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Abstract The BNL and FNAL measurements of the anoma-
lous magnetic moment of the muon disagree with the Stan-
dard Model (SM) prediction by more than 4σ . The hadronic
vacuum polarization (HVP) contributions are the dominant
source of uncertainty in the SM prediction. There are, how-
ever, tensions between different estimates of the HVP con-
tributions, including data-driven estimates based on mea-
surements of the R-ratio. To investigate that tension, we
modeled the unknown R-ratio as a function of CM energy
with a treed Gaussian process (TGP). This is a principled
and general method grounded in data-science that allows
complete uncertainty quantification and automatically bal-
ances over- and under-fitting to noisy data. Our tool yields
exploratory results are similar to previous ones and we find
no indication that the R-ratio was previously mismodeled.
Whilst we advance some aspects of modeling the R-ratio
and develop new tools for doing so, a competitive estimate
of the HVP contributions requires domain-specific expertise
and a carefully curated database of measurements (github,
https://github.com/qiao688/TGP_for_g-2).

1 Introduction

The final measurement of the anomalous magnetic moment
of the muon at the Brookhaven National Laboratory (BNL)
E821 experiment [1] differed from the Standard Model (SM)
prediction by 3.7σ . This discrepancy was replicated by the
Fermi National Accelerator Laboratory (FNAL) E989 mea-
surement [2]. The combined measurement from BNL and
FNAL,

aμ = 116 592 061 (41) × 10−11, (1)
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deviates from the SM theory prediction by 4.2σ , motivat-
ing the possibility of physics beyond the SM [3] as well as
scrutiny of the SM prediction [4].

The SM prediction for aμ incorporates contributions from
quantum electrodynamics (QED), electroweak interactions
(EW), and hadronic effects [5]. While QED and EW contribu-
tions can be calculated with high precision using perturbation
theory and are well-controlled [6], hadronic contributions are
harder to compute and are the largest source of uncertainty
in predictions for aμ. The hadronic contribution can itself be
decomposed into the following parts:

ahad
μ = ahvpμ + aLbL

μ , (2)

where ahvpμ is the hadronic vacuum polarization (HVP) con-
tribution and aLbL

μ is the light-by-light scattering contribu-
tion. In this work we focus on the leading-order (LO) con-
tribution to HVP. This is particularly challenging and the
dominant source of uncertainty, making up about 80% of the
total. The two most popular computational methods are lat-
tice QCD and estimates from dispersion integrals and cross-
section data.

Lattice methods calculate the HVP contribution by dis-
cretizing spacetime and performing a weighted integral of
relevant functions over Euclidean time. This requires signifi-
cant computational resources and currently cannot match the
nominal precision achieved by data-driven methods. Data-
driven methods use data from, for example, the KLOE [7],
BaBar [8–11], SND [12] and CMD-3 [13,14] experiments to
estimate the R-ratio,

R(s) ≡ σ 0(e+e− → hadrons)

σ (e+e− → μ+μ−)
. (3)
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This is a function of the center-of-mass (CM) energy,
√
s.1

From the estimate of the R-ratio, the leading-order (LO) HVP
contributions can be computed through the dispersion inte-
gral,

ahvpμ = α2

3π2

∞̂

m2
π

K (s)R(s)

s
ds (4)

where K (s) is the QED kernel [15,16]. Hadronic contribu-
tions to the effective electromagnetic coupling constant at the
Z boson mass can be computed in a similar way through the
dispersion relationship

�αhad = αM2
Z

3π

∞ 

m2
π

R(s)

s(M2
Z − s)

ds (5)

where
ffl

represents the principal-value prescription. There
is growing tension between results from the two approaches
[17,18]. A recent lattice QCD calculation found [19]

ahvpμ = 707.5 (5.5) × 10−10 (6)

whereas a conservative combination of data-driven estimates
yielded [4]

ahvpμ = 693.1 (4.0) × 10−10. (7)

The lattice result was at least partly corroborated by other
recent lattice computations [20–22] and, moreover, data-
driven estimates using hadronic τ -decays are close to lattice
results [23]. The most recent measurement of the 2π final
state at CDM-3 [24] compounded the mystery, as it conflicts
with older measurements including CDM-2 [25].

