+ 12Nr2

β(1 + Nr2)
−

√√√√3 f1(r)
(
Nr2 + 1

)−2

αβ
(
br2 + 1

)
]
,

(32)

where,

f1(r) = 1

αb2β

[ (
br2 + 1

) {
− 8αaβ

(
Nr2 + 1

)2
log

(
br2 + 1

)

+b
(
48α2b

(
N 2r4

(
1 + Fβ2

)
+ 2NFβ2r2 + Fβ2

)
+ 8αr2

×
(
Nr2 + 1

) (
a

(
Nβr2 + β

)
+3bNr2

)
+3br4

(
Nr2+1

)2 )}]
,

and F is the constant of integration. It is already well estab-
lished that the decoupling function f (r) should vanish at the
center to ensure the primary condition of the metric function
e2λ(0) to be 1. Then f (0) leads to the integration constant
D = 0. After substituting D = 0 in the above expression,
we get the final form of f (r) as,

f (r) = 1

12

[
3r2

αβ
+ 12Nr2

β(1 + Nr2)
−

√√√√3 f2(r)
(
Nr2 + 1

)−2

αβ
(
br2 + 1

)
]
,

(33)

where,

f2(r)= 1

αb2β

[ (
br2+1

) {
− 8αaβ

(
Nr2+1

)2
log

(
br2+1

)

+b
(
48α2bN2r4 + 8αr2

(
Nr2 + 1

) {
a

(
Nβr2 + β

)

+3bNr2} + 3br4
(
Nr2 + 1

)2 )}]
.

The expressions for all known functions ν, μ, and f (r) are
now known, and from Eqs. (22)–(24) the expressions for θ
components are derived as,

8πρθ = a

1 + br2 , (34)

8π Pθ
r = 1

12
(
Lr2 + 1

) (
Nr2 + 1

)2

[
− 16α2L

{
N2r2(aβ2r4

×
(

2br2 − 3
)

+ 6β( f3(r) − 3)r2 + 36) + N
[
2aβ2r4

×
(

2br2 − 3
)

+ 6β( f3(r) − 6)r2 − 36
] + aβ2r2

×
(

2br2 − 3
) }

+ 12α
{
L
(
N2r4

(
4 f3(r) + 3βr2 − 15

)

−2β( f3(r) − 3)Nr4 − 2( f3(r) − 3)
(
βr2 + 2

)

−27Nr2) − 3N
(
Nr2 + 1

) } + 3
(

5Lr2 + 1
) (

Nr2 + 1
)

×
(
f3(r)Nr2 + f3(r) − 3

)
+ 1152α3βLN2r2

]
, (35)
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8π Pθ
t = 1

36 f3(r)
(
Lr2 + 1

)2 (
Nr2 + 1

)4

[
− 13824LN3βr2(

Nr2

+3L
(
Nr2 + 2

)
r2 + 4

)
α4 + f5(r) − 16

(
Nr2 + 1

)

×
(
−27

(
Nr2 + 3

)
N2 + f6(r) + f7(r)

)
α2 + 12

×
(
Nr2 + 1

)
f8(r) + 27

(
Nr2 + 1

)4
(27L2r4 + 22Lr2 + 3)

−9 f3(r)
(
Nr2 + 1

)2 {
3L2

(
7Nr2 + 9

)
r4 + Nr2

+2L
(

7Nr2 + 11
)
r2 + 3

}]
. (36)

We now go to the second method to determine the decoupling
function f (r), as shown below:

4 Exterior space-time in EGB theory and junctions
conditions

Specifying the boundary conditions for the desired solution is
the last stage in system setup. In this instance, we compare the
interior spacetime manifoldM− (26) to the outer Boulware–
Deser space-time [90] manifold represented by,

ds2
5 = −F(r)dt2 + dr2

F(r)
+ r2dΣ2

3 , (37)

where the effective gravitational mass M is linked with

F(r) = r2

4α

(
1 −

√
r4 + 16 α M

r2

)
+ 1. (38)

