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Abstract For a rotating black hole to be nonsingular, it
means that there are no spacetime singularities at its center.
The destruction of the event horizon of such a rotating black
hole is not constrained by the weak cosmic censorship con-
jecture, which may provide possibilities to understand the
internal structure of black hole event horizons. In this paper,
we employ test particles with large angular momentum and a
scalar field with large angular momentum to investigate the
potential of destroying the event horizon of rotating black-
bounce black holes. Additionally, we investigate the possibil-
ity of destroying the event horizon of a rotating black-bounce
black hole by considering test particles with large angular
momentum and scalar fields with large angular momentum,
covering the entire range of the rotating black-bounce black
hole. We analyze the influence of the parameter m on the
possibility of destroying the event horizon in this spacetime.
Our analysis reveals that under extreme or near-extreme con-
ditions, the event horizon of this spacetime can potentially be
destroyed after the absorption of particles energy and angular
momentum, as well as the scattering of scalar fields. Addi-
tionally, we find that as the parameter m increases, the event
horizon of this spacetime model becomes more susceptible
to destruction after the injection of test particles or the scat-
tering of scalar fields.

1 Introduction

The importance of the singularity theorem has been demon-
strated by scholars such as Penrose and Hawking [1–3].
This theorem proves that under certain conditions of matter-
energy and initial conditions, gravitational collapse leads to
the formation of spacetime singularities [4]. This implies
that in some cases, gravitational collapse can cause the dis-
continuity and unpredictability of the geometric structure of
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spacetime, in other words, the physical laws near the singu-
larity are threatened. In order to make physical laws more
universal, physicists have attempted to explain the behav-
ior near singularities through other theories, such as string
theory or loop quantum gravity [5,6]. These theories aim
to provide new interpretations or avoid the appearance of
singularities by quantizing gravity and considering factors
such as higher dimensions and microscopic structures. Some
studies suggest that certain quantum corrections may sup-
press the formation of singularities and propose models that
could potentially address the problem of black hole singu-
larities [7–9]. If naked singularities exist in spacetime, even
in regions far from the singularity, where causally connected
events are present, physical laws cannot be predicted using
general relativity. In order to ensure the validity of general
relativity in regions far from naked singularities, the British
physicist Roger Penrose proposed the hypothesis of the weak
cosmic censorship conjecture [10].

This hypothesis suggests that the gravitational field of a
black hole would hide any singularities within its event hori-
zon, thereby avoiding their impact on the external world.
This restoration of predictability in general relativity allows
observers outside the black hole to make reliable predic-
tions. According to the cosmic censorship conjecture, the
gravitational field of a black hole would “cloak” any singu-
larities, preventing their observation by the external world.
Consequently, if singularities exist, they should be part of the
interior of the black hole and not affect the external region.
Although the weak cosmic censorship conjecture remains a
hypothesis, it has been confirmed in various aspects, such as
numerical simulations studying the collapse of dust clouds
or matter [11–15], or the simulation of black hole collisions
in higher-dimensional spaces [16–18].

As of now, the cosmic censorship conjecture remains a
hypothesis and cannot be described by a rigorous mathemat-
ical formulation [4], requiring further experimental verifi-
cation and theoretical exploration. However, the weak cos-
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mic censorship conjecture has become an important pillar
in the study of black hole theory. In recent years, there
have been new developments in the research of the cos-
mic censorship conjecture [19], including optimization of
the idea of weak cosmic censorship, weak cosmic censorship
in higher-dimensional asymptotically flat spacetimes, and its
extension to weak cosmic censorship in asymptotically anti-
de Sitter spacetimes [20,21].There are two commonly used
methods to verify the weak cosmic censorship conjecture.
One is through numerical simulations, such as studying the
evolution of collapsing matter or the collision of two black
holes [11,17,18,22–24]. The other is through thought exper-
iments. A notable thought experiment proposed by Wald
[25–27] involves large-angular-momentum test particles col-
liding with extreme or near-extreme black holes to investi-
gate whether the event horizon can be destroyed to form a
naked singularity. In a series of these thought experiments, a
paper by Veronika E. Hubeny demonstrates that near-extreme
Reissner–Nordström black holes can have their event hori-
zons destroyed by carefully chosen particles, without consid-
ering backreaction effects [28]. Many more thought experi-
ments have been constructed, revealing behaviors that defy
the weak cosmic censorship conjecture [29–32]. However,
Wald and Sorce’s verification of the Kerr-Newman black
hole found that under certain second-order perturbations, the
weak cosmic censorship conjecture seems to be restored [33].
Subsequent thought experiments and analyses on BTZ black
holes or other types of black holes have further demonstrated
that extreme black holes cannot be disrupted to form naked
singularities [34–37]. In recent years, the weak cosmic cen-
sorship conjecture has been extended to loop quantum grav-
ity, where the presence of quantum correction coefficients
can destroy the event horizon, thus violating the weak cos-
mic censorship conjecture [9].

