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Abstract In this work, we reconstruct the Hubble diagram
using various data sets, including correlated ones, in artifi-
cial neural networks (ANN). Using ReFANN, that was built
for data sets with independent uncertainties, we expand it to
include non-Guassian data points, as well as data sets with
covariance matrices among others. Furthermore, we com-
pare our results with the existing ones derived from Gaussian
processes and we also perform null tests in order to test the
validity of the concordance model of cosmology.

1 Introduction

The standard model of cosmology is almost universally
accepted as the concordance model for explaining cosmo-
logical observations [1,2]. This is based on the incorporation
of cold dark matter (CDM) to explain aspects of clustering
[3,4] while the late time accelerated expansion of the Uni-
verse [5,6] is described through the action of a cosmological
constant [7]. While theoretical problems [8] of the cosmolog-
ical constant description and the direct measurability of CDM
[9,10] have been in question for decades, the recent problems
of cosmological tensions [11–18] have brought into question
the predictability of ΛCDM concordance model.

The cosmological tensions issue is most pronounced with
the Hubble constant tension, which has shown a growing dis-
crepancy between direct and indirect determinations of the
H0 parameter [19]. The indirect approaches rely on assum-
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ing a ΛCDM cosmology [20] which is part of the reason
why this model is being possibly reconsidered as the stan-
dard model of cosmology. In terms of indirect measurements,
the latest reported values from the Planck and ACT collab-
orations are respectively HP18

0 = 67.4 ± 0.5 km s−1Mpc−1

[21] and HACT−DR4
0 = 67.9±1.5 km s−1Mpc−1 [22], which

point to a generically lower Hubble constant. On the other
end of the spectrum, direct measurements of the Hubble
constant have come from various different phenomenolog-
ical sources. The strongest determination of the constant has
come from the SH0ES team who have determined a best
value of HR20

0 = 73.2 ± 1.3 km s−1Mpc−1 [23]. This is
based on observations of Type Ia Supernovae (SN-Ia) that are
calibrated using Cepheid stars in their host galaxies. In this
spirit, strong lensing measurements by quasar systems has
also produced a consistent direct result of HHW

0 = 73.3+1.7
−1.8

km s−1Mpc−1 which is due to the H0LiCOW Collabora-
tion [24]. On the other hand, there is a direct result using
the Tip of the Red Giant Branch (TRGB) technique which
results in a lower value of the Hubble constant which gives
HF20

0 = 69.8 ± 1.9 km s−1Mpc−1 [25]. While systemat-
ics feature in every experiment, the Hubble tension appears
to appear in several independent surveys and has now been
present in several studies in the literature for some years.

The community has responded in several ways to this
pressing problem. While work on understanding whether sys-
tematics may be the source of this tension will be ongoing for
years to come, there is a growing body of work that is consid-
ering modifications to our standard picture of cosmology. The
Hubble tension has been confronted with several interesting
approaches in the literature including modifications to early
Universe dark energy [20], as well as the neutrino sector [26],
and renewed interest in modifications to gravitational models
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[27–33]. These approaches all offer interesting paths to new
physics either through revisiting the foundations of cosmo-
logical models or by adding unknown components to the cos-
mological framework. However, many of these models are
degenerate with each other in terms of current observational
approaches which may require a new way of investigating
new physics in the observational sector. One such approach
is to consider the class of so-called model-independent meth-
ods. In this work, we aim to extend the current implemen-
tation of artificial neural networks (ANN) [34] in terms of
the Hubble diagram so that there will eventually be a way to
perform reconstruction of cosmological models.

Through ANNs, real-world observational data can be used
for undertaking reconstructions and inferences that are inde-
pendent of any underlying physical models. They are also
free of many of the statistical assumptions that appear in
many of the other techniques. In this work, we reconstruct the
Hubble diagram from various combined data sets where we
fully incorporate the information in the data, specifically the
covariance matrix. We do this by building on ReFANN1 [35]
which was originally designed for reconstructing the Hubble
diagram for data sets with independent uncertainties, based
onPyTorch.2 We ran this code on GPUs which significantly
reduced the computational time as compared with CPU runs.
In Sect. 2, we briefly introduce the data sets and discuss the
reconstruction methodology adopted. We show the outputs
for these analyses in Sect. 3. We compared and contrast our
ANN outputs against their GP analogues in Sect. 4. The null
tests for these outputs are performed in Sect. 5, while in
Sect. 6 we discuss our main results and make some conclud-
ing remarks.