It is simple to verify that the following formula reduces to the
5D Schwarzschild solution in the limit α → 0. Additionally,
in the current investigation, the following line element may be
used to provide the interior star geometry under gravitational
decoupling:

ds2
5 = −e2ν(r)dt2 + dr2

μ(r) + β f (r)
+ r2dΣ2

3 , (39)

where μ(r) and ν(r) are the solutions for the seed spacetime
supplied by Eq. (26), and the deformation function f (r) for
the DM solution corresponding to the θ -sector is given by
Eq. (33). We will now examine the intersection of the outside
and interior surfaces. The first fundamental form’s continuity
at the boundary means that g−

t t = g+
t t and g−

rr = g+
rr , where

the symbols − and + signify the inner and outside spacetime,
respectively. This gives the following results:

e2λ−|r=R = e2λ+|r=R and e2ν−|r=R = e2ν+|r=R, (40)

which gives

e2λ(R) = 1

μ(R) + β f (R)
=

[
R2

4α

(
1 −

√
1 + 16 αM

R4

)
+ 1

]
,

and e2ν(R) =
[
R2

4 α

(
1 −

√
1 + 16 αM

R4

)
+ 1

]
, (41)

where μ(R) = [
1+ R2

4 α

(
1−

√
1 + 16 α MEGB

R4

)]
with MEGB =

mEGB(R) is the effective mass of the compact object for the
metric (21). Then, using (41), we have

M = MEGB + β f (R)

2

[
2βα f (R) −

√
16αMEGB + R4

]
.

(42)

However, the second fundamental or extrinsic curvature must
be continuous at the boundary, which provides the desired
condition,
[
(Gi j + α Hi j ) r

j ]
Σ

= 0. (43)

Here, r j denotes a unit radial vector in this case. Now, based
on the aforementioned condition, one can estimate the Eq. (3)
as
[
Ti j r

j ]
Σ

= 0 �⇒ [
Peff
r

]
r=R = 0, (44)

which gives
[
Pr − β Pθ

r

]
r=R = 0, (45)

where r = R defines the surface’s Σ . The size of the objects
depends on condition (45).

We determine the constants L , B, and total mass M using
the boundary conditions (41) and (45). We explore the limits
of the constant parameters in depth in the Appendix for the
sake of clarity.

L(R) =
[
3

(
N R2 + 1

) (
N

(
12 − 12αβ + Ψ1(R)βR2

)
+ (Ψ1(R) − 3)

×β
)][ − 1152α3N2β2R2 + 16α2β

(
N2R2{

aβ2R4

×(2bR2 − 3) + 6(Ψ1(R) − 3)βR2 + 36
} + N

(
2aβ2R4

×
(

2bR2 − 3
)

+ 6(Ψ1(R) − 6)βR2 − 36
) + aβ2R2

×
(

2bR2 − 3
) ) − 12α

(
N2βR4

(
4Ψ1(R) + 3βR2 − 15

)

−N
(

2(Ψ1(R) − 3)β2R4 + 27βR2 + 48
)

− 2(Ψ1(R) − 3)

×β
(
βR2 + 2

) ) − 3
(
N R2 + 1

) (
N R2

(
5Ψ1(R)βR2 + 12

)

+5Ψ1(R)βR2 − 15βR2 − 48
)]−1

(46)

M(R) = R4

144
(
N R2 + 1

)2

[
− 2N

(
4α2β2{

aβR2
(

2bR2 − 3
)

+3Ψ1(R) − 18
} + 3αβ

(
β(Ψ1(R) − 3)R2 − 4(Ψ1(R) − 6)

)
−6βΨ1(R)R2 + 9βR2 − 36

) + 2β
(
2α2aβ2

×
(

3 − 2bR2
)

− 3αβ(Ψ1(R) − 3) + 3(Ψ1(R) − 3)
)

+N2(
288α3β2 − 4α2β

(
aβ2R4

(
2bR2 − 3

)
+ 6β

×(Ψ1(R) − 3)R2 + 72
) + 3α

{
3β2R4 + 8β(Ψ1(R) − 3)

×R2 + 48
} + 6R2

(
βΨ1(R)R2 + 12

) )]
, (47)

B = 1

(1 + Lr2)

[ 1 + β f (R)
(
Nr2 + 1

)

Nr2 + 1

]1/4

, (48)
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where we may calculate f (R) using Eq. (33) by substituting
r = R.

