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Abstract The action of the Schwinger mechanism in pure
Yang–Mills theories endows gluons with an effective mass,
and, at the same time, induces a measurable displacement
to the Ward identity satisfied by the three-gluon vertex. In
the present work we turn to Quantum Chromodynamics with
two light quark flavors, and explore the appearance of this
characteristic displacement at the level of the quark–gluon
vertex. When the Schwinger mechanism is activated, this ver-
tex acquires massless poles, whose momentum-dependent
residues are determined by a set of coupled integral equa-
tions. The main effect of these residues is to displace the
Ward identity obeyed by the pole-free part of the vertex,
causing modifications to its form factors, and especially the
one associated with the tree-level tensor. The comparison
between the available lattice data for this form factor and the
Ward identity prediction reveals a marked deviation, which
is completely compatible with the theoretical expectation for
the attendant residue. This analysis corroborates further the
self-consistency of this mass-generating scenario in the gen-
eral context of real-world strong interactions.

1 Introduction

In recent years, the generation of a mass scale in the gauge
sector of Quantum Chromodynamics (QCD) [1] through the
action of the Schwinger mechanism (SM) [2,3] has emerged
as a particularly appealing and robust notion [4–14]; for alter-
native approaches see [15–27]. In its most general formula-
tion, the SM is based on the key observation that, even if a
mass is forbidden at the level of the fundamental Lagrangian,
a gauge boson may become massive if its vacuum polariza-
tion develops a pole at zero momentum transfer (“massless
pole”). Such massless poles may occur for a variety of rea-
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sons, depending on the dimensionality of space-time and the
dynamical details of each theory [28–31].

The non-Abelian version of the SM operating in Yang–
Mills theories proceeds via the inclusion of massless scalar
excitations in the fundamental vertices of the theory [4–
7,32–34], thus altering profoundly their analytic proper-
ties. These excitations are longitudinally coupled, and arise
dynamically, as color-carrying bound states of two gluons or
a ghost-antighost pair [7,10–14,35,36]. Thanks to the func-
tional equations that couple propagators and vertices [10–
15,37–44], these structures make their way to the gluon self-
energy, providing the kinematic basis for the appearance of
a mass [7,35,36].

Especially important in this context is the residue function
associated with the pole of the three-gluon vertex, denoted
by C(r2) [11–14]. This function acts as the Bethe–Salpeter
(BS) amplitude that controls the formation of the aforemen-
tioned bound states out of a pair of gluons [7,35,36]. In
addition, it is intimately connected with a characteristic dis-
placement of the Ward identity1 (WI) satisfied by the pole-
free part of the three-gluon vertex, namely the component
measured on the lattice [47–53]. In particular, the form fac-
tor of the three-gluon vertex associated with the so-called
“soft-gluon limit” is shown to deviate from the WI predic-
tion - the correct result when the SM is inactive - precisely
by an amount C(r2). Most importantly, as was established in
[11,12], this displacement is clearly observed in the lattice
data: the C(r2) reconstructed is unequivocally nonvanishing,
and in excellent agreement with the BS prediction [11].

In the present work we consider for the first time the
appearance of an analogous effect at the level of the fully-

1 The WI is the limit of a Slavnov-Taylor identity (STI) [45,46] when
the momentum of the incoming gluon is taken to vanish. For exam-
ple, the Abelian STI qα�α(q, p,−p − q) = S−1(p + q) − S−1(p),
known from QED, gives rise to the textbook WI �α(0, p,−p) =
∂S−1(p)/∂pα .
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dressed quark–gluon vertex, thus implementing the pending
generalization of the SM from quarkless QCD (pure Yang–
Mills theory) to the case of QCD with two light quark flavors
(N f = 2). We emphasize that the quark–gluon vertex is a
crucial component of the QCD dynamics, and has been stud-
ied extensively from the perturbative point of view [54–59],
by means of continuous non-perturbative methods [40,60–
86], and through numerous lattice simulations [87–97].

The central result of the present work may be summarized
by stating that the action of the SM endows the quark–gluon
vertex with a nontrivial pole content. The general pole struc-
ture admitted by Lorentz invariance and charge conjugation
symmetry is comprised by three form factors, which, in the
soft-gluon limit, are the quark–gluon vertex counterparts of
the C(r2). In this limit, the essential dynamics are described
by a set of coupled BS equations, which account for the fact
that the inclusion of active quarks permits the additional for-
mation of composite scalars out of quark–antiquark pairs.

The numerical treatment of these equations demonstrates
the nonvanishing nature of the residue functions associated
with the poles of the quark–gluon vertex. Moreover, the mod-
ifications produced by their presence to the unquenched ver-
sion of C(r2) are rather minimal, and the mass-generating
aspects of the SM remain practically unaltered. These find-
ings clearly validate the expectation [12] that the gluon mass
generation in the presence of dynamical quarks is qualita-
tively similar to the pure Yang–Mills case. In fact, our prelim-
inary analysis is compatible with the lattice results of [98,99],
which indicate that the unquenched gluon mass is larger than
the quenched one.

Interestingly enough, however, the most important effect
of these novel residue functions is the distinctive displace-
ment that they produce to the WI satisfied by the pole-free
part of the quark–gluon vertex. Focusing on the form factor
associated with the classical tensorial structure, γα , this dis-
placement introduces a sharp difference between the result
computed on the lattice, λ1(p2), and the prediction of the WI
in the absence of the SM, λ�

1(p
2).

The above predictions may be tested by appealing to the
available lattice data for this form factor [92]. In particu-
lar, we focus on the two asymmetric lattices, denominated
“L08” and “L07” in [92], which have superior statistics
and small current quark masses. The detailed comparison
between λ1(p2) and λ�

1(p
2) produces a clear signal of 8σ

and 6σ , respectively, as shown in Fig. 10. In fact, the result-
ing curves for the displacement function are in very good
agreement with the BS prediction. We consider these novel
results as an additional indication of the operation of the SM
in QCD.

The article is organized as follows. In Sect. 2 we review
the most salient features of the SM in the context of a Yang–
Mills theory, focusing on the displacement function associ-
ated with the three-gluon vertex, which serves as the proto-

type for the ensuing construction. In Sect. 3 we demonstrate
how the action of the SM modifies the WI prediction for the
form factors of the quark–gluon vertex in the soft-gluon limit,
and introduce the corresponding displacement functions. In
Sect. 4 we solve the system of coupled BS equations that
determines the set of displacement functions associated with
the three-gluon and quark–gluon vertices. Then, in Sect. 5
we present the central result of the present work. In particu-
lar, we determine the displacement function associated with
the tree-level component of the quark–gluon vertex from
the difference between the lattice data and the WI predic-
tion. In Sect. 6 we present our discussion and conclusions.
Finally, in three Appendices we provide plots and numerical
fits for the lattice inputs used in our computations, explain
the implementation of the necessary transitions between the
three main renormalization schemes employed in the litera-
ture, and give some technical details on the Schwinger-Dyson
equation (SDE) determination of a special form factor of the
ghost-gluon vertex.

2 Schwinger mechanism and ward identity
displacement

In this section we review the main concepts of the WI dis-
placement of the three-gluon vertex, which is induced by
the action of the SM. These considerations set the stage for
accomplishing the main objective of this work, namely study
of the same effect in the case of the quark–gluon vertex.

In the Landau gauge that we use throughout this work,
the gluon propagator, 	ab

μν(q), has the form2 	ab
μν(q) =

−iδab	μν(q), with

	μν(q)=	(q2)Pμν(q), Pμν(q) := gμν − qμqν/q
2. (2.1)

The momentum evolution of 	(q2) in the continuum is deter-
mined by the corresponding SDE, given by

	−1(q2)Pμν(q) = q2Pμν(q) + i �μν(q), (2.2)

where �μν(q) = q2�(q2)Pμν(q) is the transverse gluon
self-energy, shown diagrammatically in Fig. 1.