In addition to using test particles to destroy the event
horizon, another method employed to verify this hypothe-
sis involves the scattering of scalar fields. When consider-
ing the scattering of classical scalar fields, it has been found
that extreme and near-extreme black holes cannot have their
event horizons destroyed by classical scalar fields [38–42].
However, considering the existence of super-radiance and
quantum effects [43–46], black holes can absorb or emit
energy from the scalar field, resulting in the phenomenon
of black hole superradiance. When studying the scattering of
quantum-corrected black holes with scalar fields, researchers
have discovered that both extreme and near-extreme black
holes can have their event horizons destroyed by scalar
fields, thus violating the weak cosmic censorship conjecture.
This also implies that when quantum effects are taken into
account, certain near-extremal black holes, due to super-

radiance, can absorb a dangerous amount of energy from a
scalar field, leading to the destruction of their event horizons
and the exposure of naked singularities [47–49].

The black-bounce spacetime is a type of deformable
Schwarzschild spacetime, which was first proposed by Simp-
son and Visser [50]. Their work attempted to establish a con-
nection between black holes and wormholes by introducing a
parameter. Since the introduction of the black-bounce space-
time, extensive research has been conducted on this topic. For
example, Lobo et al. generalized the black-bounce space-
time to a more general form, enable it to be derived from
the Einstein field equations, and also studied the dynamical
properties of the black-bounce metric [51,52]. Recently, in
Ref. [53], Xu et al. extended the black-bounce spacetime into
a rotating black-bounce spacetime using the Newman–Janis
algorithm (NJA).

In general, for a regular black hole, there is no singularity
at its center, and it is instead replaced by a ring singularity or
a transition surface. The destruction of its event horizon does
not violate the weak cosmic censorship conjecture [9]. The
disruption of the event horizon of a regular black hole was
first proposed in Ref. [54]. Their conclusion suggests that
the event horizon of a regular black hole can be disrupted.
The rotating black-bounce model [53] describes a spacetime
similar to a black hole. This black hole is a regular one, but
what’s interesting is that this regular black hole represents not
just a black hole, but due to the presence of parameter m2,
the black hole can transition into a wormhole. In this process,
the internal structure of the rotating black-bounce black hole
may be quite fascinating. For rotating black-bounce model
depicts a regular black hole that exhibits a bouncing phe-
nomenon in its metric, thereby avoiding the issues of infinite
density and singularities. Inspired by recent generalization
of gedanken experiments by others, we also investigate the
destruction of the event horizon by using test particles and
scalar fields incident on the rotating black-bounce black hole,
and discuss the impact of parameters on the destruction of
the event horizon.

In this paper, In Sect. 2, we provides an introduction to the
rotating black-bounce black hole. In Sects. 3 and 4, we dis-
cuss the destruction of its event horizon by test particles and
scalar fields, respectively, and explore the effects of param-
eters on the destruction of the event horizon. In the final
section, we present some brief discussion and conclusion.

2 Rotating black-bounce black hole metric

For the rotating black-bounce spacetime model, the metric
takes the following form [53]
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ds2 = −
⎛
⎝1 − 2M

(
r2 + m2

)
rk

(
r2n + m2n

) k+1
2n �2

⎞
⎠ dt2 + �2

�
dr2

− 4a sin2 θ

�2

M
(
r2 + m2

)
rk

(
r2n + m2n

) k+1
2n

dφdt + �2dθ2

+ sin2 θ

�2 ((r2 + m2 + a2)2 − a2� sin2 θ)dφ2. (1)

The parameter a in the above equation represents the black
hole spin,where the metric functions are

a = J

M
,

�2 = r2 + m2 + a2 cos2 θ,

� = h(r) f (r) + a2

= r2 + m2 − 2M(r2 + m2)rk

(r2n + m2n)
k+1
2n

+ a2. (2)

The parameterm is a non-negative value, while k, n =1,2,3…
For Eq. (1), when the parameters k = 1, n = 1, and

a = 0, the Kerr-like space-time metric degenerates into a
Szekeres-Vřes spacetime. When m = k = 0 and n = 1,
this spacetime becomes a Kerr black hole. If m = k = 0,
n = 1, and a = 0, the spacetime metric becomes spherically
symmetric. In the aforementioned process, the parameter m
is particularly interesting. As m varies from zero to infin-
ity, the spacetime metric transforms into Kerr black holes,
Kerr-like black holes, single-channel rotating wormholes,
and traversable wormholes.

Next, an analysis is conducted on the metric described by
Eq. (1), where the event horizon of this spacetime is deter-
mined by the equation � = 0, By utilizing Eq. (2), the cal-
culation yield

rh
�

= 1 ±
√

1 − a2 + m2

�2 , (3)

where

� = M(r2
h + m2)rk−1

h

(r2n
h + m2n)

k+1
2n

= Mβ, (4)

and rh represents the event horizon.
From the above equation for the event horizon (3), it can

be observed that (a2 +m2) ≤ �2 represents the existence of
an event horizon in this spacetime metric. However, when the
black hole spin parameter a changes, i.e., (a2 + m2) > �2,
the event horizon ceases to exist in this spacetime metric. This
is particularly interesting as it indicates that certain changes
in the spin parameter can lead to the destruction of the event
horizon. The focus of this study will therefore be on the
scenario where the event horizon exists.

We have calculated the event horizon of this spacetime,and
next we will calculate the surface area of the event horizon
and the angular velocity at the event horizon.