5 Analyzing stellar physical parameters

5.1 Impact of the decoupling parameter (or DM
component) on pressures, density and anisotropy

The thermodynamical observables of the confined matter,
such as density, pressures, and anisotropy, play an impor-
tant role in determining how stable the stellar structure is
in resisting gravitational collapse. The gravitationally con-
fined system collapses under its own gravity if, at the center,
r = 0, the stellar density, ρeff(0), is greater than the critical
density, ρeff(0)max . The central density, ρeff(0), for our stel-
lar system is finite and reaches its maximum at the center,
r = 0. It appears from Fig. 1 (top left) that stellar density
decreases radially outward, with maxima appearing in the
interval ρeff

c ∈ [4.14478, 4.46698] × 1014 [g.cm−3] at the
center, r = 0, where ρeff(0) = ρeff

c and minima appearing
in the interval ρeff

s ∈ [3.46535, 3.64435] × 1014 [g.cm−3]
at the surface, r = R, where ρeff(R) = ρeff

s for all
β ∈ [0.0, 2.0]× 10−3. Interestingly, the decoupling param-
eter makes the stellar interior more dense i.e. DM allowing
more dense objects.

Besides the finite central density, we note that the radial
and tangential pressures are finite at the center r = 0, and
decrease smoothly towards the stellar boundary r = R.
As seen in Fig. 1 (top right) and (bottom left), both radial
and tangential pressures stay positive, i.e., Peff

r > 0 and
Peff
t > 0 inside the star, r < R, and decrease towards the

stellar surface, r = R, where radial pressure disappears, i.e.,
Peff
r (R) = 0. It is significant to observe that the maximum

value of the central pressures Peff
r (0) = Peff

t (0) increases
from 0.719631× 1034 to 1.63662× 1034 [dyne.cm−2] when
the decoupling parameter increases from 0.0 to 2.0 × 10−3.
Additionally, we found that the trend of tangential pressure
exhibits opposite behavior when r/R ≥ 0.8, i.e., its magni-
tude rises as β rises. This may be owing to the non-linear
surface turbulence because of the increasing DM contribu-
tion.

We also determined the associated anisotropy parameter,
which means how tangential pressure and radial pressure
are different from one another, to better probe the inter-
nal dynamics of our stellar system. We showed that the
anisotropy vanishes at the center, r = 0, and grows con-
sistently with r , as can be seen in Fig. 1 (bottom right). It’s
interesting to mention here that when the decoupling param-
eter, β, grows, the surface turbulence reduces; this behavior
corresponds to the nonlinearity induced by anisotropy in the
early stages of turbulence in fluid dynamics.

5.2 Redshift

Zhou et al. [108] has explored how the upper limit of the
spectral lines at high redshifts from the boundary of constant-
density stars would change due to the inclusion of GB com-
ponents in the context of EGB gravity. Contrary to popular
belief, an upper limit for redshift cannot be calculated since
it is not a constant in the GR complement but rather relies on
the density value [108,109]. The redshift may be calculated
using the formula,

z =
√
e−2ν(r) − 1. (49)

The redshift zs at the surface may also be estimated as [108],

zs = [
B (1 + LR2)

]−2 − 1. (50)

Table 1 indicates that a large redshift is achieved in the pres-
ence of gravitational decoupling, as the surface redshift Zs

rises with increasing the value of β. It is pointed out that the
calculated values for Zs agree with the limit put forward by
the GR situation [110].

6 Analyzing stellar stability parameters

6.1 Stellar cracking modes

The stellar core’s intense density causes the sound velocity to
move into the ultra-relativistic region [111]. In this context,
to assess the viability of the stellar model [112,113], we can
check the distribution of maximum sound velocity in the
inner region. The upper bounds for radial sound velocity,
v2
r (r) < 1, and tangential sound velocity, v2

t (r) < 1, are
established using the causality limit. Their expressions, v2

r ,
and v2

r , can be defined as follows,

v2
r = dPeff

r

dρeff , (51)

v2
t = dPeff

t

dρeff . (52)

Figure 2 shows the radial profiles of v2
r and v2

t . It has been
indicated that both components remain causal throughout the
inner zone. It’s also noteworthy to note that for all relevant
intervals of β, with the exception of β = 0.0, which remains
constant, v2

r and v2
t grow monotonically from their lowest

values at the center to their highest values at the surface.
Figure 3 also shows the variation of the stability factor v2

r −v2
t

of the CS along the radial coordinate r/R. Based on this
graph, we can clearly see that v2

r−v2
t remains constant around

the center but decreases slightly around the surface. This
phenomenon can be explained by surface turbulence helped
by anisotropy and a non-zero tangential pressure gradient at
the stellar surface.
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Fig. 1 Variation of the density (top left), radial pressure (top right), tangential pressure (bottom left) and anisotropy (bottom right) of CSs along
the radial coordinate r/R for different β values with N = 0.0012 km−2, a = 0.3 km−2, b = 0.008 km−2, α = 30 km2, and R = 10 km

