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Abstract We consider loop quantum gravity (LQG) moti-
vated 4D polymerized black hole and study shadow, quasi-
normal modes, and Hawking radiation. We obtain analyti-
cal expressions of photonsphere radius and shadow radius
and study their qualitative and quantitative nature of vari-
ation with respect to the LQG parameter α. We also show
shadows of the black hole for various values of α. Our study
reveals that both radii increase with an increase in the param-
eter value. We, then, study quasinormal modes for scalar
and electromagnetic perturbations using the 6th order WKB
method. Our study reveals that the LQG parameter impacts
quasinormal modes. We observe that the oscillation of grav-
itational wave (GW) and decay rate decrease as α increases.
At the same time, the error associated with the 6th order
WKB method increases with an increase in α. The ringdown
waveform for electromagnetic and scalar perturbations is
shown. We also study greybody bounds, power spectrum, and
sparsity of Hawking radiation. Greybody bounds for elec-
tromagnetic perturbations do not depend on α. For scalar
perturbation, greybody bounds increase as the LQG param-
eter increases, but the variation with α is very small. The
peak of the power spectrum as well as total power emitted
decrease as we increase the value of α. Also, the sparsity of
Hawking radiation gets significantly impacted by quantum
correction. Finally, we obtain the area spectrum of the black
hole. It is found to be significantly different than that for the
Schwarzschild black hole.

1 Introduction

The observation of shadows of supermassive black holes
(BHs) M87∗ and Sgr A∗ by event horizon telescope (EHT)

a e-mail: sohan00slg@gmail.com (corresponding author)

[1,2] has validated the remarkable accuracy of General Rel-
ativity (GR) given by Einstein [3]. The existence of BHs was
predicted by GR. It was shown by Hawking and Penrose
that BHs formed by the gravitational collapse of massive
objects would eventually have a spacetime singularity [4].
The existence of such a singularity leads to the breakdown
of physical laws and the divergence of scalar invariants. As a
result, geodesics are incomplete. It is generally believed that
no such singularity exists in nature and such singularities are
unavoidable features of classical GR. Wheeler suggested that
quantum gravity can help us resolve the spacetime singular-
ity [5]. The first regular black hole (RBH) without singularity
was proposed by Bardeen [6]. In Bardeen’s black hole, we
have de sitter-like region, resulting in a regular center. A sig-
nificant number of studies have been devoted to studying var-
ious models of RBHs. Loop quantum gravity (LQG) is con-
sidered to be one of the viable models of the quantum theory
of gravity [7–9]. LQG uses a non-perturbative technique and
employs area and volume quantization to resolve singularity
[10–12]. Research has till now been confined to spherically
symmetric BHs due to the complexity involved in solving
the entire system [10–15]. Discreteness of spacetime, sug-
gested by LQG, is preserved by an elegant technique called
phase space quantization or polymerization [13–15]. Based
on works that have been done in this field [10–18], Peltola
and Kunstatter [19] reported a static, spherically symmet-
ric, single horizon, regular black hole. Unlike other RBHs,
it has one horizon whereby the problem of mass inflation at
the inner horizon is removed. At the same time, spacetime is
hyperbolic globally and the geodesics are complete. Several
studies have been made in non-rotating RBHs [20–22] and
rotating RBHs [22,23].

The shadow of a black hole is a manifestation of its strong
gravitation field. Black hole shadow has been a topic of
intense research for quite some time now. The first image
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of the shadow of a supermassive black hole M87∗ has only
increased the interest of the research community in studying
various aspects of shadow. Bardeen, Press, and Teukolsky
studied the shadow of a Kerr BH in [24]. The shadow of
the Schwarzschild black was studied by Synge in [25]. The
shadow of a BH surrounded by a bright accretion disk was
studied by Luminet [26]. Narayan in his article [27] studied
the shadow of a spherically accreting black hole. In article
[28], authors have studied the shadow and photon rings of
Reissner–Nordstrom (RN). A several studies have been made
in [29–38] to use shadow for detection of dark matter.