With these issues in mind, we wish to reconsider the sta-
tistical methodology for inferring the R-ratio from noisy
data. As we shall discuss in Sect. 2, the existing approaches
use carefully constructed but ad hoc techniques and closed-
source software, and consider uncertainties in a frequentist
framework. The data-driven approach, though, is connected
to common problems in data-science and statistics: model-
ing an unknown function (here the R-ratio) and managing the
risks of under- and over-fitting. In Sect. 3, we describe how
we tackle these issues using Gaussian processes – flexible
non-parametric statistical models – and marginalization of
the model’s hyperparameters.2 This allows coherent uncer-
tainty quantification and regularizes the wiggliness of the

1 The superscript in σ 0 denotes the bare cross section for e+e− anni-
hilation to hadrons, which is defined as the measured cross section that
has been corrected for electron-vertex loop contributions, initial state
radiation (ISR) and vacuum polarization (VP) effects in the photon
propagator.
2 Gaussian processes were previously used to smear measurements of
the R-ratio [26,27] to facilitate a comparison with lattice predictions,
as energy-smeared predictions are obtainable from lattice QCD. They
were not, however, used to model the R-ratio itself.

R-ratio, which helps prevent the model from over-fitting the
noisy data. Our algorithm is implemented in our public king-
pin package documented in a separate paper [28]. We focus
on modeling choices and developing a tool for principled
modeling of the R-ratio; our estimates are supplementary
to existing ones and we don’t attempt to match previous
comprehensive estimates in all respects. We don’t anticipate
dramatic differences with respect to previous findings; how-
ever, careful modeling of the R-ratio is important because
O(1%) changes in the HVP contribution or finding that the
uncertainty was underestimated could resolve tension with
the experimental measurements and lattice predictions. We
present predictions from our model for ahvpμ and �αhad in
Sect. 4. Finally, we conclude in Sect. 5.

2 Existing data-driven methods

We now briefly review two data-driven methods for calculat-
ing ahvpμ . First, the DHMZ approach [29–31], which employs
HVPTools, a private software package that combines and
integrates cross-section data from e+e− → hadrons. For
each experiment, second-order polynomial interpolation is
used between adjacent measurements to discretize the results
into small bins (of around 1 MeV) for later averaging and
numerical integration. The HVP contributions are estimated
in a frequentist framework. To ensure that uncertainties
are propagated consistently, pseudo-experiments are gen-
erated and closure tests with known distributions are per-
formed to validate the data combination and integration. If
the results from different experiments are locally inconsis-
tent, the uncertainty of the combination is readjusted accord-
ing to the local χ2 value following the well-known PDG
approach [32].

The second method is the KNT approach [4,33,34], which
performs a data-driven compilation of hadronic R-ratio data
to calculate the HVP contribution. It first selects the data to
be used and then bins the data using a clustering procedure
to avoid over-fitting. The clustering procedure determines
the optimal binning of data for all channels into a set of
clusters based on the available local data density. The optimal
clustering criteria are shown in Ref. [4]. As of Ref. [33], the
KNT compilation uses an iterated χ2 fit to achieve the actual
combination. This new method ensures that the covariance
matrix is re-initialized at each iteration. The motivation of
this procedure is to avoid bias. The fit results in the mean R-
ratio for each cluster and a full covariance matrix containing
all correlated and uncorrelated uncertainties. Combined with
trapezoidal integration, these are used to determine channel-
by-channel contributions to ahvpμ .

The DHMZ and KNT approaches are both data-driven
methods that estimate ahvpμ in a frequentist framework, using
privately curated databases of measurements, and in-house
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custom codes and techniques to avoid over-fitting. The differ-
ences between the two methods are not only evident in their
distinct compilation targets – the DHMZ approach combines
and integrates cross-section data from e+e− → hadrons,
while the KNT approach performs a data-driven compilation
of the hadronic R-ratio. Furthermore, discernible disparities
emerge in their respective data handling procedures, encom-
passing data selection, data combination, and the propagation
of uncertainties. Each method has its own strengths and lim-
itations. While DHMZ and KNT approaches do not exhibit
significant differences in estimating the central value of ahvpμ ,
there are significant disparities in the resulting uncertainties
and the shapes of the combined spectra.