Table 1 Numerical values of the physical parameters of the model

β Central density (g/cm3) Surface density (g/cm3) Central pressure (dyne/cm2) Γ Zs

0.000 4.14478 × 1014 3.46535 × 1014 7.19631 × 1033 6.30423 0.0583005

0.0010 4.30588 × 1014 3.55485 × 1014 1.18288 × 1034 5.34136 0.0599284

0.0015 4.38643 × 1014 3.5996 × 1014 1.41089 × 1034 5.02753 0.0607729

0.0020 4.46698 × 1014 3.64435 × 1014 1.63662 × 1034 4.77182 0.0616379

6.2 Adiabatic perturbations

When analyzing the dynamical stability of a stellar configu-
ration, the adiabatic index (Γ ) plays a crucial role. A stable
equilibrium of an isotropic fluid against gravitational col-
lapse requires Γ = 4/3. If non-vanishing anisotropy exists,
the stability condition demands that Γ > 4/3 for all inherent
points, r < R in the gravitationally confined fluid. The sound
velocity formula that was exploited to express the decoupled
system’s adiabatic index Γ for an anisotropic matter distri-
bution is as follows,

Γ ≡
(

1 + ρeff

Peff
r

) (
dPeff

r

dρeff

)
S
, (53)

where entropy S is kept constant during the derivation. While(
dPeff

r
dρeff

)
S

is the sound velocity. It is clear that our stellar model

is stable versus adiabatic perturbations for all points within
the stellar model from the radial profile of Γ shown in Fig. 4.
Bear in mind that the decoupling parameter, β, favors a stiff
EoS, as any increment in the decoupling parameter, β, main-
tains equilibrium at a higher value of Γ for all inherent points,
r < R. Moreover, Γ is a measure for examining the stiffness
of the star’s structure.
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Fig. 2 Variation of the velocity of sounds v2
r and v2

t of CSs along the radial coordinate r/R for same parameters values used in this figure

Fig. 3 Variation of the stability factor v2
r − v2

t of CSs along the radial
coordinate r/R for same parameters values used in Fig. 2

Fig. 4 Variation of the adiabatic index of CSs along the radial coordi-
nate r/R for different β values with N = 0.0012 km−2, a = 0.3 km−2,
b = 0.008 km−2, α = 30 km2, and R = 10 km

6.3 Dynamics balancing of interior forces in 5D EGB
gravity

The ultimate fate of a CS depends on the stability of a grav-
itationally compact object under multiple stresses. In this

concern, we are using the modified Tolman–Oppenheimer–
Volkoff (TOV) equation, which incorporates the significant
contribution of non-despairing anisotropy, to examine the
dynamics and interplay of these stresses. The general equa-
tion incorporating all these stresses can be written as follows,

ν′ (ρeff + Peff
r ) + [P ′

r ]eff + 3

r
(Peff

r − Peff
t ) = 0. (54)

Here, the contributing terms can be classified as follows,

– Gravitational force : Fg = −ν′ (ρeff + Peff
r ),

– Hydrostatic force : Fh = −[P ′
r ]eff ,

– Anisotropic force : Fa = 3
r (P

eff
t − Peff

r ).

According to Fig. 5, we discovered that our system is in
dynamic equilibrium and stable against gravitational collapse
because, for each causal branch of the decoupling parameter,
β ∈ [0.0, 2.0]× 10−3, the radial variation of the net force:
Fh + Fa + Fg = 0 remains zero throughout the stellar
interior, r < R.

7 Analyzing physical parameters on the r − α planes
and maximum mass constraints via M−R curves

7.1 Impact of GB constant α on energy density, radial and
tangential pressures, and anisotropy variations

The contour diagram is employed in Figs. 6, 7, 8, and 9, to
show the impact of GB on the energy, pressure components,
and anisotropy that are distributed on the r − α plane. It
clearly shows that for any fixed value of GB constant α in
[5.0, 50.0] × [km2], density decreases systematically as we
move towards the stellar surface, reaching its minimum value
there. Moreover, the magnitude of the density increases with
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Fig. 5 Variation of the different forces of CSs along the radial coordinate r/R for different β values with N = 0.0012 km−2, a = 0.3 km−2,
b = 0.008 km−2, α = 30 km2, and R = 10 km

Fig. 6 Contour diagram for energy-density on r − α-plane for param-
eter values N = 0.0012 km−2, a = 0.3 km−2, b = 0.008 km−2, and
β = 0.001

Fig. 7 Contour diagram for radial pressure on r − α-plane for param-
eter values N = 0.0012 km−2, a = 0.3 km−2, b = 0.008 km−2, and
β = 0.001
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Fig. 8 Contour diagram for tangential pressure on r − α-plane for
parameter values N = 0.0012 km−2, a = 0.3 km−2, b = 0.008 km−2,
and β = 0.001

Fig. 9 Contour diagram for anisotropy on r − α-plane for parameter
values N = 0.0012 km−2, a = 0.3 km−2, b = 0.008 km−2, and
β = 0.001

increasing parameter α, reaching its maximum at the star’s
core.