2 Observational data sets and methodology

In this part of the work we present the reconstruction methods
used with a particular emphasis on ANNs and their archi-
tecture. We also discuss the data sets under investigation
together with the priors used from the literature.

2.1 Methodology

The most popular approach to using model-independent tech-
niques to study cosmology is through Gaussian processes
(GP) [36] since they offer an integrated way to produce cos-
mological parameters together with their associated uncer-
tainties. GP is based on a covariance function, or kernel, that
characterizes the relationship between pairs of data points in
a distribution. The kernel is functionally dependent on non-
physical hyperparameters which can be fit using ordinary

1 https://github.com/Guo-Jian-Wang/refann.
2 https://pytorch.org/docs/master/index.html.

methods. The literature contains numerous works based on
using this approach to reconstructing cosmological param-
eters [37–50]. Most recently, GPs have been used to recon-
struct cosmological models [29–33] from a foundational per-
spective. However, GP suffer from two major drawbacks,
namely (i) they have an overfitting issue for low redshifts
which can artificially constrain the Hubble constant at the
level of its uncertainties; (ii) there is an over-reliance on the
choice of kernel which may affect the profile of the recon-
structed parameters.

An alternative approach to reconstructed cosmological
parameters is through ANNs, which also open the way to the
use of more complex data such as non-Gaussian data points
and correlated data sets. Here, artificial neurons are modeled
to mimic their biological counterpart, which are then orga-
nized into layers through which input signals are transformed
into output signals. One example that this is formulated is
input redshifts giving Hubble parameter and uncertainty out-
puts [51–53]. An ANN is generally composed of a huge
number of neurons that undergo training to optimize their
associated hyperparameter values. A recent study in which
this is performed is Ref. [35] which was further studied in
Ref. [54] using null tests. Now, GP are a very attractive as an
approach because they organically give higher order deriva-
tives of their reconstructed function, and given that most cos-
mological models include such derivatives, they enter into the
range of models that can be reconstructed in this way. In the
recent work Ref. [55], the Hubble diagram ANN reconstruc-
tion method was extended to higher order derivatives using
a Monte Carlo approach. This has opened the way for per-
forming reconstructions of cosmological models. However.
this work is based on using independent data points whereas
most real world data is correlated in some way. This is nor-
mally contained in some covariance matrix. In Markov chain
Monte Carlo analyses, this covariance matrix would feature
in the log-likelihood of the sampler. Our main aim in the
current work is to extend the reconstruction approach of the
Hubble diagram to include covariance information. Together
with the reconstruction of higher derivatives of the Hubble
parameter this means that more complex reconstruction pro-
grammes of cosmological models can be considered.

To do this, consider the mechanics of ANN systems in
which an input layer is connected to an output layer through
a series of hidden internal layers where the majority of neu-
rons are located. These neurons each feature hyperparameters
which are set by training with the aim of having new inputs
produce outcomes that real observations would. In our setup,
the input signal simply consists of a redshift value while the
output layer gives the mean Hubble parameter at that red-
shift together with the uncertainty at that point. This system
is depicted in Fig. 1 for a generalized scenario where each
redshift value z results in a generic cosmological parameter
Υ (z) together with its corresponding uncertainty σΥ (z).
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Fig. 1 The general structure of the adopted ANN, where the input is
the redshift of a cosmological parameter Υ (z), and the outputs are the
corresponding value and error of Υ (z)

The ANN architecture is composed of each neuron pos-
sessing an activation function which calibrates the impact
each neuron will have on the output for a particular input
signal. Each neuron depends on hyperparameters (weights
and biases) which during the training of the ANN take an
optimal value. The layers are then structured as the input and
output connections between each neuron. In this way, a sig-
nal traverses the whole network to produce an output signal
in a structured way. In this work, we consider the exponential
linear unit (ELU) [56] as the activation function, specified by

f (x) =
{
x if x > 0

α(ex − 1) if x ≤ 0
, (1)

where α is a positive hyperparameter that scales the value to
which negative inputs are calibrated to, while positive inputs
continue to traverse the network. Thus, complexity in the
data would be incorporated through differently optimized
hyperparameter values.

