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Abstract The unpolarized twist-2 (leading) and twist-
3 (subleading), T-even, transverse-momentum dependent
quark distributions in the pion are evaluated for the first
time by using the actual solution of a dynamical equation
in Minkowski space. The adopted theoretical framework
is based on the 4D homogeneous Bethe–Salpeter integral
equation with an interaction kernel given by a one-gluon
exchange, featuring an extended quark-gluon vertex. The
masses of quark and gluon as well as the interaction-vertex
scale have been chosen in a range suggested by lattice-QCD
calculations, and calibrated to reproduce both pion mass
and decay constant. The sum rules to be fulfilled by the
transverse-momentum dependent distributions are carefully
investigated, particularly the leading-twist one, that has to
match the collinear parton distribution function, and hence
can be scrutinized in terms of existing data as well as the-
oretical predictions. Noteworthy, the joint use of the Fock
expansion of the pion state facilitates an in-depth analysis
of the content of the pion Bethe–Salpeter amplitude, allow-
ing to calculate the gluon contribution to the quark average
longitudinal fraction, that results to be ∼ 6%. The current
analysis highlights the role of the gluon exchanges through
quantitative analysis of collinear and transverse-momentum
distributions, showing, e.g. for both leading and subleading-
twists, an early departure from the widely adopted exponen-
tial fall-off, for |k⊥|2 > m2, with the quark mass ∼ ΛQCD .

1 Introduction

Quark transverse-momentum dependent distribution func-
tions (TMDs for short) are the basic ingredients for
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parametrizing the hadronic quark-quark correlator (see the
seminal Ref. [1] and for the complete parametrization
Ref. [2], while Refs. [3,4] for correlators involving gluons),
and represent direct generalization of the parton distribu-
tion functions (PDFs), so that both longitudinal and trans-
verse degrees of freedom (dof) can be addressed (see, e.g.,
Refs. [5,6] for an extensive introduction to the transverse dof
and related distribution functions). Clearly, with respect to
the PDF, the access to the 3D imaging of hadrons allows
us to achieve a deeper and deeper understanding of the non-
perturbative regime of QCD, also exploiting the non-trivial
coupling to the spin dof (see, e.g., Refs. [7,8] and references
therein). Hence, by means of TMDs, one can gather unique
information on QCD at work in hard semi-inclusive reac-
tions (both unpolarized and polarized) at low transverse-
momentum, like low-q⊥ Drell–Yan (DY) processes, vec-
tor/scalar boson productions or semi-inclusive deep inelastic
scattering (SIDIS) (see, e.g., Refs. [8–11] for a status-report
on the experimental measurements).

Indeed, the extraction of TMDs from the experimental
cross-section is a highly challenging task, as shown by the
intense theoretical work on the factorization of the cross
sections into transverse-momentum dependent matrix ele-
ments (see, e.g., Refs. [12–16]) and the TMDs evolution that
becomes a two-scale problem, since the rapidity ζ comes
into play in addition to the renormalization scale μ (see,
e.g., Refs. [12,17–19] and Ref. [20] for a recent review
that covers also the factorization). Noteworthy, one has to
mention the efforts for obtaining reliable global fits (see,
e.g., Refs. [21–24] and also Ref. [8] for a general discus-
sion), early-stage lattice-QCD (LQCD) calculations (see,
e.g., Refs. [25–29] and also Refs. [8,30–32]) and, finally,
the broad set of phenomenological models, that we can only
partially list: the bag model (see, e.g., Ref. [33] and ref-
erences therein), covariant model (see, e.g., Ref. [34] and
references therein), light-front (LF) constituent quark mod-
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els (see, e.g., Refs. [35,36]) and the basis LF quantization
framework [37], the approaches based on the Nambu–Jona-
Lasinio interaction (see, e.g., Refs. [38,39]), the holographic
models (see,e.g., Refs. [40,41]), etc. In view of our study, one
has to separately mention the approaches developed within
the so-called continuum-QCD, that are based on solutions
(actually in Euclidean space) of dynamical equations like the
4D homogeneous Bethe–Salpeter equation (BSE) [42,43] in
combination or not with the quark gap-equation (see, e.g.
Refs. [44–47]).

It should be recalled that the proton is the elective target
of much experimental (see, e.g., Refs. [9–11]) and theoreti-
cal research (see, e.g., Refs. [48–50] and references therein).
While the pion, given the experimental challenges its study
poses, has surely attracted less efforts in spite of its intriguing
double-nature, being both a Goldstone boson (and hence fun-
damental for investigating the dynamical chiral-symmetry
breaking) and a quark–antiquark bound system (i.e. the sim-
plest bound system in QCD). In particular, a first extraction of
the pion unpolarized leading-twist TMD from Drell–Yan data
can be found in Ref. [51], where the results of the E615 Col-
laboration [52] has been used, and in Ref. [53], where both
the previous data and the E537 Collaboration cross-sections
[54] have been included. As to the phenomenological calcu-
lations, a broad overview, embracing different approaches,
can be gained from Refs. [35,38,40,41,44–47,55–59] (see
also Ref. [60] for the generalized TMDs in a spin-0 hadron).

As a conclusion to the above schematic introduction, it
has to be emphasized that the vast amount of nowadays the-
oretical studies on TMDs finds its strong motivation in the
very accurate measurements that will come from forthcom-
ing electron-ion colliders, that promise to achieve greatly
expected milestones in the experimental investigation of non-
perturbative QCD, given the planned high energy and lumi-
nosity [61,62].

Our aim is to obtain, for the first time, T-even leading-
and subleading-twist unpolarized TMDs (uTMDs) of the
pion, by solving a dynamical equation directly in Minkowski
space, namely relying on a genuinely relativistic quantum
field theory framework based on the 4D homogeneous BSE
[42,43] (see also the recent Ref. [59] for an approach based
on diagonalizing the LF QCD Hamiltonian). The 4D homo-
geneous BS integral equation is suitable for dealing with
the fundamentally non-perturbative nature of bound states.
One should not get confused by the use of an interaction
kernel expressed in a perturbative series, since an integral
equation has a peculiar feature of infinitely many times iter-
ating the boson exchanges contained in each term of the ker-
nel, just what one needs for obtaining a pole in the relevant
Green’s function. In our approach (see Ref. [63] for details
and references therein), based on the 4D homogeneous BSE
in Minkowski space and the Nakanishi integral representa-
tion (NIR) of the BS-amplitude [64,65], the interaction ker-

nel is given by the exchange of a massive vector boson in
the Feynman gauge, with three input parameters, inferred
from LQCD calculations (see, e.g. Refs. [66–68]): (i) the
constituent-quark and gluon masses, and (ii) a scale param-
eter featuring the extended quark-gluon vertex. It should be
pointed out that the ladder kernel, i.e. the first term in a pertur-
bative series, can be a reliable approximation to evaluate the
pion bound state, as suggested by the suppression of the non-
planar contributions for Nc = 3 within the BS approach in a
scalar QCD model [69], and the presence of massive quarks
and gluons, featuring the confinement effects in a relatively
large system (rch ∼ 0.66 fm).

There is another important consequence stemming from
the use of the BS-amplitude. Although in the definition of
the qq̄-pair BS-amplitude there is a simple dependence upon
two interacting fermionic fields, one ends up dealing with
an infinite content of Fock states (the use of the Fock space
allows one to recover a probabilistic language within the BS
framework). In particular, by exploiting the Fock expansion
of the pion state, one can establish a formal link between the
LF-projected BS-amplitude (see, e.g., Refs. [70–72]), and the
amplitude of the Fock component of the pion state with the
lowest number of constituents. Therefore, in our approach, it
is natural to call the LF-projected BS-amplitude: LF valence
wave function (LFWF), to be distinguished from the valence
wave function, when a SU (3)-flavor language is adopted. In
the latter case, the pion is composed by only two fermionic
constituents, suitably dressed. One should keep in mind that
within our framework, the pion LFWF contributes only with
70% [63] of the normalization, and consequently a significant
role of the higher Fock components has to be highlighted,
and possibly analyzed in-depth, as illustrated in what fol-
lows. Finally, we would emphasize that the first evaluation
of the uTMDs strengthens the reliability of our approach and
makes sound the ground for the next step, already in progress,
i.e. taking into account the self-energy of the quarks (see
Refs. [73–76]).

Indeed, in spirit, our approach is similar to the one devel-
oped in Ref. [45] for evaluating the leading-twist uTMD,
where it was also taken into account the self-energy of the
quark propagator (solving the gap equation) and a confining
interaction, but in Euclidean space. In this case, one resorts to
a suitable method (based on the moments and a parametriza-
tion of the Euclidean BS-amplitude) to get the Minkowski-
space distribution function. Differently, in our approach the
NIR of the BS-amplitude allows one to successfully deal with
the analytic structure of the BS-amplitude itself, obtaining an
integral equation formally equivalent to the initial 4D homo-
geneous BSE in Minkowski space, but more suitable for
the numerical treatment. Many and relevant applications of
our approach to the pion, such as the electromagnetic form
factor [77], the PDF [78] and the 3D imaging [63], have
confirmed its reliability and encouraged to broad the scope
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of our investigation. It should be pointed out that (it will
become clear in what follows) the evaluation of quantities
that depend not only upon the longitudinal dof but also the
transverse ones leads to sharply increase the sensitivity to the
dynamical content of a given phenomenological description
of the pion, namely to increase its predictive power. Further-
more, the joint use of the Fock expansion, meaningful in the
Minkowski space, allows one to resolve the gluonic content
of the pion state.

The paper outline is as follows. In Sect. 2, the general
formalism and the notations are introduced, highlighting the
ingredients of our dynamical approach, namely (i) the Bethe–
Salpeter amplitude, solution of the 4D homogeneous Bethe–
Salpeter equation in Minkowski space, and (ii) the Nakan-
ishi integral representation of the BS-amplitude. In Sect. 3,
the expressions of leading- and subleading-twist uTMDs are
given in terms of the Bethe–Salpeter amplitude of the pion. In
Sects. 4 and 5, the leading and subleading-twist uTMDs are
shown and compared with outcomes from other approaches.
Finally, in Sect. 6, the conclusions are drawn, and the per-
spectives of our approach are presented.

2 Generalities

For a pion with four-momentum P ≡ {P−, P+,P⊥} (where
P2 = P+P− − |P⊥|2 = M2 and the LF coordinates are
a± = a0 ± a3), and by adopting both i) a frame where
P⊥ = 0 and ii) the light-cone gauge A+

g = 0, the quark
leading-twist uTMD, f q1 (γ, ξ), is defined as follows (for a
general introduction see, e.g., Refs. [1,6])

f q1 (γ, ξ)

= Nc

4

∫ 2π

0
dφk̂⊥

∫ ∞

−∞
dy−dy⊥
2(2π)3

×ei[ξ P+ y−
2 −k⊥·y⊥]〈P|ψ̄q(− y

2 )γ +ψq(
y
2 )|P〉∣∣y+=0, (1)

where Nc is the number of colors,1 φk̂⊥ is the azimuthal
angle in the plane swept by k⊥, ψq is the fermionic field,
and the quark four-momentum is given in terms of LF coor-
dinates by pq ≡ {p−

q , ξ P+,k⊥ + P⊥/2}, with γ = |k⊥|2.
The antiquark uTMD is obtained by using the proper four-
momentum pq̄ ≡ {p−

q̄ , (1 − ξ)P+,−k⊥ +P⊥/2}, recalling
that P = pq + pq̄ and k = (pq − pq̄)/2.

1 N.B. In Eq. (1) there is a factor Nc, in apparent variance with the
standard expression of the leading-twist TMD [1,2] (as well as also in
all the TMDs we are going to study). Our choice stems from the sake
of consistency with our previous papers [69,78], where both electro-
magnetic form factor and decay constant of the pion were investigated.
Given the adopted normalization, a factor Nc is present in both observ-
ables, although a different number of pion BS amplitudes enters in each
calculation.

The normalization of f q1 (γ, ξ) is given by
∫ ∞

−∞
dξ

∫ ∞

0
dγ f q1 (γ, ξ)

= Nc

2

∫
dpq⊥

∫ ∞

−∞
dp+

q

P+

∫ ∞

−∞
dp−

q

2

×
∫ ∞

−∞
d4y

(2π)4 e
i pq ·y〈P|ψ̄q(− y

2 )γ +ψq(
y
2 )|P〉

= Nc
〈P|ψ̄q(0)γ +ψq(0)|P〉

2P+ = Fq
π (0) = 1, (2)

where Fq
π (t) is the quark contribution to the electromag-

netic (em) form factor of the pion. The latter results to be
equal to Fπ (t) = eq F

q
π (t) + eq̄ F

q̄
π (t), with t = (P ′ − P)2,

and is related to the matrix element of the four-current by
Nc 〈P|ψ̄q(0)γ μψq(0)|P〉 = 2Pμ Fπ (t = 0). Finally, it
should be pointed that inserting a complete basis in Eq. (1)
and exploiting the good and bad components of the fermionic
field one can easily demonstrate that f q1 (γ, ξ) ≥ 0 (see
Ref. [79]).

In order to describe the pion by taking into account at some
extent the QCD dynamics in the non-perturbative regime, it
is useful to resort to the Mandelstam framework [80], where
the interacting quark-pion vertex is expressed in terms of the
(reduced) BS-amplitude, i.e. the solution of the 4D homoge-
neous BSE in Minkowski space, and defined by

Φ(k, P) =
∫

d4x eik·x 〈0|T {
ψ( x2 ) ψ̄(− x

2 )
}|P〉, (3)

where the fermionic field fulfills the Poincaré translation
ψ(x) = ei P̂·xψ(0)e−i P̂·x (recall that only the component
P̂− is interacting in the LF dynamics, see, e.g., Ref. [81]).

Thus, by using the Feynman-like diagrammatic picture
inherent to the Mandelstam framework (see, e.g., Ref. [77]
for the application to the em form factor), one can write the
following expression for f q1 (γ, ξ)

f q1 (γ, ξ)

= Nc

4(2π)3

∫ ∞

−∞
dk+

2(2π)
δ
(
k+ + P+

2
− ξ P+) ∫ ∞

−∞
dk−

×
∫ 2π

0
dφk̂⊥Tr

[
S−1(−pq̄)Φ̄(k, P) γ + Φ(k, P)

]
,

(4)

where

pq(q̄) = ± k + P

2
. (5)

For the sake of completeness, let us write the BSE in ladder
approximation, i.e. the one we are adopting for the numerical
calculations, viz.