The surface area of the event horizon is

A = 4π(r2
h + m2 + a2), (5)

and the angular velocity at the event horizon is

	H = −g03

g33
= a

(r2
h + m2 + a2)

. (6)

3 Destruction of the black hole event horizon by test
particles

In Sect. 2, it can be seen that by changing the black hole
spin parameter a, the event horizon in this spacetime metric
can disappear. This can be observed from the event horizon
formula (3)

rh
�

= 1 ±
√

1 − a2 + m2

�2 . (7)

From the event horizon formula, it can be observed that
when (a2 + m2) ≤ �2, the rotating black-bounce space-
time represents a black hole. However, when the condition
(a2 + m2) > �2 is satisfied, resolving it yields

J > M2

√
β2 − m2

M2 , (8)

where � = Mβ, at this point, the event horizon of the space-
time disappears.

In this section, in order to destroy the event horizon of the
rotating black-bounce black hole, it is sufficient to introduce
particles or scalar fields with large angular momentum into
this model. This causes a change in the black hole spin param-
eter, resulting in a composite system where the event horizon
does not exist. Specifically, if the composite system satisfies

the condition J ′ > M ′2
√

β2 − m2

M2 , the event horizon of this
spacetime can be destroyed.

Under the spacetime of rotating black-bounce, the motion
equation of a test particle with mass (μ) can be expressed
using the geodesic equations. In this process, adopting the
affine parameter as the proper time (τ ) to describe the motion
parameters of the test particle, the motion equation of this test
particle can be written in the following form

d2xμ

dτ 2 + �
μ
αβ

dxα

dτ

dxβ

dτ
= 0. (9)

The equation above can be obtained through the Euler–
Lagrangian equation of the test particle. The motion of the
test particle can be described using the Lagrangian, which
has the following expression
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L = 1

2
μgμν

dxμ

dτ

dxν

dτ
= 1

2
μgμν ẋ

μ ẋν . (10)

Assuming that the test particle is incident along the equa-
torial plane, there is no motion in the θ direction, i.e. dθ

dτ
= 0.

Therefore, the momentum of the test particle in the θ direc-
tion is zero, given by

pθ = ∂L

∂θ̇
= μg22θ̇ = 0. (11)

The angular momentum δ J and energy δE of a moving
particle in the spacetime of rotating black-bounce can be
expressed as

δ J = ∂L

∂φ
= μg3ν ẋ

ν, (12)

δE = −∂L

∂ ṫ
= −μg0ν ẋ

ν . (13)

The change in angular momentum J ′ and energy M ′ of
the black hole itself after capturing a particle is given by

M → M ′ = M + δE,

J → J ′ = J + δ J. (14)

In order to investigate whether the event horizon of this
spacetime can be violated, it is necessary to first calculate
the conditions under which the test particle can enter the
event horizon. This is because if the angular momentum of
the test particle is too large, the centrifugal repulsion may
cause the test particle to escape the capture by spacetime
and thus fail to reach the interior of the event horizon. Then,
the conditions for the composite system formed by particles
crossing the event horizon to potentially disrupt the event
horizon of this spacetime need to be calculated. Only when
both of these conditions are satisfied can the structure inside
the event horizon be exposed to external observers.

For a massive particle, the time component of the four-
velocity that describes its motion is non-zero. The four-
velocity must be less than the speed of light and therefore
must be a timelike unit vector, denoted as

UμUμ = gμν

dxμ

dτ

dxν

dτ
= 1

μ2 g
μνPμPν = −1. (15)

Substituting Eqs. (11), (12) and (13) into Eq. (15) yield

g00δE2 − 2g03δEδ J + g11 p2
r + g33δ J 2 = −μ2. (16)

To solve Eq. (16) for the energy δE of the test particle

δ E = g03

g00 δ J ± 1

g00

×
√[

(g03)
2
δ J 2 − g00(g33δ J 2 + g11P2

r + μ2
]
. (17)

The test particle moves along the equatorial plane towards
the event horizon, and in this case, the geodesic of its motion

is timelike and future-directed. The conditions that need to
be satisfied are

dt

dτ
> 0. (18)

Expand and solve Eqs. (12) and (13) to obtain

ṫ = dt

dτ
= − g33δE + g03δ J

μ(g00g33 − g03
2)

. (19)

Because the condition is dt
dτ

> 0, its energy must be satisfied
as

δE > −g03

g33
δ J. (20)

From the condition given by Eq. (20), we can deduce that
the energy in Eq. (17) can only take a negative sign, which
means

δE = g03

g00 δ J

− 1

g00

√[
(g03)

2
δ J 2 − g00(g33δ J 2 + g11P2

r + μ2
]
.

(21)

In order for test particles to fall into the interior of this event
horizon, the condition that the Eq. (20) points in the future
becomes

δ J < − lim
r→rh

g33

g03
δE . (22)

Substituting Eq. (6) into Eq. (22) yields

δ J < − lim
r→rh

g33

g03
δE = r2

h + m2 + a2

a
δE . (23)

On one hand, if the energy and angular momentum rela-
tionship of the test particle is such that δ J � δE , there would
be a centrifugal repulsive force that is larger than the attrac-
tive gravitational force. This would cause the particle to miss
the collision point without colliding. If this happens, in this
spacetime, the particle would have no possibility of entering
the interior of the event horizon, which is not the desired
outcome. Therefore, there should be an upper limit on the
angular momentum δ J of the test particle. If δ J exceeds this
limit, the test particle cannot enter the interior of the event
horizon. Thus, from Eq. (23) above, we can determine that the
upper limit for the angular momentum δ J of the test particle
is

δ Jmax <
δE

	H
= r2

h + m2 + a2

a
δE . (24)