The hyperparameter values are set in the training process
where real data is inputted through the system and hyperpa-
rameter values are optimized against real-world data. This
is characterized by a loss function which measures the dif-
ference between predicted and ground truth values in Υ . By
minimizing the loss function, the ANN hyperparameters are
optimized for particular data sets. An example of this process
is the gradient descent combined with the back-propagation
algorithm, while Adam’s algorithm [57] represents a slightly
better version of this optimization algorithm. The L1 loss
function is the simplest and most direct way of assessing
the difference between the predicted and observed values
of some parameter, where the absolute difference between
observed and predicted values of the Hubble parameter at
the observation redshift points are each summed, that is

L1 =
∑
i

|Hobs(zi ) − Hpred(zi )|, (2)

where Hobs(z) and Hpred(z) are observed and ANN predicted
values of the Hubble parameter at observation redshifts z.
This is akin to the MCMC log-likelihood for independent
data sets (less the uncertainties). Other loss functions exist
but they do not generally incorporate more complexity in the
data. In this work, we consider a native way to incorporate
more complexity in the observed data sets by defining a new
loss function analogous to the MCMC log-likelihood for cor-
related data sets. We do this by defining the following χ2 loss
function

Lχ2 =
∑
i, j

[
Hobs(zi ) − Hpred(zi )

]T C−1
i j

[
Hobs(z j ) − Hpred(z j )

]
, (3)

where Ci j is the total noise covariance matrix of the data,
which includes the statistical noise and systematics. In this
way, we will be able to naively use correlated data in our ANN
architecture. While the exact details of the training process
are contained in Sect. 3, this loss function assures that the
ANN will infer Hubble expansion values that reflect both the
mean observational values as well as the covariance matrix
relationships between these points. To ensure the fidelity of
this process, we employ a batch size that is equal to the Pan-
theon compilation sample size. On the other hand, one could
divide this matrix and utilize smaller batch sizes if the whole
data set were to be unmanageable larger.

In order to configure and train our network, we undertake
the following steps:

1. Designing the neural network: After sorting the observa-
tional data sets from low to high redshifts, we use simple
ANN, with one input layer (to feed the training redshifts)
and one output layer (to predict the reconstructed func-
tion). We take into account network models with 1 and 2
hidden layers. The dropout rate is set to 0.2 to prevent it
from over-fitting. The number of neurons in the hidden
layers is chosen as 2n where 2 ≤ n ≤ 13. So the ANN
architectures are 1, 2n, 1 for ANN with 1 hidden layer
and 1, 2n, 2n, 1 for those with two hidden layers.

2. Determining the optimal network configuration: The
hyperparameters (weights and biases) of the network are
initialized with fixed values. All the ANN configurations
are trained after 105 iterations, to ensure that the loss
function no longer decreases. We set the initial learning
rate to 0.01 which goes on decreasing with the number of
iterations and compute the averaged loss of the last 100
iterations. The predictions are made at the training red-
shifts and evaluate reduced χ2 for all the architectures
considered. The ANN architecture with the least aver-
aged loss of the last 100 iterations, and reduced χ2 just
less than 1 is chosen as the optimal configuration. The
optimal network architecture for Pantheon dL compila-
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Fig. 2 Plots showing the reduced χ2 (left panel), and the evolution of the χ2 loss function (right panel), for configuring the optimal neural network
architecture using the Pantheon SN-Ia dL compilation

tion is found to be 1, 64, 64, 1 (see Fig. 2 and Table 1).
On proceeding in a similar fashion, we get 1, 1024, 1 as
the optimal network structure for the Hubble H(z) data.

3. Monte Carlo approach for final predictions: This opti-
mal network architecture is now iterated over 500 times,
for random initialization of hyperparameters along with
the dropout effect. Thus, we get 500 samples of the
reconstructed functions at the corresponding test red-
shifts, from which we compute the mean function and
the respective uncertainties.