A pivotal component of this SDE is the fully-dressed
three-gluon vertex, I�abc

αμν(q, r, k), which may be cast in the
form

I�abc
αμν(q, r, k) = g f abcI�αμν(q, r, k), (2.3)

where g is the gauge coupling, f abc are the SU(3) structure
constants, and q + r + k = 0.

It turns out that the infrared saturation of the gluon
propagator hinges crucially on the special analytic struc-

2 We work in Minkowski space, passing key results to Euclidean space
for the purposes of numerical evaluation or comparison with the lattice.
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Fig. 1 Diagrammatic representation of the fully-dressed unquenched gluon self-energy, �μν(q), entering in the definition of the SDE for the gluon
propagator, given by Eq. (2.2). White (colored) circles indicate fully-dressed propagators (vertices)

Fig. 2 Diagrammatic
representation of Eq. (2.4) (top
row), and of Eq. (3.3) (bottom
row). The black circle indicates
the gluon-scalar transition
function
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ture of I�αμν . To appreciate this point, recall that, accord-
ing to the SM, if �(q2) acquires a pole with a positive
residue (Euclidean space), limq2→0 �(q2) = m2/q2, then
	−1(0) = m2, i.e., the gluon propagator picks up a mass
[2–6,11–14,29–34]. I�αμν provides precisely this pole,3 as a
result of specific nonperturbative dynamics: composite scalar
excitations are formed ( e.g., out of a pair of gluons), which
carry color, are longitudinally coupled, and have vanishing
mass [4–7,11–13,32–34]. As a result, I�αμν may be cast in
the form (see upper row of Fig. 2)

I�αμν(q, r, k) = �αμν(q, r, k) + Vαμν(q, r, k), (2.4)

where �αμν(q, r, k) denotes the pole-free part, while Vαμν

(q, r, k) contains longitudinal poles of the type qα/q2,
rμ/r2, kν/k2, and products thereof [100]. The longitu-
dinal nature of Vαμν(q, r, k) is a direct consequence of
the general form of the gluon-scalar transition amplitude
Iα(q) (see Fig. 2), namely Iα(q) = qα I (q2), imposed
by Lorentz symmetry [7]; it leads to the important prop-
erty Pα

α′(q)Pμ

μ′(r)Pν
ν′(k)Vαμν(q, r, k) = 0. This last relation

eliminates the poles from lattice simulations of I�αμν in the
Landau gauge; nonetheless, characteristic finite effects sur-

3 The ghost-gluon and four-gluon vertices also develop poles, but their
influence on the issues studied here is rather limited [11,36].

vive, which manifest themselves as displacements of certain
key quantities.

Focusing on the leading pole in the q-channel, we have

Vαμν(q, r, k) = qα

q2 gμνV1(q, r, k) + · · · , (2.5)

where the ellipsis absorbs all remaining pole contributions,
which get annihilated upon the contraction by the projectors
Pμ′μ(r) or Pν′ν(k).

The kinematic limit relevant in this study is that of q → 0.
A detailed analysis [9] shows that V1(0, r,−r) = 0, and the
Taylor expansion of V1(q, r, k) around q = 0 yields

lim
q→0

V1(q, r, k) = 2(q · r) C(r2) + O(q2), (2.6)

where C(r2) := [∂V1(q, r, k)/∂k2]q=0.
The function C(r2) is of central importance in this

approach, playing three key roles:
(i) C(r2) is the BS amplitude describing the bound-state

formation of a massless colored scalar out of a pair of gluons.
In particular, C(r2) is obtained as the nontrivial solution of an
appropriate linear and homogeneous BS equation, deduced
from the SDE of I�αμν in the limit q → 0.

(ii) The pole 1/q2 appearing in Eq. (2.5) is transmitted to
�(q2) via the gluon SDE of Eq. (2.2), triggering the SM. The
gluon mass is then determined by integrals involving C(r2),
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Table 1 Equivalent definitions of the function C(r2) and the corresponding terminology

C(r2)

Defining equation lim
q→0

V1(q, r, k)

q2 = 2(q · r)
q2 C(r2) C(r2) = ∫

d4K(r, )C(2) Lsg(r2) = L�
sg(r

2) + C(r2)

Terminology Momentum-dependent residue or residue function BS amplitude Displacement function

of the general form4

m2 ∼
∫
d4k k2	2(k2) C(k2). (2.7)

(iii) If we define the projector T μν

μ′ν′(r, k) := Pμ

μ′(r)Pν
ν′(k),

the STI satisfied by I�αμν(q, r, k) may be cast in the form

qαI�αμν(q, r, k) T μν

μ′ν′(r, k)=F(q2) [	−1(k2)Hνμ(k, q, r)

−	−1(r2)Hμν(r, q, k)] T μν

μ′ν′(r, k), (2.8)

where F(q2) is the ghost dressing function, and Hνμ(k, q, r)
the ghost-gluon kernel. Note that, by virtue of Eqs. (2.4) and
(2.5), the l.h.s. of Eq. (2.8) becomes

qαI�αμν(q, r, k) T μν

μ′ν′(r, k) = [qα�αμν(q, r, k)

+gμνV1(q, r, k)]T μν

μ′ν′(r, k). (2.9)

When the limit q → 0 of both sides of Eq. (2.8) is taken, one
obtains the corresponding WI, which is tantamount to the so-
called “soft-gluon limit” of the three-gluon vertex. In doing
so, Eq. (2.6) is triggered and C(r2) makes its appearance.
Moreover, as has been shown in detail in [53],

T μν

μ′ν′(r,−r)�αμν(0, r,−r) = 2rαPμ′ν′(r)Lsg(r
2), (2.10)

where Lsg(r2) is precisely the form factor measured on the
lattice through the ratio

Lsg(r)

= �
αμν
0 (q, r, k)Pαα′(q)Pμμ′(r)Pνν′(k)I�α′μ′ν′

(q, r, k)

�
αμν
0 (q, r, k)Pαα′(q)Pμμ′(r)Pνν′(k)�α′μ′ν′

0 (q, r, k)

∣
∣
∣
∣
∣
∣
q→0

,

(2.11)

where �
αμν
0 is the tree-level expression of the three-gluon

vertex, given by

�
αμν
0 (q, r, k) = (q − r)νgαμ

+(r − k)αgμν + (k − q)μgαν. (2.12)

The final upshot of these considerations is that the func-
tion C(r2) leads to the displacement of the soft-gluon limit

4 In terms of the gluon-scalar transition amplitude given by the exact
relation m2 = g2 I 2(0) [4,5,101], where I (0) is expressed in terms of
integrals such as the one on the r.h.s. of Eq. (2.7).

according to (Euclidean space)

Lsg(r
2)

︸ ︷︷ ︸
SM on

= L�
sg(r

2)
︸ ︷︷ ︸

SM off

+ C(r2)
︸ ︷︷ ︸

displacement
function

, (2.13)

where

L�
sg(r

2) = [r.h.s. of STI in Eq. (2.8)]q→0, (2.14)

is the theoretical predictions for the same form factor when
the SM is turned off.

Most importantly, as has been established recently in [12],
the difference between Lsg(r2) and L�

sg(r
2) corresponds to a

clearly nonvanishing C(r2), whose shape is absolutely com-
patible with that obtained in (i), as shown in Fig. 3.

As we will see in the next section, the SM produces a dis-
placement analogous to that of Eq. (2.13) in the form factors
of the quark–gluon vertex.

We close this introductory section by pointing out that, due
to its multiple roles, the function C(r2) receives a variety of
names, which, depending on the situation, emphasize differ-
ent physical aspects; the terminology employed and its origin
is summarized in Table 1. Completely analogous terminol-
ogy is employed for the corresponding quantities associated
with the quark–gluon vertex, introduced in the next section.

3 Quark–gluon vertex and displaced soft-gluon limit

The previous considerations have been carried out in the
realm of pure Yang–Mills theories, or quarkless QCD. We
now turn to the main part of this study, and consider a real-
world version of QCD, with two light quark flavors.