On the other hand, in order to overspin the event horizon
of a rotating black-bounce black hole, the angular momen-
tum δ J and energy δE of the test particle must satisfy the
conditions specified by the event horizon equation. That is,
the composite system formed after the black hole absorbs
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the energy and angular momentum of the particle satisfies
the following conditions

J ′ > M ′2
√

β2 − m2

M2 . (25)

To facilitate the subsequent analysis, let the parameter be
denoted as

α =
√

β2 − m2

M2 . (26)

At this time, the conditions that the angular momentum δ J
and energy δE must satisfy become the following J ′ >

αM ′2.
To satisfy the composite system condition J ′ > αM ′2

mentioned above, substitute Eq. (14) into the composite sys-
tem condition, resulting in

J + δ J > α(M + δE)2, (27)

expanding this expression yield

δ J > αδE2 + 2αMδE +
(
αM2 − J

)
. (28)

Clearly, from Eq. (28) can be seen that in order to disrupt
the event horizon of a rotating black-bounce black hole, the
condition that must be satisfied by the test particle’s angular
momentum δ J is as follows

δ Jmin >
(
αM2 − J

)
+ αδE2 + 2αMδE . (29)

The above equation represents the minimum angular momen-
tum required for a test particle to disrupt the event horizon
of this spacetime.

Therefore, only when the angular momentum of the test
particle satisfies the conditions given by Eqs. (24) and
(29), will the event horizon of this rotating black-bounce
hole be disrupted, revealing its internal structure to external
observers.

For a rotating black-bounce black hole, we only consider
two cases: extreme and near-extreme. For the extreme case,
that is a = Mα. Then the event horizon of the black hole is

rh = � = Mβ. (30)

If the analysis only considers the first-order approximation
of energy δE , then the condition for disrupting the event
horizon of this spacetime becomes

δ Jmax <
δE

	H
= r2

h + m2 + a2

a
δE, (31)

δ Jmin > 2αMδE . (32)

Combining Eqs. (30) and (31), we obtain the following cal-
culation results

δ Jmax <

(
2Mα + 2m2

Mα

)
δE . (33)

From Eqs. (32) and (33) above can be visually seen that
the angular momentum δ J of the test particle can satisfy
both conditions simultaneously. In the extreme case, the
event horizon of a rotating black-bounce hole can be dis-
rupted. Only when the parameter m = 0, the event horizon
of this extreme spacetime model cannot be destroyed. When
m = k = 0 and n = 1, this spacetime becomes a Kerr black
hole. When the aforementioned value is taken in the equation,
the angular momentum of the test particle cannot satisfy both
conditions simultaneously, and in this case, the event horizon
of this spacetime cannot be disrupted. This scenario is con-
sistent with the conclusion in general relativity that the event
horizon of an extreme Kerr black hole cannot be disrupted
by test particles [30].

The above analysis only considers the first-order approxi-
mation. If we take into account the second-order small quan-
tities, according to Eq. (29), although the second-order small
quantity αδE2 increases the lower limit of angular momen-
tum for the test particle. However, we found that when only
considering first-order approximation, our conclusion is that
as long as parameter m exists, Eqs. (32) and (33) can be sat-
isfied simultaneously. In other words, under the first-order
approximation, we have already obtained the possibility of
destroying the event horizon. Therefore, when considering
the second-order small quantities, their influence on the result
is minimal, and the possibility of event horizon disruption
still exists. Therefore, in the subsequent analysis, we will
also consider only the first-order approximation. Only when
the first-order approximation is inconclusive, we will incor-
porate the analysis of the second-order small quantities.

For another case, which corresponds to a near-extreme
situation, that is, a ∼ αM . Here, we also consider only the
first-order approximation of the energy δE for the test par-
ticle. In this case, the conditions for the test particle to pass
through the event horizon and the conditions for disrupting
the event horizon become

δ Jmax <
δE

	H
= r2

h + m2 + a2

a
δE, (34)

δ Jmin > 2αMδE +
(
αM2 − J

)
. (35)

For the expression a ∼ αM mentioned above, a dimension-
less parameter ε can be defined to describe the degree of
approaching the extreme. It is defined as the following

a2 + m2

�2 = 1 − ε2. (36)

The parameter ε is a number approaching zero, that is ε � 1.
When ε = 0, the equation becomes the extreme case. From
Eqs. (34) and (35), it can be concluded that in order to dis-
rupt the event horizon of this spacetime in the near-extreme
scenario while considering only the first-order approxima-
tion, the term (αM2 − J ) can be neglected as a second-order

123



938 Page 6 of 12 Eur. Phys. J. C (2023) 83 :938

small quantity. Therefore, by analyzing Eqs. (34) and (35),
we obtain

1

	H
− 2αM > 0. (37)

If the subsequent calculation results satisfy the aforemen-
tioned equation, then the event horizon of this black hold
can be disrupted in the near-extreme scenario. By combining
Eqs. (7) and (37), we can calculate

rh = (1 + ε) � = (1 + ε) βM. (38)

Combining Eqs. (6), (37) and (38), the result is

1

	H
− 2αM

= 2m2 + 2
(
M2α2 + m2

)
ε + (

M2α2 − m2
)
ε2 − 2M2α2O

(
ε4

)
√(

1 − ε2
) (

M2α2 + m2
) − m2

.