4. Derivative predictions: With the 500 realizations of the
predicted functions, we compute numerical derivatives
as, f ′(zi ) � f (zi+1)− f (zi−1)

zi+1−zi−1
. From the reconstructed

f ′(z) samples, we obtain the mean values of recon-
structed f ′(z) along with the associated confidence levels
using another MC routine [55].

5. Batch size: For determining the optimal network config-
uration, we employ a batch size that is equal to the data
size. During the final predictions, the batch size adopted
for the Pantheon compilation is 40 (equal to the size of the
binned Pantheon data), and half the number of available
measurements for the Hubble data.

These are also illustrated in Fig. 3 where the different pro-
cesses in the construction, training and eventual reconstruc-
tion procedures are connected together.

2.2 Data sets

We now employ ANNs to reconstruct the Hubble diagram,
considering three sources of data. These include the cosmic
chronometers (CC) and baryonic acoustic oscillation (BAO)
measurements of the Hubble parameter, as well as the type
Ia supernovae (SN) apparent magnitude data. Furthermore,
keeping in mind the rising H0 tension, we consider the most
precise Cepheid calibration result of H0 = 73.3 ± 1.04 km
Mpc−1 s−1 [58] by the SH0ES team (hereafter referred to
as R21), recently inferred H0 = 69.7 ± 1.9 km Mpc−1 s−1

[59] via the Tip of the Red Giant Branch (TRGB) calibration
technique (hereafter referred to as TRGB) and the most pre-
cise early-time determination of H0 = 67.4±0.5 km Mpc−1

s−1 [21] inferred from the Cosmic Microwave Background
(CMB) sky by the Planck 2018 survey (hereafter referred to
as P18). In our analysis, we assume Gaussian prior distri-
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Table 1 Reduced χ2 obtained
with different neural network
architecture to determine the
optimal configuration for the
Pantheon SN-Ia dL data. The
best neural network architecture
is highlighted in bold

Layers Nodes/neurons Architecture Prior Average of last 100 loss Reduced χ2

1 8 A R21 0.0049 3.89

TRGB 0.0045 3.72

P18 0.0046 4.16

16 B R21 0.0037 1.92

TRGB 0.0035 2.03

P18 0.0032 2.06

32 C R21 0.0033 1.79

TRGB 0.0032 1.55

P18 0.0031 1.26

64 D R21 0.0029 1.30

TRGB 0.0030 0.87

P18 0.0026 2.01

128 E R21 0.0030 2.42

TRGB 0.0035 2.12

P18 0.0027 2.24

256 F R21 0.0031 3.02

TRGB 0.0032 2.23

P18 0.0029 2.37

512 G R21 0.0030 2.87

TRGB 0.0036 2.82

P18 0.0022 3.23

2 8, 8 A R21 0.0096 7.58

TRGB 0.0101 6.65

P18 0.0075 6.11

16, 16 B R21 0.0044 3.89

TRGB 0.0056 2.11

P18 0.0042 3.58

32, 32 C R21 0.0039 1.15

TRGB 0.0041 1.32

P18 0.0033 1.11

64, 64 D R21 0.0030 0.94

TRGB 0.0033 0.91

P18 0.0024 0.98

128, 128 E R21 0.0030 0.93

TRGB 0.0031 0.85

P18 0.0022 0.94

256, 256 F R21 0.0051 1.31

TRGB 0.0044 1.15

P18 0.0026 0.96

512, 512 G R21 0.0067 2.51

TRGB 0.0063 1.43

P18 0.0059 1.77

butions with the mean and variances corresponding to the
central and 1σ reported values of each prior above.