Φ(k; P) = S
(
pq

) ∫
d4k′

(2π)4 S
μν(q)Γμ(q)
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× Φ(k′; P)Γ̂ν(q)S
(−pq̄

)
, (6)

where quark and antiquark momenta are off-shell, i.e.
p2
q(q̄) = (±k + P

2 )2 
= m2, and q = k − k′ is the gluon four-
momentum. In Eq. (6), the fermion propagator, the gluon
propagator in the Feynman gauge and the quark-gluon ver-
tex, dressed through a simple form factor, are

S(p) = i

/p − m + iε
, Sμν(q) = −i

gμν

q2 − μ2 + iε
,

Γ μ = igγ μ μ2 − Λ2

q2 − Λ2 + iε
, (7)

where g is the coupling constant, μ the mass of the exchanged
vector-boson and Λ is a scale parameter, featuring the exten-
sion of the color distribution in the interaction vertex of the
dressed constituents. Moreover, in Eq. (6), one has Γ̂ν(q) =
C Γ T

ν (q) C−1, where C = iγ 2γ 0 is the charge-conjugation
operator.

The normalization of the BS-amplitude reads (cf. Refs. [63,
82] for details)

Nc Tr

[∫
d4k

(2π)4

∂

∂P ′μ

{
S−1

(
k − P ′

2

)
Φ̄(k, P)

× S−1
(
k + P ′

2

)
Φ(k, P)

}]
P ′=P

= −2i Pμ. (8)

The antiquark uTMD is given by

f q̄1 (γ, 1 − ξ)

= − Nc

4(2π)3

∫ ∞

−∞
dk+

2(2π)
δ(k+ + P+

2 − ξ P+)

∫ ∞

−∞
dk−

×
∫ 2π

0
dφk̂⊥Tr

[
S−1(pq)Φ(k, P)γ +Φ̄(k, P)

]
, (9)

where the minus sign results from the property of the normal-
ordered em current to be odd under the action of the charge
conjugation operator. It is noteworthy that in subsection
Appendix C.1, it is proven the identity of the normalization
condition, Eq. (8), and the half sum of Eqs. (1) and (9).

Within a SU (3)-flavor symmetry framework, one describes
a pion as a bound system of a massive qq̄ pair. This leads to
introduce the so-called valence-quark PDF in the pion, that is
charge symmetric (once the isospin breaking is disregarded
[83]) as well as fulfills the charge conjugation. From those
properties one deduces that the SU (3)-valence PDFs in the
charged pions must verify: uv

π+(ξ) = dv
π−(ξ) = d̄v

π+(ξ). In
our BS framework, in addition to the fermionic dof (still mas-
sive) one introduces also gluonic dof, by adding an explicit
dynamical description of the binding. This amounts to the
ladder exchange of infinite number of massive gluons. There-
fore, at the initial scale, the quark and anti-quark longitudinal-
momentum fraction distributions are not expected to be sym-
metric with respect to ξ = 1/2 (as it follows from the charge

symmetry), given the gluon-momentum flow in the compos-
ite pion (see Sect. 4). The symmetric combination of quark
and anti-quark contribution allows one to fulfill the charge
symmetry, and hence it is relevant in the comparison with
experimental data (see Ref. [78]). In what follows, in addi-
tion to the quark distributions, symmetric and anti-symmetric
combinations are introduced for all the uTMDs we are going
to analyze.

The half sum (difference) of the quark and anti-quark
contributions, Eqs. (1) and (9), yields the following charge-
symmetric (anti-symmetric) expression for the leading-twist
uTMD inside a π+ meson

f S(AS)
1 (γ, ξ)

= f q1 (γ, ξ) ± f q̄1 (γ, 1 − ξ)

2

= Nc

8(2π)3

∫ ∞

−∞
dk+

2(2π)
δ
(
p+
q − ξ P+) ∫ ∞

−∞
dk−

×
∫ 2π

0
dφk̂⊥Tr

[
S−1(−pq̄)Φ̄(k, P) γ + Φ(k, P)

∓ S−1(pq)Φ(k, P) γ + Φ̄(k, P)
]
. (10)

Analogously to Eq. (1), one can define the T-even subleading
quark uTMDs, starting from the decomposition of the pion
correlator [6,84]. To be specific, one has two twist-3 uTMDs
(see, e.g., Ref. [35] for the pion case)

M

P+ eq(γ, ξ)

= Nc

4

∫ 2π

0
dφk̂⊥

∫ ∞

−∞
dy−dy⊥
2(2π)3

× ei[ξ P+ y−
2 −k⊥·y⊥]〈P|ψ̄q(− y

2 )1ψq(
y
2 )|P〉∣∣y+=0,

(11)
M

P+ f ⊥q(γ, ξ)

= M

γ

Nc

4

∫ 2π

0
dφk̂⊥

∫ ∞

−∞
dy−dy⊥
2(2π)3

× ei[ξ P+ y−
2 −k⊥·y⊥] 〈P|ψ̄q(− y

2 )k⊥·γ ⊥ ψq(
y
2 )|P〉∣∣y+=0.

(12)

In analogy to Eq. (2), one gets for the twist-3 eq(ξ) (see
Refs. [35,79,84] for the pion in phenomenological models)

∫ ∞

−∞
dξ

∫ ∞

0
dγ eq(γ, ξ)

= Nc

2

∫
dpq⊥

∫ ∞

−∞
dp+

q

P+

∫ ∞

−∞
dp−

q

2

×
∫ ∞

−∞
d4y

(2π)4 e
i pq ·y 〈P|ψ̄q(− y

2 )1ψq(
y
2 )|P〉
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= Nc
〈P|ψ̄q(0) 1 ψq(0)|P〉

2P+ , (13)

where the matrix element 〈P|ψ̄q(0) 1 ψq(0)|P〉 has to be
proportional to the pion sigma term, once a QCD framework
is adopted. As a matter of fact, one gets

∑
q

∫ 1

0
dξ

∫ ∞

0
dγ eq(γ, ξ) = σπ

mcur
(14)

wheremcur is the quark current mass and σπ is the pion sigma
term, that becomes σπ = M/2, in the leading order of the
chiral expansion, i.e. the Gell-Mann–Oakes–Renner relation
[85]. It should be pointed that recent LQCD calculations [86]
confirm, with high accuracy, the Gell-Mann–Oakes–Renner
relation in the range of the explored pion masses. Indeed,
the QCD equations of motion gives a decomposition of the
subleading collinear PDF e(ξ) = ∫

dγ e(γ, ξ) in three terms.
Among them, there is a singular term proportional to the pion
sigma term, that reads (see, e.g., Ref. [87])

esing(ξ) = δ(ξ) 〈P|ψ̄q(0) 1 ψq(0)|P〉/2P+, (15)

while the other two terms, one is due to qq̄-gluon correlations
and the other is proportional to the quark mass, do not con-
tribute to Eq. (14) (see Ref. [87], where the issue is analyzed,
taking the nucleon as actual case). In our phenomenological
model the strength is distributed over the whole range of ξ

(as in Ref. [35]), without the singularity at ξ = 0, as it will
be shown in Sect. 5. Moreover, one has for the first moment
[87]
∫ 1

0
dξ

∫ ∞

0
dγ ξ eq(γ, ξ) = Nq

mcur

M
, (16)

where the singular term and the gluonic contribution vanish,
and only the term proportional to the quark mass contributes.

As shown in Refs. [35,88], one deduces the following
relations between the above uTMDs

ξ eqEoM (γ, ξ) = ξ ẽq(γ, ξ) + m

M
f q1;EoM (γ, ξ)

ξ f ⊥q
EoM (γ, ξ) = ξ f̃ ⊥q(γ, ξ) + f q1;EoM (γ, ξ), (17)

where the rightmost terms are obtained by applying the equa-
tions of motion of a free-quark model and the uTMDs with a
tilde are the gluonic contributions. There, the relevant point
is the dependence of all the subleading-twist uTMDs from
only the leading one, modulo the gluonic terms. For a deriva-
tion of the first line of Eq. (17), consistent with QCD, one
should apply the formalism presented in Ref. [87], as already
pointed above Eq. (15). In our interacting framework, one can
anticipate that we get large differences between lhs expres-
sions and the rightmost ones (see Sect. 5), pointing to relevant
gluonic effects.

Following Eq. (10), one readily writes down charge-
symmetric and the anti-symmetric combinations for the sub-

leading TMDs. One has to take care how the scalar and vector
operators behave under the charge conjugation that impose a
different combination of signs (cf. below Eq. (9)). Namely,
one gets

M

P+ eS(AS)(γ, ξ)

= Nc

8(2π)3

∫ ∞

−∞
dk+

2(2π)
δ(p+

q − ξ P+)

∫ ∞

−∞
dk−

×
∫ 2π

0
dφk̂⊥Tr

[
S−1(−pq̄)Φ̄(k, P) 1 Φ(k, P)

± S−1(pq)Φ(k, P) 1 Φ̄(k, P)
]
. (18)

M

P+ f S(AS)⊥(γ, ξ)

= NcM

8(2π)3γ

∫ ∞

−∞
dk+

2(2π)
δ(p+

q − ξ P+)

∫ ∞

−∞
dk−

×
∫ 2π

0
dφk̂⊥Tr

[
S−1(−pq̄)Φ̄(k, P) γ ⊥ Φ(k, P)

± S−1(pq)Φ(k, P) γ ⊥ Φ̄(k, P)
]

· k⊥. (19)

2.1 The BS-amplitude and its Nakanishi integral
representation

It is useful to briefly recall some features of our approach
for obtaining the actual solution of the ladder BSE given in
Eq. (6). The basic ingredient is the NIR of the BS-amplitude
(see Ref. [65] for the general introduction, Refs. [63,78,89–
91] for the application to a two-fermion), but let us first
introduce the general decomposition of the BS-amplitude,
Φ(k; P), for a 0− bound state, viz. [89,92]

Φ(k; P)

= S1(k; P)φ1(k; P) + S2(k; P)φ2(k; P)

+S3(k; P)φ3(k; P) + S4(k; P)φ4(k; P), (20)

where φi ’s are unknown scalar functions, that depend upon
the kinematical scalars at disposal (k2, k · P and P2), and
Si ’s are suitable Dirac structures, given by

S1(k; P) = γ5, S2(k; P) = /P

M
γ5,

S3(k; P) = k · P
M3 /Pγ5 − 1

M
/kγ5,

S4(k; P) = i

M2 σμν Pμkνγ5. (21)

The functions φi must be even for i = 1, 2, 4 and odd for
i = 3, under the change k → −k, as dictated by the anti-
commutation rules of the fermionic fields and the considered
SU(2)-flavor symmetry. They can be written in terms of the
NIR as follows
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φi (k; P) =
∫ 1

−1
dz′

∫ ∞

0
dγ ′

× gi (γ ′, z′; κ2)

[k2 + z′(P · k) − γ ′ − κ2 + iε]3 , (22)

where κ2 = m2 − M2/4. The real functions gi (γ ′, z′; κ2),
the unknowns of the problem under scrutiny, are the Nakan-
ishi weight functions (NWFs), and assumed to be unique,
following the uniqueness theorem from Ref. [65]. The prop-
erties of the scalar functions φi under the exchange k → −k
translate to properties of the NWFs, but under the exchange
z′ → −z′.

Finally, it should be mentioned that NWFs are deter-
mined by solving a system of integral equation, so that one
is able to non-perturbatively embed dynamical information
that characterize the BS interaction kernel. The system of
integral equations is formally deduced from the initial BSE,
by exploiting the analytic structure of the scalar functions
φi , made explicit by means of the NIR. In fact, after insert-
ing Eqs. (20) and (22) in the BSE, Eq. (6), and performing
both the Dirac traces and a LF projection, i.e. the integration
over the k− = k0 −k3 component of the relative momentum,
one gets a coupled system of integral equations for the NWFs
(see details in Ref. [91]). Once the NWFs are known, the BS-
amplitude can be fully reconstructed through an inverse path,
i.e. Eqs. (22) and (20) (see, e.g. Ref. [93] for the application
of the NIR framework by means of the pion self-energy).

3 The unpolarized TMDs and the pion BS-amplitude

The evaluation of the leading- and subleading-twist uTMDs,
given in Eqs. (10), (18) and (19), can be performed by
inserting the decomposition of the BS-amplitude in Eq. (20),
obtaining

T S(AS)
i (γ, ξ)

= Nc

8(2π)3

∫ ∞

−∞
dk+

2
δ(p+

q − ξ P+)

∫ ∞

−∞
dk−

2π

×
∫ 2π

0
dφk̂⊥

{
Tr

[
S−1(−pq̄) Φ̄(k, P)Oi Φ(k, P)

]

+η
S(AS)
i Tr

[
S−1(pq)Φ(k, P)Oi Φ̄(k, P)

]}

= i Nc

8(2π)2

∑
�j

∫ 1

−1
dz δ(z − (1 − 2ξ)) Fi

�j (γ, z; S(AS)),

(23)

where the new variable z is defined as z = −2k+/P+ and the
three quantities: (i) the functions Ti (γ, ξ), (ii) the operators
Oi and (iii) the phase η

S(AS)
i are given by

T S(AS)
0 (γ, ξ) ≡ f S(AS)

1 (γ, ξ),O0 = γ +, η
S(AS)
0 = ∓1,

T S(AS)
1 (γ, ξ) ≡ M

P+ eS(AS)(γ, ξ),O1 = 1, η
S(AS)
1 = ±1,

T S(AS)
2 (γ, ξ) ≡ M

P+ f S(AS)⊥(γ, ξ),O2 = M

|k⊥|2 k⊥ · γ ⊥,

η
S(AS)
2 = ±1. (24)

Finally, the integrand Fi
�j in Eq. (23) reads

Fi
�j (γ, z; S(AS))

=
∫ ∞

−∞
dk−

2π
ai�j (k

−, γ, z; S(AS)) φ�(k, P) φ j (k, P)

= 2M
∫ ∞

−∞
dk−

2π
φ�(k, P) φ j (k, P)

×
[
bi0;�j (γ, z; S(AS)) + bi1;�j (γ, z; S(AS))

k−

2M

+bi2;�j (γ, z; S(AS))

(
k−

2M

)2

+bi3;�j (γ, z; S(AS))

(
k−

2M

)3]
, (25)

where the expressions of both ai�j (k
−, γ, ; S(AS)), that are

polynomial in k− up to the cubic power, and bin;�j (γ, z; S
(AS)) can be found in Appendix A, for each uTMDs we
are considering. By exploiting the NIR, Eq. (22), one can
perform the integration on k−. This integration amounts to
restrict the LF-time to x+ = 0, and it is also known as LF-
projection (see, e.g., Refs. [71,72,94]). After carrying out the
k−-integration, the expression of each T S(AS)

i (γ, ξ) can be
decomposed as follows (the details of this formal step can be
found in Appendix B)

T S(AS)
i (γ, ξ) = 3Nc

(2π)2

∑
�j

[
F i

0;�j (γ, z; S(AS))

+F i
1;�j (γ, z; S(AS)) + F i

2;�j (γ, z; S(AS))

+F i
3;�j (γ, z; S(AS))

]
, (26)

where ξ = (1 − z)/2 and the functions F i
n;�j (γ, z; S(AS))

(n = 1, 2, 3, 4) are given in Eqs. (B.19), (B.20), (B.21) and
(B.22), respectively.