(39)

Based on Eq. (39), it can be easily deduced that the dis-
ruption of the event horizon of a rotating black-bounce black
hole depends on the value of parameter m. In this equation,
parameter m is a non-negative value, so in the near-extreme
scenario, the event horizon of the entire spacetime can be
easily disrupted. For the case of m = k = 0 and n = 1, this
spacetime degenerates into a Kerr black hole. An analysis of
the equation reveals that in this case, the event horizon can
be disrupted. This conclusion aligns with the notion that an
approximately extreme Kerr black hole can expose its singu-
larity by testing particles to disrupt the horizon [30].

4 Destruction of event horizon by scalar fields

Another way to disrupt the event horizon of a non-singular
rotating black hole is by scattering a scalar field with large
angular momentum onto a near-extreme or extreme black
hole. This idea was proposed by Semiz in 2011 and has since
been further developed and refined by researchers like Gwak
[55,56].

Therefore, in this section, we will examine the weak cos-
mic censorship conjecture for rotating black-bounce black
hole by referencing the ideas of previous researchers. Fol-
lowing the approach of previous studies, we will scatter a
scalar field with large angular momentum onto this space-
time and investigate the possibility of disrupting the event
horizon of the rotating black-bounce black hole in extreme
and near-extreme scenarios. Similar to prior research, we will
utilize a scalar field with large angular momentum to scatter
onto this spacetime and study the cases where the disruption
of the event horizon of the rotating black-bounce black hole
occurs in extreme and near-extreme conditions.

4.1 Scattering of massive scalar fields

Scattering occurs when a scalar field is incident on a rotating
black-bounce black hole. Assuming the mass of this scalar
field ψ is given by μ, the motion equation of this scalar field
can be described using the Klein–Gordon equation, which is
given by

∇μ∇ν − μ2ψ = 0. (40)

According to the definitions of covariance and contravari-
ance, the equation can be written as

1√−g
∂μ

(√−ggμν∂νψ
) − μ2ψ = 0. (41)

The determinant of the metric for a rotating black-bounce
black hole is

g = −�4 sin2 θ. (42)

The contravariant metric tensor is

gμν = �μν

g
. (43)

By substituting Eqs. (42) and (43) into Eq. (41), the result
can be calculated as

−
(
r2 + m2 + a2

)2 − a2� sin2 θ

��2

∂2ψ

∂t2 − 4aMβ

��2

∂2ψ

∂t∂φ

+ 1

�2

∂

∂r

(
�

∂ψ

∂r

)
+ 1

�2 sin2 θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

+� − a2 sin2 θ

��2

∂2ψ

∂φ2 − μ2φ = 0. (44)

In order to separate the variables in the equation above, we
can assume the solution for the scalar field ψ to have the
following form

ψ (t, r, θ, φ) = e−iωt R (r) Slm0(θ)eim0φ. (45)

The term Slm0(θ) in the equation represents the angular
spherical harmonic function, where l and m0 are constants
for angular separation of variables, taking positive integer
values. By substituting Eq. (45) into the scalar field equation
(44), we obtain the following form

[
1

sin2 θ

d

dθ

(
sin θ

dSlm0 (θ)

dθ

)

−
(
a2ω2 sin2 θ + m0

2

sin2 θ
+ μ2a2 cos2 θ

)
Slm0 (θ)

]
R (r)

+
[
d

dr

(
�
dR

dr

)
+

(
(r2 + m2 + a2)2

�
ω2 − 4aMβ

�
m0ω

+m2
0a

2

�
− μ2(r2 + m2)

)
R(r)

]
Slm0 (θ) = 0. (46)
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By separating variables in Eq. (46), we obtain the angular
equation for the scalar field as follows

1
sin2 θ

d
dθ

(
sin θ

dSlm0 (θ)

dθ

)
−

(
a2ω2 sin2 θ + m0

2

sin2 θ

+μ2a2 cos2 θ − λlm0

)
Slmo (θ) = 0, (47)

and the radial equation for the scalar field as follows

d
dr

(
� dR

dr

) +
(

(r2+m2+a2)2

�
ω2 − 4aMβ

�
m0ω + m2

0a
2

�

−μ2(r2 + m2) − λlm0

)
R(r) = 0. (48)

In the above two equations λlm0 is a separation constant
and represents the eigenvalue of the angular spherical har-
monic function. By solving Eq. (47), it is found that its solu-
tion is a spherical function. Due to the normalization of spher-
ical functions, when calculating the energy flux in the subse-
quent steps by integrating over the entire event horizon, the
integral of the spherical function is equal to one. Therefore,
we focus more on finding the radial solution of the scalar
field equation. For convenience in solving the equation, we
introduce the tortoise coordinate r∗ and define the tortoise
coordinate as

dr

dr∗
= �

r2 + m2 + a2 . (49)

After introducing the tortoise coordinate r∗, it can cover the
entire region outside the event horizon of a rotating black-
bounce black hole. Substituting the tortoise coordinate into
the radial Eq. (48) for the scalar field and solving it, we obtain

�(
r2 + a2 + m2

)2

d

dr

(
r2

) dR

dr∗
+ d2R

dr∗2

+
[(

ω − m0a

r2 + a2 + m2

)2

+ 2�am0ω(
r2 + a2 + m2

)2

− �(
r2 + a2 + m2

)2

(
μ2

(
r2 + m2

)
+ λlm0

)]
R = 0.