In this case, the main modification with respect to the
Yang–Mills case is the inclusion of the fully-dressed quark–
gluon vertex, I�a

α(q, p2,−p1), which may be cast in the form

I�a
α(q, p2,−p1) = ig

λa

2
I�α(q, p2,−p1), (3.1)

where the λa denote the standard Gell-Mann matrices, and
the four-momenta satisfy the relation q + p2 − p1 = 0.

At tree-level, I�α(q, p2,−p1) acquires the standard expres-
sion

�α
0 (q, p2,−p1) = γ α. (3.2)
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Fig. 3 Left panel: Quenched lattice data for Lsg(r2) from [52]
(points + black continuous curve) compared to the L�

sg(r
2) (green

dashed) determined in [12]. The green band represents the error
in L�

sg(r
2), estimated as explained in detail in [12]. Right panel:

The displacement function, C(r2), obtained from the results on the left
panel through Eq. (2.13) (points + black continuous curve), compared
to the BS amplitude of [11] (purple line and corresponding error band)

The activation of the SM generates longitudinal poles in
the only channel that carries a Lorentz index, namely the
q-channel. Then, as shown in the bottom row of Fig. 2, the
quark–gluon vertex is composed by two distinct pieces,

I�α(q, p2,−p1) = �α(q, p2,−p1) + Vα(q, p2,−p1),

(3.3)

where �α(q, p2,−p1) is the pole-free part, and

Vα(q, p2,−p1) = qα

q2 Q(q, p2,−p1), (3.4)

is the pole term.
The amplitude Q(q, p2,−p1) may be decomposed in a

standard Dirac basis according to

Q(q, p2,−p1) = Q1 I + Q2 /p2 + Q3 /p1

+Q4 σ̃μν pμ
2 pν

1 , (3.5)

where I is the 4 × 4 identity matrix in the Dirac space,
σ̃ μν = 1/2[γ μ, γ ν], and we use the short-hand notation
Qi ≡ Qi (q2, p2

2, p2
1).

3.1 Schwinger mechanism turned off

Let us suppose that the SM is not active, such that Vα(q, p2,

−p1) = 0; then, from Eq. (3.3) we have that I�α(q, p2,−p1)

= �α(q, p2,−p1), i.e., the full vertex is pole-free. Then,
consider the STI triggered when the quark–gluon vertex
�α(q, p2,−p1) is contracted by the gluon momentum qα ,
namely [37,38]

qα�α(q, p2,−p1) = F(q2)[S−1(p1)H(q, p2,−p1)

−H(−q, p1,−p2) S
−1(p2)], (3.6)

where Sab(p) = iδabS(p) is the quark propagator [79,102–
113]

S−1(p) = A(p2) /p − B(p2). (3.7)

In addition, H(q, p2,−p1) is the quark-ghost scattering ker-
nel [see upper panel of Fig. 4], and H(−q, p1,−p2) its “con-
jugate”, whose relation to H is explained in detail in [80] [see
discussion around Eq. (2.5)]. Note that the color structure has
been factored out, setting Ha = −g (λa/2)H .

Next, we expand both sides of Eq. (3.6) around q = 0,
with p1 = p2 = p; this is tantamount to determining the
WI associated with the STI of Eq. (3.6). It is clear that the
zeroth order term vanishes on both sides; then, the matching
of the coefficients multiplying the terms linear in q yields the
aforementioned WI.

We start by noting that the term linear in q on the l.h.s
of Eq. (3.6) is simply qα�α(0, p,−p), where �α(0, p,−p)
is the soft-gluon limit of the quark–gluon vertex. The most
general Lorentz decomposition of the vertex �α(0, p,−p)
is given by

�α(0, p,−p) = �1(p
2) γα + 4�2(p

2) /p pα + 2�3(p
2) pα

+2�4(p
2) σ̃αν p

ν, (3.8)

where �i (p2) are the form factors in the soft-gluon limit.
However, due to charge conjugation symmetry [92], �4(p2)

vanishes identically, thus reducing the number of relevant
form factors down to three.

In the Landau gauge, the expansion of the r.h.s. of Eq. (3.6)
around q = 0 is facilitated by setting [78]

H(q, p2,−p1) = ZH + qαKα(q, p2,−p1) ,

H(−q, p1,−p2) = ZH − qαK α(−q, p1,−p2) , (3.9)
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Fig. 4 Top panel:
Diagrammatic representation of
the quark-ghost kernel,
Ha(q, p2,−p1). Bottom panel:
The one-loop dressed
approximation of
Ha(q, p2,−p1), employed for
the determination of the Ki (p2)

in Sect. 5

a
q

p2 p1
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2 +

p1

q

p2

q − �

� + p2

�

one-loop

dressed
p2

a
q

p1

where ZH is the quark-ghost kernel renormalization con-
stant, which is finite in Landau gauge [45]. The forms of the
Kα and K α have been given in [78]. Thus, the first two terms
in the Taylor expansion of these kernels are given by

H(0, p,−p) = ZH + qαKα(0, p,−p) ,

H(0, p,−p) = ZH − qαK α(0, p,−p) , (3.10)

where, employing the same basis as in Eq. (3.8), we find

Kμ(0, p,−p) = K1(p
2) γμ + 4K2(p

2) /p pμ

+ 2K3(p
2) pμ + 2K4(p

2) σ̃μν p
ν ,

Kμ(0, p,−p) = K1(p
2) γμ + 4K2(p

2) /p pμ

+ 2K3(p
2) pμ − 2K4(p

2) σ̃μν p
ν , (3.11)

with Ki (p2) being the form factors. In addition, we use the
following expansion for the inverse quark propagator,

S−1(p1)

= S−1(p) + qα

[

A(p2)γα+2A′(p2) /p pα − 2B ′(p2)pα

]

,

(3.12)

where the short-hand notation f ′(p2) := df (p2)/dp2 is
used.

Then, the matching of the terms on the two sides of
Eq. (3.6) expresses the form factors �i (p2) in terms of the
functions {A, B, F, Ki }. Converting the results to Euclidean
space by means of standard transformation rules, and setting
λ�
i (p

2) := �E
i (p2

E), we obtain

λ�
1(p

2)= F(0)
{[
ZH + 4p2K4(p

2)
]
A(p2)−2K1(p

2)B(p2)
}

,

λ�
2(p

2)= F(0)

{

−1

2
A′(p2)ZH + [

K3(p
2) + K4(p

2)
]
A(p2)

+2K2(p
2)B(p2)

}

,

λ�
3(p

2) = F(0)
{
ZH B ′(p2) + [

K1(p
2) + 4p2K2(p

2)
]
A(p2)

−2K3(p
2)B(p2)

}
. (3.13)

Note that Eq. (3.13) coincides with the Euclidean form
of Eq. (4.3) in [78] up to redefinitions.5 Also, note that
[78] employed explicitly the Taylor renormalization scheme,
where ZH = 1 [45].

3.2 Schwinger mechanism turned on

Let us now restore the full content of Eq. (3.3), i.e., allow
for the presence of massless poles in the fundamental vertices
of the theory. With the Schwinger mechanism activated, the
form of the STI remains intact [4,9]: the divergence of the
full vertex, now I�α = �α + Vα , is still given by the r.h.s.
of Eq. (3.6). Since qαVα = Q, the STI satisfied by the pole-
free part of the vertex (the one simulated on the lattice) is
displaced with respect to Eq. (3.6), namely

qα�α(q, p2,−p1) = F(q2)[S−1(p1)H(q, p2,−p1)

−H(−q, p1,−p2) S
−1(p2)]

− Q(q, p2,−p1)︸ ︷︷ ︸
displacement

. (3.14)

Consequently, the form factors of the vertex �α in the pres-
ence of the Schwinger mechanism, to be denoted by λi , will
be also displaced with respect to the λ�

i given in Eq. (3.13). To
determine this displacement in detail, the construction lead-
ing to Eq. (3.13) must be supplemented by the linear contri-
butions arising from the Taylor expansion of Q(q, p2,−p1)

around q = 0.