3 Treed Gaussian process

3.1 Gaussian processes

In our data-driven approach, we model the unknown R-
ratio with Gaussian processes (GPs; [35,36]). A GP gener-
alizes the Gaussian distribution. Roughly speaking, whereas
a Gaussian describes the distribution of a scalar and a multi-
variate Gaussian describes the distribution of a vector, a GP
describes the distribution of a function – an infinite collec-
tion of variables f (x) indexed by a location x . Any subset
of the random variables are correlated through a multivariate
Gaussian. The degree of correlation between f (x) and f (x ′)
governs the smoothness of f (x) and is set by a choice of
kernel function, k(x, x ′).

Just as a GP generalizes a Gaussian distribution of scalars
or vectors to a distribution of functions, it allows us to gen-
eralize inference over unknown scalars or vectors to infer-
ence over unknown functions. Suppose we wish to learn an
unknown function. Because a GP describes the distribution
of a function, it can be used as the prior for the unknown
function in a Bayesian setting. This prior distribution can be
updated through Bayes’ rule by any noisy measurements or
exact calculations of the values of f at particular locations
x . In this paper we will update a GP for the R-ratio by the
noisy measurements of the R-ratio. We use celerite2 [37]
for ordinary GP computations.

The kernel function is usually stationary, that is, depends
only on the Euclidean distance between locations,

k(x, x ′) = k(|x − x ′|). (8)

Once a particular form of stationary kernel has been chosen,
a GP can be controlled by three hyperparameters: a constant
mean μ,

E
[
f (x)

] = μ, (9)

and a scale σ and length � that govern the covariance,

Cov
[
f (x), f (x ′)

] = σ 2k

( |x − x ′|
�

)
. (10)

The scale controls the size of wiggles in the function pre-
dicted by the GP. The length determines the length scale over
which correlation decays and hence the number of wiggles in
an interval. For Gaussian kernels, by Rice’s formula [38] the
expected number of wiggles per unit distance scales as 1/�.
These three hyperparameters can substantially affect how
well a GP models an unknown function. In a fully Bayesian
framework, the hyperparameters are marginalized. This auto-
matically weights choices of hyperparameter by how well
they model the data and alleviates overfitting. The wigglines
is regularized and the fit needn’t pass through every data
point.

3.2 Treed Gaussian processes

The GPs described thus far are stationary – they model all
regions of input space identically. To allow for non-stationary
structure in the R-ratio, we use a treed-GP (TGP; [39,40]).
This is necessary as we know that the R-ratio contains nar-
row features such as resonances. In a TGP, the input space
is partitioned using a binary tree. The predictions in each
partition are governed by a different GP with independent
hyperparameters. The number and locations of partitions are
modeled using the so-called CGM prior [41].

The difference in predictions between a GP and our TGP
is illustrated in Fig. 1. In this illustration we consider evenly
spaced noisy measurements of a function that contains a
step. The GP (left) models the data poorly, as to accommo-
date the sudden step, the covariance between input locations
must be weak which results a wiggly fit to the straight-line
sections. The TGP (right) automatically partitions the input
space allowing it to model the distinct straight-line sections
separately. At the jumps before and after the step, the TGP
predicts the function with substantial uncertainty. This is sat-
isfying since the data points change dramatically across those
regions of input space and do not indicate what might happen
inside them.

TGPs build on ideas such as CART [41], treed models
generally [42] and partitioning [43], and are similar to piece-
wise GPs [44] and a recent proposal in machine learning
[45]. Alternative approaches to non-stationarity include non-
stationary kernel functions [46], Deep GPs [47,48] where
non-stationarity is modeled through warping, and hierar-
chical models of GPs [49,50]. There is valuable discus-
sion and comparison of these approaches in Refs. [51,52]
and this remains an active area. As well as addressing non-
stationarity in unknown functions, these approaches address
heteroscedastic noise in our measurements.
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Fig. 1 The GP (left) predicts a wiggly fit to the straight line sections due to the step. The TGP (right) automatically addresses the issue by
partitioning the input space

Our approach is fully Bayesian – we marginalize the GP
hyperparameters and tree structure. This decreases the risk
of over- or under-fitting the noisy data and smooths the par-
titions between GPs. We perform marginalization numeri-
cally using reversible jump Markov Chain Monte Carlo (RJ-
MCMC; [53]. For reviews see Refs. [54–56]). This is a gen-
eralization of MCMC that works on parameter spaces that
don’t have a fixed dimension – this is vital because the num-
ber of GPs and thus the total number of hyperparameters
isn’t fixed. Navigating the tree structure requires special RJ-
MCMC proposals – such as growing, pruning and rotating
the tree – that are described in Ref. [39].