(50)

In the subsequent analysis, we are primarily concerned
with the energy flux and angular momentum flux of the scalar
field incident on the event horizon of a rotating black-bounce
black hole. Therefore, in the vicinity of the horizon, we make
the following approximation r ∼= rh , which means

� ∼= 0. (51)

Substituting Eq. (51) into Eq. (50) yields the following
approximation

d2R

dr∗2 +
(

ω − m0a

r2
h + a2 + m2

)2

R = 0. (52)

By substituting Eq. (6) into Eq. (52), the radial equation for
the scalar field can be expressed as

d2R

dr∗2 + (ω − m0	H )2 R = 0. (53)

The solution can be expressed in exponential form as

R(r) ∼ exp [±i(ω − m0	H )r∗] . (54)

In the solution above, the positive and negative signs corre-
spond to the outgoing and ingoing waves, respectively. We
are primarily interested in the wave modes absorbed by a
rotating black-bounce balck hole. Therefore, we consider the
negative sign, which corresponds to the ingoing wave and is
more appropriate for our analysis. Hence, the solution to the
radial equation for the scalar field is

R (r) = exp [−i(ω − m0	H )r∗] . (55)

The approximate solution for the scalar field near the event
horizon is

ψ (t, r, θ, φ) = exp [−i(ω − m0	H )r∗] e−iωt Slm0(θ)eim0φ.

(56)

With this approximate solution, we can now calculate the
energy flux and angular momentum flux of the scalar field
near the event horizon. This enables us to investigate whether
a rotating black-bounce black hole can desytroy the event
horizon by absorbing energy from the scalar field.

Let’s assume that a scalar field with mode (l,m0) is inci-
dent on this spacetime. During the process of incidence, the
spacetime absorbs a fraction of the energy from the scalar
field and reflects another fraction of the energy. The absorbed
portion of the scalar field’s energy will be converted into
angular momentum and energy of the composite system. By
calculating the fluxes of energy and angular momentum of
the scalar field around the event horizon, we can obtain the
corresponding values of angular momentum and energy.

The stress-energy tensor of a scalar field (ψ) with mass
(μ) can be expressed in the following form

Tμν = ∂μψ∂νψ
∗ − 1

2
gμν

(
∂μψ∂νψ∗ + μ2ψψ∗) . (57)

By substituting Eqs. (1) and (56) into Eq. (57), we obtain

T r
t = (r2

h + a2 + m2)

�2

ω(ω − m0	H )S∗
lm0

(θ)eim0φS∗
l ′m′

0
(θ)e−im0φ, (58)

and

T r
φ = (r2

h + a2 + m2)

�2

m0 (ω − m0	H ) S∗
lm0

(θ)eim0φS ∗l ′m′
0
(θ)e−im0φ.

(59)
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Therefore, the energy flux through the event horizon is

dE

dt
=

∫∫
Tr
t
√−gdθdφ = ω(ω − m0	H )

[
rh

2 + a2 + m2
]
,

(60)

and the angular momentum flux through the event horizon is

d J

dt
=

∫∫
Tr
φ

√−gdθdφ = m0 (ω − m0	H )
[
rh

2 + a2 + m2
]
.

(61)

From the above two equations, where g is the determinant
of the metric, it can be easily deduced that when ω > m0	H ,
the values of angular momentum and energy flux through the
horizon are positive. This means that, in this scenario, a rotat-
ing black-bounce black hole gains energy dE and angular
momentum d J from the scalar field. On the contrary, when
ω < m0	H , the values of angular momentum and energy
flux through the horizon are negative. This implies that, at
this moment, the spacetime does not gain energy from the
scalar field. Instead, the scalar field extracts the correspond-
ing energy from the black hole. This phenomenon is known
as black hole superradiance.

For a very small time interval dt , the changes in angular
momentum and mass of this spacetime are

dE = ω(ω − m0	H )
[
rh

2 + a2 + m2
]
dt, (62)

and

d J = m0(ω − m0	H )
[
rh

2 + a2 + m2
]
dt. (63)

Through Eqs. (62) and (63), we can determine the energy
and angular momentum of a massive scalar field that passes
through the event horizon. In other words, these equations
provide the values of absorbed energy and angular momen-
tum from the scalar field in this spacetime model. By ana-
lyzing the absorbed angular momentum and energy, we
can assess whether the event horizon of this spacetime can
be destroyed in extreme and near-extreme scenarios, and
whether observers outside can observe the internal structure
of the event horizon.

4.2 Destruction of event horizon of a rotating black-bounce
black hole after scalar field scattering

In this section, we main focus is to discuss the destruction of
the event horizon by a scalar field with large angular momen-
tum scattering off arotating black-bounce black hole. By con-
sidering the scattering of a monochromatic scalar field with
a frequency of ω and an angular quantum number of m0 onto
the rotating black-bounce black hole, we examine whether
this scalar field can destroy the event horizon of the space-
time. Additionally, we explore the influence of the parameter
m on the destruction of the horizon.

For a continuous process of scalar field scattering, the cal-
culus approach is employed by breaking down the continuous
process into numerous infinitesimal time intervals dt . Then,
each time interval dt is analyzed separately, and the only
difference between the analysis of each interval is the dif-
ferent initial state parameters of the black hole. The analysis
process remains the same for each interval.