Quasinormal modes are one of the significant aspects of
black hole physics. They are related to the emission of GWs
from perturbed BHs that eventually die down due to dissipa-
tion [39–41]. These modes are called quasinormal as they are
transient. Quasinormal modes are complex numbers where
the real part corresponds to the frequency of the GW and the
imaginary part gives the decay rate. There are three phases
that BHs experience after perturbation: inspiral, merger, and
ringdown. Quasinormal modes, for remnant BHs, are related
to the ringdown phase. Quasinormal modes bear the signa-
ture of the underlying spacetime. Thus, it is important to
study quasinormal modes to gauge the impact of quantum
correction. Several articles have been devoted to studying
quasinormal modes of various BHs [42–73]. Another impor-
tant phenomenon related to a BH is Hawking radiation. It
was Hawking who showed that BHs emit radiation [74].
Hawking took into account quantum consequences to prove
it. When a pair production occurs close to the event horizon,
one of the particles enters the BH and the second particle
moves away from BH. It is the second particle that forms
the Hawking radiation [75–77]. A number of different ways
can be employed to obtain Hawking temperature [78–80].
The greybody factor gives the probability of Hawking radia-
tion reaching an asymptotic observer. Thus, it is an important
quantity. Matching method [81–83] or WKB method [84,85]
can be used to calculate greybody bounds. Visser [86] gave
an elegant method to find greybody bounds. This method has
been used in [35,87].

This manuscript is organized as follows. In Sect. 2, we
introduce the LQG motivated 4D polymerized black hole
metric and obtain analytical expressions of radii of photon-

sphere and shadow. We also study the qualitative and quanti-
tative variation of those radii with respect to the LQG param-
eter α. In the next section, we study the quasinormal modes
of the black hole for scalar and electromagnetic perturbations
and probe the effect of the LQG parameter on quasinormal
modes. In Sect. 4, we obtain the analytical expressions of
Hawking temperature and greybody bounds and investigate
the effect of quantum correction on them. In Sect. 5, we
study the power spectrum and sparsity of Hawking radia-
tion. In Sect. 6, we obtain the area spectrum of the LQG-
motivated black hole. We conclude our article in Sect. 7 with
a brief discussion of our results. Throughout the paper, we
use G = c = M = h̄ = 1.

2 LQG motivated non-rotating black hole and its
shadow

Peltola and Kunstatter, with the help of effective field theory
technique, derived the following LQG motivated 4D poly-
merized static and spherically symmetric black hole metric
[19]

ds2 = −
⎛
⎝

√
1 − α2

z2 − 2M

z

⎞
⎠ dt2 +

(
1 − α2

z2

)−1

(√
1 − α2

z2 − 2M
z

)dz2

+z2(dθ2 + sin2 θdφ2). (1)

The above metric is singular at ȳ = α. This singularity can
be removed by using the transformation z = √

r2 + α2. With
this transformation, the metric (1) becomes

ds2 = −
(

r − 2M√
r2 + α2

)
dt2 + 1(

r−2M√
r2+α2

)dr2

+(r2 + α2)(dθ2 + sin2 θdφ2). (2)

The above metric reduces to the Schwarzschild metric when
we put α = 0. Here, the range of the radial coordinate r is
0 ≤ r ≤ ∞. The event horizon of the black hole represented
by the metric (2) is located at r = 2M , irrespective of the
value of α. Ricci c metric (2) are given by

R =
2α2

(
3M+√

α2+r2
)

−2r3+2r2
√

α2 + r2−5α2r
(
α2 + r2

)5/2
,

4α6+12M2
(

3α4+4r4 − 4α2r2
)

+ 4Mr
(
−15α4 − 4r4 + 14α2r2

K =
+4α2r

√
α2 + r2 + 4r3

√
α2 + r2

)
+ 8r6 + 12α2r4 + 41α4r2 − 8r5

√
α2 + r2 − 8α2r3

√
α2 + r2

(
α2 + r2

)5
.
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These expressions reveal that the scalar invariants are
finite everywhere. It implies that the metric (2) represents
a regular spacetime globally and geodesics are complete.
We next study null geodesics in the background of LQG
motivated black hole given by the metric (2). As the black
hole we are considering is spherically symmetric, we, without
loss of generality, can consider the equatorial plane with θ =
π
2 . For equatorial plane, the ansatz (2) reduces to

ds2 = − f (r)dt2 + dr2

f (r)
+ h(r)dφ2, (3)

where f (r) = r−2M√
r2+α2 is the lapse function and h(r) =

r2 + α2. As the polymerized black hole is static and spher-
ically symmetric, the energy E = −pμξ

μ

(t) and the angu-

lar momentum L = pμξ
μ

(φ) along the geodesics are con-

served. Here, ξ
μ

(t) and ξ
μ

(φ) are the Killing vectors due to
time-translational and rotational invariance respectively [88].
Thus, E = −pt is the energy of a photon and L = pφ is
the angular momentum. The expressions of pt and pφ are
obtained from the Lagrangian corresponding to the metric
(3). The Lagrangian is given by