5 The Ki of [78] can be obtained from the present ones by the redefi-
nitions K1 → K1, K2 → K2/4, K3 → K3/2 and K4 → K2/2.
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To that end, note that, since at q = 0 all other terms
in Eq. (3.14) vanish, the condition Q(0, p,−p) = 0 must
be fulfilled. Substituting q = 0 into Eq. (3.5), and setting
Qi (0, p2, p2) := Qi (p2), we obtain the constraints

Q1(p
2) = Q2(p

2) + Q3(p
2) = 0. (3.15)

This argument leaves Q4(p2)undetermined; however, charge
conjugation symmetry forces Q4(p2) to vanish, Q4(p2) =
0.

Thus, the Taylor expansion of Q(q, p2,−p1) is given by

lim
q→0

Q(q, p2,−p1) = qα

[
∂Q(q, p2,−p1)

∂qα

]

q=0
+ O(q2),

(3.16)

and from Eq. (3.5) we find
[
∂Q(q, p2,−p1)

∂qα

]

q=0
= 2Q1(p

2) pα

+2Q2+3(p
2) /p pα + Q3(p

2) γα,

(3.17)

where we have introduced

Qi (p
2) := [∂Qi (q, p2,−p1)/∂p

2
1]q=0 , i = 1, 2, 3,

Q2+3(p
2) := Q2(p

2) + Q3(p
2) . (3.18)

Then, combining Eqs. (3.13) and (3.16), we may easily deter-
mine from Eq. (3.14) the displacement of the vertex form
factors when the SM is active, namely

λ1(p
2) = λ�

1(p
2) − Q3(p

2) ,

λ2(p
2) = λ�

2(p
2) + 1

2
Q2+3(p

2) ,

λ3(p
2) = λ�

3(p
2) + Q1(p

2) . (3.19)

The above relations are the direct analogue of Eqs. (2.13)
and (2.14) for the case of the quark–gluon vertex; Q3(p2),
Q2+3(p2), and Q1(p2) are the corresponding displacement
functions.

We emphasize that the λi (p2) capture the full dynamical
content of the theory, in the sense that they take into account
the action of the SM. Therefore, if the SM is realized as
described here, it is theλi (p2), and not theλ�

i (p
2), that should

coincide with the results obtained for these form factors from
lattice QCD. Let us now suppose that the λ�

i (p
2) were deter-

mined through Eq. (3.13), using lattice ingredients for all
(or most) intermediate calculations. Then, if a statistically
significant discrepancy is found between the λ�

i (p
2) and the

lattice λi (p2), it is natural to attribute it to the presence of the
displacement functions. Such an observation becomes even
more compelling if the observed signal displays a momentum
dependence compatible with the BS prediction for the corre-
sponding amplitudes/displacement functions, as happens in
the case of pure Yang–Mills [12] (see Fig. 3). As we demon-
strate in the rest of this article, this is indeed what happens
also in the case of QCD with N f = 2.

4 Dynamical determination of the displacement
functions

In order to determine the numerical importance of the dis-
placements exhibited in Eq. (3.19), in this section we com-
pute the displacement functions from the BS equations that
they obey (Fig. 5).
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Fig. 5 The SDEs for the three-gluon (top row) and quark–gluon (bottom row) vertices. The white (colored) circles denote fully-dressed propagators
(vertices), while the gray ellipses denote four-particle kernels

123



967 Page 8 of 22 Eur. Phys. J. C (2023) 83 :967

Fig. 6 The system of coupled
BS equations that determines the
amplitudes C(k2) and Q3(p2),
in the one-particle exchange
approximation. In the first line, a
summation of the quark flavors
is implied, while the factor of 2
accounts for the two orientations
of the quark loop
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4.1 System of Bethe–Salpeter equations

The starting point of this analysis is the coupled sys-
tem of SDEs satisfied by the vertices I�αμν(q, r, k) and
I�α(q, p2,−p1), shown in Fig. 5. Note that we opt for the ver-
sion of the SDE obtained within the 3PI formalism [72,114–
117]; as a result, the vertices carrying the momentum q are
fully dressed. The corresponding four-particle kernels Ki j

are appropriately modified to avoid overcounting; as may be
deduced from Fig. 6, for the purposes of this computation
the “one-particle exchange” approximations of these kernels
will be employed.

To obtain the relevant dynamical equations, we substitute
for the vertices I�αμν(q, r, k) and I�α(q, p2,−p1) appearing
on either side of the SDE system (red and orange circles) the
expressions given in Eqs. (2.4) and (3.3), respectively. This
introduces the pole parts on both sides of the system, and,
after contraction of the first SDE (top row) by T μν

μ′ν′(r, k), one
may use the expressions given by Eqs. (2.5) and (3.4). Then,
as the limit q → 0 is taken on both sides of the SDEs, the pole
terms dominate over the regular parts, and, after triggering
Eqs. (2.6) and (3.16), the displacement functions emerge as
the leading contributions. Finally, the proper identification of
the various tensorial structures on both sides, and subsequent
matching of their co-factors, gives rise to a BS system that
may be schematically represented as

Am =
4∑

n=1

∫
d 4Mmn An; m = 1, 2, 3, 4, (4.1)

where the four-entry quantity A = [
C, Q3, Q2+3, Q1

]
was

introduced, and the functions Mmn contain all remaining

ingredients; their explicit form depends on the approxima-
tions employed for the kernels Ki j .

In what follows we approximate the kernels Ki j by their
one-particle exchange form, shown in Fig. 6. In addition, we
focus exclusively on the form factor λ1, associated with the
tree-level tensor γα , and determine the displacement function
Q3 appearing in the first relation of Eq. (3.19). Therefore,
we restrict our analysis to the reduced system comprised
by C(r2) and Q3(p2) only, as shown in Fig. 6. We have
confirmed that the omission of the functions Q2+3(p2) and
Q1(p2) has practically no impact on C(r2) and Q3(p2).

In order to proceed, we need to furnish inputs for the
Landau-gauge propagators and transversely projected ver-
tices appearing in the system of Fig. 6. For the gluon, ghost,
and quark propagators, we use appropriate fits to results
obtained from lattice QCD, as described in Appendix A. Fur-
thermore, we assume that the transversely projected three-
gluon and quark–gluon vertices,

I�αμν(q, r, k) := Pα′
α (q)Pμ′

μ (r)Pν′
ν (k)I�α′μ′ν′(q, r, k) ,

I�α(q, p2,−p1) := Pα′
α (q)I�α′(q, p2,−p1) , (4.2)

respectively, can be approximated by6

I�αμν(q, r, k) = I�αμν
0 (q, r, k)Lsg(s

2) ,

s2 = 1

2
(q2 + r2 + k2) ,

I�α(q, p2,−p1) = I�α
0 (q, p2,−p1)λ1(s̄

2) ,

6 In the definition of s2 in Eq. (4.3) we introduce the factor 1/2 instead
of the 1/6 originally used in [118]. This choice guarantees that, in the
soft-gluon limit, q = 0 (p = −r), the form factor Lsg(r2) corresponds
to the same function measured on the lattice [cf. Eq. (2.11)].
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s̄2 = 1

2
(q2 + p2

1 + p2
2) , (4.3)

where I�αμν
0 and I�α

0 are the tree-level forms of I�αμν and
I�α , and are obtained by transversely projecting the �

αμν
0

and �α
0 of Eqs. (2.12) and (3.2), respectively. For the three-

gluon vertex, Eq. (4.3) has been validated by numerous stud-
ies in pure Yang–Mills theory [26,50,118–120], and we
assume it to hold as well for N f = 2. In the case of the
quark–gluon vertex, the particular form in Eq. (4.3) has not
been tested explicitly in the literature. However, previous
works have already shown that the classical form factor
of I�α(q, p2,−p1) is the largest in magnitude [71,72,75–
79,88–92], and that its angular dependence is rather weak
[77,81,82,93]; together, these observations motivate the use
of Eq. (4.3) for I�α(q, p2,−p1).