3.3 Integration

The idea of modeling integrals through GPs was originally
known by Bayes–Hermite quadrature [57], and later dis-
cussed under the names of Bayesian Monte Carlo (BMC;
[58]) and Bayesian quadrature or cubature [59,60]; see Ref.
[61] for a review. Suppose we wish to compute an integral of
the form,

I =
ˆ

C(x) f (x) dx (11)

where f (x) is the estimated function and C(x) is a known
function. BMC provides an epistemic meaning to errors in
quadrature estimates of theses integrals, such as

I ≈
∑

i

C(x) f (xi )�xi , (12)

because we may make inferences on I through our statis-
tical model for f (x). In cases in which the function C(x)
and choice of kernel lead to intractable computations, there
is an additional discretization error in BMC inferences as the
GP predictions are evaluated on a finitely-spaced grid. This
is known as approximate Bayesian cubature [61]. This addi-
tional error may be neglected when the integrand is approx-

imately linear between prediction points. We will use a TGP
to model an integrand. Although trees have been proposed in
BMC [62], they haven’t previously been directly combined
with GPs in this way.

3.4 Sequential design

After completing inference of an unknown function with the
data at hand, one may wish to know what data to collect
next. This problem is known as sequential design or active
learning. Broadly speaking, this is a challenging question and
greedy approaches that make optimal choices one step at a
time are easier to implement. We thus consider a variant of
active learning Mackay (ALM; [63,64]).

Following the approach in Ref. [65], we consider the loca-
tion that contributes most to the uncertainty in the ahvpμ and
�αhad integrals to be an optimal location at which to perform
more measurements. For an integral of the form eq. (11), we
compute

xALM = arg maxx

[ˆ
C(x)Cov

[
f (x), f (y)

]
C(y) dy

]
.

(13)

See Refs. [40,66] for further discussion.

4 Results

4.1 Data selection

We investigated the public dataset from the Particle Data
Group (PDG; [32,67]. See also Ref. [68] for further details),
which primarily comprises data on the inclusive R-ratio,
asymmetric statistical errors, and point-to-point systematic
errors from electron-positron annihilation to hadrons at dif-
ferent CM energies. Certain CM energies may have multiple
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point-to-point systematic uncertainties stemming from dif-
ferent sources. We symmetrized errors and combined sys-
tematic (τ ) and statistical errors (σ ) in quadrature:

τ 2 =
∑

i

τ 2
i where τi = 1

2
(τup + |τdown|), (14)

σtotal =
√

σ 2 + τ 2 where σ = 1

2
(σup + |σdown|). (15)

We selected 859 data points inside the CM energy interval
0.3–1.937 GeV. This interval was selected to facilitate a com-
parison with Ref. [33]. The maximum

√
s = 1.937 GeV was

chosen as it is the point at which summing exclusive R-ratio
data becomes unfeasible and perturbative QCD may be reli-
able. The minimum

√
s = 0.3 GeV was the minimum energy

in the public PDG dataset.
To model this data set, we utilized a treed Gaussian process

(TGP), as described in Sect. 3. Besides selecting the data, we
must specify the locations at which we want to predict the
R-ratio. In our study, we predicted at every input location
and at two uniformly spaced locations between every pair of
consecutive input locations.

4.2 Computational methods and modelling choices

We model the R-ratio by a TGP in which the input space is
divided into partitions using a binary tree. Each partition in
our TGP is governed by a mean, μ, and a Matérn-3/2 kernel
with independent scale, σ , and length, �, hyperparameters.
We use a uniform prior between 0 and 150 for the mean, a
uniform prior between 0 and 500 for the scale, and a uniform
prior between 0–5 GeV for the length. These choices were
motivated by the maximum measured R-ratio and the CM
interval 0.3–1.937 GeV under consideration. Following Ref.
[39], the structure of the tree itself is controlled by a CGM
prior with hyperparameters α = 0.5 and β = 2; see Ref.
[41] for explanation of these parameters. These choices favor
smaller and more balanced trees.