L = − f (r)ṫ2 + ṙ2

f (r)
+ h(r)φ̇2. (4)

Now, we have pq = ∂L
∂q̇ , where pq is the conjugate momen-

tum to the coordinate q. With the help of this definition, we
obtain

pt = ∂L

∂ ṫ
= − f (r)ṫ,

pr = ∂L

∂ ṙ
= ṙ

f (r)
,

pφ = ∂L

∂φ̇
= h(r)φ̇. (5)

Here, the dot is differentiation with respect to an affine param-
eter τ . Differential equations of motion are

dt

dτ
= E

f (r)
and

dφ

dτ
= L

h(r)
. (6)

Using Eqs. (3) and (6), we obtain the differential equation
for the null geodesics as

(
dr

dτ

)2

≡ ṙ2 = E2 − V (r), (7)

where V (r) is the potential given by

V (r) = L2 f (r)

h(r)
. (8)

Fig. 1 Potential for various values of α. Here, we have taken L=1

The unstable circular photon orbits are located at the peak
of the above potential. In Fig. 1, we plot the potential with
respect to r for various values of α. We observe that the peak
of the potential shifts towards the right as we increase the
value of the parameter α. It implies that the photon radius
increases as we increase the value of the parameter. This
finding will be confirmed in subsequent results.

For circular photon orbits of radius rp, we must have

V (rp) = 0,
dV

dr
|r=rp = 0, and

∂2V

∂r2 |r=rp < 0. (9)

The middle equation yields

f ′(rp)
f (rp)

= h′(rp)
h(rp)

. (10)

The above equation, on simplification, produces

2r2 − 6Mr − α2 = 0. (11)

We obtain two roots from the above equation. Using the
first and third conditions from Eq. (9), we exclude one solu-
tion and retain the other. The radius of the photonsphere

is given by rp = 1
2

(√
2α2 + 9M2 + 3M

)
. This analytical

expression shows that the LQG parameter α has a signif-
icant impact on the radius of the photonsphere. For distant
observers, the shadow radius is equal to the impact parameter.
Thus, the shadow radius is given by

bp = Rs = L
E =

√
h(rp)

f (rp)

=
33/4

√(
α2+M

(√
2α2+9M2+3M

))3/2

√
2α2+9M2−M

4
√

2
. (12)

In the limit α → 0, we get the values of photon radius and
shadow radius for the Schwarzschild black hole i.e., rp =
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Fig. 2 Variation of rp and Rs against α

Table 1 Various values of photon radius and shadow radius for different values of α

α 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

rp 3.0 3.00665 3.02643 3.05885 3.10312 3.15831 3.22337 3.29722 3.37883 3.46723 3.56155

Rs 5.19615 5.21343 5.26468 5.34832 5.46193 5.60259 5.76717 5.95258 6.15592 6.3746 6.60632

3M and Rs = 3
√

3M . To understand the qualitative nature
of variation of photon and shadow radius with respect to LQG
parameter, we plot rp and Rs against α in Fig. 2. Quantitative
values of photon radius rp and shadow radius Rs are given
in Table 1 for different values of the black hole parameter.

One observation we can make from Fig. 2 and Table 1
is that both the radii increase as we increase the value of
the parameter α. The variation of photon radius and shadow
radius is significant with respect to the parameter α. To study
the shadow of the black hole given by (2), we use two celestial
coordinates:

x = lim
ro→∞

[
− r2

o sin θo
dφ

dr

∣∣∣∣
θ−θo

]
,

y = lim
ro→∞

[
r2
o
dθ

dr

∣∣∣∣
θ−θo

]
,

where (ro, θo) is the observer’s position at infinity. For an
observer in the equatorial plane i.e., θ0 = π/2, we have

Rs ≡
√
x2 + y2.

Shadows for the black hole are shown below for various
values of α. For α = 0, we obtain the shadow for the
Schwarzschild black hole. For non-zero values of the param-
eter, we obtain the shadow for the quantum-corrected black
hole. Figure 3 shows that the quantum correction has an
observable impact on the shadow. From the plot, we also
observe that the shadow radius increases with the parameter
α.

Fig. 3 Shadow for various values of α

This concludes our discussion of photonsphere and
shadow for the LQG-motivated 4D polymerized black hole.