For the SN data, we take into account the full Pantheon
[60] compilation consisting of 1048 supernovae. We attempt
to reconstruct the comoving distances from the Pantheon

compilation. To begin with, we convert the apparent magni-
tudes m(z) from the full supernova sample to the respective
luminosity distances (in units of Mpc), as

dL(z) = 10
1
5 [m(z)−MB−25], (4)
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Fig. 3 Flow of ANN architecture design and reconstruction process

where MB is the absolute magnitude of supernovae. We
obtain the marginalized constraints on MB assuming vanilla
ΛCDM, considering a uniform prior MB ∈ [−35,−5]
via a Markov Chain Monte Carlo (MCMC) analysis using
emcee3 [61] python library. The calibrated constraints
obtained are MB = −19.302 ± 0.031, −19.369 ± 0.037 and
−19.425 ± 0.017 corresponding to the R21, TRGB and P18
H0 priors, respectively, are shown in Fig. 4 using GetDist4

[62].
Again, we make use of the latest 32 CC Hubble parame-

ter measurements [63–69], covering the redshift range up
to z ∼ 2. These data do not assume any particular cos-
mological model but depend on the differential ages tech-
nique between galaxies, where we consider the full covari-
ance matrix including the systematic and calibration errors
[70]. We also take into account the BAO Hubble distance
dH (z)
rd

measurements [71–77] from different galaxy surveys
like Sloan Digital Sky Survey (SDSS), the Baryon Oscilla-
tion Spectroscopic Survey (BOSS) and the extended Baryon
Oscillation Spectroscopic Survey (eBOSS), such that

3 https://github.com/dfm/emcee.
4 https://github.com/cmbant/getdist.

H(z) = c/dH (z). (5)

Note that, the BAO H(z) data assumes a fiducial value for the
radius of the comoving sound horizon rd . To investigate the
effect of the sound horizon scale on the reconstruction when
using the BAO data, we consider the following constraint on
rdh = 102.56±1.87 obtained by Camarena and Marra [78],
keeping in mind the degeneracy between H0 and rd .

3 Neural network reconstruction

After preparation of the dL data, we train a network model to
learn to mimic the complex relationships between z, dL(z)
and σdL (z). With this trained model, any arbitrary number of
dL(z) samples can be reconstructed by feeding a sequence of
redshifts to this network model. Before training the network
model on real data, we structure the optimal network config-
uration of our network model, i.e. determining the optimal
number of neurons and layers according to Sec. A of [55].

Now, for the given sample of reconstructed dL(z), we can
arrive at the evolution of the normalized transverse comoving
distance, D, from the Pantheon sample as

D(z) = H0

c(1 + z)
dL(z). (6)

Fig. 4 Marginalized posteriors for the calibrated values of supernovae
apparent magnitude MB in the Pantheon compilation considering the
R21, TRGB, and P18 H0 priors (in units of km Mpc−1 s−1), respectively.
The constraints obtained are MB = −19.302±0.031, −19.369±0.037
and −19.425 ± 0.017 corresponding to the R21, TRGB and P18 H0
priors
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Fig. 5 Plots for the reconstructed (i) D(z) (left panel), and (ii) D′(z)
(right panel), using neural networks from the Pantheon SN data consid-
ering R21, TRGB, and P18 H0 priors

The plot for the reconstructed D is shown in the left panel
of Fig. 5. In this setting, the reconstruction is produced by
feeding a number of redshift points into the ANN so that
values of D and its associated uncertainty can be obtained.
The observational covariance information will have been
imprinted on the ANNs through the training process due to
the form of the loss function, while the reconstructed diagram
will simply be composed of mean values and uncertainties
at specific redshift points. We also undertake the simulta-
neous reconstruction of D′(z), the first order derivative of
D(z), where this prime denotes derivative with respect to the
redshift z, via an MC routine on multiple dL(z) realizations,
such that D′(z) = H0

c(1+z) d ′
L(z). This compounding effect

of MC with ANNs is undertaken following the methodology
described in Ref. [55]. The plot for the reconstructed D′(z)
is shown in the right panel of Fig. 5. Finally, one can plot the
evolution of the reduced Hubble parameter E(z) from the
supernovae data as, E(z) = 1/D′(z), given in the left panel
of Fig. 6.

For a comparison between the Hubble and supernovae
data sets, we next utilize the ANN method to reconstruct the
reduced Hubble parameter,

Fig. 6 Plots for the reconstructed reduced Hubble parameter E(z)
from the (i) Pantheon SN compilation (left panel) and (ii) combined
CC+BAO Hubble data set (right panel), using neural networks consid-
ering R21, TRGB, and P18 H0 priors

E(z) = H(z)/H0, (7)

directly from the combined CC+BAO Hubble data. The
uncertainty associated with the reconstructed E(z) is
obtained via the Monte Carlo method. Plots for the recon-
structed E(z) from the Hubble data are shown in the right
panel of Fig. 6.