We marginalize the tree structure and hyperparamters
using RJ-MCMC. To improve computational efficiency, we
thin the chains by a factor of four and only compute predic-
tions for the states in the thinned chains. This reduces the
computational time but only slightly reduces the effective
sample size as the states in the unthinned chain are strongly
correlated. We run RJ-MCMC for 300,000 steps but discard
5000 burn-in steps to minimize bias from the beginning of
the chain. For computational efficiency and following a mul-
tistart heuristic, we run 10 chains in parallel and combine
them.

4.3 Predictions

The predictions from our TGP model for the R-ratio are
shown in Fig. 2 as a mean and an error band. The mean pre-
dictions pass smoothly around the data points without any
undue fluctuations near the data points that are characteristic
of over-fitting. The ρ–ω and φ resonances are typically fitted
by their own tree partitions with separate hyperparameters.
They aren’t forced to be as smooth as the rest of the spectrum
and appear well-fitted. Our model predictions are noticeably
more uncertain in regions with fewer or noisy measurements.
We identify no anomalous features and tentatively conclude
that the RJ-MCMC marginalization adequately converged.
We ran standard MCMC diagnostics on the mean of the R-
ratio using ArviZ [69]; finding neff � 600 bulk effective
samples and Gelman–Rubin diagnostic 1.01 [70]. There are
typically five or six partitions, as the two peaks and the three
flatter regions are modeled separately as shown in Fig. 3. In
Fig. 4 we show the result when using an ordinary GP. To
accommodate the narrow peaks in the measured R-ratio, the
GP model permits substantial wiggles between data points,
especially where the data points are sparse.

The TGP model outputs the mean, E
[
Ri

]
, and covariance,

Cov
[
Ri , R j

]
, of the R-ratio at the prediction locations

√
si .

The mean function represents the expected or average output
value for a given input value, while the covariance func-
tion represents the covariance between predictions at differ-
ent CM energies. As the RJ-MCMC can be computationally
expensive and time-consuming, we saved these results to disk
and made them publicly available [71]. We used the mean and
covariance predictions for R in combination with the dis-
persion integrals to predict contributions to ahvpμ and �αhad

from the CM energy interval of 0.3–1.937 GeV. As ahvpμ and
�αhad are linear functions of R, we propagate E

[
Ri

]
and

Cov
[
Ri , R j

]
to obtain predictions. In all subsequent inte-

gration processes, we employ the trapezoidal rule [72], and
in subsequent formulae

√
s denotes the locations of our TGP

predictions rather than the locations of the measurements.
The calculation of ahvpμ is based on Eq. (4). However,

since the independent variable in this case is the CM energy,
a simple deformation of Eq. (4) is necessary,

ahvpμ = 2α2

3π2

ˆ ∞

m2
π

K (s)R(
√
s)√

s
d
√
s. (16)

Then we calculate the value of ahvpμ through numerical
quadrature,

ahvpμ =
∑

i

Chvp
i Ri , (17)

where we defined

Chvp
i ≡ 2α2

3π2

K (
√
si )√
si

wi , (18)

123



943 Page 6 of 13 Eur. Phys. J. C (2023) 83 :943

Fig. 2 Predicted R-ratio from the TGP model. The experimental errors and uncertainty in the TGP predictions are scaled by 5 and the ρ – ω and
φ resonances are plotted separately for visibility

where wi are the quadrature weights. We use the trapezoid
rule such that

wi = 1

2

⎧
⎪⎨

⎪⎩

√
s2 − √

s1 i = 1√
sN − √

sN−1 i = N√
si+1 − √

si−1 otherwise.