3 Quasinormal modes of non-rotating Simpson–Visser
black hole

In this section, We investigate quasinormal modes of LQG
motivated 4D polymerized black hole for scalar and electro-
magnetic perturbations. Here, the impact of the scalar field
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or the electromagnetic field on the background spacetime is
considered to be negligible. To study quasinormal modes,
we first consider the equation for the relevant field and then,
reduce it to a Schrödinger-like equation. For the scalar field,
we will have the Klein–Gordon equation and for the electro-
magnetic field, we will consider Maxwell equations. For the
massless scalar field, we have

1√−g
∂μ(

√−ggμν∂νψ) = 0, (13)

and for the electromagnetic field, we have

1√−g
∂ν(Fρσ g

ρμgσν√−g) = 0, (14)

where Fρσ = ∂ρAσ −∂σ Aρ , Aν being electromagnetic four-
potential. We now introduce the tortoise coordinate:

dr∗ = dr

f (r)
. (15)

With the help of tortoise coordinate, Eqs. (13) and (14) reduce
to the following Schrödinger-like form

− d2φ

dr2∗
+ Veff(r)φ = ω2φ, (16)

where the effective potential is given by

Veff(r) = (1 − s2) f (r)

r

d f (r)

dr
+ f (r)�(� + 1)

r2

=
(r − 2M)

(
r2

(
�(� + 1)

√
α2 + r2 − 2M

(
s2 − 1

)) + α2
(
�(� + 1)

√
α2 + r2 − rs2 + r

))

r2
(
α2 + r2

)2 . (17)

Here, � is the angular momentum and s is the spin. For s = 0,
we obtain the effective potential for scalar perturbation, and
for s = 1, we obtain the effective potential for electromag-
netic perturbation. Since the effective potential influences
quasinormal modes, we briefly study the variation of the
effective potential for various scenarios.

From Fig. 4 we observe that the peak of the poten-
tial increases as we increase the angular momentum but
decreases with the increase in the parameter α. We also see
that the position of the peak shifts towards the right as we
increase the angular momentum � or decrease the parameter
α.

Next, with the help of the 6th order WKB method, we
obtain quasinormal modes. WKB method to calculate quasi-
normal modes was first developed by Schutz and Will [89].
It was later extended to higher orders [90–92]. The 6th order
WKB method yields the following expression of quasinormal
frequencies:

i(ω2 − V0)√
−2V

′′
0

−
6∑

i=2

�i = n + 1

2
, (18)

where V0 and V ′′
0 represent the height of the effective poten-

tial and the second derivative with respect to the tortoise
coordinate of the potential at its maximum, respectively. �i

are the correction terms given in [89–92]. With the help of
Eq. (18), we calculate some of the values of quasinormal
frequencies of scalar and electromagnetic perturbations for
various values of angular momentum � and parameter α. In
Table 2, we show numerical values of quasinormal modes of
scalar perturbation for different values of angular momentum
� and parameter α keeping overtone number n = 0. In Table
3, we show quasinormal modes of electromagnetic pertur-
bation for different values of angular momentum and LQG
parameter keeping overtone number n = 0. We also calculate
the error associated with the 6th order WKB method defined
by

�6 = |ω7 − ω5|
2

, (19)

where ω5 and ω7 are quasinormal frequencies obtained using
5th order and 7th order WKB method respectively.

From Tables 2 and 3, we can infer that the real part of quasi-
normal frequencies decreases with an increase in parameter
value α for a particular value of �. Additionally, it is observed
for both perturbations that the real part of quasinormal modes
increases as we increase the angular momentum �. We can

observe from the Tables 2 and 3 that the decay rate or damp-
ing rate increases as we decrease the value of parameter α

or increase the angular momentum for both perturbations. It
is also observed that the error associated with the 6th order
WKB method increases with an increase in the LQG param-
eter value α. Next, we investigate the qualitative nature of
variation of quasinormal frequency for various aspects.

Figures 5 and 6 reinforce the findings we have drawn from
Tables 2 and 3. We can also observe from the Fig. 7 that the
real part of quasinormal modes is larger for scalar perturba-
tion, whereas, the imaginary part is larger for electromagnetic
perturbation. It implies that the damping rate or decay rate is
larger for scalar perturbation. We next study the convergence
of the WKB method for various values of (n, �) pair.