In order to unify the description of the results, we rename
r2 → p2. Next, we pass to Euclidean momenta, i.e.,
p2 → −p2

E , with p2
E > 0, introduce the integral measure

in hyperspherical coordinates
∫
d4E = 1

(2π)3

∫

y,θ
;
∫

y,θ
:=
∫ ∞

0
dy y

∫ π

0
dθ s2

θ , (4.4)

and employ standard transformation properties for all Green’s
functions and form factors involved (see, e.g., Eqs. (5.13) to
(5.16) of [78]); note, in particular, that C

E(p2
E) = −C(−p2

E)

[11] and QE
3 (p2

E) = Q3(−p2
E).

Defining

x = p2, y = 2, p ·  = √
xycθ ,

z = (p + )2 = x + y + 2
√
xycθ ,

u = (p − )2 = x + y − 2
√
xycθ , (4.5)

where the index “E” has been suppressed throughout, we
arrive at the following system of coupled BS equations

C(x) = − αs

π2

∫

y,θ
f11 C(y) + αs

6π2

∫

y,θ
f12 Q3(y) ,

Q3(x) = 3αs

4π2

∫

y,θ
f21 C(y) + αs

12π2

∫

y,θ
f22 Q3(y) . (4.6)

The functions fi j (x, y, θ) are given by

f11 = s2
θ cθ

z

√
y

x

[
3(x2 + y2) + 6cθ

√
xy(x + y)

+xy(c2
θ + 8)

]
	(z)	2(y)L2

sg(s
2) ,

f12 = 4

√
y

x
cθ

{
3Ay By Bz + [

(3 − 2s2
θ )y

+3
√
xycθ

]
A2
y Az

} λ2
1(s

2)

(yA2
y + B2

y )
2(zA2

z + B2
z )

− 6

(

1 +
√

y

x
cθ

)
Azλ

2
1(s

2)

(yA2
y + B2

y )(zA
2
z + B2

z )
,

f21 = −2ys2
θ

(

1 + 2

3

√
x

y
cθ

)
Az

zA2
z + B2

z
	2(y)λ2

1(s
2) ,

f22 =
{

2

3
y

[

1 + 2

u
(y − √

xycθ )

]
s2
θ A

2
y

(yA2
y + B2

y )

−1 − 2

3

y

u
s2
θ

}
	(u)λ2

1(s̄
2)

(yA2
y + B2

y )
, (4.7)

where s2 = x + y + √
xycθ , s̄2 = x + y − √

xycθ , and
the subscripts y or z in the functions A and B indicate their
momentum dependence i.e., Az := A(z), etc.

4.2 Inputs

In order to proceed with the solution of the system given by
Eq. (4.6), we need to specify the form of the various compo-
nents entering in the functions fi j (x, y, θ), and in particular
A, B, 	, Lsg , and λ1. In addition, the ghost dressing func-
tion F is needed for implementing the required conversions
between renormalization schemes, as explained below.

Note in particular the following important points:

(i) Throughout this work, we will use as external inputs a
series of fits given in Appendix A to the N f = 2 lattice
data for the gluon and ghost propagators from [98,99],
and for A(p2), B(p2) and λ1(p2) from [92,112]. Specif-
ically, for the quark functions, we employ the setups
denominated “L08” and “L07” in Table I of [92], which
have large statistics and small current quark mass, mq ,
and pion mass,mπ , namely (mq ,mπ ) = (6.2, 280) MeV
and (8, 295) MeV, respectively.

(ii) The lattice data of [92,112] for the functions A(p2)

and λ1(p2) display visible artifacts in the ultraviolet,
where the known perturbative behavior of these func-
tions is not accurately reproduced. This issue, which
has been discussed in various studies [89–94,112,121],
is ameliorated by the use of the so-called “tree-level
correction” [92,112,121], but even then is not com-
pletely cured. In fact, signs of these artifacts are already
present at p = 3 GeV, where the L07 λ1(p2) starts to
increase [see bottom left panel of Fig. 10], rather than
continuing decreasing as predicted by perturbation the-
ory [56,122,123]. For this reason, we discard the data
for these functions for momenta above 2.5 GeV. Since
we employ fitting functions that reproduce the one-loop
resumed perturbative result for each of the functions at
large momenta (see Appendix A), the ultraviolet behav-
ior of our inputs is under control.

(iii) We next turn to the Lsg(p2). Unfortunately, the only
available unquenched lattice results for Lsg(r2) are not
for N f = 2 but rather for N f = 2 + 1 (two light quarks
with current mass 1.3 MeV, and a heavier one, with cur-
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rent mass 63 MeV) [51]. However, at least in the case
of the gluon propagator [51,98], the difference between
N f = 2 to N f = 2 + 1 is rather mild. It is therefore
reasonable to use for the Lsg(p2) in the present analysis
the N f = 2+1 data from [51]. We hasten to emphasize
that this last approximation only affects the pole ampli-
tudes determined through the BS equations, whereas the
determination of Q3(p2), carried out in the next section
through the analysis of the WI displacement, does not
depend on Lsg(p2).

(iv) In general, the aforementioned lattice data are renormal-
ized in different schemes; therefore, their self-consistent
use hinges on their careful conversion into a common
renormalization scheme. To that end, we adopt a particu-
lar variation of momentum subtraction (MOM) scheme,
the so-called M̃OM scheme [88], defined by the pre-
scription

	−1(μ2) = μ2, F(μ2) = 1, A(μ2) = 1,

λ1(μ
2) = 1, (4.8)

where we take μ = 2 GeV. The procedure employed for
consistently adjusting the results between renormaliza-
tion schemes is described in detail in Appendix B.

4.3 Results

With all external ingredients consistently renormalized in the

M̃OM scheme, we are in position to solve the BS equations of
Eq. (4.6) numerically, converting it to an eigenvalue problem.
The procedure employed differs from the typical treatments
of BS equations for massive bound states, where the value
of the coupling is fixed and the mass of the state is varied.
Specifically, since in the case of the Schwinger poles we fix
the mass of the bound state to be zero, we turn Eq. (4.6) into
an eigenvalue problem by treating αs as a free variable. Then,
Eq. (4.6) can be rewritten as

λC(x) = − 1

π2

∫

y,θ
f11 C(y) + 1

6π2

∫

y,θ
f12 Q3(y) ,

λQ3(x) = 3

4π2

∫

y,θ
f21 C(y) + 1

12π2

∫

y,θ
f22 Q3(y) ,

(4.9)

with λ := 1/αs .
Next, Eq. (4.9) can be discretized and solved numeri-

cally for the eigenvalue λ, and the corresponding eigenfunc-
tions, C(x) and Q3(x). With the ingredients entering the
fi j [see Eq. (4.7)] fixed from the lattice, as discussed in
Sect. 4.2, the solutions of Eq. (4.9) form a discrete spec-
trum, {λn, Cn, Q3 n}; evidently, only solutions with λn > 0
are physically acceptable, since they correspond to a positive

αs . Out of all λn > 0 we choose the largest one, which corre-
sponds to the solution of Eq. (4.6) with the smallest possible
value of αs .

Before presenting the solutions of the BS system given by
Eq. (4.9), we need to clarify two important points.

First, as happened in the quenched case [11], the value
of αs obtained from the above procedure ( i.e., the inverse
of the largest eigenvalue of Eq. (4.9) that yields a nontrivial

solution) exceeds the M̃OM value for the particular renor-
malization point chosen, μ = 2 GeV; specifically, we have
that αMOM

s = 0.47 [see Eq. (B11)], while the eigenvalue of
the BS equation yields αBS

s = 1.17 . This discrepancy orig-
inates clearly from implementing the one-particle exchange
approximations to the kernels Ki j of Fig. 5: the approxi-
mated kernels miss a certain amount of strength, which is
effectively compensated by increasing the value of the cou-
pling. We emphasize that the eigenvalue is known to depend
strongly on the details of the truncation used, but affects only
slightly the form of the solutions obtained [11].

Second, since the system of BS equations in Eq. (4.6) is
linear and homogeneous, its overall scale is undetermined:
the multiplication of a given solution by an arbitrary constant
yields another solution.