4 The leading-twist f S(AS)
1 (γ, ξ)

The symmetric and anti-symmetric combinations of the T-
even leading-twist uTMD, f S(AS)

1 (γ, ξ), allow us to address
the evaluation of both quark and anti-quark contributions,
f q(q̄)
1 (γ, ξ), that in the BS framework plus the Fock expan-

sion of the pion state have interesting features, distinct from
the ones of f S(AS)

1 (γ, ξ).

After integrating the leading-twist f q(q̄)
1 (γ, ξ) on γ , one

gets the quark PDF uq(ξ), while the symmetric combination
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provides the charge-symmetric PDF uS(ξ), i.e. the one is
expected to have relevance at the valence scale (see, e.g.,
Ref. [83]). Indeed, in the Mandelstam approach the quark
and antiquark PDFs do not have in general a symmetry with
respect to ξ = 1/2, since each receives contributions from
states containing an infinite number of gluons, as a conse-
quence of the ladder-interaction kernel. If we restrict to the
contribution from the first Fock component in the expansion
of the pion state, one gets the LF-valenceuLFval (ξ), that is given
by the BS-amplitude projected onto the null plane [81] and is
fully compliant with the charge symmetry (see below the dis-
cussion on the differences among uq(ξ), uS(ξ) and uLFval (ξ)).

To illustrate general features and relations, in this section
we give some details, referring to Appendix C for a more
complete discussion.

The symmetric and anti-symmetric leading-twist uTMDs,
can be decomposed as follow

f S(AS)
1 (γ, ξ)

= IN (γ, ξ ; S(AS)) + Id(γ, ξ ; S(AS))

+ I2d(γ, ξ ; S(AS)) + I3d(γ, ξ ; S(AS)), (27)

where the non-vanishing symmetric contributions are given
by Eqs. (C.2), (C.3), (C.4) and I3d(γ, ξ ; S) = 0, respec-
tively. The anti-symmetric terms are shown in Eqs. (C.5),
(C.6), (C.7) and (C.8), respectively.

Two comments are in order. The symmetry properties
of the above quantities with respect to the transformation
z → −z are demonstrated in Appendix C, and can be trans-
lated into the symmetry with respect to ξ → 1−ξ (that imple-
ments the charge-symmetry). A relevant feature is given by
the presence in the expressions of Id,2d,3d of the partial
derivatives ∂n/∂zn , that should be considered dual of the
n-th moment in k− of the relevant functions, generated by
the formal step of the LF-projection (cf Eq. (25)). This is not
a surprise since the variable z is proportional to k+.

A first consistency check of our formalism has been car-
ried out in Appendix C.1, where it is shown that, within the
Mandelstam approach, f S1 (γ, ξ) and in turn f q1 (γ, ξ) are
normalized to 1, as naturally follows from the canonical BS-
amplitude normalization [82,95], performed according to
Eq. (8) (see also Ref. [63]). In particular, the integral on γ and
ξ of IN (γ, ξ ; S) saturates the normalization, while the other
two terms provide vanishing contributions. Hence, one gets
∫ 1

0
dξ

∫ ∞

0
dγ f S1 (γ, ξ)

=
∫ 1

0
dξ

∫ ∞

0
dγ IN (γ, ξ ; S)

=
∫ 1

0
dξ

∫ ∞

0
dγ f q1 (γ, ξ) = 1. (28)

It should be recalled that all the calculated uTMDs vanish
outside the interval 0 ≤ ξ ≤ 1, as dictated by the conser-

vation of the plus components of the four-momenta of both
pion and constituents (cf. Eq. (10)). It is understood that the
integral of f AS1 (γ, ξ) is vanishing, given the antisymmetry
with respect to ξ → 1 − ξ .

4.1 Longitudinal degree of freedom

The symmetric and the anti-symmetric PDFs, uS(AS)(ξ) (for
the explicit expressions see Appendix D) are defined by

uS(AS)(ξ)

=
∫ ∞

0
dγ f S(AS)

1 (γ, ξ)

= uS(AS)
N (ξ) + uS(AS)

d (ξ) + uS(AS)
2d (ξ) + uS(AS)

3d (ξ),

(29)

with the normalization that follows from Eq. (28) and the van-
ishing result of the double integration of f AS1 (γ, ξ). Finally,
the quark and anti-quark PDFs are evaluated through

uq(q̄)(ξ) = uS(ξ) ± uAS(ξ), (30)

with the normalization still given by Eq. (28). Within the
SU(3)-flavor symmetry, one has to implement the charge
symmetry (see, e.g. Ref. [83]) at the initial scale, and there-
fore uS(ξ) is the PDF to be compared, after the proper evo-
lution, with the experimental data, as it has been shown in
Ref. [78].

In the left panel of Fig. 1, uS(ξ) and its three con-
tributions (see Eqs. (D.4), (D.5) and (D.6)) are shown.
The calculation has been carried out by adopting the BS-
amplitude obtained by using the solution of the BSE as
described in Ref. [63], using the following values of the
three input parameters: m = 255 MeV, μ = 637.5 MeV and
Λ = 306 MeV, able to reproduce the pion decay constant
f PDG
π = 130.50(1)(3)(13) MeV [96] (recall that the pion

charge radius results to be rch = 0.663 fm [77], in excellent
agreement with r PDG

ch = 0.659 ± 0.004 fm [97]). A remark-
able cancellation among the contributions takes place, and
this represents a common feature for all the integrated quan-
tities generated by the uTMDs we are considering. In the
right panel, one can see the comparison between the quark
PDF, uS(AS)(ξ) and the LF-valence PDF, resulting from the
one-to-one relation between the LF-projected BS amplitude
and the valence amplitude of the Fock expansion of the pion
state. In particular, the LF-valence PDF (see Refs. [63,78]),
is given by

uLFval (ξ) =
∫ ∞

0

dγ

(4π)2

[
|ψ↑↓(γ, z)|2 + |ψ↑↑(γ, z)|2

]
, (31)

where ξ = (1 − z)/2, ψ↑↓(γ, z) is the anti-aligned compo-
nent of the LF-valence amplitude and ψ↑↑(γ, z) the aligned
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Fig. 1 Left panel: The symmetric pion PDF, uS(ξ), with its con-
tributions uSN (ξ), uSd (ξ) and uS2d (ξ) (cf Eq. (29)). Dash-dotted line:
uS(ξ). Dashed line: uSN (ξ). Dotted line: uSd (ξ). Dash-double-dotted
line: uS2d (ξ). Right panel: uq (ξ), uS(ξ), uAS(ξ) and the LF-valence

PDF of the pion, uLFval (ξ). Solid line: Quark PDF, Eq. (30). Dashed line:
uS(ξ). Dotted line: uAS(ξ). Dash-dotted line: uLFval (ξ) (see Ref. [78]),
with normalization equal to Pval = 0.7 (see text)

one (of purely relativistic nature having an orbital angu-
lar momentum equal to 1). These amplitudes are suitable
combinations of the LF-projected scalar functions φi (k; P),
Eq. (22). The integral on ξ of LF-valence PDF gives the
probability of the valence state in the Fock expansion and
amounts to

Pval =
∫ 1

0
dξ uLFval (ξ) = 0.7. (32)

The striking feature shown in the left panel is the shift toward
low ξ of the quark PDF, so that for this quantity the symmetry
ξ → 1 − ξ is slightly violated.

4.2 Analysing the shift and the gluon content

The PDF calculations based on the BS-amplitude are able to
capture an explicit gluonic effect, to be taken distinct from the
one responsible for the effective mass of the constituents. In
particular, the difference between the two symmetric PDFs,
i.e. uS(ξ) and uLFval (ξ) (recall that has Pval = 0.7), can be
traced back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by exchanging
any number of gluons. Interestingly, the difference can be
effectively described only by a factor, since it turns out that
uLFval (ξ)/Pval largely overlaps uS(ξ). Finally, also the small,
but relevant, shift of the quark PDF with respect to uS(ξ) has
to be ascribed to the presence of HFS, as discussed in what
follows.

To get a qualitative view, we remind that the pion state can
be, in principle, decomposed in Fock-components, which are
schematically written in ladder approximation as

|π〉 = |qq̄〉 + |qq̄g〉 + |qq̄ 2g〉 + · · · (33)

Due to the charge symmetry, each Fock-component is invari-
ant by q ↔ q̄ , and hence the valence state |qq̄〉 provides a
symmetric contribution to uq(ξ), identified with uLFval (ξ). The
following terms contain gluons up to infinity. In our model,
the gluon has an effective mass about twice the quark mass,
so that the HFS cumulative effect results in a small shift of the
uq(ξ) peak at ξ < 1/2, as shown in the right panel of Fig. 1.
Actually, a similar effect, related to the increasing mass of
the remnant, can be also recognized in the nucleon, where
one has a valence parton distribution with a peak around 1/3
due to the presence of the other two constituent quarks. In
the case of the pion, the effect is small since the valence
component |qq̄〉 has 70% of probability (as generated by our
dynamical calculation), and hence is largely dominant.

To become more quantitative and illustrate this effect, we
schematically write the quark PDF by using the Fock expan-
sion of the pion state, Eq. (33), and inserting LF variables
[81], one has

uq(ξ) =
∞∑
n=2

{ n∏
i

∫
d2ki⊥
(2π)2

∫ 1

0
dξi

}

×δ (ξ − ξ1) δ

(
1 −

n∑
i=1

ξi

)
δ

(
n∑

i=1

ki⊥

)

×∣∣Ψn(ξ1,k1⊥, ξ2,k2⊥, . . .)
∣∣2

, (34)

where ξ1(2) is the longitudinal-momentum fraction of the
quark (antiquark) in each Fock state, composed by a qq̄ pair
and n−2 gluons, generated by the iteration of the one-gluon
exchange. Moreover, Ψn(ξ1,k1⊥, ξ2,k2⊥, . . .) is the proba-
bility amplitude of the corresponding Fock component and
fulfills a normalization condition that follows from the one
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of the pion state. In the n-th state one has

ξ1 = 1 − ξ2 −
n∑

g=3

ξg. (35)

Since ξi > 0 for massive particles, the average value of
ξ1 starts to decreases while the number of gluons increases,
as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval = 0.7,
has a peak at ξ1 = ξ2 = 1/2, given the symmetry of
|Ψ2(ξ1,k1⊥, ξ2,k2⊥)|2 all the HFS shift the peak to ξ1 <

1/2, and decrease the tail, due to the constraint of the overall
normalization. This is reflected in the evaluation of the first
moment (recall ξq ≡ ξ1)

〈ξq〉 = Pval 〈ξq〉val +
∑
n>2

Pn 〈ξq〉n
= Pval 〈ξq〉val + (1 − Pval) 〈ξq〉HFS, (36)

where Pn is the probability of the n-th Fock state beyond
the valence one. The first term in Eq. (36) is equal to 0.35,
since 1/2 is weighted by Pval , and the rest is weighted by
0.3. Notice that for each HFS, normalized to 1, one has

〈ξq〉n = 1 − 〈ξq̄〉n −
n∑

i=3

〈ξgi 〉n
= 1 − 〈ξq̄〉n − (n − 2)〈ξg〉n, (37)

where the gluon bosonic nature leads to the factor n − 2.
The actual value of the first moment of uq(ξ) is

〈ξq〉 =
∫ 1

0
dξ

∫ ∞

0
dγ ξ f q1 (γ, ξ) = 0.471, (38)

that amounts to an average of 〈ξq〉HFS equal to 0.40.
We can further analyse 〈ξq〉HFS , aiming at extracting a

quantitative estimate of the exchanged-gluon contribution,
〈ξg〉. From the momentum sum rule Eq. (36), and recalling
Eq. (35), we get

〈ξq〉HFS = 1

1 − Pval

∑
n>2

Pn 〈ξq〉n
= 1 − 〈ξq̄〉HFS − 〈ξg〉, (39)

where

〈ξg〉 = 1

1 − Pval

∑
n≥3

Pn(n − 2) 〈ξg〉n . (40)

Moreover, since each Fock component fulfills the charge
symmetry, i.e. q ↔ q̄ , the corresponding quark and anti-
quark momentum densities are equal and hence for the Mellin
moments one has 〈ξ kq 〉HFS = 〈ξ kq̄ 〉HFS (this property does
not imply the charge symmetry of the total density, given
the presence of the gluon contribution, cf. Eq. (36)). From

Eq. (39), it follows that the gluon contribution reads

〈ξg〉 = 1 − 2 〈ξq〉HFS . (41)

Then, in our model one has 〈ξg〉 = 0.2. We should note that (i)
〈ξq〉 > 〈ξq〉HFS , as it should be, and (ii) the massive gluons
carry 20% of the HFS momentum fraction and contribute to
the total longitudinal fraction by 6% (recalling that PHFS =
0.3). This result indicates that the exchanged gluons in the
pion are not soft (differently from the ones considered in
Ref. [102] where the subtraction of the effect due to soft
gluons is advocated for getting a symmetric PDF from the
LF projected BS amplitude).