From the above Fig. 8 we observe that quasinormal fre-
quencies fluctuate even for higher order when we consider the
pair (3, 0). This confirms the finding in the article [93] where
it is observed that WKB approximation is reliable when the
angular momentum is high and the overtone number is low.
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Fig. 4 Variation of effective potential with respect to tortoise coordinate r∗. The upper ones are for various values of α with � = 1 and the lower
ones are for various values of angular momentum with α = 0.8M . The left ones are for scalar perturbations and the right ones are for electromagnetic
perturbations

Table 2 Quasinormal frequencies for scalar field with n = 0

α � = 1 �6 �=2 �6 �=3 �6

0 0.367984 − 0.0944086 i 0.0000230659 0.532369 − 0.0953138 i 3.28709 × 10−6 0.711038 − 0.0957039 i 7.63696 × 10−7

0.25 0.367427 − 0.0940281 i 0.0000260222 0.531502 − 0.0949261 i 4.15212 × 10−6 0.709848 − 0.0953155 i 9.94250 × 10−7

0.5 0.365787 − 0.0929174 i 0.0000427638 0.528953 − 0.0937928 i 6.94819 × 10−6 0.706351 − 0.0941796 i 1.64054 × 10−6

0.75 0.363152 − 0.0911605 i 0.0000688479 0.524868 − 0.0919963 i 0.0000112364 0.700755 − 0.0923778 i 2.63228 × 10−6

1.0 0.359653 − 0.0888735 i 0.0000987704 0.519462 − 0.0896536 i 0.0000155716 0.693357 − 0.0900269 i 3.58075 × 10−6

1.25 0.355447 − 0.0861843 i 0.000124503 0.512981 − 0.0868957 i 0.0000178107 0.684502 − 0.087259 i 3.94790 × 10−6

Table 3 Quasinormal frequencies for electromagnetic field with n = 0

α � = 1 �6 �=2 �6 �=3 �6

0 0.248191 − 0.092637 i 0.000142597 0.457593 − 0.0950112 i 7.04358 × 10−6 0.656898 − 0.0956171 i 1.13864 × 10−6

0.25 0.247877 − 0.0922998 i 0.000170868 0.456865 − 0.094625 i 8.85698 × 10−6 0.655805 − 0.0952289 i 1.45442 × 10−6

0.5 0.246938 − 0.0913156 i 0.000284307 0.454725 − 0.0934984 i 0.0000147938 0.652596 − 0.0940947 i 2.4338 × 10−6

0.75 0.245407 − 0.0897485 i 0.000462204 0.4513 − 0.0917176 i 0.0000236744 0.647466 − 0.0922994 i 3.88534 × 10−6

1.0 0.24337 − 0.0876629 i 0.000642422 0.446776 − 0.0894034 i 0.0000323796 0.640697 − 0.0899635 i 5.2812 × 10−6

1.25 0.240962 − 0.0851176 i 0.000710422 0.441366 − 0.0866884 i 0.0000357733 0.632612 − 0.087222 i 5.83228 × 10−6
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Fig. 5 It gives the variation of the imaginary part of the quasinormal frequency with respect to α for various values of �. The left one is for the
scalar field and the right one is for the electromagnetic field

Fig. 6 It gives the variation of the real part of the quasinormal frequency with respect to α for various values of �. The left one is for the scalar
field and the right one is for the electromagnetic field

Fig. 7 Left one gives the variation of the imaginary part of the quasinormal frequency with respect to α for scalar and electromagnetic fields and
the right one gives that for the real part. Here, we have taken � = 1

4 Ringdown waveform

In this section, we study the time evolution of the scalar
and electromagnetic perturbations. For this purpose, we
numerically solve the time-dependent wave equation using
the time domain integration method given by Gundlach et
al. in their article [94] using initial conditions ψ(r∗, t) =

exp

[
− (r∗ − r̂∗)2

2σ 2

]
and ψ(r∗, t)|t<0 = 0, where we have

taken r∗ = 5, r̂∗ = 0.4. The values of �t and �r∗ are taken
such that the Von Neumann stability condition, �t

�r∗ < 1, is
satisfied.

In Fig. 9 we provide the ringdown waveform for various
values of the parameter α keeping � = 2 and in Fig. 10,
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Fig. 8 Variation of the real and imaginary part of quasinormal frequen-
cies with respect to WKB order for various values of (n, �) pair. The
left one is for (3, 0) pair and the right one is for (2, 4) pair. In each plot,

the blue line is for the real part and the orange line is for the imaginary
part of the quasinormal mode. Here, we have taken α = 0.4M

Fig. 9 Time domain profile for various values of α. Left one is for scalar perturbation and the right one is for electromagnetic perturbation. Here,
we have taken � = 2