4 Comparison with Gaussian processes reconstruction

In this section, we will discuss the work done in this paper
using ANN-based reconstruction techniques, compared to
the ones from Gaussian Processes. We recall that the meth-
ods by which these two reconstruction strategies function are
fundamentally different. While GP requires some constraints
on the type of data that it can be applied to, ANNs make
vastly fewer assumptions and feature a much higher number
of hyperparameters, which are then fit during the training of
the neural network. Thus, one would expect an ANN to be
much less constrained by the complexity of the data, and to
have wider uncertainties. On the other hand, since GP does
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Fig. 7 Plots for the reconstructed (i) D(z) (left panel), and (ii) D′(z)
(right panel), using Gaussian processes from the Pantheon SN data
considering R21, TRGB, and P18 H0 priors

have some information about the behavior of the data, it can
obtain smaller uncertainties.

We start by comparing the normalized transverse comov-
ing distance D(z) (6) which quantifies the comoving dis-
tance for an object of relatively small characteristic length
with respect to the Hubble flow. This is an appropriate way
in which to interpret the SN data, since it does not require a
fully determined cosmological model on which to perform
numerical integrals. In our case, we first show the recon-
struction for D(z) in Fig. 5 where the evolution is shown for
a wider range of redshifts with means being shown for the
ΛCDM model, as well as reconstructions for various litera-
ture priors. Given our reconstruction approach, we can also
show the reconstruction of the redshift derivative of D(z) for
the same priors. This can be contrasted with the analogous
plot Fig. 7 which is the GP reconstruction of the same plots.
In both cases, the reconstructions have very low uncertainties
for most of the evolution of both D(z) and its first deriva-
tive. This happens because there is such a volume of data for
the Pantheon sample. Thus, both methods will function quite
well in the reconstruction of this particular data set.

The other comparison that provides an important dimen-
sion to the performance of GP and ANNs is that of the reduced

Fig. 8 Plots for the reconstructed reduced Hubble parameter E(z)
from the (i) Pantheon SN compilation (left panel) and (ii) combined
CC+BAO Hubble data set (right panel), using Gaussian processes con-
sidering R21, TRGB, and P18 H0 priors

Hubble parameter described in Eq. (7) which is a rescaled
Hubble parameter that features a theoretical prior in that
E(0) = 1. This rescaled Hubble parameter is used for both
the Pantheon data set as well as for Hubble data in the form of
CC+BAO. For the ANN reconstruction, the reduced Hubble
parameter gives Fig. 6 in which the reconstruction based on
the Pantheon data set shows good behavior for low to medium
values of redshift but then becomes numerically unbounded
for much larger redshifts, while the same parameter is well
behaved for the whole data range in the CC+BAO case. On
the other hand, the GP reconstruction, shown in Fig. 8 has
associated uncertainties that increase at slightly lower red-
shifts for the Pantheon data set case. Also, the CC+BAO
reconstruction with is in mild tension with ΛCDM at com-
paratively lower redshifts.

GP and ANN both have positive features in reconstruct-
ing cosmological data sets. However, ANN shows greater
promise in that they rely on less rigid training data and can
model more complex structures of data sets.
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5 Null tests

We now introduce some null tests, namely the Om diagnos-
tics [79–81], followed by the H0 diagnostics [82], to test the
validity of the concordance model of cosmology.

5.1 Om diagnostics

TheOm diagnostic [79–81] serves as a null test to distinguish
the ΛCDM model from alternative dark energy and modified
gravity models, defined as

Om(z) = E2(z) − 1

(1 + z)3 − 1
, (8)

where E(z) = H(z)/H0 is the reduced Hubble parameter.
It works on the principle that different models have different
evolutionary trajectories in z − Om(z) plane. Being a func-
tion of H(z) only, which can be directly reconstructed from
observational data, it is independent of the cosmic equation
of state. Moreover, there is no dependence on any theory
of gravity. So, this exercise serves as an alternative route
towards understanding the late-time cosmic acceleration in
the absence of any convincing physical theory [83–86].