(19)

From Eq. (17) and by linearity, the mean can be found through

E
[
ahvpμ

]
=

∑

i

Chvp
i E

[
Ri

]
, (20)

and from the covariance matrix for predictions of the R-ratio,
the uncertainty in our prediction of ahvpμ can be calculated

using

Var
[
ahvpμ

]
= Var

[
∑

i

Chvp
i Ri

]

=
n∑

i, j=1

Chvp
i Chvp

j Cov
[
Ri , R j

]
. (21)

We compute �αhad similarly using,

�αhad = 2αM2
Z

3π

∞ 

m2
π

R(
√
s)√

s(M2
Z − (

√
s)2)

d
√
s. (22)
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Fig. 3 Histogram of locations of partition edges in the TGP model.
The mean prediction for the R-ratio is shown for reference (blue)

We use Eqs. (20) and (21) though with coefficients,

Chad
i = 2αM2

Z

3π

wi√
si

[
M2

Z − si
] . (23)

Because our calculation is performed at CM energies from
0.3 to 1.937 GeV, the principal-value prescription does not
need to be considered.

For the sake of comparison and to verify parts of our tool-
chain, we calculate ahvpμ and �αhad naively without utilizing
a TGP. We consider a naive model that at the locations of the
measurements of the R-ratio predicts

Ri = R̂i ± σi (24)

where R̂i are the central values and σi are the errors of the
measurements. In this naive model there is no covariance
between predictions, that is, Cov

[
Ri , R j

] = 0 for i 	= j .
Equations (20) and (21) apply to this simple case, although it
should be noted that in this case

√
s are a series of data points,

whereas in the TGP
√
s are the chosen prediction locations.

The results of the above calculations are summarized in
Table 1. We show the predictions from KNT18 [33] and
KNT19 [34] for comparison, which are found by summing
data-based exclusive channels in Tables 2 and 1, respec-
tively, and combing errors in quadrature.3 We see that the
TGP prediction for ahvpμ is smaller than predictions from
the naive model, KNT18 [33] and KNT19 [34]. This would
make tension between data-driven estimates and lattice QCD
and the experimental measurements worse. The uncertain-
ties in our TGP predictions are nearly identical to those from
the naive model – we explain this similarity in uncertain-
ties in appendix A – though substantially smaller than those
from KNT18 [33] and KNT19 [34]. We don’t anticipate

3 Compared to KNT18 [33], several channels were updated and two
new channels measured by CMD-3 [14] were included in KNT19 [34].

that the smaller TGP uncertainties are a consequence of the
TGP model itself; rather, KNT18 [33] and KNT19 [34] are
based on a different dataset and treatment of systematics. For
example, they include uncertainties from vacuum polariza-
tion (VP) effects and final-state radiation (FSR) that we omit.
We thus find no clear evidence of mismodelling or that our
more careful modeling can shed light on the tension between
data-driven estimates, lattice estimates and experiments. It
is possible, however, that for an identical dataset to that in
KNT18 [33] and KNT19 [34], the TGP predictions could be
greater than KNT18 [33] and KNT19 [34]– the impact of
reducing overfitting with a TGP could work in the opposite
direction in that dataset.

4.4 Sequential design

We may use our TGP result to identify locations that con-
tribute most to the uncertainty in the ahvpμ and �αhad predic-
tions and where future measurements would be most bene-
ficial. For both ahvpμ and �αhad, the ALM estimate from Eq.
(13) yields
√
sALM = 0.788 GeV. (25)

This lies near noisy measurements after the ρ – ω resonance;
see Fig. 2. Besides lying close to noisy measurements, the
uncertainty at this location is substantial because it is a bound-
ary between partitions of the TGP – the behavior of the func-
tion changes abruptly here and so is hard to predict.

4.5 Correlation

Lastly, let us consider the relationship between the predic-
tions for ahvpμ and �αhad. From Eqs. (4) and (5), we observe

that the dispersion integral formulas used to calculate ahvpμ

and �αhad both involve the R-ratio. To quantify this rela-
tionship, covariance can be used to measure the correla-
tion between two variables. The sign of covariance indicates
whether the trends between the two variables are consistent.
The correlation coefficient is usually utilized to reflect the
strength of the correlation between two variables. Thus, to
gain more understanding about the relationship between ahvpμ

and �αhad, we computed their covariance and correlation,

Cov
[
ahvpμ ,�αhad

]
=

n∑

i, j=1

Chvp
i Chad

j Cov
[
Ri , R j

]
(26)

ρ
[
ahvpμ ,�αhad

]
=

Cov
[
ahvpμ ,�αhad

]