Fig. 10 Time domain profile for various values of �. Left one is for scalar perturbation and the right one is for electromagnetic perturbation. Here,
we have taken α = 0.8M

we provide the waveform for various values of � keeping
α = 0.8M . From Fig. 9 we can clearly conclude that the
frequency decreases as we increase the parameter α. It can
also be inferred from the figure that the decay rate, given by
the magnitude of the slope of the maxima in the log graph,

decreases as we increase α. From Fig. 10 we can conclude
that the frequency as well as the decay rate increases as we
increase �. These are consistent with the conclusions drawn
from Tables 2 and 3.
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Fig. 11 Variation of Hawking temperature with respect to α

5 Hawking temperature and bounds of the greybody
factor

In this section, we intend to calculate the Hawking temper-
ature and greybody bounds for the black hole under consid-
eration. Hawking in his article [74] showed that black holes
emit radiation. That radiation is known as Hawking radia-
tion. Bekenstein in his article [95] and Keifer in his article

[96] showed that it was necessary to associate a temperature
with the horizon for consistency with thermodynamics. The
Hawking temperature is given by

TH = 1

4π
√−gtt grr

dgtt
dr

|r=rh . (20)

For the metric in consideration, we have gtt = − f (r) and
grr = 1

f (r) . Putting these values in the above equation, we
get

TH = 1

4π
√

α2 + 4M2
. (21)

The dependence of the Hawking temperature on the parame-
ter α is evident from the above equation. We recover the value
of the Hawking temperature for the Schwarzschild black hole
if we put α = 0 in the above equation. To show the depen-
dence graphically, we plot the Hawking temperature against
α (Fig. 11).

We can observe that the Hawking temperature decreases as
we increase the value of the parameter α. The Hawking radia-
tion observed by an asymptotic observer is different from the
original radiation near the horizon of the black hole due to the
redshift factor. Greybody distribution describes the Hawking
radiation that is observed by an asymptotic observer. Here, we
try to obtain the lower bound of the greybody factor for LQG
motivated 4D polymerized black hole. A lot of research has
been dedicated to bound greybody factor. Visser and Boon-
serm in their articles [86,87,97] gave an elegant way to lower
bound the greybody factor. A rigorous bound of the transmis-
sion probability, which is the same as that of the graybody
factor, is given by

T ≥ sech2
(

1

2ω

∫ ∞

−∞
|Veff(r∗)|dr∗

)
, (22)

where r∗ is the tortoise coordinate defined in Eq. (15) and
Veff(r∗) is the potential given in Eq. (17). In terms of normal
coordinate r, the above equation becomes

T ≥ sech2
(

1

2ω

∫ ∞

rh
|Veff(r)| dr

f (r)

)
. (23)

If we use Eq. (17), then, the above equation reduces to

T ≥ sech2

⎛
⎜⎜⎜⎜⎝

−
4M

(
s2−1

)(
1− 2M√

α2+4M2

)

α2 + 2
(
s2−1

)(
α
√

α2+4M2−(
α2+4M2

)
sinh−1( α

2M )
)

α(α2+4M2)
+ �2

M + �
M

4ω

⎞
⎟⎟⎟⎟⎠

. (24)

The greybody bound for the scalar perturbation, Ts , is
obtained when we put s = 0 and the bound for the elec-
tromagnetic perturbation, Tem , is obtained by taking s = 1.
From Eq. (24) we see that Ts depends on the LQG param-
eter α but Tem is independent of it. The qualitative nature
of variation of Ts and Tem are shown in Figs. 12 and 13.
In Fig. 12, we observe that the greybody bound decreases
as we increase the angular momentum. It signifies that the
probability of detecting Hawking radiation by an asymptotic
observer decreases with �. Figure 13 shows that the greybody
bound for scalar perturbation increases with the LQG param-
eter, but the amount of variation is small. It is also observed
that the greybody bound approaches its maximum value of 1
faster for smaller values of angular momentum.

6 Spectrum and sparsity of Hawking radiation

In this section, we will study the effect of quantum correction
on the spectrum and sparsity of Hawking radiation for both
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Fig. 12 Bounds of greybody factor for various values of �. Left one is for scalar perturbation and the right one is for electromagnetic perturbation.
Here, we have taken α = 0.6M

Fig. 13 Bounds of greybody
factor for various values of α.
Within the frame, the green line
is for α = 1.6M , the orange line
is for α = 1.0M , and the blue
line is for α = 0.2M . Here, we
have taken � = 1

perturbations. Total power emitted as Hawking radiation by
a black hole at Hawking temperature TH is given by [98,99]

dE(ω)

dt
≡ Ptot =

∑
�

T (ω)
ω

eω/TH − 1
k̂ · n̂ d3k d A

(2π)3 , (25)

where d A is the surface element, n̂ is unit normal to d A, and
T is the greybody factor given by Eq. (24). Since for massless
particles we have |k| = ω, the above equation for massless
particles becomes