It has to be emphasized that the above analysis, made
transparent by the adopted LF variables, is valid in any gauge
(both covariant gauges or the light-cone one), and the only
difference is the amount of the shift one gets. The possibility
to regain the full gauge-invariance by taking into account the
additional gluon exchanges that could affect the interaction
between the knocked-out quark and the spectator one (see,
e.g., the analysis of the gauge-invariance and the hand-bag
contribution in Refs. [14,103]) will be explored elsewhere.

The real test of the longitudinal dof is obviously given
by the comparison between the PDF and the experimen-
tal E615 data [52]. In particular, we have considered the
original data reanalyzed by taking into account logarithmic
resummation effects in the hard part of the Drell–Yan cross-
section, as performed in Ref. [101], at a new scale of 5.2
GeV as suggested by the studies in Ref. [104]. As it is shown
in Ref. [78], our result compares very satisfactorily with the
experimental data, after evolving uS(ξ) from an assigned ini-
tial scale of 360 MeV. This is further illustrated in the right
panel of Fig. 2, where the data (squares) has been obtained
by rescaling the experimental E615 data [52], at each ξ , by
the ratio between (i) the fit 3 in Ref. [101] with resumma-
tion effects, evolved to the scale of 5.2 GeV [104] through
a leading-order DGLAP plus an effective running charge,
as given in Ref. [105],2 and (ii) the fit of E615 experimen-
tal data, which were assigned a scale of 4.0 GeV [52] (the
parameters of the fit correspond to the ones in the first col-
umn of Table I of Ref. [104]). Moreover, we have achieved
a nice agreement with other dynamical calculations, such
as the Dyson–Schwinger result of Ref. [98], the basis light-
front quantization calculation of Refs. [109,110], and also
the recent LQCD outcomes of Ref. [100]. In particular, both
the overall shape and, importantly, the tail for ξ → 1, gives

2 In Ref. [106], it was proposed the introduction in QCD and QED of a
process-dependent effective running charge, related to each observable
through a leading-order expression. In Refs. [105,107] one can find
the application of a process-independent effective running charge [108]
in combination with the leading-order DGLAP for evolving the pion
PDF (recall that DIS observables are conventionally analyzed in MS
renormalization scheme).
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Fig. 2 Left panel: Pion longitudinal distributions, with different scales
(see text for details). Dashed line: ξ uS(ξ), with an assigned initial
scale equal to 360 MeV, and first moment equal to 0.5. Solid line:
ξ uq (ξ), with a deduced scale equal to 389 MeV obtained by using
a backward evolution of the first moment from 〈ξq 〉 = 0.471 to
〈ξq 〉 = 0.5. Dot-dashed line ξ uq (ξ) backward-evolved from 389 MeV
to 360 MeV. Right panel: Comparison with the experimental data at the

scale 5.2 GeV. Solid line: Evolved uS(ξ) starting from 360 MeV. Dot-
dashed line: Evolved uq (ξ), starting from 389 MeV. Dashed line: DSE
calculation from Fig. 5 of Ref. [98]. Dotted line: basis light-front quanti-
zation result at 4.0 GeV [99]. Shaded area: LQCD calculation extracted
via Mellin moments from Ref. [100]. Full squares: reanalyzed data by
using the ratio between the fit 3 of Ref. [101], evolved to 5.2 GeV, and
the experimental data [52], at each data point (see Ref. [78] for details)

Fig. 3 Left panel: Normalized pion transverse distribution func-
tion, Eq. (42), vs γ /m2. The normalization is given by D⊥(0) =
22.945 GeV−2. Thick solid line: Full calculation. Dashed line: The
same as the full line, but times (γ /m2)4. Dash-dotted line: The same as
the full line, but times (γ /m2)2. Dash-double-dotted line: Exponential
form e−γ /(m 0.42)2

, with the parameter from Table 1 of Ref. [35], corre-

sponding to a Gaussian Ansatz for f1(γ, ξ) (see text). Right panel: Pion
unpolarized transverse-momentum distribution f S1 (γ, ξ), Eq. (10), for
ξ = 0.5. Solid line: Full calculation as in Fig. 4. Dashed line: LF con-
stituent quark model [35,56]. Dash-dotted line: LF wave function from
DSE calculations [45]. Dash-Double-dotted line: NJL model [38]. The
adopted quark mass m = 255 MeV

great confidence in our formalism, and encourages the further
steps we have undertaken in this work.

In Fig. 2, one can observe a further comparison, involving
the product ξ u(ξ), that sheds more light on the link between
the shift of the peak and the gluon dynamics taken explicitly
into account in the ladder kernel of the BSE. In particular,
we get a scale of 389 MeV for uq(ξ), the solid line in the
left panel of Fig. 1, by backward-evolving its first moment,
〈ξq〉 = 0.471 (cf. Eq. (38)), to 0.5, i.e. the first moment of
uS(ξ), that has an assigned hadronic scale of 360 MeV, as
above mentioned and thoroughly discussed in Ref. [78]. In
the left panel, the comparison at 360 MeV between ξ uS(ξ)

and the backward-evolved ξ uq(ξ) shows that the effect of
the interaction taken into account in the ladder BSE is repro-

duced at large extent by applying a leading-order DGLAP
evolution with an effective running charge as suggested in
Ref. [105] and already applied to our PDF in Ref. [78]. This
is not surprising once we remind that the dressing of the
quark-gluon vertex, as expressed by the effective charge, is
governed by the same interaction kernel present in the BSE
(i.e. the qq̄ amputated T-matrix). Notice that the right panel
also shows the comparison at 5.2 GeV between the evolved
uS(ξ), starting from the scale of 360 MeV, and the evolved
uq(ξ), starting from the scale of 389 MeV. Nicely, the differ-
ence is even smaller.
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4.3 Transverse degree of freedom

In the left panel of Fig. 3, it is shown the transverse distribu-
tion defined by

D⊥(γ ) =
∫ 1

0
dξ f S1 (γ, ξ) =

∫ 1

0
dξ f q1 (γ, ξ). (42)

It has to be pointed out that the integration on ξ eliminates
the anti-symmetric term f AS1 (γ, ξ), and therefore one gets
the same transverse distribution also by using f q1 (γ, ξ). In
order to emphasize the analysis of the general pattern, we
have presented D⊥(γ )/D⊥(0), so that the widely adopted
exponential or power-like fall-off can be readily compared
to our result.

In addition, in the left panel of Fig. 3 one can find: (i) an
exponential form D⊥(γ )/D⊥(0) = e−γ /(m 0.42)2

, with the
parameter given in Table 1 of Ref. [35], corresponding to
the so-called Gaussian Ansatz (recall γ = |k⊥|2), amount-
ing to a factorized form for f S1 (γ, ξ) ∼ uS(ξ)e−γ /(m 0.42)2

very often adopted in phenomenological studies; (ii) our full
results multiplied by (γ /m2)2 and (iii) our full results mul-
tiplied by (γ /m2)4. This panel contains two relevant com-
parisons. The first one is between the output of our dynam-
ical calculation (solid line) and the Gaussian Ansatz (dash-
double-dotted line). One observes that the behaviour are
sharply different even at small and intermediate values of
γ /m2. A second comparison, somewhat implicit, is the one
between the asymptotic behavior of our dynamical result
and a power-like tail, which is accomplished by multiplying
our calculation by a suitable power of γ /m2. If the prod-
uct becomes constant for large values of γ /m2, then one
can validate a power-like fall-off of our dynamical calcula-
tion. As the dashed line shows, this is exactly what happens.
Indeed, the proper power is different from the one expected
by the action of only a one-gluon exchange, that should gov-
ern the ultraviolet behavior and lead to a (γ /m2)2 (as sug-
gested by a generalized counting rule in Ref. [111]). Indeed,
the adopted form-factor featuring the extension of the quark-
gluon interaction vertex (cf. Eq. (7)) generates a different
power-like fall-off, namely (γ /m2)4, as already pointed out
in Refs. [90,91]. Finally, it is worth noticing that, unlike the
PDF, the two terms in f S1 (γ, ξ) containing derivatives of the
delta-function do not contribute, as it is discussed at the end
of Appendix C.1.

In the right panel of Fig. 3, it is presented the quanti-
tative comparison between f S1 (γ, ξ) at ξ = 0.5 and some
phenomenological outcomes from (i) the approach based
on the LF wave function obtained by using the DSE cal-
culation in Ref. [45]; (ii) the LF constituent quark-model of
Refs. [35,56]; (iii) the NJL model with Pauli–Villars regula-
tor as given in Ref. [38]. For γ /m2 → 0, there are remark-
able differences that, indeed, are present also on the tails.

Table 1 The average value 〈γ /m2〉 (with m = 0.255 GeV), uS(ξ =
0.5) and the pion charge radius are presented for: (i) f S1 (γ, ξ = 0.5)

from the present approach (NIR+BSE); (ii) the outcome from the LF
wave function obtained by using DSE calculation [45] (LFDSE); (iii)
the LF constituent quark-model of Refs. [35,56] (LFCQM) and (iv) the
NJL with Pauli–Villars regulator [38]. (Recall that the most recent PDG
value of the charge radius is r PDG

ch = 0.659 ± 0.004 fm [97])

〈γ /m2〉 1
2 uS(ξ = 0.5) rch [fm]

NIR + BSE 1.25 1.60 0.663

LFDSE 1.94 1.36 0.590

LFCQM 1.65 1.37 0.672

NJL 2.02 1.01 0.557

Fig. 4 Pion unpolarized transverse-momentum distribution
f S1 (γ, ξ), Eq. (10), at the initial scale. The normalization is∫ 1
0 dξ

∫ ∞
0 dγ f S1 (γ, ξ) = 1

This last feature impacts the value of 〈γ /m2〉 1
2 , as shown

in Table 1, where, for the sake of completeness, the value of
uS(ξ = 0.5) and the pion charge radius are also presented. As
can be expected, the larger the average transverse moment,
the smaller the radius of charge. The current model has the

smaller 〈γ /m2〉 1
2 (of the order of the infrared scale ΛQCD ,

effectively incorporated in the QCD-inspired choice of our
parameters) which in turn leads to a larger charge radius, in
agreement with the experimental value.

In Fig. 4, the uTMD f S1 (γ, ξ) is shown in full, in order to
appreciate the main features, i.e. (i) the peak at ξ = 0.5
for running γ /m2, (ii) the vanishing values at the end-
points and (iii) the order of magnitude fall-off already for
γ /m2 > 2. Comparing to other approaches, one can notice
the sharp difference with the results from the LF constituent
model in Ref. [56] and the LF holographic framework, like
in Refs. [40,57] where a double-humped structure is found
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due to the ξ -dependence in the holographic wave functions.
Also the value at ξ = 0.5 and small γ /m2 is substantially
lower than ours (almost an order of magnitude less). Differ-
ently, the shape of our f S1 (γ, ξ) is more similar, i.e. with-
out any double-humped structure, to the one obtained in
Ref. [45], where the pion LF-wave function is determined
from a beyond rainbow-ladder Dyson–Schwinger equations
(DSE) in Euclidean space, by exploiting the γ -dependent
moments in ξ and a suitable parametrization of the BS-
amplitude.

5 The subleading-twist uTMDs

In this section we present the numerical results for (T-
even) uTMDs beyond the leading-twist. The detailed expres-
sions can be found in the Appendix E, but it is useful to recall
that the decomposition in symmetric and antisymmetric com-
binations adopted for f1(γ, ξ) remains still valid, as well as
the relations with the quark and anti-quark contributions.

As introduction to the outcomes of our dynamical approach,
it is worth anticipating that the comparison between full cal-
culations and naive estimates one can infer from Eq. (17) by
using a valence approximation of the leading-twist f1(γ, ξ),
highlights the inspiring statement one can read in Ref. [79]:
the higher-twist distributions are naturally related to mul-
tiparton distributions. The role of the exchanged gluons
becomes definitely clear through a remarkable shift of the
peak in all the sub-leading uTMD we have analyzed, as
already discussed in the previous section, as well as through
the sharp difference with the naive estimates, which exclude
the effect of the one-gluon exchange.

5.1 Twist-3 uTMD: e(γ, ξ)

In the frame where P⊥ = 0 and hence P+ = M , by using
Eq. (26), (B.19), (B.20), (B.21) and (B.22), with i = 1 and the
functions b1

n;�j given in Table 7, one gets the twist-3 uTMDs

eS(AS)(γ, ξ), decomposed as follows

eS(AS)(γ, ξ)

= E0(γ, ξ ; S(AS)) + Ed(γ, ξ ; S(AS))

+E2d(γ, ξ ; S(AS)) + E3d(γ, ξ ; S(AS)), (43)

where the functions in the rhs are given in Appendix E.

5.1.1 Longitudinal degree of freedom

In the left panel of Fig. 5, the following collinear PDFs are
shown

e(S,AS)(ξ) =
∫ ∞

0
dγ e(S,AS)(γ, ξ) (44)

and

eq(ξ) = eS(ξ) + eAS(ξ). (45)

Moreover, in the spirit of Ref. [35], we also present the sub-
leading collinear PDF, eqEoM (ξ), obtained by integrating the
first line in Eq. (17), but disregarding the gluon contribution,
viz

eqEoM (ξ) ∼ m

Mξ

∫ ∞

0
dγ f q1;EoM (γ, ξ)

∼ m

Mξ

uLFval (ξ)

Pval
, (46)

where uLFval (ξ)/Pval , normalized to 1 (cf. Eq. (32)), approx-
imates the integral of f q1;EoM (γ, ξ). The large difference

between our eq(ξ) and (m/Mξ)uLFval (ξ)/Pval indicates the
sizable role of the gluon contribution from the HFS gener-
ated by our dynamical model. In addition, one should point
out that the strength of eq(ξ) is spread out on the whole
range of ξ , and not concentrated at the end-point ξ = 0 as
QCD investigations indicate. The latter feature leads to the
singular contribution given in Eq. (15) (see, e.g., Ref. [87],
for a detailed discussion, but notice that the focus is on the
nucleon).