For a universe with an underlying expansion history E(z),
given by the ΛCDM model, Om(z) will essentially be a con-
stant, exactly equal to Ωm0, the matter density parameter
at the present epoch. The slope of Om(z) can differentiate
between different dark energy and modified gravity models
even if the Ωm0 is not accurately known. Therefore, any pos-
sible deviation ofOm(z) from Ωm0 can be used to draw infer-
ences on the dynamics of the universe. For the phenomeno-
logical wCDM model, where the dark energy component
is described by a constant equation of state parameter w, a
positive slope of the Om(z) indicates a phantom behaviour
of dark energy, whereas a negative slope points towards a
quintessence dark energy model.

We plot theOm diagnostics, as a function of the redshift z,
using the reconstructed E(z) in Figs. 9 and 10 from the Pan-
theon SN and combined CC+BAO Hubble data respectively.
The uncertainties associated with the reconstructedOm diag-
nostics are obtained by an MC error propagation technique.
We also show a comparison between the two methods of
reconstruction, i.e. implementation with neural networks in
the left panel, and employing Gaussian processes in the right
panel. Figures 9 and 10 show that the reconstructed values are
not well constrained at lower redshifts z < 0.2. The mean
reconstructed Om curves in both the figures show evolu-
tion with increasing redshift. In Fig. 9, we find that the mean
curves are characterised by a significant positive slope for
z > 1, nonetheless the ΛCDM model assuming the Planck
best-fit Ωm0 = 0.315 [21] is consistent with the Om recon-
struction at the 2σ confidence level. Whereas, the reconstruc-
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Fig. 9 Plots for the reconstructed Om diagnostics using (i) neural net-
works (left panel) and (ii) gaussian processes (right panel), from the
Pantheon SN data considering R21, TRGB, and P18 H0 priors

tion profile in Fig. 10 tends to be characterised by a negative
slope for z > 1, excluding ΛCDM at 2σ confidence level
for z > 2. This deviation from the concordance model pos-
sibly arises from the inclusion of high redshift Ly-α BAO
measurements which calls for further investigation.

5.2 H0 diagnostics

The Hubble tension, routinely presented as a mismatch
between the Hubble constant H0 determined from local mea-
surements and a value inferred from the CMB sky assuming
ΛCDM cosmology, essentially boils down to a disagreement
between two numbers. Assuming this tension is cosmolog-
ical in origin, the authors in [82] explore the possibility of
other inferred values of H0, predicting that a “running of H0

with z” may be expected within the concordance model. Sim-
ilar possibilities of a steadily varying trend in the inferred H0

as one moves from low to high redshift data have also been
studied [87–94]. Such a phenomenological evolution of H0

with the z could be a straightforward alternative in resolving
the tension without any direct investigation of the funda-
mental framework. One such diagnostic that flags possible
deviations from ΛCDM is the H0 diagnostics H0, defined as
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Fig. 10 Plots for the reconstructed Om diagnostics using (i) neural
networks (left panel) and (ii) gaussian processes (right panel), from the
combined CC+BAO Hubble data considering R21, TRGB, and P18 H0
priors

H0 = H(z)√
Ωm0(1 + z)3 + 1 − Ωm0

. (9)

This quantity H0 provides us with a null test for the concor-
dance model and a non-constancy of H0 suggests evidence
for new physics beyond ΛCDM.

In this section, we plot the evolution of H0 with respect to
the redshift z from the reconstructed E(z) in Figs. 11 and 12
from the Pantheon SN and combined CC+BAO Hubble data
respectively. The left panels correspond to the reconstruction
with ANNs, whereas the right panel represents the recon-
struction using GPs. We make use of the employed H0 priors
to obtain the numerator H(z) = H0E(z), in the RHS of 9.
The denominator has been fixed by samplingΩm0 directly via
an MCMC analysis with the combined CC+BAO+SN data
sets assuming ΛCDM cosmology. The constraints obtained
on Ωm0 are 0.290 ±0.016, 0.298±0.017 and 0.303±0.016
considering the R21, TRGB and P18 H0 priors. The uncer-
tainties associated with the parameter Ωm0 and reconstructed
H(z) are propagated using the MC error propagation tech-
nique.