We stress that the above considerations are relevant for
the solution of the BS system, but do not affect the results
presented in Sect. 5, obtained through the WI displacement.

In particular, the correct M̃OM value of αs is used in Eq. (5.3)
for the calculation of the Ki (p2).

In Fig. 7 we show the resulting C(p2) (left) and Q3(p2)

(right) as blue and black curves, respectively. This particular
solution has its scale set by fitting an arbitrary solution of
the BS equations to the result of the WI displacement, to be
described in the next section. The bands around the curves
result from the standard error in determining this scale.

As we can see in Fig. 7, for p < 1 GeV the C(p2) and
Q3(p2) have similar magnitudes, (but opposite signs), sug-
gesting that both amplitudes might have similar weights in
the BS dynamics. However, the terms containing C(p2) in
Eq. (4.6) have much larger prefactors. Moreover, we can see
from Fig. 7 that C(p2) has support over a much longer inter-
val of momenta than Q3(p2), which decreases rapidly for
p > 1 GeV. As a result, C(p2) dominates the dynamics of
the BS system. In fact, the present solution for C(p2) is rather
similar to quenched results obtained previously [7,11,36],
shown as the purple dot-dashed curve in the left panel of
Fig. 7. Finally, we point out that if C(p2) is set to zero in
Eq. (4.6), the resulting BS equation for Q3(p2) has no solu-
tions for αs > 0.

The solutions obtained from the BS system indicate that
the mass generating mechanism known from the pure Yang–
Mills case is only mildly affected by the inclusion of two
active quark flavors. To appreciate this point in some detail,
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C
(p

2 )

Fig. 7 The green continuous curve on the left panel and the black con-
tinuous curve (with blue band) on the right are the solutions obtained
from Eq. (4.6) using unquenched (N f = 2) lattice results as inputs. The
input used for λ1(s2) is taken from the L08 setup of [92]; the results

using LO7 inputs are nearly identical. The purple dot-dashed curve on
the left panel is the corresponding solution when quenched lattice inputs
are employed (pure Yang–Mills case), and is displayed for the purpose
of comparison
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Fig. 8 Left panel: Lattice data for the gluon propagator for N f =
0 (brown diamonds) [53] and N f = 2 (orange circles) [98,
99]. The black dot-dashed and blue continuous curves represent
the fits given in Eq. (C11) of [11] and Eq. (A1), respectively.
In the inset we show the corresponding gluon dressing func-

tions. Right panel: The kernels KN f =0
C

(k2) (blue dot-dashed),

KN f =2
C

(k2) (orange continuous), and KN f =2
Q3

(k2) (purple dotted). The

inset shows KN f =2
C

(k2) + KN f =2
Q3

(k2) as a red continuous curve, com-

pared to KN f =0
C

(k2). The error bands are obtained through appropriate
propagation of the corresponding errors in the C(p2) and Q3(p2) of
Fig. 7

we turn to the gluon mass equation that emerges from the
treatment of the two diagrams shown in Fig. 1; the additional
gluonic corrections stemming from the two-loop diagrams
will be neglected for the purposes of this qualitative analysis

The procedure outlined in [13,14] for obtaining the con-
tribution to the gluon mass from diagram d1 by appealing to
Eq. (2.6) can be straightforwardly extended to the case of dia-
gram d2, where Eq. (3.16) must be employed. Keeping only
the dominant term Q3(p2), one obtains (Euclidean space)

m2 = Z3

∫ ∞

0
dyKN f

C
(y) + Z2

∫ ∞

0
dyKN f

Q3
(y), (4.10)

where the renormalization constants Z2 and Z3 are defined
in Eq. (B1), and the kernels are given by

KN f

C
(y) = −9αs

8π
y2	2(y)C(y), KN f

Q3
(y)

= αs N f

4π

⎡

⎢
⎣
y
(
yA2

y + 2B2
y

)
Q3(y)

(
yA2

y + B2
y

)2

⎤

⎥
⎦ . (4.11)

Note that the dependence of KN f

C
(y) on N f is only implicit,

due to the N f dependence of 	(p2), C(p2) and αs . Instead,

KN f
Q3

(y) depends explicitly on N f , as well as implicitly.

123



967 Page 12 of 22 Eur. Phys. J. C (2023) 83 :967

As is known from lattice simulation [98,99], the satura-
tion point of the gluon propagator with two active quarks is
lower with respect to the quenched case, as may be seen on
the left panel of Eq. (8); this is tantamount to saying that
the gluon mass increases when quarks are introduced. The
kernels given in Eq. (4.11) seem to capture this tendency:
the inclusion of the quarks leads to kernels with additional
support throughout the relevant region of integration.

The origin of this relative enhancement is twofold. First,

as shown on the right panel of Fig. 8, KN f =2
C

(y) (orange

continuous) increases slightly with respect to KN f =0
C

(y)
(blue dot-dashed) (11% at the corresponding peaks). This
increase is the net outcome of two opposing tendencies:

The unquenched gluon propagators suppress KN f =2
C

(y)

with respect to KN f =0
C

(y), while the unquenched coupling

enhances it [98]. Second, the kernel KN f
Q3

(y) (purple dot-
ted), which is absent when N f = 0, provides an additional
small positive contribution, as shown on the right panel of
Fig. 8. The overall effect may be roughly appreciated if we
set Z3 = Z2 = 1 in Eq. (4.10) and then add the two kernels
(red continuous); the end result, compared to the quenched
case (blue dot-dashed), is shown as an inset on the right panel
of Fig. 8.

This additional support of the unquenched kernel rep-
resents a relatively small increment with respect to the
quenched kernel; therefore it is reasonable to expect a mod-
erate increase in the gluon mass, compatible with the lat-
tice findings of [98,99]. The detailed calculation of the
effect requires proper renormalization and the inclusion in
Eq. (4.10) of two-loop dressed loops, not shown here; how-
ever, this task lies beyond the scope of the present work.

5 Displacement function from lattice data

In this section we will test the first relation in Eq. (3.19),
which expresses the displacement associated with the classi-
cal form factor as

Q3(p
2) = λ�

1(p
2) − λ1(p

2). (5.1)

To that end, we use the first relation in Eq. (3.13) to compute
the WI prediction, λ�

1(p
2), and then subtract from it the lattice

data of [92] for λ1(p2).
The evaluation of the WI prediction is rather subtle, mainly

due to the presence of the factor ZH , the renormalization con-
stant of the quark-ghost kernel. ZH is finite in the Landau
gauge; in fact, there exists a renormalization scheme, namely
the Taylor scheme [see Eq. (B4)], where ZH = 1. However,

this scheme is not the same as the M̃OM employed on the
lattice determination of the Green’s functions appearing in
Eq. (3.13). Therefore, in Appendix B we determine the appro-

priate values for the M̃OM scheme with μ = 2 GeV to be
ZH = 1.120(8) and ZH = 1.121(9), for the L08 and L07
lattice setups, respectively.

In order to determine the form factors K1(p2) and K4(p2),
we evaluate the one-loop dressed diagram shown in Fig. 4,
and use Eq. (3.9). The full ghost-gluon vertex appearing in
this diagram has the general form

I�μ
c (r, k, q) = B1(r

2, k2, q2)rμ + B2(r
2, k2, q2)qμ, (5.2)

where r , k, and q stand for the momenta of the antighost,
ghost, and gluon, respectively; at tree-level, B0

1 = 1 and
B0

2 = 0.
Then, it is relatively straightforward to obtain the results

K1(x)= αs ZH

4π2
∫

y,θ
(2 + c2

θ )F(y)	(y)B1(y, 0, y)
Bzλ1(s2)

y
(
zA2

z + B2
z

) ,

K4(x)

= −αs ZH

8π2

∫

y,θ

(

2 + 3

√
y

x
cθ + c2

θ

)

	(y)F(y)B1(y, 0, y)

× Azλ1(s2)

y
(
zA2

z + B2
z

) , (5.3)

where B1(y, 0, y) corresponds to the so-called “soft-ghost
limit” of the form factor B1.