In the right panel of Fig. 5, the comparison between
ξ e(ξ) and the other two approximations: (i) (m/M) f q1 (ξ)

and (ii) (m/M)uLFval (ξ) (cf. Eq. (46)) is carried out. The rele-
vance of such a comparison is given by the possibility of more
directly assessing the gluon role, since the factor ξ eliminates
the singular term present in the QCD analysis of e(ξ), and
one remains with the mass contribution (m/M) f q1 (ξ) and
the term from the quark–gluon–antiquark correlator.

Still within the QCD framework (see, e.g., Ref. [87]), the
moments 〈ξn〉eq , for n ≤ 2, read as follow

∑
q

∫ 1

0
dξ eq(ξ) = σπ

mcur

∫ 1

0
dξ ξ eq(ξ) = Nq

mcur

M∫ 1

0
dξ ξ2 eq(ξ) = mcur

M

∫ 1

0
dξ ξ f q1 (ξ), (47)

and, for n > 2, they receive contributions not only from
the (n − 1)-th moment of f q1 (γ, ξ) , but also from the
n-th moment of the twist-3 contribution pertaining to the
quark–gluon–antiquark correlator. Given the highly non triv-
ial dynamical content of the eq(ξ) moments, it is interesting
to show the results obtained with our dynamical model.

In Table 2, both the moments up to n = 3 and the ratio
R(n, eq , f q1 ) = 〈ξn〉eq /〈ξn−1〉 f q1 are presented. In particu-
lar, as to the first two moments, to get rid of the dependence
upon mcur it is helpful to compare the result obtained by
multiplying the zero-th and the first moment, (cf. Eq. (47)),
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Fig. 5 Left panel: Pion unpolarized collinear PDFs: (i) eq (ξ) (solid
line), Eq. (45), (ii) eS(ξ) (dashed line) and eAS(ξ) (dotted line),
Eqs. (44). It is also shown eqEoM (ξ) (dash-dotted line), Eq. (46). Right

panel: Quark unpolarized collinear PDFs: ξ eq (ξ). Solid line: Full cal-
culation as in the left panel. Dashed line:m/M uq (ξ), with uq (ξ) shown
in the right panel of Fig. 1. Double-dot-dashed line: ξ eqEoM (ξ), Eq. (46)

Table 2 The moments 〈ξn〉eq of the quark twist-3 eq (γ, ξ) for n < 4,
and the ratio R(n, eq , f q1 ) = 〈ξn〉eq /〈ξn−1〉 f q1 (it is assumed 〈ξ−1〉 f q1 =
〈ξ0〉 f q1 = 1, and the values of 〈ξ1〉 f q1 = 0.471 and 〈ξ2〉 f q1 = 0.266 have
been numerically evaluated)

n 0 1 2 3

〈ξn〉eq 2.190 0.814 0.445 0.292

R(n, eq , f q1 ) 2.190 0.814 0.943 1.10

with final outcome σπ/M . The estimate of σπ at the leading
order of the chiral expansion leads to σπ/M = 1/2, as satis-
factorily confirmed by the LQCD calculations in Ref. [86],
where σ lat

π = 78.2 ± 4.2 MeV, for M = 149.5 ± 1.3 MeV
and mcur ∼ 4.9 MeV. Eliminating the current quark mass,
that is outside our approach, through the above product, we
get σπ/M = 1.78, instead of ∼ 0.5. Such a conspicuous
difference is surely influenced by the different distribution
of the eq(ξ) strength, as already mentioned, and points to a
needed enrichment of the gluon dynamics in our approach.
However, it is worth mentioning that for a simple non rela-
tivistic constituent quark model one has σ N R

π = 2m, so that
σ N R

π /M = 3.64 (with m = 255 MeV the constituent mass),
almost twice the result obtained in the BS framework.

In QCD, the ratios R(1, eq , f q1 ) and R(2, eq , f q1 ) are
equal and amount to mcur/M (see Eq. (47)), while R(3, eq ,
f q1 ) = mcur/M + Δ3

g , where Δ3
g contains the contribu-

tion from the twist-3 gluonic contribution. In our calcula-
tion, the ratios for n = 1, 2 are almost equal, but different
from the naive expectation m/M = 1.82 with the adopted
m = 255 MeV. The difference with the third ratio indicates
the onset of the contribution from the twist-3 gluonic term.

5.1.2 Transverse degree of freedom

The transverse dof can be analyzed globally by introduc-
ing the following transverse distribution function, as already
accomplished with the leading-twist uTMD, viz.

E⊥(γ ) =
∫ 1

0
dξ eS(γ, ξ) =

∫ 1

0
dξ eq(γ, ξ). (48)

In the left panel of Fig. 6, it is presented our calculation
and the ratio D⊥(γ )/D⊥(0) to show the similar fall-off, as
generated from gluon dynamics and the form-factor featuring
the quark-gluon vertex.

A more close view of the decreasing as a function of γ /m2

is provided by the right panel of Fig. 6, where it is shown the
comparison between our calculation of e(γ, ξ = 0.5) and the
outcomes obtained by using Eq. (46) with ((i) the LF wave
function from the constituent quark model of Refs. [35,56],
(ii) the LF wave function from DSE calculations [45] and
(iii) the PDF from the NJL model [38]. The differences again
point to the role of the interaction in the various approaches,
and highlight the relevance of an experimental investigation
of the transverse dof.

In Fig. 7, the full dependence of eS(γ, ξ) is presented, dis-
playing a double-hump shape that for larger γ /m2 becomes
smoother and smoother.

5.2 Twist-3 uTMD: f ⊥(γ, ξ)

In an analogous way, for i = 2 and using Table 8, one gets
the twist-3 f S(AS)⊥(γ, ξ), with the following decomposition

f S(AS)⊥(γ, ξ)

= P0(γ, ξ ; S(AS)) + Pd(γ, ξ ; S(AS))

+P2d(γ, ξ ; S(AS)) (49)
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Fig. 6 Left panel: Normalized transverse distribution function
E⊥(γ )/E⊥(0) (cf. Eq. (48)). Dotted line: full calculation. Solid line:
D⊥(γ )/D⊥(0) for the sake of comparison. Dash-double-dotted line:
The same as in the left panel of Fig. 3. Right panel: Pion unpolar-
ized transverse-momentum distribution eS(γ, ξ), Eq. (43), for ξ = 0.5.
Solid line: Full calculation. Dashed line: LF constituent quark model

of Refs. [35,56], but multiplied by m/(M 0.5) (cf. Eq. (46)). Dash-
dotted line: The same as the dashed line but with the LF wave function
from DSE calculations [45]. Dash-Double-dotted line: The same as
the dashed line but with the NJL model [38]. The adopted quark mass
m = 255 MeV

Fig. 7 Pion unpolarized transverse-momentum distribution eS(γ, ξ),
Eq. (44), at the initial scale

where the above functions are given in Appendix E. Notice
that in this case P2d(γ, ξ ; S(AS)) = 0.

5.2.1 Longitudinal degree of freedom

In the left panel of Fig. 8, the following subleading collinear
PDFs are shown

f S(AS)⊥(ξ) =
∫ ∞

0
dγ f S(AS)⊥(γ, ξ), (50)

and the corresponding quark combination. As a reference, it
is also presented f ⊥q

EoM (ξ), obtained from the second line of

Eq. (17), without the gluon term, as follows

f ⊥q
EoM (ξ) ∼ 1

ξ

∫ ∞

0
dγ f ⊥q

EoM (γ, ξ) ∼ uLFval (ξ)

ξ
. (51)

For the sake of completeness, in the right panel of Fig. 8, the
product ξ f ⊥q(ξ) is compared to f q1 (ξ) and uLFval (ξ) that rep-

resents the approximation to f ⊥q
EoM (ξ) as given in Eq. (51).

Also for f ⊥q(ξ), the full calculation substantially differs
from approximated evaluations, prompting further investi-
gation of the gluon contributions.

5.2.2 Transverse degree of freedom

Also for f ⊥(γ, ξ), we introduce the transverse distribution
function, viz.

P⊥(γ ) =
∫ 1

0
dξ f S⊥(γ, ξ) =

∫ 1

0
dξ f ⊥q(γ, ξ). (52)

In the left panel of Fig. 9, a comparison, built with the same
spirit as in the left panel of Fig. 6, is shown for the ratio
P⊥(γ )/P⊥(0).

A more detailed view of the fall-off can be gained from
the right panel of Fig. 9, where f S⊥(γ, ξ = 0.5) is compared
with the results obtained by using (i) the LF constituent quark
model of Refs. [35,56] (cf. the second line in Eq. (17), with-
out the gluonic term). (ii) the LF wave function from DSE
calculations [45] and (iii) the NJL model [38].

Finally in Fig. 10, the full dependence of f S⊥(γ, ξ) is
shown. Also in this uTMD, the double-hump shape decreases
when γ /m2 increases.

To summarize, a coherent view of the tail in γ is plainly
provided by Figs. 3, 6 and 9. Namely, the interaction taken
into account in the ladder kernel together with the extended
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Fig. 8 Left panel: The same as in Fig. 5, but for f ⊥q (ξ), f S⊥(ξ) and
f AS⊥(ξ), Eq. (50), and f ⊥q

EoM (ξ) as given in Eq. (51). Right panel:
Quark unpolarized collinear PDFs ξ f ⊥q (ξ). Solid line: Full calcula-

tion as in left panel. Dashed line: ξ f ⊥q (ξ) obtained by using the second
line in Eq. (17) and our f q1 (ξ). Double-dot-dashed line: The same as the
dashed line but using the valence approximation of the PDF, uLFval (ξ),
with norm equal to 1

Fig. 9 Left panel: Normalized transverse distribution function
P⊥(γ )/P⊥(0) (cf. Eq. (52)). Dotted line: Full calculation. Solid line:
D⊥(γ )/D⊥(0) for the sake of comparison. Dash-double-dotted line:
The same as in the left panel of Fig. 3. Right panel: Pion unpolarized
transverse-momentum distribution f S⊥(γ, ξ), Eq. (49), for ξ = 0.5.

Solid line: Full calculation. Dashed line: By using f1(γ, ξ = 0.5) in
Fig. 3 from the LF constituent quark model of Refs. [35,56] (cf. the sec-
ond line in Eq. (17), without the gluonic term). Dash-dotted line: The LF
wave function from DSE calculations [45]. Dash-Double-dotted line:
The NJL model [38]. The adopted quark mass m = 255 MeV

Fig. 10 Pion unpolarized transverse-momentum distribution
f S⊥(γ, ξ), Eq. (49)

structure of the quark-gluon vertex governs the fall-off of
both the leading and subleading-twist uTMDS. Therefore,
the quantitative estimates obtained through our dynamical
model, in Minkowski space, is shown to be in a favorable
position to provide insights into the interplay between trans-
verse dof and the role of gluons.

6 Conclusions

The twist-2 (leading) and twist-3 (subleading) unpolarized
(T-even) transverse-momentum dependent parton distribu-
tion functions have been calculated for the pion within an
approach based on the solution of the Bethe–Salpeter equa-
tion in Minkowski space, namely, within a genuinely rela-
tivistic quantum field theory framework. We achieved this
goal by exploiting the Nakanishi integral representation of
the BS-amplitude in order to get actual solution of the 4D
homogeneous ladder BSE in Minkowski space through a sys-
tem of integral equations that determine the Nakanishi weight
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functions relevant for the problem under scrutiny [63,90,91].
After obtaining the pion electromagnetic form factor [77],
and the pion PDF [78], we extended the yield of our approach
by exploring the dependence of the parton distributions upon
the transverse momentum. This additional step has its-own
importance in view of the planned experimental efforts to
achieve a fully three-dimensional investigation of hadrons
(mainly of the nucleon and, more challenging, the pion).

The relevant message one gets from our calculations is
given by the essential role of the gluon exchange, that can-
not be captured by purely phenomenological model. The
joint use of the Fock expansion of the pion state, allows us to
shed light on the gluonic content of the quark PDF obtained
through the BS amplitude, even determining a quantitative
estimate, ∼ 6% of the average longitudinal momentum frac-
tion 〈ξq〉. Moreover, the latter analysis explains also the
source of the small, but theoretically relevant, shift between
the uq(ξ) and the PDF that fulfills the charge symmetry
(an issue already investigated within the Dyson–Schwinger
approach, e.g., in Ref. [102], where a different interpreta-
tion was proposed). As to the transverse degree of free-
dom, a power-like fall-off of the transverse distributions,
obtained by integrating on ξ the uTMDs, is supported by
the one-gluon exchange interaction that governs the ultra-
violet region, according to our calculations. This outcome
could suggest to reconsider exponential or Gaussian Ansätze
for describing the high-momentum content (γ � m2) of the
uTMDS.

Clearly, the presented first evaluation of the uTMDs has to
be considered a reliable starting point for the next step we are
elaborating, i.e. the introduction of the quark self-energy in
the 4D ladder BSE in Minkowski space (see Refs. [73–76].

Summarizing, our approach can be placed among those
in which the dynamics can be studied in Minkowski space
and in some detail. Moreover, the additive construction of the
interaction kernel allows one to address step-by-step recog-
nized effects, achieving an implementation of the dynamics
in a controlled way.
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Appendix A: Traces

In this Appendix the traces in Eqs. (10), (18) and (19), are
explicitly evaluated, presenting the expressions of the func-
tions ai�, j (k

−, γ, z; S(AS)) and bin;�, j (γ, z; S(AS)). For the
sake of convenience, let us rewrite the sum of traces entering
Eq. (23) (recall also Eq. (25))

Tr S(AS)
i (γ, ξ)

= −i

2

{
Tr

[
S−1(k − P

2 )Φ̄(k, P)OiΦ(k, P)
]

+η
S(AS)
i Tr

[
S−1(k + P

2 )Φ(k, P)Oi Φ̄(k, P)
]}

=
∑
�j

ai�j (k
−, γ, z; S(AS)) φ�(k; P) φ j (k; P), (A.1)

with Oi and η
S(AS)
i given by

O0 = γ +, η
S(AS)
0 = ∓1,

O1 = 1, η
S(AS)
1 = ±1,

O2 = M
|k⊥|2 k⊥ · γ ⊥, η

S(AS)
2 = ±1.