Fig. 11 Plots for the reconstructed H0 diagnostics using (i) neural net-
works (left panel) and (ii) gaussian processes (right panel), from the
Pantheon SN data considering R21, TRGB, and P18 H0 priors

Our results show that the mean reconstructedH0 curves in
both the figures show a non-monotonic evolution with respect
to z. In Fig. 11, H0 progressively increases with increasing z,
but on going beyond z > 2 we observe a dip in the reconstruc-
tion profile. The presence of such a dip is apparent in the right
panel when employing GPs. We also plot the R21, TRGB,
and P18 H0 values in black solid, dashed and dotted lines
to simultaneously compare them with the obtained H0(z)
respectively. We find that the reconstructed errors accommo-
date ΛCDM within a 2σ level. The non-monotonic nature
of H0 is clearly visible in Fig. 12, when the Hubble data is
taken into consideration. The reconstructed H0 profile indi-
cates a clear deviation from ΛCDM at the 2σ confidence
level, driven by Lyman-α BAO leading to a significant dip in
H0 for z > 2. However, if we restrict our attention to z < 1,
where the quality of available data is much better, one finds
little evidence for any deviation from ΛCDM cosmology.

6 Conclusion

Even though reconstruction techniques have been a very pop-
ular topic of research the last few years in cosmology, the
majority of the studies focus on GP to reconstruct dark energy
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Fig. 12 Plots for the reconstructed H0 diagnostics using (i) neural net-
works (left panel) and (ii) gaussian processes (right panel), from the
combined CC+BAO Hubble data considering R21, TRGB, and P18 H0
priors

and its potential theoretical foundations. GP, however, suf-
fer from various problems among which are overfitting at
low redshifts, meaning that the reconstructed function is too
closely aligned to low redshift data points, as well as the
selection of a kernel which introduces a statistical bias.

ANNs have been proposed as a promising alternative to
GPs, but in contrast to GPs, one can reconstruct only the
cosmological parameters without their derivatives. There has
been a recent work on the reconstruction of higher derivatives
of the Hubble function in [55], where the authors use an
MC approach. Even though, this helps with the testing of
cosmological models, up to now there have been used only
independent data points, while the most realistic data sets are
correlated somehow.

In this work, our goal was to include covariance infor-
mation in the reconstruction approach in order to be able
to use more realistic data sets. Once we reconstruct a cos-
mological parameter, we can use the Monte Carlo approach
to reconstruct its higher derivatives and thus reproduce or
test the viability of various cosmological models with better
accuracy than before.

In greater detail, we reconstructed the Hubble diagram
for various combinations of Cosmic Chronometers, Baryon
Acoustic Oscillations, as well as the 1048 data points of
Supernovae type Ia of Pantheon, which are correlated. To do
this, we expanded ReFANN, that was initially formed based
on PyTorch, using only independent data points.

The type of data that ANNs can use is not as constrained
as in GP. Specifically, ANNs make much less assumptions,
because the many more hyperparameters they use, imitate in
a better way the natural process compared to GP. For this
reason, one would expect that, ANNs would produce higher
uncertainties, however this is not the case here. Because of
the large volume of data in the Pantheon set, both GP and
ANNs perform in a similar way in terms of error bars. Thus,
comparison between the two techniques shows more poten-
tial for the latter, since it does on exact training data and also
can represent more complicated structures of data sets.

Last but not least, apart from the reconstruction of the
Hubble function, we performed null tests in order to test the
consistency of our results. In particular, through the Om and
the H0 diagnostics we tried to identify possible deviations
from the ΛCDM model. Both diagnostics indicate a devia-
tion from the concordance model at z > 2, most probably
because of the inclusion of the high redshift BAO data points.
However, they both can accommodate ΛCDM at 2σ confi-
dence level.

What would interesting to see from now on, is not only
to forecast observations for experiments in progress that are
about to publish their results, but also to use the reconstructed
Hubble parameter and its derivative to constrain or even elim-
inate alternative cosmological models.
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