According to Sect. 2, it is known that the event horizon
of the spacetime can be destroyed when the black hole spin
parameter a changes. Using the same approach, before the
incident of a scalar field, the initial mass of the black hold is M
and the initial angular momentum is J . After the incidence of
the scalar field, the mass of the the black hole becomes M ′ =
M+dE , and the angular momentum becomes J ′ = J +d J .
For the composite system formed by a black hole after the
incidence of a scalar field,by using the formula for the event
horizon, we can determine whether the event horizon of the
spacetime is destroyed. We only need to consider the sign
of the expression αM ′2 − J ′. If the sign is positive, then the
event horizon of the spacetime cannot be destroyed, and the
event horizon will continue to exist. If the sign is negative,
then the event horizon of the spacetime is destroyed, thereby
exposing the internal structure of the spacetime to observers
at infinity.

As mentioned above, Our analysis focuses solely on the
variation of the composite system within the extremely short
time interval dt. Within this time interval dt, the rotating
black-bounce black hole absorbs energy dE and angular
momentum dJ from the scalar field, resulting in the total
energy and angular momentum of the composite system
being

αM ′2 − J ′ =
(
σM2 − J

)
+2σMdE+σdE2 − d J. (64)

When considering only the first-order terms, the above equa-
tion can be simplified as

αM ′2 − J ′ =
(
αM2 − J

)
+ 2αMdE − d J. (65)

Substituting the energy and angular momentum absorbed by
the spacetime from the scalar field, as analyzed in Sect. 4.1,
into Eqs. (62) and (63), and then plugging them into Eq. (65),
we have

αM ′2 − J ′ =
(
αM2 − J

)
+ 2αMm0

2
(

ω

m0
− 	H

)

×
(

ω

m0
− 1

2αM

)(
rh

2+a2+m2
)
dt. (66)

For a rotating black-bounce black hole in the extreme case,
where αM2 = J , Eq. (66) becomes

αM ′2 − J ′ = 2αMm0
2
(

ω

m0
− 	H

)

×
(

ω

m0
− 1

2αM

)(
rh

2 + a2 + m2
)
dt. (67)
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From the angular velocity formula (6), in the extreme case,
the angular velocity of a rotating black-bounce black hole
can be simplified as

	H = a

r2
h + a2 + m2

= 1

2αM + 2m2

αM

≤ 1

2αM
. (68)

In the above equation, equality holds only when the parame-
ter m equals zero. Through analysis of the equation, it can be
observed that the presence of the parameter m causes a shift
in the angular velocity at the event horizon of the spacetime.
This result implies that the event horizon of the spacetime
model may be disrupted.

In the subsequent analysis, by examining Eq. (67), it can
be readily concluded that assuming an incident scalar field
is injected with the following mode

ω

m0
= 1

2

(
1

2αM
+ 	H

)
. (69)

The state of the composite system transforms into

αM ′2 − J ′ = 1

2
αMm0

2
(

1

2αM
− 	H

)

×
(

	H − 1

2αM

) (
rh

2 + a2 + m2
)
dt

= −1

2
αMm0

2
(

1

2αM
− 	H

)2 (
rh

2 + a2 + m2
)
dt.

(70)

According to Eq. (70), it can be easily derived that

M ′2α − J ′ ≤ 0. (71)

The equality in the equation holds only when the parame-
ter m equals zero. In this case, the event horizon of the space-
time cannot be destroyed. When m = k = 0 and n = 1,
this spacetime becomes a Kerr black hole, which analysis
shows cannot be destroyed either, consistent with the fact
that extremal Kerr black holes cannot be destroyed by scalar
fields in general relativity. However, when m takes certain
values, the event horizon of this rotating black-bounce black
hole can be destroyed. Specifically, when m takes other val-
ues, Eq. (71) is always less than zero. Clearly, after absorbing
the scalar field modes described above, this rotating space-
time lacks an event horizon. In other words, this scalar field
mode can destroy the event horizon of the spacetime, reveal-
ing the internal structure of the event horizon.

Actually, scalar field modes that can destroy the event
horizon are not limited to the mode described above. There
are other modes as well that can also destroy the event hori-
zon. In other words, the scalar field modes exist within a

range, and all modes within this range can destroy the event
horizon. By combining Eqs. (67) and (68), we can obtain that
the scalar field mode satisfies the following form

1

2αM + 2m2

αM

<
ω

m0
<

1

2αM
. (72)

If the scalar field mode satisfies the conditions given by the
above equation, then the composite system will necessarily
satisfy the following form

M ′2α − J ′ < 0. (73)

In other words, when the range of scalar field modes satis-
fies Eq. (72), the event horizon of an extreme rotating black-
bounce black hole can be disrupted. Moreover, it can be obvi-
ously observed from this equation that a large range of scalar
field modes is allowed to satisfy it when the parameter m is
larger. When the parameter m = 0, the event horizon cannot
be destroyed.

For the near-extremal case, that is, when αM2 ∼ J , the
expression is as follows

αM ′2 − J ′ =
(
αM2 − J

)

+2αMm0
2
(

ω

m0
− 	H

)

×
(

ω

m0
− 1

2αM

)(
rh

2 + a2 + m2
)
dt. (74)

Analyzing Eq. (74), we assuming the mode of the incident
scalar field is

ω

m0
= 1

2

(
1

2αM
+ 	H

)
. (75)

In this case, Eq. (74) becomes

αM ′2 − J ′ =
(
αM2 − J

)
− 1

8αM
	Hm0

2

×
(

1

	H
− 2αM

)2 (
rh

2 + a2 + m2
)
dt.