The numerical evaluation of the above expressions pro-
ceeds through the substitution of A, B, 	, Lsg , and λ1 by
fits to the lattice data, exactly as described in Sect. 4. For αs ,

we use the M̃OM values determined in Eq. (B11). Regarding
B1(y, 0, y), since no lattice data are available for this quan-
tity for N f = 2, we determine it from the SDE that it satisfies
[see Appendix C].

The dimensionless combinations p2K4(p2)A(p2) and
−K1(p2)B(p2) appearing in Eq. (3.13) are shown in Fig. 9 as
blue continuous and red dashed lines, respectively. The two
panels correspond to the results obtained when the inputs
used for λ1 in Eq. (5.3) originate from the lattice setup L08
(left) or L07 (right). The comparison of the two panels reveals
that p2K4(p2)A(p2) is nearly identical for both lattices,
whereas the value of −K1(p2)B(p2) at the origin is slightly
larger in magnitude when the λ1 from the L07 setup is used.

Evidently, the errors associated with the inputs used to
evaluate Eq. (5.3) get propagated to the resulting Ki (p2). It
turns out that the largest source of uncertainty is the form
factor λ1. In order to estimate the error that λ1 introduces to
the Ki (p2), we repeat the numerical evaluation of Eq. (5.3)
with

λ1(p
2) → λ1(p

2) ± δλ1(p
2), (5.4)
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Fig. 9 The dimensionless combinations p2K4(p2)A(p2) (blue continuous) and −K1(p2)B(p2) (red dashed) determining λ�
1(p

2), viz. first relation
in Eq. (3.13). The left and right panels correspond to the use of inputs from the lattice setups L08 (left) and L07 (right)

Fig. 10 Top left: (i) the L08 lattice data (points) for λ1(p2) [92], the
fit of Eq. (A7) (purple continuous), and the 1σ confidence band; (ii)
the WI prediction λ�

1(p
2) (green dot-dashed line and band). Top right:

The displacement function Q3(p2) (points) obtained as the difference

between the two curves shown on the left, as dictated by Eq. (5.1). The
black solid line and blue band indicate the prediction of the BS equa-
tion. The bottom panels show the same quantities but for the L07 setup
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where δλ1(p2) is the 1σ spread in λ1(p2), shown as green
bands in the left panels of Fig. 10, for each of the lattice
setups. Then, the error obtained is combined in quadrature
with all other intrinsic errors stemming from the remaining
ingredients, mainly A(p2) and B(p2), to furnish our esti-
mate for the total error of the quantities p2K4(p2)A(p2) and
−K1(p2)B(p2).

With the Ki (p2) in hand, we use the first line of Eq. (3.13)
to compute λ�

1(p
2). The result is shown as a green dot-dashed

line for each of the lattice setups, L08 and L07, on the top
left and bottom left panels of Fig. 10, respectively. The green
bands around these curves are our error estimates, which
combine in quadrature the errors in all of the ingredients
appearing in Eq. (3.13). In particular, we included in the total
error budget a 5% error estimate in the value of F(0) = 2.39
obtained by extrapolating the lattice data of [98,99] to the
origin, p = 0.

As is clear from the left panels of Fig. 10, our results for
λ�

1(p
2) are considerably larger than the input λ1(p2), indi-

cating the existence of a nontrivial displacement, Q3(p2).
On the right panels of Fig. 10 we show as points the results
for Q3(p2) obtained from Eq. (3.19), for the L08 and L07
setups on the top and bottom, respectively. The error bars in
the points for Q3(p2) result from combining in quadrature
the standard error of the lattice λ1(p2) and the estimated error
in λ�

1(p
2).

We next evaluate the statistical significance of the signal
obtained for Q3(p2), in comparison to the “null hypothesis”,
namely the case when Q3 → Q0

3 = 0, due to the the absence
of the Schwinger mechanism. To that end, we compute sep-
arately for each of the lattice setups the χ2 deviation from
the null hypothesis as

χ2 =
n p∑

i=1

[Q3(p2
i ) − Q0

3(p
2
i )]2

ε2
Q3(p2

i )

, (5.5)

where the sum over the lattice points i , corresponding to
momenta pi , extends until pi < 2.5 GeV; the reason for
implementing this cut is explained in item (ii) of Sect. 4.2.
The number of lattice points in this interval is n p = 18 for
the setup L08 and n p = 16 for the setup L07. The quantity
εQ3(p2

i )
represents the error in the corresponding value of

Q3(p2
i ). Then, the use of Eq. (5.5) yields χ2 = 119 for the

setup L08, and χ2 = 76 for the setup L07.
At this point, we compute the probability, PQ0

3
, that our

result for Q3 is consistent with the null hypothesis through

PQ0
3

=
∫ ∞

χ2
χ2

PDF(n p, x)dx = �(n p/2, χ2/2)

�(n p/2)
, (5.6)

where χ2
PDF is the χ2 probability distribution function. Then,

using the above quoted values of n p and χ2 we obtain PQ0
3

=
6.48 × 10−17 for L08, and PQ0

3
= 8.68 × 10−10 for L07. In

terms of confidence levels to discard the null hypothesis,
these probabilities translate to 8.4σ and 6.1σ , respectively.

6 Discussion and conclusions

The non-Abelian implementation of the SM is associated
with the appearance of longitudinally coupled massless poles
in the fundamental vertices of the theory. In addition to
endowing the gluons with an effective mass, the action of
the SM leads to the displacement of the Ward identities sat-
isfied by the fundamental vertices of the theory by amounts
proportional to the momentum-dependent residues of these
poles. This property is particularly crucial, because it enables
us to confirm the nonvanishing nature of the pole residues by
forming the difference between the lattice data and the WI
prediction for certain vertex form factors in the soft-gluon
limit. In the present work we have focused on the manifesta-
tion of this characteristic effect at the level of the quark–gluon
vertex of QCD with two light quark flavors, N f = 2.

Our analysis demonstrates that the quark–gluon vertex
contains massless poles: they correspond to the propagators
of scalar, color-carrying bound states, which are composed
out of two gluons or of a quark–antiquark pair. The residue
functions associated with these poles play the role of the BS
amplitudes for the bound-state formation, and are determined
from a coupled system of BS equations. Crucially, this system
involves also the unquenched version of the function C(p2),
known from the well-studied case of the (quenched) three-
gluon vertex.

The residue function Q3(p2), associated with the tree-
level Dirac structure γα , plays a prominent role in this study,
because it is directly responsible for the displacement pro-
duced between the lattice data and the WI prediction for the
classical form factor of the quark–gluon vertex. In fact, the
detailed comparison with the lattice data of [92] reveals a sta-
tistically significant discrepancy (signal), whose momentum-
dependence is completely consistent with the BS solution for
Q3(p2), as may be seen in Fig. 10. This finding further cor-
roborates the action of the SM in the context of unquenched
QCD, providing additional evidence for the robustness of this
particular mass generating scenario.

The robustness of the result shown in Fig. 10 hinges on
one’s ability to accurately determine the WI prediction for the
form factor λ1(p2), namely the λ�

i (p
2) given by Eq. (3.13).