(A.2)

To proceed one has to insert the expression of the BS-
amplitude, Eq. (20), and the definitions, Eqs. (7) and (21), in
Eq. (A.1). Then one gets the results shown in Tables 3, 4 and
5, for ai�j (k

−, γ, z; S(AS)). It is also useful to organize the

functions ai�j in powers of k− for preparing the integration
on such a variable (cfr. appendix B), i.e.

ai�j (k
−, γ, z; S(AS))

= 2M

[
bi0;�j (γ, z; S(AS)) + bi1;�j (γ, z; S(AS))

k−

2M
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Table 3 Non vanishing
coefficients
a0
�j (k

−, γ, z; S(AS))

j a0
�j (S) a0

�j (AS)

11 2M 2Mz

12 −8m

13 −2m z − 4 m
M k−

14 − 8
M γ − M z2 − 2 z k− −Mz − 2k−

22 2M −4k−

23 M z + 2 k− −8 γ
M − 2zk− − 4

M (k−)2

24 2mz + 4 m
M k−

33 M
2

(
4 γ

M2 + z2

4

)
+ z

2 k
− + 1

2M (k−)2 −
(

4 γ

M2 + z2

4

)
k− − z

M (k−)2 − 1
M2 (k−)3

34 2m
(

4 γ

M2 + z2

4

)
+ 2 m

M zk− + 2 m
M2 (k−)2

44 M
2

(
4 γ

M2 + z2

4

)
+ z

2 k
− + 1

2M (k−)2 M
2 z

(
4 γ

M2 + z2

4

)
+ z2

2 k− + z
2M (k−)2

Table 4 Non vanishing coefficients a1
�j (k

−, γ, z; S(AS))

i j a1
�j (S) a1

�j (AS)

11 −4m

12 4M 2Mz − 4k−

13 −2M
(

4 γ

M2 + z2

4

)
− 2zk− − 2

M (k−)2

22 −4m

24 −2M
(

4 γ

M2 + z2

4

)
− 2zk− − 2

M (k−)2

33 m
(

4 γ

M2 + z2

4

)
+ z m

M k− + m
M2 (k−)2

34 z M
2

(
4 γ

M2 + z2

4

)
−

(
4 γ

M2 − z2

4

)
k− − z

2M (k−)2 − 1
M2 (k−)3 M

(
4 γ

M2 + z2

4

)
+ zk− + 1

M (k−)2

44 m
(

4 γ

M2 + z2

4

)
+ z m

M k− + m
M2 (k−)2

Table 5 Non vanishing
coefficients
a2
�j (k

−, γ, z; S(AS))

i j a2
�j (S) a2

�j (AS)

11 −4M

13 8m

14 4M 2zM −4k−

22 4M

23 −2Mz + 4k− −4 M

24 −8m

33 M
(

4 γ

M2 + z2

4

)
+ zk− + 1

M (k−)2

44 −M
(

4 γ

M2 + z2

4

)
− zk− − 1

M (k−)2

+bi2;�j (γ, z; S(AS))

(
k−

2M

)2

+bi3;�j (γ, z; S(AS))

(
k−

2M

)3]
. (A.3)

In Tables 6, 7 and 8, one can find the expressions for
bin;�j (γ, z; S(AS)).

Appendix B: The light-front projection

The Appendix is devoted to the integration over the variable
k− in Eq. (25), that for clarity we rewrite
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Table 6 Non vanishing coefficients b0
n;�j (γ, z; S(AS))

i j b0
0;�j (S) b0

1;�j (S) b0
2;�j (S) b0

0;�j (AS) b0
1;�j (AS) b0

2;�j (AS) b0
3;�j (AS)

11 1 0 0 z 0 0 0

12 −4m/M 0 0 0 0 0 0

13 −zm/M −4m/M 0 0 0 0 0

14 −4γ /M2 − z2/2 −2 z 0 −z/2 −2 0 0

22 1 0 0 0 −4 0 0

23 z/2 2 0 −4γ /M2 −2z −8 0

24 0 0 0 zm/M 4m/M 0 0

33 γ /M2 + z2/16 z/2 1 0 −
(

4γ /M2 + z2/4
)

−2z −4

34 0 0 0 (m/M)
(

4γ /M2 + z2/4
)

2zm/M 4m/M 0

44 γ /M2 + z2/16 z/2 1 (z/4)
(

4γ /M2 + z2/4
)

z2/2 z 0

Table 7 Non vanishing coefficients b1
n;�j (γ, z; S(AS))

i j b1
0;�j (S) b1

1;�j (S) b1
2;�j (S) b1

3;�j (S) b1
0;�j (AS) b1

1;�j (AS) b1
2;�j (AS)

11 −2m/M 0 0 0 0 0 0

12 2 0 0 0 z −4 0

13 0 0 0 0 −4γ /M2 − z2/4 −2z −4

22 −2m/M 0 0 0 0 0 0

24 −
(

4γ /M2 + z2/4
)

−2z −4 0 0 0 0

33 (m/2M)
(

4γ /M2 + z2/4
)

zm/M 2m/M 0 0 0 0

34 (z/4)
(

4γ /M2 + z2/4
)

−
(

4γ /M2 − z2/4
)

−z −4 2γ /M2 + z2/8 z 2

44 (m/2M)
(

4γ /M2 + z2/4
)

zm/M 2m/M 0 0 0 0

Table 8 Non vanishing coefficients b2
n;�j (γ, z; S(AS))

i j b2
0;�j (S) b2

1;�j (S) b2
2;�j (S) b2

0;�j (AS) b2
1;�j (AS)

11 −2 0 0 0 0

13 0 0 0 4(m/M) 0

14 2 0 0 z −4

22 2 0 0 0 0

23 −z 4 0 −2 0

24 −4m/M 0 0 0 0

33 (1/2)
(

4γ /M2 + z2/4
)

z 2 0 0

44 −(1/2)
(

4γ /M2 + z2/4
)

−z −2 0 0

Fi
�j (γ, z; S(AS))

=
∫ ∞

−∞
dk−

2π
ai�j (k

−, γ, z; S(AS)) φ�(k, P) φ j (k, P)

= 2M
∫ ∞

−∞
dk−

2π
φ�(k, P) φ j (k, P)

×
[
bi0;�j (γ, z; S(AS)) + bi1;�j (γ, z; S(AS))

k−

2M
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+bi2;�j (γ, z; S(AS))

(
k−

2M

)2

+bi3;�j (γ, z; S(AS))

(
k−

2M

)3]
, (B.1)

where the quantities ai�j (k
−, γ, z; S(AS)) and bin;�j (γ, z;

S(AS)) are given in Appendix A.
The first step (see also Refs. [63,77,78]) is to introduce

the NIR of φ�(k, P), Eq. (22), and then apply the Feynman
parametrization as follows

φ�(k, P)φ j (k, P)

= 30
∫ 1

0
dv

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

×v2(1 − v)2 g�(γ
′, z′) g j (γ

′′, z′′)[
k−α − β + iε

]6 , (B.2)

where

α = M

2

[
λ(v) − z

]
,

β(zλ(v)) = γ + κ2 + M2

4
zλ(v) + vγ ′ + (1 − v)γ ′′,

λ(v) = vz′ + (1 − v)z′′. (B.3)

Then, for performing the relevant integrals necessary in
our approach, one exploits the following general relation,
that can be straightforwardly deduced from the well-known
result in Ref. [112] (corresponding to the case m = 0),
∫ ∞

−∞
dk−

2π

(k−)m[
α k− − β + iε

]n

= i
(n − m − 2)!

(n − 1)!
(−1)m+1

[
−β + iε

]n−m−1 δ(m)(α) (B.4)

where δ(m)(α) = ∂mδ(α)/∂αm . Combining the results in
Eqs. (B.2) and (B.4), one gets

Fi
�j (γ, z; S(AS))

= −24i
∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

×
{bi0;�j (γ, z; S(AS)) δ(α̃)

[−β(zλ(v)) + iε]5

− 1

4M2

bi1;�j (γ, z; S(AS)) δ′(α̃)

[−β(zλ(v)) + iε]4

+ 1

12M4

bi2;�j (γ, z; S(AS)) δ
′′
(α̃)

[−β(zλ(v)) + iε]3

− 1

24M6

bi3;�j (γ, z; S(AS)) δ
′′′
(α̃)

[−β(zλ(v)) + iε]2

}
, (B.5)

where

G�j (γ
′, z′; γ ′′, z′′; κ2) = g�(γ

′, z′; κ2) g j (γ
′′, z′′; κ2)

α̃ = 2

M
α = λ(v) − z, (B.6)

and the derivatives of the delta function is with respect to α̃.
Recalling that ∂α̃/∂z = −1, one can also write

Fi
�j (γ, z; S(AS))

= −24i
∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

×
{bi0;�j (γ, z; S(AS)) δ(λ(v) − z)

[−β(zλ(v)) + iε]5

+ 1

4M2

bi1;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]4

∂

∂z
δ(λ(v) − z)

+ 1

12M4

bi2;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]3

∂2

∂z2 δ(λ(v) − z)

+ 1

24M4

bi3;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]2

∂3

∂z3 δ(λ(v) − z)

}
. (B.7)

Finally, by using

f (z)
∂m

∂zm
δ(λ(v) − z)

=
m∑

k=0

cmk
∂k

∂zk

[
f (m−k)(z) δ(λ(v) − z)

]
, (B.8)

where the coefficient cmk can be obtained by repeatedly
applying the Leibniz rule for the product of functions and
f (m−k) indicates the (m − k)-th derivative (with f (0)(z) ≡
f (z)), one recasts Eq. (B.7) in a form more suitable for
the further elaboration. In practice, one trades derivatives
on the delta functions with derivatives on the functions
bin;i j (γ, z; S(AS)).

One gets

Fi
�j (γ, z; S(AS))

= −24i
∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

×
{
δ(λ(v) − z)

[bi0;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]5
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− 1

4M2

∂

∂z

( bi1;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]4

)

+ 1

12M4

∂2

∂z2

( bi2;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]3

)

− 1

24M6

∂3

∂z3

( bi3;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]2

)]

+ 1

4M2

∂

∂z

[bi1;�j (γ, z; S(AS)) δ(λ(v) − z)

[−β(zλ(v)) + iε]4

− 2

3M2

∂

∂z

( bi2;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]3

)
δ(λ(v) − z)

+ 1

2M4

∂2

∂z2

( bi3;�j (γ, z; S(AS)

[−β(zλ(v)) + iε]2

)
δ(λ(v) − z)

]

+ 1

12M4

∂2

∂z2

[bi2;�j (γ, z; S(AS)) δ(λ(v) − z)

[−β(zλ(v)) + iε]3

− 3

2M2

∂

∂z

( bi3;�j (γ, z; S(AS))

[−β(zλ(v)) + iε]2

)
δ(λ(v) − z)

]

+ 1

24M6

∂3

∂z3

[bi3;�j (γ, z; S(AS)) δ(λ(v) − z)

[−β(zλ(v)) + iε]2

]}
.

(B.9)

Hence, by taking into account the expressions of bi2;�j (γ, z;
S(AS)) and bi3;�j (γ, z; S(AS)), given in Tables 6, 7 and 8,
one can drop some derivatives, namely the second derivative
of bi2;�j (γ, z; S(AS)) and all the derivatives of bi3;�j (γ, z;
S(AS)), obtaining

Fi
�j (γ, z; S(AS))

= −24i
[
F i

0�j (γ, z; S(AS))

+F i
1;�j (γ, z; S(AS)) + F i

2;�j (γ, z; S(AS))

+F i
3;�j (γ, z; S(AS))

]
(B.10)

where

F i
0,�j (γ, z; S(AS))

=
∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

× δ(λ(v) − z)

[−β(z2) + iε]5

{
bi0;�j (γ, z; S(AS))

+ 1

4

[
β(z2)

M2

∂

∂z
bi1;�j (γ, z; S(AS))

− z bi1;�j (γ, z; S(AS))

]

+ 1

16

[
z2 bi2;�j (γ, z; S(AS))

− 2z
β(z2)

M2

∂

∂z
bi2;�j (γ, z; S(AS)

]

− z3

64
bi3;�j (S(AS))

}
, (B.11)

F i1
1;�j (γ, z; S(AS))

= 1

8M2

∂

∂z

{∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

× δ(λ(v) − z)

[−β(z2) + iε]4

[
2bi1;�j (γ, z; S(AS))

− z bi2;�j (γ, z; S(AS))

+ 4

3

β(z2)

M2

∂

∂z
bi2;�j (γ, z; S(AS))

+ 3

8
z2 bi3;�j (S(AS))

]}
, (B.12)

F i
2;�j (γ, z; S(AS))

= 1

12M4

∂2

∂z2

{∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

× δ(λ(v) − z)

[−β(z2) + iε]3

[
bi2;�j (γ, z; S(AS))

− 3

4
z bi3;�j (S(AS))

]}
, (B.13)

and

F i
3;�j (γ, z; S(AS))

= bi3;�j (S(AS))

24M6

∂3

∂z3

{∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ G�j (γ

′, z′; γ ′′, z′′; κ2)

× δ(λ(v) − z)

[−β(z2) + iε]2

}
. (B.14)

Collecting the above results, Eq. (23) becomes

T S(AS)
i (γ, ξ)

= i
Nc

8

1

(2π)2

×
∑
�j

∫ 1

−1
dz δ(z − (1 − 2ξ)) Fi

�j (γ, z; S(AS))

= 3Nc

(2π)2

∑
�j

[
F i

0;�j (γ, z; S(AS)) + F i
1;�j (γ, z; S(AS))
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+F i
2;�j (γ, z; S(AS)) + F i

3;�j (γ, z; S(AS))
]
. (B.15)

It is also useful for getting more explicit expressions to per-
form the integral on v in the Eqs. (B.11), (B.12) and (B.13).
This can be accomplished by using the following result
∫ 1

0
dv v2(1 − v)2 δ[vz′ + (1 − v)z′′ − z]

= v2
0(1 − v0)

2 Θ(v0) Θ(1 − v0)

|z′ − z′′|
= v2

0(1 − v0)
2 Δ(z, z′, z′′) (B.16)

with

Δ(z, z′, z′′) = Θ(z′ − z)Θ(z − z′′) − Θ(z′′ − z)Θ(z − z′)
z′ − z′′

,

v0 = z − z′′

z′ − z′′
. (B.17)

The combination of the theta-functions implements the con-
straint 0 ≤ v0 ≤ 1. Moreover, notice that (i) simultaneously
changing the signs of z, z′ and z′′ the function Δ(z, z′, z′′)
does not change sign, this reflects the symmetry with respect
ξ = 0.5, as implemented through the charge symmetry in
Eq. (23); (ii) Δ(z, z′, z′′) is even under the exchange z′′ → z′
and in the limit z′′ − z′ = ε → 0 one has

lim
ε→0

Δ(z, z′, z′ + ε) = δ(z − z′), (B.18)

so that the singularity can be addressed without particular
problems.