√
Var

[
ahvpμ

]
Var

[
�αhad

] (27)

where the (co)variances were computed under the TGP as
described. As anticipated, we obtained a positive correla-
tion between the two. Specifically, when �αhad increases,
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Fig. 4 Similar to Fig. 2, though showing results from an ordinary GP

Table 1 Contributions to ahvpμ

and �αhad in the CM energy
range of 0.3–1.937 GeV from
our TGP model, a naive model,
KNT18 [33] and KNT19 [34]

Treed GP model Naive model KNT18 [33] KNT19 [34]

ahvpμ × 1010 636.34 ± 0.83 637.73 ± 0.84 638.59 ± 2.35 638.25 ± 2.32

�αhad × 104 57.28 ± 0.05 57.41 ± 0.05 57.83 ± 0.29 57.88 ± 0.29

the value of ahvpμ also increases, and vice versa. The calcu-
lated correlation coefficient was ρ � 0.8, which is close to 1,
quantifying the strong correlation between ahvpμ and �αhad.

5 Discussion and conclusions

The BNL and FNAL measurements of the anomalous mag-
netic moment of the muon disagree with the Standard Model

(SM) prediction by more than 4σ . This has led to renewed
scrutiny of new physics explanations and the SM prediction.
With that as motivation, we extracted the hadronic vacuum
polarization (HVP) contributions, ahvpμ , from electron cross-
section data using a treed Gaussian process (TGP) to model
the unknown R-ratio as a function of CM energy. This is a
principled and general method from data-science, that allows
complete uncertainty quantification and automatically bal-
ances over- and under-fitting to noisy data.
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The challenges in the data-driven approach are common
in data-science. A competitive estimate of ahvpμ , however,
requires domain-specific expertise, careful curation of mea-
surements, and careful consideration of systematic errors and
their correlation. This should be developed over time in col-
laboration with domain experts. Thus our work should be
seen as preliminary and serves to explore an alternative sta-
tistical methodology based on more general principles and
develop an associated toolchain. We used a dataset available
from the PDG, though as noted as early as 2003 in Ref. [68],
a more complete, documented and standardized database of
measurements would allow further scrutiny of data-driven
estimates of HVP.

Our analysis used about n ≈ 1000 data points. The lin-
ear algebra operations in GP computations scale as O(n3).
There are computational approaches and approximations to
overcome this scaling (see e.g., Refs. [73–77]); neverthe-
less, working with more complete datasets could be chal-
lenging. On the other hand, splitting data channel by channel
could help the situation. For a competitive estimate, we would
require careful treatment of correlated systematic uncertain-
ties. The approach started here – carefully building an appro-
priate statistical model – naturally allows us to model sys-
tematic uncertainties. For example, through nuisance param-
eters for scale uncertainties or sophisticated noise models for
correlated noise (see e.g., Ref. [78]). The statistical model
could include, for example, a hierarchical model of system-
atic uncertainties accounting for “errors on errors.”

The prediction for ahvpμ from our TGP model is slightly
smaller than existing data-driven estimates. Thus, more prin-
cipled modeling of the R-ratio in fact increases tension
between the SM prediction and measurements for g − 2. On
the other hand, because the kernel functions were slowly-
varying, the TGP model predicted ahvpμ with a similar uncer-
tainty to that obtained in naive approach. This can be under-
stood from the trade-off between variance and covariance in
predictions of the R-ratio at different CM energies. Look-
ing forward, by the ALM criteria, the best CM energy for
future measurements was

√
s � 0.788 GeV for both ahvpμ

and �αhad, as it lies close to particularly noisy measure-
ments of the R-ratio. In conclusion, we developed a statis-
tical model for the R-ratio, based on general principles and
publicly available toolchains. We found no indication that
mismodeling the R-ratio could be responsible for tension
with measurements or lattice predictions. We hope, however,
that this work serves as a starting point for further scrutiny,
principled modeling and development of associated public
tools.

Acknowledgements AF was supported by RDF-22-02-079. We thank
Peter Athron for comments and feedback.