(76)

Similar to the analysis of considering test particles inci-
dent on a rotating black-bounce black hole in the near-
extremal case as before, we can define an infinitesimal and
dimensionless parameter ε to represent the deviation of
the near-extremal case from the extremal case. It can be
expressed using the following equation

a2 + m2

M2β2 = 1 − ε2. (77)

Since ε is a small parameter approaching zero, we can per-
form a Taylor expansion of Eq. (77) and substitute it into Eq.
(76). This yields
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αM ′2 − J ′ =
(
αM2 − J

)
− 1

8αM
	Hm0

2
(

1

	H
− 2αM

)2 (
rh

2 + a2 + m2
)
dt

=
⎡
⎣1

2

(
M2α2 + m2

)
√
M2α2 − (

M2α2 + m2
)
ε2

ε2 − αM2O
(
ε4

)⎤
⎦

− 1

8αM
	Hm0

2

⎛
⎝2m2+2

(
M2α2+ m2

)
ε+(

M2α2 − m2
)
ε2−2M2α2O(ε4)√

M2α2 − (
M2α2 + m2

)
ε2

⎞
⎠

2(
rh

2 + a2 + m2
)
dt. (78)

The process we are analyzing is a composite state within
an extremely short time interval dt , which means that both dt
and ε here are considered to be first-order small quantities.
Through the analysis of the above equation, we can conclude
that only when m = 0, we have αM ′2 − J ′ > 0. In this
case, the event horizon of a near-extremal rotating black-
bounce black hole cannot be destroyed. Furthermore, when
m = k = 0 and n = 1, the spacetime becomes a Kerr black
hole, and the aforementioned analysis is consistent with the
fact that a near-extremal Kerr black hole cannot be destroyed
by a scalar field. However, when the parameter m �= 0, it is
evident from Eq. (78) that

αM ′2 − J ′ < 0. (79)

This indicates that the event horizon of a near-extremal rotat-
ing black-bounce black hole can be destroyed. In other words,
whether the event horizon of this spacetime can be destroyed
by a scalar field in the near-extremal case depends on the
choice of the parameter m. It can only be destroyed when the
parameter m �= 0.

In summary, we have discussed the destruction of the event
horizon of rotating black-bounce black holes under the inci-
dence of a scalar field in the extreme and near-extreme cases.
It is found that regardless of whether it is in the extreme or
near-extreme case, the destruction of the event horizon of the
rotating black-bounce black hole depends on the value of the
parameter m. As long as the value of m �= 0, the event hori-
zon of the rotating Black-Bounce black hole can be destroyed
in both extreme and near-extreme cases.

5 Discussion and conclusions

In this paper, we primarily examine the weak cosmic cen-
sorship conjecture by throwing test particles and using a
scalar field with large angular momentum into a rotating
black-bounce black hole. Through computational analysis,
we have discovered that the event horizon of this spacetime
is potentially destructible when test particles are thrown into
the rotating black-bounce black hole under extreme condi-
tions. However, the event horizon of this extreme spacetime

model cannot be destroyed when the parameterm = 0. Addi-
tionally, as the parameter m increases, it becomes easier to
destroy the event horizon, and the range of angular momen-
tum values that lead to the destruction of the event horizon
also increases. This observation may suggest an inherent con-
nection between the physical origin of black-bounce black
holes and the absorption of particles by black holes, thereby
indicating the possible existence of black-bounce spacetime
in the actual universe. Furthermore, in the near-extreme con-
ditions, our analysis reveals that this spacetime model is also
highly susceptible to destruction. Unlike the extreme case,
the event horizon of the rotating black-bounce black hole
can be destroyed regardless of the value of the parameter m.
Moreover, the larger the value of the parameter m, the more
easily the event horizon can be destroyed.

When we use a scalar field with large angular momen-
tum for scattering, we find that regardless of whether it is
in extreme or near-extreme conditions, the event horizon of
this spacetime can be destroyed. Moreover, in the extreme
case, we observe that the larger the value of the parameter m,
the greater the range of scalar field modes that can destroy
the event horizon of the rotating black-bounce black hole. In
other words, the event horizon becomes more susceptible to
destruction as the parameter m increases.

Regardless of whether it is the destruction of event horizon
caused by test particles or scalar fields, when m = k = 0,
n = 1, the spacetime becomes a Kerr black hole. the analysis
results in this case are consistent with the research findings
of others regarding Kerr black holes.

Through analysis of this spacetime model, we have found
that the event horizon of the rotating black-bounce black
hole is easily destroyed, which seems to contradict the weak
cosmic censorship conjecture and opens up possibilities for
exploring the internal structure of the event horizon. How-
ever, since our metric for the rotating black-bounce black
hole is obtained under specific conditions, extensive research
is needed to determine whether the violation of the weak cos-
mic censorship conjecture is a universal occurrence in this
spacetime.

Our work reveals that the physical origin of black-bounce
black holes may be related to the absorption of particles by

123



Eur. Phys. J. C (2023) 83 :938 Page 11 of 12 938

black holes, providing new avenues for further understanding
of the black-bounce spacetime. In future research, we will
explore the connection between large-mass incident black
holes and the formation of black-bounce black holes.
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