Having tested the distribution of energy density on the
r − α plane via the contour diagram, we will now test the
distribution of pressure components on the r − α plane via
the same contour diagram. Both pressure components, Peff

r
and Peff

t , are systematically reduced with increasing radial
distance r for a fixed value of α in [5.0, 50.0] × [km2],
however, the magnitude of pressure components, Peff

r and
Peff
t , rises with rising α. As expected from our analysis, the

maximum pressure is indicated at the star’s core for any fixed
value of α.

Then, using the same contour diagram, we tested the
anisotropy distribution on the r−α plane. We can clearly see

that the anisotropy distribution on the r − α plane demon-
strates that the anisotropy is increasing in this situation when
α is increasing. But the impact of the GB constant α can be
clearly seen close to the stellar surface.

Consequently, we can say that the constant GB constant
α also plays an important role along with the decoupling
parameter β in constraining energy density, pressures, and
anisotropy in DM halos using EGB action.

7.2 Maximum allowed mass via M−R curves

To prove the usefulness of the present stellar model, we
have analyzed the impact of α and β on the maximum sta-
ble mass that can be contained within a given stellar radius,
as shown by the M−R curves in Figs. 10 and 11, for vari-
ous levels of surface density. In this respect, we have con-
sidered two surface densities, e.g., ρeff

s ≈ 1014 g/cm3 and
ρeff
s ≈ 1015 g/cm3, for our tests.

In Figs. 10 and 11, the M−R relationship for stel-
lar models has been plotted for different values of α

(left panel) and β (right panel) with surface densities ≈
1014 and ≈ 1015 g/cm3. We noticed that the parameters α in
[5.0, 25.0] × [km2] and β in [0.0, 2.0] × [10−3] for surface
density ≈ 1014 g/cm3 and α in [10.0, 50.0] × [km2] and
β in [0.0, 2.0] × [10−3] for surface density ≈ 1015 g/cm3

increases the equilibrium radius to enclose the star’s active
gravitational mass with a slight change between the two cases
from the resulting dataset represented by M−R curves in
both graphs. Interestingly, the stiffness of the EoS can be
reduced by increasing the contribution of these two factors,
α and β. The horizontal stripes in both graphics correspond
to the mass constraints of GW 190814, PSR J0952-0607,
PSR J0740+6620, and PSR J1614-2230.

On the other hand, the observations of the two-solar-mass
binary millisecond pulsar PSR J1614-2230 by Demorest et
al. [114] reveal that the masses lie within 1.97 ± 0.04 M�,
ruling out almost all of the hyperon or boson condensate
equations of state. In addition, the mass of the pulsar to be in
the range 2.01±0.04 M� [115], has been confirmed by radio
timing measurements of the pulsar PSR J0348+0432 and its
white dwarf companion. In very recent surveys, masses of
2.08±0.07 M� and 2.35±0.17 M�, respectively, have been
reported for PSR J0740+6620 [116] and PSR J0952-0607
[117]. The equatorial radius and mass of PSR J0740+6620
are constrained to be 12.39+1.30

−0.98 km and 2.072+0.067
−0.066 M�,

respectively, by some recent studies [118,119]. The max-
imum mass of gravitational wave event GW190814, as
determined by recent measurements, has been estimated to
be 2.5−2.67 M�. The maximum compact object masses
obtained for the research we are doing are 2.82 M� and
2.98 M� for α = 25 and β = 0.002 with ρeff

s ≈ 1015g/cm3

as well as 3.17 M� and 3.02 M� for α = 50 and β = 0.002
with ρeff

s ≈ 1014 g/cm3, respectively. These predicted values
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Fig. 10 M − R curve for different values of α (left panel) and β (right panel) with surface density ≈ 1015 g/cm3

Fig. 11 M − R curve for different values of α (left panel) and β (right panel) with surface density ≈ 1014 g/cm3

are in good agreement with recent observations of massive
NSs. Furthermore, recent work by Rincón et al. [120,121]
has shown that the maximum mass profile via M−R curve is
attainable within the framework of the vanishing complex-
ity factor, and this finding has been corroborated by them,
who have shown that the resulting solutions display more
compact objects than GR. In this regard, we have expanded
our research in this direction to discover the maximum mass
of the objects by using the M−R profile in the EGB grav-
ity theory under the DM component induced by the MGD
formalism. These considerations and the preceding analysis
lead us to the following conclusion: as β and α decrease,
we see more compact objects, while the mass of the objects
increases when both constants increase.