Data Availability Statement This manuscript has associated data in
a data repository. [Authors’ comment: The TGP algorithm is imple-

mented in our public Python package kingpin [28]. The dataset and
codes, which use the kingpin package, for this paper are available
online; see Ref. [71].]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Similarity between TGP and naive model
uncertainties

Here we explain why the uncertainties in the predictions for
ahvpμ and �αhad calculated under our TGP and in the naive
method are approximately equal,

σ 2
TGP =

n∑

i, j=1

CiC jCov
[
Ri , R j

]
(28)

� σ 2
naive =

n∑

i=1

C2
i σ

2
i , (29)

despite quite different predictions for the R-ratio. We antici-
pated a reduction in error in our TGP as we applied prior
information about correlations between prediction points.
There are two effects of introducing correlation: first, as
anticipated a reduction in the variance at any prediction point,
that is, Var

[
Ri

] 
 σ 2
i . Second, an increase in the corre-

lation between prediction points, Cov
[
Ri , R j

]
> 0. The

uncertainty in our TGP predictions includes terms containing
variance and covariance,

σ 2
TGP =

n∑

i, j=1

CiC j Cov
[
Ri , R j

]

=
n∑

i=1

C2
i Var

[
Ri

] +
∑

i 	= j

CiC j Cov
[
Ri , R j

]
(30)

In practice we find that the decrease in the variance is almost
exactly canceled by the increase in the covariance.
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Fig. 5 A horizontal line fitted to noisy data (left) and a naive model that passes through every data point (right). Despite making quite different
predictions for y, they make identical predictions for

∑
yi

To understand this effect in the simplest way, consider
fitting a horizontal line (m = 0) with an unknown intercept
(c) through data points with errors σ as shown in Fig. 5. The
uncertainty at any prediction point equals the uncertainty on
the intercept,

Var
[
yi

] = σ 2

n
(31)

This is reduced from σ 2 by the 100% correlation between the
predictions at the n data points. Now consider the uncertainty
on the sum,

Var

[
n∑

i=1

yi

]

=
n∑

i, j=1

Cov
[
yi , y j

]

=
n∑

i=1

Var
[
yi

] +
∑

i 	= j

Cov
[
yi , y j

]
(32)

= n
σ 2

n
+ (n2 − n)

σ 2

n
= nσ 2 (33)

This is identical to the uncertainty from our naive model with
no correlations that fits y = ŷ ± σ because the increased
covariance cancels the decreased variance. Although we
reduced the uncertainty at any prediction point, that reduction
was offset by the covariance between predictions.

Let us create an example closer to our TGP model and
demonstrate an identical effect. In a GP with fixed hyperpa-
rameters for measurements with uniform noise σ , the covari-
ance between prediction points X can be expressed as

Cov
[
y(X), y(X)

] = K (X, X) − K (X, X)T

[
K (X, X) + σ 2

]−1
K (X, X) (34)

where X are the training points, K is the choice of kernel
function, and σ 2 is the noise. This expression is somewhat

intractable due to the inverse matrix. Thus we consider X =
X and a simplified covariance,

Ki j = a + bδi j . (35)

With this choice, one can compute Cov
[
y(X), y(X)

]
and

the sum over its elements analytically. The covariance may
be written as

Cov
[
y(X), y(X)

] = A

⎛

⎜⎜⎜
⎝

D aσ 2 · · · aσ 2

aσ 2 D · · · aσ 2

...
...

. . .
...

aσ 2 aσ 2 · · · D

⎞

⎟⎟⎟
⎠

(36)

where

A ≡ σ 2

(b + σ 2)(na + b + σ 2)
(37)

D ≡ b(na + b) + (a + b)σ 2. (38)

Summing the elements results in,

∑
Cov

[
y(X), y(X)

] = n(na + b)σ 2

na + b + σ 2 (39)

where n represents the size of X. By performing a Taylor
expansion about σ = 0, we discover
∑

Cov
[
y(X), y(X)

] = nσ 2 + O(σ 4). (40)

Although the structure Eq. (35) isn’t particularly realistic,
our result holds for any a, including 0% and 100% correla-
tion. WhenCi ≈ C ≡ const., the uncertainties from the TGP
and naive method are both around C

√
nσ . The decrease in

variance and increase in covariance cancel in the TGP uncer-
tainties. For the case in which the prediction locations are
denser than the input locations, this result may hold if the
TGP predictions don’t change substantially between input
locations.
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