Ptot =
∑

�

∫ ∞

0
P� (ω) dω. (26)

Here, P� is power spectrum in the �th mode given by

P� (ω) = A

8π2 T (ω)
ω3

eω/TH − 1
. (27)

Although A is a multiple of the horizon area, here, we have
taken A to be the horizon area as it will not affect the qualita-
tive result [98]. Power spectrum P�(ω) is important to study
the sparsity of Hawking radiation. In Fig. 14, we study the
qualitative nature of variation of power spectrum P� for dif-
ferent parameter values of the black hole. Here, we have
plotted P� with respect to ω for various values of the LQG
parameter α.

We observe from Fig. 14 that for both perturbations, the
maximum value of the power spectrum diminishes as we
increase the value of α but the frequency, ωmax , at which we
have a maximum value of P� decreases with α.

To have a better understanding of Hawking radiation emit-
ted by black holes, we introduce a dimensionless parameter,
η, that defines the sparsity of Hawking radiation as [98–102]

η = τgap

τemission
. (28)

Here, τgap is the average time gap between two successive
radiation quanta. It is defined by
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Fig. 14 Power spectrum of the black hole for various values of α. Left one is for scalar perturbation and the right one is for electromagnetic
perturbation. Here, we have taken � = 2

τgap = ωmax

Ptot
. (29)

The time that is taken by a radiation quantum for emission,
τemission , is defined by

τemission ≥ τlocalisation = 2π

ωmax
, (30)

where τlocalisation is the time period of the emitted wave of
frequency ωmax . Thus, we will have a continuous flow of
Hawking radiation when η 
 1. A large value of η signifies
that the emission of radiation quanta is not continuous and
the time gap between two radiation quanta is larger than the
required time of radiation emission. The quantitative values
of ωmax , Pmax , Ptot , and η, for scalar perturbations, are given
in Table 4 and for electromagnetic perturbations, those values
are given in Table 5. From these tables, we observe that the
peak of the power spectrum and total power emitted decrease
as we increase the value of the LQG parameter for both types
of perturbations. On the other hand, the sparsity increases as
we increase the value of α. It means that the time interval
between two radiation quanta increases as we increase the
LQG parameter. If we compare the values of Tables 4 and
5, we can infer that the sparsity of black hole is larger for
electromagnetic perturbation. Since the variation of sparsity
is significant for both perturbations, Hawking radiation may
be used in the future to validate LQG.

7 Area spectrum for the LQG motivated black hole
from adiabatic invariance

In this section, we obtain the area spectrum of the LQG moti-
vated 4D polymerized black hole from adiabatic invariance
with the help of works [103,104]. First, we euclideanize the
metric (2) by using the transformation t → −iτ . It produces

ds2 =
(

r − 2M√
r2 + α2

)
dτ 2 + 1(

r−2M√
r2+α2

)dr2

+(r2 + α2)(dθ2 + sin2 θdφ2). (31)

The radial null geodesics for the above metric are given by

ṙ = ±i
r − 2M√
r2 + α2

. (32)

Using the adiabatic invariant quantity given in [103] and fol-
lowing the same procedure thereof, we have

I =
∫

p jdq j =
∫ M

0

dM

TH
. (33)

Here, p j is the momentum conjugate to the coordinate q j

where j has two values, 0 and 1. We have q0 = τ and q1 = r .
TH is the Hawking temperature given by Eq. (21). Using
above equation and Eq. (21), we obtain

I = 4π

(
1

2
M

√
α2 + 4M2

+1

4
α2 log

(√
α2 + 4M2 + 2M

))

≈ 4π

(
M2 + 1

8
α2(2 log(4M) + 1)

)

= 4π

(
1

8
α2

(
log

(
A

π

)
+ 1

)
+ A

16π

)
. (34)

Using the quantization rule of Bohr–Sommerfeld I = 2πn
with n = 0, 1, 2, ... we obtain

An = 2πα2W

⎛
⎝e

4n
α2 −1

2α2

⎞
⎠ , (35)

where W (z) is the Lambert W function. The area spectrum
is given by

�A = An − An−1. (36)

We observe that the area spectrum of the black hole is signif-
icantly different from that of the Schwarzschild black hole.
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The above equation reduces to the Schwarzschild case in the
limit α → 0. Above equation along with Eq. (14) shows
that the power spectrum for the LQG-motivated black hole
is quantized and the quantization rule is different from the
Schwarzschild case.