8 Concluding remarks

In this paper, the anisotropic stars within the DM haloes were
tested under 5D EGB gravity. After discovering the solution,
a thorough physical study was carried out along with the
result, as discussed below. To start with, the thermodynamic
parameters are discussed. It is observed that the energy den-
sity (ρeff ) has its maximum value at the center and decreases
gradually towards the surface (Fig. 1 top left panel). Also,
it is noticed that when β = 0, i.e., without the introduction
of DM via gravitational decoupling, the energy density is
lowest and increases with β, which suggests that as gravita-
tional decoupling becomes predominant, the energy density
increases. The analysis of radial pressure (Peff

r ) (Fig. 1 top
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Table 2 Prediction of radii for a few well-known CSs with a surface density ≈ 1015 g/cm3

Objects M/M� Predicted radii in km

α [km2] β

5 10 15 20 25 0 0.0005 0.0010 0.0015 0.0020

GW 190814 2.5–2.67 11.32+0.13
−0.0 11.39+0.10

−0.23 11.43+0.08
−0.16 11.48+0.09

−0.15 11.51+0.09
−0.11 11.50+0.08

−0.13 11.55+0.07
−0.10 11.59+0.07

−0.08 11.64+0.05
−0.11 11.67+0.05

−0.02

PSR J0952-0607 2.35 ± 0.17 11.62+0.19
−0.13 11.65+0.14

−0.12 11.67+0.16
−0.11 11.69+0.15

−0.11 11.72+0.10
−0.14 11.71+0.10

−0.13 11.73+0.10
−0.07 11.76+0.09

−0.10 11.79+0.07
−0.10 11.81+0.07

−0.10

PSR J0740+6620 2.072+0.067
−0.066 11.82+0.03

−0.04 11.83+0.02
−0.03 11.84+0.03

−0.04 11.85+0.02
−0.03 11.86+0.01

−0.02 11.86+0.03
−0.03 11.88+0.03

−0.03 11.89+0.03
−0.02 11.91+0.02

−0.03 11.93+0.02
−0.03

PSR J1614-2230 1.97 ± 0.04 11.87+0.02
−0.02 11.88+0.02

−0.02 11.89+0.01
−0.02 11.90+0.02

−0.01 11.92+0.02
−0.01 11.90+0.02

−0.01 11.92+0.01
−0.01 11.93+0.02

−0.02 11.95+0.01
−0.01 11.96+0.01

−0.01

Table 3 Prediction of radii for a few well-known CSs with surface density ≈ 1014 g/cm3

Objects M/M� Predicted radii in km

α [km2] β

10 20 30 40 50 0 0.0005 0.0010 0.0015 0.0020

GW 190814 2.5–2.67 12.42+0.06
−0.07 12.47+0.06

−0.09 12.50+0.05
−0.05 12.56+0.03

−0.07 12.58+0.05
−0.05 12.32+0.09

−0.11 12.38+0.06
−0.07 12.42+0.06

−0.08 12.46+0.06
−0.07 12.50+0.05

−0.06

PSR J0952-0607 2.35 ± 0.17 12.59+0.08
−0.10 12.62+0.08

−0.09 12.65+0.08
−0.09 12.67+0.08

−0.10 12.70+0.07
−0.08 12.53+0.10

−0.15 12.56+0.10
−0.13 12.59+0.09

−0.12 12.61+0.09
−0.11 12.63+0.09

−0.09

PSR J0740+6620 2.072+0.067
−0.066 12.73+0.02

−0.03 12.75+0.02
−0.01 12.76+0.01

−0.02 12.77+0.02
−0.02 12.79+0.02

−0.01 12.68+0.03
−0.03 12.70+0.03

−0.02 12.72+0.02
−0.02 12.73+0.03

−0.01 12.75+0.03
−0.01

PSR J1614-2230 1.97 ± 0.04 12.77+0.02
−0.01 12.78+0.02

−0.02 12.79+0.01
−0.01 12.81+0.01

−0.02 12.83+0.01
−0.02 12.73+0.02

−0.03 12.75+0.02
−0.02 12.77+0.01

−0.02 12.79+0.01
−0.02 12.81+0.01

−0.02

right panel) and tangential pressure (Peff
t ) (Fig. 1 bottom left

panel) showed that they both have their maxima at the sur-
face and the decreases in the radially outward direction. The
pressure Peff