By taking into account Eq. (B.16), and the symmetries
with respect to the transformation z′ → z′′ and γ ′ → γ ′′,
one gets

F i
0;�j (γ, z; S(AS))

= 2
∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× Ḡ�j (γ
′, z′; γ ′′, z′′; κ2)

[−β0(z2) + iε]5

{
bi0;�j (γ, z; S(AS))

+ 1

4

[
β(z2)

M2

∂

∂z
bi1;�j (γ, z; S(AS))

− z bi1;�j (γ, z; S(AS))

]

+ 1

16

[
z2 bi2;�j (γ, z; S(AS))

− 2z
β(z2)

M2

∂

∂z
bi2;�j (γ, z; S(AS)

]

− z3

64
bi3;�j (S(AS))

]}
, (B.19)

F i
1;�j (γ, z; S(AS))

= 1

4M2

∂

∂z

{∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× Ḡ�j (γ
′, z′; γ ′′, z′′; κ2)

[−β0(z2) + iε]4

[
2bi1;�j (γ, z; S(AS))

− z bi2;�j (γ, z; S(AS)) + 4

3

β(z2)

M2

∂

∂z
bi2;�j (γ, z; S(AS))

+ 3

8
z2 bi3;�j (S(AS))

]}
, (B.20)

F i
2;�j (γ, z; S(AS))

= 1

6M4

∂2

∂z2

{∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× Ḡ�j (γ
′, z′; γ ′′, z′′; κ2)

[−β0(z2) + iε]3

[
bi2;�j (γ, z; S(AS))

− 3

4
z bi3;�j (S(AS))

]}
,

(B.21)

and

F i
3;�j (γ, z; S(AS))

= bi3;�j (S(AS))

12M6

∂3

∂z3

{∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× Ḡ�j (γ
′, z′; γ ′′, z′′; κ2)

[−β0(z2) + iε]2

}
, (B.22)

where the functions bin;�j (γ, z; S(AS)) are given in the
Tables of appendix A and

β0(z
2) = γ + κ2 + z2 M

2

4
+ v0γ

′ + (1 − v0)γ
′′,

Ḡ�j (γ
′, z′; γ ′′, z′′; κ2)

= g�(γ
′, z′; κ2)g j (γ

′′, z′′; κ2) + � → j

2
,

v0 = z − z′′

z′ − z′′
. (B.23)

Also notice that for a bound state one has

β0(z
2) = γ + κ2 + M2

4
z2 + v0γ

′ + (1 − v0)γ
′′

≥ m2 − M2

4
(1 − z2) ≥ κ2 > 0, (B.24)

and therefore no poles are associated to such a quantity. It
should be pointed out that the presence of the theta-functions,
that ensure 0 ≤ v0 ≤ 1, prevents singular behaviors, shrink-
ing the area of integration in the space z′⊗z′′, when z′ → z′′.
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Interestingly, in the Appendix C.1, it is shown that only
F i0

�j (γ, z), i.e. without delta-function derivatives, contributes
to the norm of the twist-2 uTMD f1(γ, ξ).

Appendix C: The leading-twist uTMD f S(AS)
1

In this Appendix, the symmetric and anti-symmetric combi-
nations of the quark and antiquark leading-twist uTMDs are
explicitly given and their relevant features discussed.

By specializing the expressions in Eq. (26), one can write

f S(AS)
1 (γ, ξ) = IN (γ, ξ ; S(AS)) + Id(γ, ξ ; S(AS))

+ I2d(γ, ξ ; S(AS)) + I3d(γ, ξ ; S(AS)) (C.1)

where the four contributions are obtained from Eqs. (B.19),
(B.20), (B.21) and (B.22), respectively. Inserting the func-
tions b0

n;�j (γ, z; S) listed in the first three columns of Table 6
in Appendix A, one gets the following non vanishing sym-
metric contributions, viz.

IN (γ, ξ ; S)

= 3Nc

2π2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′v2

0(1 − v0)
2 Θ(z′ − z) Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]5

×
{[

Ḡ11(γ
′, z′; γ ′′, z′′) + Ḡ22(γ

′, z′; γ ′′, z′′)

−4
m

M
Ḡ12(γ

′, z′; γ ′′, z′′)
]

+β0(z2) + 8γ

8M2

[
Ḡ33(γ

′, z′; γ ′′, z′′)

+Ḡ44(γ
′, z′; γ ′′, z′′)

−4Ḡ14(γ
′, z′; γ ′′, z′′)

]}
, (C.2)

Id(γ, ξ ; S)

= − 3Nc

4π2M2

∂

∂z

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ v2

0(1 − v0)
2 Θ(z′ − z) Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]4

×
[
2
m

M
Ḡ13(γ

′, z′; γ ′′, z′′) + z Ḡ14(γ
′, z′; γ ′′, z′′)

−Ḡ23(γ
′, z′; γ ′′, z′′)

]}
, (C.3)

and

I2d(γ, ξ ; S)

= Nc

8π2M4

∂2

∂z2

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ v2

0(1 − v0)
2 Θ(z′ − z) Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]3

×
[
Ḡ33(γ

′, z′; γ ′′, z′′) + Ḡ44(γ
′, z′; γ ′′, z′′)

]}
, (C.4)

with β0(z2), Ḡ�j and v0 given in Eq. (B.23). The symmetry
property under the transformation z → −z can be easily
demonstrated, recalling also that under the exchange z′ →
−z′′ and γ ′ → γ ′′ the functions Ḡ�j (γ

′, z′; γ ′′, z′′) do not
change, since the NWFs gi (γ, z; κ2) are even for i = 1, 2, 4
and odd for i = 3. Moreover, under z → −z and z′ →
−z′′ one also has v0 → (1 − v0), so that β0(z2) remains
unchanged, as well as Θ(z′ − z) Θ(z − z′′)/(z′ − z′′).

The anti-symmetric combinations are

IN (γ, ξ ; AS)

= 3 Nc

2π2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′
× v2

0(1 − v0)
2

[−β0(z2) + iε]5

×
{
z Ḡ11(γ

′, z′; γ ′′, z′′) + z Ḡ22(γ
′, z′; γ ′′, z′′)

+ β0(z2) + 8γ

2M2

[
−Ḡ23(γ

′, z′; γ ′′, z′′)

+ z

4
Ḡ33(γ

′, z′; γ ′′, z′′)

+ m

M
Ḡ34(γ

′, z; γ ′′, z′′) + z

4
Ḡ44(γ

′, z′; γ ′′, z′′)
]}

,

(C.5)

Id(γ, ξ ; AS)

= Nc

2M2π2

∂

∂z

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× Θ(z′ − z)Θ(z − z′′)
z′ − z′′

v2
0(1 − v0)

2

[−β0(z2) + iε]4

×
[
−3

2
Ḡ14(γ

′, z′; γ ′′, z′′) − 3 Ḡ22(γ
′, z′; γ ′′, z′′)

+ 3
z

2
Ḡ23(γ

′, z′; γ ′′, z′′) + 3
m

M
Ḡ24(γ

′, z′; γ ′′, z′′)

− β0(z2) + 3 γ

M2 Ḡ33(γ
′, z′; γ ′′, z′′)

+ β0(z2)

2 M2 Ḡ44(γ
′, z′; γ ′′, z′′)

]}
(C.6)

I2d(γ, ξ ; AS)

= Nc

8π2M4

∂2

∂z2

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′
v2

0(1 − v0)
2

[−β0(z2) + iε]3

×
[
−8 Ḡ23(γ

′, z′; γ ′′, z′′) + z Ḡ33(γ
′, z′; γ ′′, z′′)

123
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+ 4
m

M
Ḡ34(γ

′, z′; γ ′′, z′′) + z Ḡ44(γ
′, z′; γ ′′, z′′)

]}

(C.7)

I3d(γ, ξ ; AS)

= − Nc

4π2M6

∂3

∂z3

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

[−β0(z2) + iε]2 Ḡ33(γ
′, z′; γ ′′, z′′)

}
. (C.8)

The anti-symmetry with respect to the transformation z →
−z can be easily shown by using the properties listed below
Eq. (C.4).

C.1 The normalization of f S1 (γ, ξ)

While the integration on ξ and γ of f AS1 (γ, ξ) trivially
yields zero, since the anti-symmetry in z translates in an anti-
symmetry in ξ with respect to ξ = 1/2, it is interesting to
analyze how to recover the normalization of f S1 (γ, ξ), once
the BS-amplitude is properly normalized as in Eq. (8). To pro-
ceed in the most easy way, let us perform a step backward,
and reinsert the dependence upon δ(z − λ(v)) in Eqs. (C.2),
(C.3) and (C.4) by using Eq. (B.16).

Then one has

IN (γ, ξ ; S)

= 3Nc

4π2

∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× δ(λ(v) − z)

[−β0(z2) + iε]5

{[
G11(γ

′, z′; γ ′′, z′′)

+G22(γ
′, z′; γ ′′, z′′) − 4

m

M
G12(γ

′, z′; γ ′′, z′′)
]

+β0(z2) + 8γ

8M2

[
G33(γ

′, z′; γ ′′, z′′)

+G44(γ
′, z′; γ ′′, z′′)

−4G14(γ
′, z′; γ ′′, z′′)

]}
, (C.9)

Id(γ, ξ ; S)

= − 3Nc

8π2M2

∂

∂z

{∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× δ(λ(v) − z)

[−β0(z2)) + iε]4

[
2
m

M
G13(γ

′, z′; γ ′′, z′′)

+z G14(γ
′, z′; γ ′′, z′′) − G23(γ

′, z′; γ ′′, z′′)
]}

(C.10)

and

I2d(γ, ξ ; S)

= Nc

16π2M4

∂2

∂z2

{∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ × δ(λ(v) − z)

[−β0(z2) + iε]3

×
[
G33(γ

′, z′; γ ′′, z′′) + G44(γ
′, z′; γ ′′, z′′)

]}
. (C.11)

Performing the integration on γ and ξ = (1 − z)/2, one gets
the following results. From Eq. (C.9), one recovers the stan-
dard normalization of the BS-amplitude in ladder approxi-
mation (cf. Eq. (12) in Ref. [63]), viz.

∫ ∞

−∞
dξ

∫ ∞

0
dγ IN (γ, ξ ; S)

= − 3Nc

32π2

∫ 1

0
dv v2(1 − v)2

×
∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× 1

[κ2 + M2

4 z2 + vγ ′ + (1 − v)γ ′′]4

×
{[

G11(γ
′, z′; γ ′′, z′′) + G22(γ

′, z′; γ ′′, z′′)

− 4
m

M
G12(γ

′, z′; γ ′′, z′′)
]

+ κ2 + M2

4 z2 + vγ ′ + (1 − v)γ ′′

2M2

[
G33(γ

′, z′; γ ′′, z′′)

+ G44(γ
′, z′; γ ′′, z′′) − 4G14(γ

′, z′; γ ′′, z′′)
]}

, (C.12)

while the other two terms do not contribute. In fact, let us
first integrate on z and take into account that in δ(λ(v) − z)
one has 1 ≥ λ(v) ≥ −1.

One gets for Eq. (C.10)∫ ∞

−∞
dξ

∫ ∞

0
dγ Id(γ, ξ ; S)

= − 3

16π2M2

∫ ∞

0
dγ

[∫ 1

0
dv v2(1 − v)2

×
∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× δ(λ(v) − z)

[−β(z2) + iε]4

[
2
m

M
G13(γ

′, z′; γ ′′, z′′)

+z G14(γ
′, z′; γ ′′, z′′)

−G23(γ
′, z′; γ ′′, z′′)

]]z=+∞

z=−∞
= 0.
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(C.13)

For Eq. (C.11) one has
∫ ∞

−∞
dξ

∫ ∞

0
dγ I2d(γ, ξ ; S)

= 1

32π2M4

∫ ∞

0
dγ

[
∂

∂z

∫ 1

0
dv v2(1 − v)2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× δ(λ(v) − z)

[−β(zλ(v)) + iε]3

[
G33(γ

′, z′; γ ′′, z′′)

+G44(γ
′, z′; γ ′′, z′′)

]]z=+∞

z=−∞

= 1

32π2M4

∫ ∞

0
dγ

[
∂

∂z

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ v2

0(1 − v0)
2

z′ − z′′

× Θ(z′ − z)Θ(z − z′′) − Θ(z′′ − z)Θ(z − z′)
[−β0(z2) + iε]3

×
[
G33(γ

′, z′; γ ′′, z′′) + G44(γ
′, z′; γ ′′, z′′)

]]z=+∞

z=−∞
,

(C.14)

where in the last step Eq. (B.16) has been used. Moreover,
by explicitly performing the derivative on z, given by (recall
β0(z2) = γ + κ2 + z2M2/4 + v0γ

′ + (1 − v0)γ
′′)

∂

∂z

[
v2

0(1 − v0)
2

[−β0(z2) + iε]3

(
Θ(z′ − z)Θ(z − z′′)

−Θ(z′′ − z)Θ(z − z′)
)]

= ∂

∂z

[
v2

0(1 − v0)
2

[−β0(z2) + iε]3

] (
Θ(z′ − z)Θ(z − z′′)

−Θ(z′′ − z)Θ(z − z′)
)

+ v2
0(1 − v0)

2

[−β0(z2) + iε]3

×
(
−δ(z′ − z)Θ(z − z′′) + Θ(z′ − z)δ(z − z′′)

+δ(z′′ − z)Θ(z − z′) − Θ(z′′ − z)δ(z − z′)
)]

= ∂

∂z

[
v2

0(1 − v0)
2

[−β0(z2) + iε]3

] (
Θ(z′ − z)Θ(z − z′′)

−Θ(z′′ − z)Θ(z − z′)
)

+ v2
0(1 − v0)

2

[−β0(z2) + iε]3

×
(
−δ(z′ − z) + δ(z − z′′)

)]
, (C.15)

one can straightforwardly see that the derivative vanishes for
z = ±∞, being z′ and z′′ ∈ [−1, 1]

Hence∫ ∞

−∞
dξ

∫ ∞

0
dγ I2d(γ, ξ ; S) = 0. (C.16)

Two comments are in order. First, the leading-twist uTMD
is vanishing outside the range ξ ∈ [0, 1], and hence one
can restrict the integration on z between [−1, 1]. It is easy
to prove that the same results can be obtained also in this
case, recalling that z′ and z′′ are in the same range, and in
the last line of Eq. (C.15) one has v0 = (z − z′)/(z′ − z′′)
and 1 − v0 = (z′′ − z)/(z′ − z′′). Second, the integrand
in Eq. (C.13) and (C.14) should lead to contributions to the
transverse distribution

D⊥(γ ) =
∫ ∞

0
dξ f S1 (γ, ξ), (C.17)

but from the above results one can see that they are vanishing.