8 Conclusions

In this article, we have used LQG motivated 4D polymerized
black hole to study shadow, quasinormal modes, greybody
bounds, and Hawking sparsity in the background spacetime.
Due to quantum gravity correction, the black hole becomes
regular. This was confirmed by finite values of scalar invari-
ants everywhere. To calculate the shadow radius of the black
hole, we first write down the corresponding Lagrangian for
the metric and find out the differential equation of motion.
There, we get the potential that dictates the motion of a par-
ticle. Imposing conditions on the potential, first, and second
derivatives of the potential, we get the analytical expressions
of the radius of the photon sphere rp and then, the radius of
the black hole shadow Rs . The analytical expressions clearly
show that the quantum correction impacts photon and shadow
radii. To have qualitative as well as quantitative idea of the
impact of the quantum correction on them, we plot rp and Rs

against α in Fig. 2 and we give numerical values of rp and Rs

for different values of the LQG parameter in Table 1. Figure
2 and Table 1 show that both radii increase as we increase the
value of α and their nature of variation against α is similar.
We, then, plot shadows of the quantum corrected black hole
for various values of α in Fig. 3. Figures 2, 3, and Table 1
conclusively show that quantum correction has a significant
impact on the shadow of the black hole.

Next, we study the quasinormal modes of the black hole
for two types of perturbations: scalar and electromagnetic
using the 6th order WKB method. We plot the effective poten-
tial in Fig. 4 with respect to normal coordinate r and briefly
discuss the qualitative nature of the potential. Then, quantita-
tive values of quasinormal modes for scalar and electromag-
netic perturbations are given in Tables 2 and 3. In Fig. 6, we
have plotted the real part of quasinormal frequency against
α for various values of angular momentum �. However, the
variation of the oscillation frequency with respect to α is
small. In Fig. 5, we have shown the variation of the imagi-
nary part of quasinormal modes with respect to α for different
�. We can infer from them that the oscillation frequency of
GWs decreases as we increase the value of α, but increases
with an increase in angular momentum. We also observe that
the damping rate decreases with α, but increases with �. In
Fig. 7, we compare real and imaginary parts of quasinormal
modes for both oscillations. We observe that the oscillation
frequency as well as damping rate is larger for scalar pertur-
bation than electromagnetic perturbation. In Fig. 8, we show

the convergence of the WKB method for various (n, �) pairs.
It shows that when n < �, quasinormal frequency fluctuates
even for higher order. In the next section, we show the ring-
down waveform for both perturbations using the time domain
integration method in Figs. 9 and 10. We observe from Fig.
9 that the frequency, as well as decay rate, decreases as we
increase the parameter value of α. We conclude from Fig.
10 that the frequency as well as the decay rate increases as
we increase �. These conclusions and the conclusions drawn
from Tables 2 and 3 are consistent.

Then, we calculate Hawking temperature and greybody
bounds for the quantum-corrected black hole. We observe
that the Hawking temperature decreases with an increase in
α. We calculate analytical expressions of greybody bounds.
It shows that greybody bounds for electromagnetic perturba-
tions do not depend on α. Figure 13 shows the dependence
of greybody bounds for scalar perturbation on α. We observe
that though the probability of detecting Hawking radiation at
spatial infinity increases with the LQG parameter, the varia-
tion of probability is very small with respect to α. In Fig. 12,
we have plotted greybody factors for both perturbations with
different angular momentum. We infer that the transmission
probability of Hawking radiation decreases with �.

Next, we study the power spectrum and sparsity of Hawk-
ing radiation. Our study finds that the maximum value of the
power spectrum decreases and frequency where the power
spectrum is maximum shifts towards the left as we increase
the value of α. It is also observed that the total power emitted
decreases as we increase the value of the LQG parameter. We,
then, study the sparsity of Hawking radiation using a dimen-
sional less quantity η. Quantitative values of η are given in
Tables 4 and 5. Our study shows that the radiation becomes
more sparse i.e., the time gap between successive radiation
quanta becomes larger as we increase the LQG parameter. At
the same time, we observe that Hawking radiation for elec-
tromagnetic perturbation is more sparse than scalar pertur-
bation. Finally, with the help of the Bohr–Sommerfeld quan-
tization rule, we obtain the area spectrum for the quantum-
corrected black hole. LQG parameter α significantly impacts
the area spectrum. We hope that in the future, we will have
sufficient experimental results which will help us decide the
fate of quantum gravity.
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