r at the boundary is decreasing and approaching
zero, and the tangential pressure (Peff

t ) remains positive as
well as non-zero. It is also noticed that when β = 0, i.e., in the
absence of DM, the decreasing rate of tangential pressure is
very low, which makes the curve look almost horizontal with
Peff
t ≈ 0.06×10−4. But when β > 0, then the curves behave

properly. The curves for different values of β intersect at the
surface for radial pressure, as all the curves approach zero
at the surface, while for tangential pressure, they intersect
at r/R ≈ 0.8 and at Peff

t ≈ 0.06 × 10−4, which is exactly
the value of Peff

t when β = 0. Looking into the anisotropic
factor (Δeff), it is observed that the anisotropy is zero at the
center, while it increases as one moves in the radially out-
ward direction and becomes maximum at the surface (Fig. 1
bottom right panel). It is noticed that anisotropy is at its max-
imum without gravitational decoupling, and as gravitational
decoupling becomes predominant, anisotropy decreases. The
decrease in anisotropy with β can be attributed to the decrease
in surface turbulence with the increase in β.

It is necessary to examine the causality requirement in
order to determine any model’s feasibility, i.e., tangential or
radial sound (vr or vt ) should never travel faster than light.
Mathematically, this means that 0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤ 1

(where the speed of light is scaled to unity). Looking into
Fig. 2, it is seen that both the 0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤ 1

conditions hold everywhere, which means that the causality
condition is maintained everywhere within the model. How-

ever, it was observed that both velocity components have
nearly zero value without gravitational decoupling, and they
increase as gravitational decoupling gets predominant with
the increase in β. Both v2

r and v2
t have minimum values and

increases in radially outward direction, while the radial veloc-
ity is seen to be increasing more steeply than the tangential
velocity.

The variation of the stability factor v2
r − v2

t showed
that it almost remains constant near the center and slightly
decreases near the surface, which can be attributed to the
anisotropy alongside the surface turbulence and non-zero
value of tangential pressure near the surface (Fig. 3). It is
also seen that the quantity v2

r − v2
t decreases with β. The

adiabatic index (Γ ) is one of the key aspects to look into
while studying a CS model, especially when anisotropy is
involved. From Fig. 4, it is noticed that Γ has the lowest
value at the center and then very slowly increases, and after a
certain point at about r/R ≈ 0.7, it starts to increase rapidly,
then on up to the boundary. Also, it is seen that the presence
of DM decreases the adiabatic index as β is seen to decrease
Γ . The effect of this β is seen to have a maximum near the
center and a minimum at the surface. Then, near the surface,
i.e., at higher values of Γ , it maintains equilibrium despite
the change in β. As Γ is linked to the stiffness of the structure
of the star, it can be said that β supports a stiff EoS.

The study of hydrostatic balance based on different forces
was done, and from Fig. 5 it is seen that for all circum-
stances, the attractive and negative gravitational force (Fg)
is balanced by the positive and repulsive hydrostatic force
(Fh) and anisotropic force (Fa), and the hydrostatic balance
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is maintained. It is also noticed that the introduction of EGB
gravity increases the attractive gravitational force, which is
counterbalanced by Fh and Fa . The increase in attractive
gravitational force with the introduction of β demonstrates
that adding gravitational decoupling improves the model’s
stability. The analysis of the surface redshift (Zs) indicated
that because of the presence of gravitational decoupling and
DM content, a large redshift is achieved as Zs increases with
an increase in the β Table 1. Also, the obtained values of Zs

stay well within the limiting values in the GR scenario.
The impact of the GB constant α on the radial and tan-