Appendix D: The parton distribution function and the
leading-twist uTMD

By integrating f S1 (γ, ξ) on γ one gets the symmetric parton
distribution function uS(ξ). In particular, one has

uS(ξ) =
∫ ∞

0
dγ f S1 (γ, ξ) = uSN (ξ)+uSd (ξ)+uS2d(ξ) (D.1)

where the three contributions are obtained by integrating
on γ of the three quantities IN (γ, ξ ; S), Id(γ, ξ ; S) and
I2d(γ, ξ ; S) given in Eqs. (C.9), (C.10) and (C.11), respec-
tively. By using the result in Eq. (B.16) and the integrals
∫ ∞

0
dγ

1

[−β0(z2) + iε]n = (−1)n

n − 1

1

[D(z, v0, γ ′, γ ′′)]n−1 ,

∫ ∞

0
dγ

γ

[−β0(z2) + iε]4 = 1

6

1

[D(z, v0, γ ′, γ ′′)]2 ,

∫ ∞

0
dγ

γ

[−β0(z2) + iε]5
= − 1

12

1

[D(z, v0, γ ′, γ ′′)]3 ,

(D.2)

where

D(z, v0, γ
′, γ ′′) = κ2 + M2

4
z2 + v0γ

′ + (1 − v0)γ
′′,

(D.3)

one writes

uSN (ξ)

=
∫ ∞

0
dγ IN (γ, ξ ; S)

= − 3

8π2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′
v2

0(1 − v0)
2

[D(z, v0, γ ′, γ ′′)]4

123
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×
{[

Ḡ11(γ
′, z′; γ ′′, z′′) + Ḡ22(γ

′, z′; γ ′′, z′′)

−4
m

M
Ḡ12(γ

′, z′; γ ′′, z′′)
]

+ D(z, v0, γ
′, γ ′′)

2M2

×
[
Ḡ33(γ

′, z′; γ ′′, z′′) + Ḡ44(γ
′, z′; γ ′′, z′′)

−4Ḡ14(γ
′, z′; γ ′′, z′′)

]}
, (D.4)

uSd (ξ)

=
∫ ∞

0
dγ Id(γ, ξ ; S) = − 1

4π2M2

∂

∂z

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

[D(z, v0, γ ′, γ ′′)]3

[
2
m

M
Ḡ13(γ

′, z′; γ ′′, z′′)

+z Ḡ14(γ
′, z′; γ ′′, z′′) − Ḡ23(γ

′, z′; γ ′′, z′′)
]
, (D.5)

and

uS2d(ξ)

=
∫ ∞

0
dγ I2d(γ, ξ ; S) = − 1

16π2M4

∂2

∂z2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

[D(z, v0, γ ′, γ ′′)]2

[
Ḡ33(γ

′, z′; γ ′′, z′′)

+Ḡ44(γ
′, z′; γ ′′, z′′)

]
. (D.6)

If the BS-amplitude has the standard normalization [82],
after integrating uSN (ξ) one gets

∫ +1

0
dξ uS(ξ) =

∫ +1

0
dξ uSN (ξ) = 1 (D.7)

from (i) Eq. (C.12), (C.13) and (C.16) and (ii) Eq. (12) in
Ref. [63].

The anti-symmetric PDF uAS(ξ) is given by

uAS(ξ) =
∫ ∞

0
dγ f AS1 (γ, ξ) = uAS

N (ξ) + uAS
d (ξ)

+uAS
2d (ξ) + uAS

3d (ξ) (D.8)

where

uAS
N (ξ)

=
∫ ∞

0
dγ IN (γ, ξ ; AS) = −3 Nc

8π2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

[D(z, v0, γ ′, γ ′′)]4

{
z Ḡ11(γ

′, z′; γ ′′, z′′)

+z Ḡ22(γ
′, z′; γ ′′, z′′) + 2

D(z, v0, γ
′, γ ′′)

M2

×
[ z

4
Ḡ33(γ

′, z′; γ ′′, z′′) + z

4
Ḡ44(γ

′, z′; γ ′′, z′′)

−Ḡ23(γ
′, z′; γ ′′, z′′) + m

M
Ḡ34(γ

′, z; γ ′′, z′′)
]}

, (D.9)

uAS
d (ξ)

=
∫ ∞

0
dγ Id(γ, ξ ; AS)

= Nc

6M2π2

∂

∂z

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

[D(z, v0, γ ′, γ ′′)]3

[
−3

2
Ḡ14(γ

′, z′; γ ′′, z′′)

−3 Ḡ22(γ
′, z′; γ ′′, z′′) + 3

z

2
Ḡ23(γ

′, z′; γ ′′, z′′)

+3
m

M
Ḡ24(γ

′, z′; γ ′′, z′′)

−3
D(z, v0, γ

′, γ ′′)
M2 Ḡ33(γ

′, z′; γ ′′, z′′)

+3
D(z, v0, γ

′, γ ′′)
4 M2 Ḡ44(γ

′, z′; γ ′′, z′′)
]}

, (D.10)

uAS
2d (ξ)

=
∫ ∞

0
dγ I2d(γ, ξ ; AS)

= − Nc

16π2M4

∂2

∂z2

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

[D(z, v0, γ ′, γ ′′)]2

[
−8 Ḡ23(γ

′, z′; γ ′′, z′′)

+z Ḡ33(γ
′, z′; γ ′′, z′′) + 4

m

M
Ḡ34(γ

′, z′; γ ′′, z′′)

+z Ḡ44(γ
′, z′; γ ′′, z′′)

]}
, (D.11)

and

uAS
3d (ξ)

=
∫ ∞

0
dγ I3d(γ, ξ ; AS)

= − Nc

4π2M6

∂3

∂z3

{∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ Θ(z′ − z)Θ(z − z′′)

z′ − z′′

× v2
0(1 − v0)

2

D(z, v0, γ ′, γ ′′)
Ḡ33(γ

′, z′; γ ′′, z′′)
}
. (D.12)
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Appendix E: Twist-3 unpolarized TMDs

The Appendix presents the explicit expressions of the twist-3
and twist-4 uTMDs, obtained from Eq. (26) and Eqs. (B.19),
(B.20), (B.21) and (B.22), by using the Tables 7 and 8. In par-
ticular for the twist-3 eS(AS)(γ, ξ), i.e. for i = 1 in Eq. (26),
one has

eS(AS)(γ, ξ) = E0(γ, ξ ; S(AS)) + Ed(γ, ξ ; S(AS))

+E2d(γ, ξ ; S(AS)) + E3d(γ, ξ ; S(AS))‘

(E.1)

where the symmetric combinations and the anti-symmetric
ones are given by

E0(γ, ξ ; S)

= 3Nc

2π2

∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

∫ +1

−1
dz′′

× v2
0(1 − v0)

2 Θ(z′ − z)Θ(z − z′′)
(z′ − z′′) [−β0(z2) + iε]5

×
{

− 2
m

M
Ḡ11(γ

′, z′; γ ′′, z′′) + 2Ḡ12(γ
′, z′; γ ′′, z′′)

− 2
m

M
Ḡ22(γ

′, z′; γ ′′, z′′) + 8γ + β0(z2)

2M2

×
[
−Ḡ24(γ

′, z′; γ ′′, z′′) + m

2M
Ḡ33(γ

′, z′; γ ′′, z′′)

+ z

2
Ḡ34(γ

′, z; γ ′′, z′′) + m

2 M
Ḡ44(γ

′, z′; γ ′′, z′′)
]}

,

(E.2)

Ed(γ, ξ ; S)

= − Nc

4M4π2

∂

∂z

∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ v2

0(1 − v0)
2

× Θ(z′ − z)Θ(z − z′′)
(z′ − z′′)[−β0(z2) + iε]4

×
[
6γ + β0(z

2)
]
Ḡ34(γ

′, z′; γ ′′, z′′), (E.3)

E2d(γ, ξ ; S)

= Nc

4π2M4

∂2

∂z2

∫ +1

−1
dz′

×
∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ v2

0(1 − v0)
2

× Θ(z′ − z)Θ(z − z′′)
(z′ − z′′)[−β0(z2) + iε]3

×
[
−2 Ḡ24(γ

′, z′; γ ′′, z′′) + m

M
Ḡ33(γ

′, z′; γ ′′, z′′)

+ z Ḡ34(γ
′, z′; γ ′′, z′′) + m

M
Ḡ44(γ

′, z′; γ ′′, z′′)
]
,

(E.4)

E3d(γ, ξ ; S)

= − Nc

4π2M6

∂3

∂z3

∫ +1

−1
dz′

∫ ∞

0
dγ ′

×
∫ +1

−1
dz′′

∫ ∞

0
dγ ′′ v2

0(1 − v0)
2

× Θ(z′ − z)Θ(z − z′′)
(z′ − z′′)[−β0(z2) + iε]2 Ḡ34(γ

′, z′; γ ′′, z′′) (E.5)

E0(γ, ξ ; AS)

= 3Nc

2π2

∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

∫ +1

−1
dz′′

× v2
0(1 − v0)

2 Θ(z′ − z)Θ(z − z′′)
(z′ − z′′) [−β0(z2) + iε]5

×
{

2zḠ12(γ
′, z′; γ ′′, z′′) − 8γ + β0(z2)

4M2

×
[
2Ḡ13(γ

′, z′; γ ′′, z′′) − Ḡ34(γ
′, z′; γ ′′, z′′)

]}
, (E.6)

Ed(γ, ξ ; AS)

= − 3Nc

2π2M2

∂

∂z

{∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]4

× Ḡ12(γ
′, z′; γ ′′, z′′)

}
, (E.7)

E2d(γ, ξ ; AS)=− Nc

4π2M4

∂2

∂z2

{∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]3

×
[
2Ḡ13(γ

′, z′; γ ′′, z′′) − Ḡ34(γ
′, z′; γ ′′, z′′)

]}
, (E.8)

E3d(γ, ξ ; AS) = 0. (E.9)

E.1 The twist-3 uTMD f ⊥(γ, ξ)

For i = 2, one has the following decomposition for f ⊥(γ, ξ)

f ⊥S(AS)(γ, ξ) = P0(γ, ξ ; S(AS)) + Pd(γ, ξ ; S(AS))

+P2d(γ, ξ ; S(AS)) + P3d(γ, ξ ; S(AS)).

(E.10)

The symmetric contributions are given by

P0(γ, ξ ; S)

= −3 Nc

π2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

(z′ − z′′)[−β0(z2) + iε]5
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×
{
Ḡ11(γ

′, z′; γ ′′, z′′) − Ḡ14(γ
′, z′; γ ′′, z′′)

− Ḡ22(γ
′, z′; γ ′′, z′′) + z Ḡ23(γ

′, z′; γ ′′, z′′)

+ 2m

M
Ḡ24(γ

′, z′; γ ′′, z′′)

− 8γ + β0(z2)

8M2

[
Ḡ33(γ

′, z′; γ ′′, z′′)

− Ḡ44(γ
′, z′; γ ′′, z′′)

]}
, (E.11)

Pd(γ, ξ ; S)

= 3 Nc

2π2 M2

∂

∂z

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

∫ ∞

0
dγ ′′

× v2
0(1 − v0)

2 Θ(z′ − z)Θ(z − z′′)
(z′ − z′′)[−β0(z2) + iε]4

× Ḡ23(γ
′, z′; γ ′′, z′′), (E.12)

P2d(γ, ξ ; S)

= Nc

4π2M4

∂2

∂z2

∫ +1

−1
dz′

∫ ∞

0
dγ ′

∫ +1

−1
dz′′

×
∫ ∞

0
dγ ′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

(z′ − z′′)[−β0(z2) + iε]3

×
[
Ḡ33(γ

′, z′; γ ′′, z′′) − Ḡ44(γ
′, z′; γ ′′, z′′)

]
, (E.13)

and

P3d(γ, ξ ; S) = 0. (E.14)

The anti-symmetric contributions read

P0(γ, ξ ; AS)

= 3Nc

π2

∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′ v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]5

×
[

2
m

M
Ḡ13(γ

′, z′; γ ′′, z′′)

+ zḠ14(γ
′, z′; γ ′′, z′′) − Ḡ23(γ

′, z′; γ ′′, z′′)
]
, (E.15)

and

Pd(γ, ξ ; AS)

= − 3Nc

2π2M2

∂

∂z

{∫ ∞

0
dγ ′

∫ ∞

0
dγ ′′

∫ +1

−1
dz′

×
∫ +1

−1
dz′′v2

0(1 − v0)
2 Θ(z′ − z)Θ(z − z′′)

(z′ − z′′) [−β0(z2) + iε]4

× Ḡ14(γ
′, z′; γ ′′, z′′)

}
, (E.16)

and

P2d(γ, ξ ; AS) = P3d(γ, ξ ; AS) = 0. (E.17)
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