gential pressures has been studied, and it is represented by
Figs. 6, 7, 8, 9 via the contour diagrams in r−α plane. It
was noticed that all energy density and radial and tangential
pressure decrease with r while α is fixed. For energy density,
with a fixed r , it increases with α. For radial and tangential
pressure also, it is seen that for fixed r , both radial and tan-
gential pressure increase with α near the center; however, for
tangential pressure, it decreases with α near the boundary,
and for radial pressure, it doesn’t change much with α near
the surface. This flip of the α dependence of the tangential
pressure occurs at about r ≈ 0.8. While for anisotropy, it
was recorded that it increases with r when α is fixed. When
r is fixed, near the center, the α dependence on anisotropy
is very less, but near the surface, anisotropy decreases with
the increase in α. The maximum anisotropy is achieved at
the surface when α = 0. For different choices of surface
densities along with coupling constants α and α, we have
displayed the Mass–Radius relation in Figs. 10 and 11 to
demonstrate the applicability of the current stellar models. In
our investigation, two surface densities of order :1014 g/cm3

and 1015 g/cm3, were taken into consideration to examine
the impact of DM on star objects. The maximum masses
for various α and β can be observed from M−R curves.
On the other hand, this study is to use the observed masses
of a small sample of stellar objects, including GW190814,
PSR J0952-0607, PSR J0740+6620, and PSR J1614-2230,
to make predictions about the stars’ radii. Tables 2 and 3 and
Figs. 10 and 11 display the findings. The most plausible range
for PSRJ1614-2230’s radius, in kilometers, is 8.3 ≤ R ≤ 12
[122]. Tables 2 and 3 show that as density decreases, objects
become more compact, with the range of PSRJ1614-2230
radii being 11.87 ≤ R ≤ 11.96 km for density on the order
of 1014 g/cm3 and 12.77 ≤ R ≤ 12.81 km for density on
the order of 1015 g/cm3, respectively.

We conclude that the current method is a powerful tool for
simulating compact objects under EGB gravity with DM.
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Appendix

f3(r) = √
f4(r),

f4(r) = − 4α
[
N

(
aβr2

(
2br2 − 3

) − 18
) + aβ

(
2br2 − 3

)]
Nr2 + 1

+9 + 144α2N 2

(
Nr2 + 1

)2 ,

f5(r) = 192LN
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N 3[aβ2 (
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r4 + 3(2 f3(r) − 21)βr2

+3L
(
aβ2 (

7br2 − 9
)
r4 + 3(2 f3(r) − 15)βr2 + 36

)
r2

+36
]
r4 + aβ2 (

19br2 + 9L
(
3br2 − 4

)
r2 − 24

)
r2

+3N 2{3aβ2 (
5br2 − 6

)
r4 + 5(2 f3(r) − 15)βr2

+L
(
aβ2 (

23br2 − 30
)
r4 + 9(2 f3(r) − 15)βr2 + 48

)
r2

+48
}
r2 + 3N

(
aβ2 (

17br2 − 21
)
r4 + 8( f3(r) − 9)βr2

+L
(
aβ2 (

25br2 − 33
)
r4 + 12( f3(r) − 9)βr2 − 60

)
r2

−36
)]

α3,

f6(r) = 3L2r2
[
N 3{a f3(r)β2 (

5br2 − 6
)
r4 + 3β

(
4a

(
3br2 − 4

)

−9( f3(r) − 3)
)
r2 + 9(4 f3(r) − 49)

}
r4 + 3N 2[aβ2

× (
b(5 f3(r) − 7)r2 − 6 f3(r) + 9

)
r4 + β[8a (

2br2 − 3
)

−27( f3(r) − 4)]r2 + 16 f3(r) − 153
]
r2 + aβ[6βr2

×(6 − f3(r)) + b
(
(5 f3(r) − 27)βr2 − 48

)
r2 + 60]

+3N
{
aβ2 (

b(5 f3(r) − 16)r2 − 6 f3(r) + 21
)
r4

−12β
(
2 f3(r) + a

(
br2 − 1

) − 9
)
r2 − 20( f3(r) − 6)

}]
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f7(r) = LN 3
[
a f3(r)β

2 (
11br2 − 12

)
r4 + 3β

{
4a

(
5br2 − 6

)

−15( f3(r) − 3)
}
r2 + 36 f3(r) − 702

]
r4 + 3N 2{aβ2

× (
b(11 f3(r) − 13)r2 − 12 f3(r) + 15

)
r4 + β

{
16a

× (
2br2 − 3

) − 45( f3(r) − 4)
}
r2 + 6(8 f3(r) − 69)

}
r2

+aβ
(
b(11 f3(r) − 57)βr4 − 96br2 − 12( f3(r) − 6)βr2
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+108
) + 3N

[
aβ2 (

b(11 f3(r) − 32)r2 − 12 f3(r) + 39
)

×r4 − 4β
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5abr2 − 3a + 12 f3(r) − 54

)
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