There, in addition to the components A(p2) and B(p2) of
the quark propagator, the form factors K1(p2) and K4(p2),
associated with the quark-ghost kernel [see Eq. (3.9) and
Fig. 4], play a central role. The determination of K1(p2) and
K4(p2) involves the fully-dressed quark–gluon vertex, which
has been approximated by the Ansatz given in the second line
of Eq. (4.3). This particular form is inspired by the special
property of “planar degeneracy”, satisfied at a high level of
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Table 2 Fitting parameters used for Eqs. (A1), (A5), (A6), and (A7). In addition, for M(p2) we use mq = 6.2 MeV, and 8 MeV for the setups
L08 and L07, respectively, and m0 = 345 MeV for both. Lastly, we employ � = 610 MeV for all quantities

δ κ2 [GeV2] η2
1 [GeV2] η2

2 [GeV2] b0 b1 [GeV2] b2 [GeV2] b3 [GeV2]

	(r2) 0.112 71.8 10.1 0.895 −0.0998 −1.67 0.684 0.321

F(r2) – – 2.68 1.27 −0.440 6.23 0.820 23.2

Lsg(r2) 0.0629 12.3 1.00 1.48 0.102 25.9 1.70 19.0

A(p2) [L08] – 0.930 – – 0.360 0.642 0.175 0.462

A(p2) [L07] – 2.69 – – 0.849 0.351 0.193 1.98

M(p2) [L08] 0.294 0.520 1.31 13.0 – – – –

M(p2) [L07] 0.110 0.596 1.00 31.1 – – – –

λ1(p2) [L08] – – 24.6 0.0371 −0.587 11.8 0.599 1.03

λ1(p2) [L07] – – 24.6 0.0371 −0.483 2.33 0.495 0.745

accuracy by the three-gluon vertex [26,50,118–120]. In the
case of the quark–gluon vertex, the veracity of this Ansatz has
not been confirmed at a corresponding level of accuracy, even
though it seems fairly plausible, given the observations made
below Eq. (4.3). To be sure, a more detailed analysis of this
entire issue is required, in order to determine the limitations
of this approximation, and the possible modifications that
may arise in the form factors K1(p2) and K4(p2). We hope
to embark on such a study in the near future.

Finally, even though we have focused on the displace-
ment produced to λ1(p2) by Q3(p2), the form factors λ2(p2)

and λ3(p2) get also displaced by the functions Q2+3(p2)

and Q1(p2), respectively [viz. second and third relation in
Eq. (3.19)]. In fact, a preliminary analysis indicates that in the
case of λ3(p2) a detectable displacement may be obtained.
This happens despite the fact that Q1(p2) is significantly
smaller compared to C(r2) and Q3(p2), because λ3(p2)

is significantly smaller to λ1(p2), and the available lattice
data display rather small error bars. It is clearly important
to explore this possibility further, establishing the statistical
significance of the resulting displacement and its similarity
to the BS prediction.
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Appendix A: Input fits

In this Appendix we present the fits to lattice data for the
propagators and vertex form factors used as external inputs
in our calculations. These fits capture a variety of physical
properties in the infrared, discussed elsewhere [14,51,52],
and reproduce the one-loop anomalous dimensions of the
corresponding functions in the ultraviolet [56,122–124].

The fitting functions employed share certain basic build-
ing blocks, which differ only in the specific values that some
sets of parameters acquire in each case. In particular, the
parameters δ, κ , ηi , and bi appear in various fits, taking dis-
tinct numerical values in each case. The sets of numerical
values employed are displayed in Table 2.

For the unquenched quantities 	(r2), F(r2) and Lsg(r2),
we employ the functional forms

	−1(r2) = r2
[

δ

1 + (r2/κ2)
ln

(
r2

μ2

)

+UdA(r2)

]

+ ν2R(r2) , dA = 39 − 4N f

6β0
,

F−1(r2) = Udc(r2) + R(r2) , dc = 9

4β0
,

Lsg(r
2) = 1.16

{
δ

1 + (r2/κ2)
ln

(
r2

μ2

)

+Ud3g (r2)
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+R(r2)
}

, d3g = 51 − 8N f

12β0
, (A1)

where we define β0 = 11 − 2N f /3,

U (r2) := 1 + ln
[
(r2 + η2(r2))/(μ2 + η2(r2))

]

ln
(
μ2/�2

) ,

η2(r2) := η2
1

1 + r2/η2
2

, (A2)

R(r2) := b0 + r2/b1

1 + r2/b2 + (r2/b3)2 − b0 + μ2/b1

1 + μ2/b2 + (r2/b3)2 ,

(A3)

and the parameter ν = 1 GeV makes the dimensionalities of
R(r2) and 	−1(r2) consistent without changing the dimen-
sions of the parameters bi . Note that the factor (r2/b3)

2 in
the denominator of the second term in Eq. (A3) enforces the
property R(r2) → 0 at r → ∞, so that the standard one-loop
resumed expressions for 	(r2) and F(r2) [56,122–124] are
recovered in the ultraviolet. In addition, the factor of 1.16 in
Lsg(r2) converts the lattice data of [51] to the M̃OM scheme
[see Eq. (B17)].

The lattice data of [92,112] for the quark propagator are
given in terms of the quark wave function, A−1(p2), and
running mass,

M(p2) := B(p2)/A(p2). (A4)

These are fitted with

A(p2) = T (p2)

T (μ2)
, T (p2) := b0 + p2/b1 + (p2/κ2)2

1 + p2/b2 + (p2/b3)2 ,(A5)

and

M(p2) = m0

1 + (p2/κ2)1+δ

+mq

[
1

2
ln

(
p2 + η2(p2)

�2

)]−dM
, dM = 4

β0
. (A6)

Finally, the fit for λ1(p2) is obtained with

λ1(p
2) =

[
Udqg (p2) + R(p2)

]−1
, dqg = 9

4β0
. (A7)

The values of the fitting parameters are collected in Table 2
and its caption. The resulting curves for 	(r2) and λ1(p2) are
compared to the corresponding lattice data in the left panels
of Figs. 8 and 10; the functions F(r2), Lsg(r2), A−1(p2),
and M(p2) are shown in Fig. 11.

Appendix B: Changing renormalization schemes

In this Appendix we show how the lattice inputs given in
different renormalization schemes may be converted to the

M̃OM, defined in Eq. (4.8).

We begin by introducing the renormalization constants

	B = ZA	R , FB = ZcFR , AB = Z−1
F AR ,

I�μ
c, B = Z−1

1 I�μ
c, R , I�μ

B = Z−1
2 I�μ

R , I�αμν
B = Z−1

3 I�αμν
R ,

HB = Z−1
H HR , gB = ZggR , mB

q = Zmqm
R
q ,

Zg = Z3Z
−3/2
A , (B1)

where mq is the current quark mass and we denote with sub-
scripts “B” and “R” the bare and renormalized quantities,
respectively. Then, the various STIs of the theory lead to the
relations [1]

Z3

ZA
= Z1

Zc
= Z2

ZF
. (B2)

Moreover, in the Landau gauge, we have that ZH = Z1,
where Z1 is finite [45]. From now on, the index “R” will be
substituted by the notation introduced below, identifying the
different renormalization schemes under consideration.

Specifically, the required conversions involve three differ-
ent renormalization schemes, namely:

1. The M̃OM scheme, defined by Eq. (4.8), which is used
in the lattice determination of λ1(p2). Quantities without
any special renormalization index, e.g., λ1(p2), will be

understood to be renormalized in the M̃OM scheme.
2. The “asymmetric MOM” scheme,

	−1
asym(μ2) = μ2, Fasym(μ2) = 1,

Aasym(μ2) = 1, Lasym
sg (μ2) = 1, (B3)

which is specified by the index “asym”. This scheme was
used in [51] for the lattice determination of the (N f = 3)
classical form factor Lsg(p2) of the three-gluon vertex.

3. The Taylor scheme, which capitalizes on the Landau
gauge finiteness of the ghost-gluon vertex [45], and is
defined by the prescription

	−1
T (μ2) = μ2, FT(μ

2) = 1,

AT(μ
2) = 1, ZT

1 = ZT
H = 1, (B4)

where we assign an index “T” to quantities renormalized
in this scheme. The value of the coupling constant deter-
mined in the Taylor scheme in [125] will be used to deter-
mine the coupling constants in the above two schemes.

Now, let us note that combining Eq. (B1) with each of
the renormalization prescriptions of Eqs. (4.8),(B3) and (B4)
implies

ZA = Z asym
A = ZT

A = μ2	B(μ
2),

�⇒ 	(p2) = 	asym(p2) = 	T(p
2), (B5)
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Fig. 11 Top: lattice data (points) for F(r2) from [98,99] (left) and for
Lsg(r2) from [51] (right); the corresponding fits (blue continuous) are
given by Eq. (A1). Note that for Lsg(r2) we use N f = 2 + 1 data, as
discussed in item the (iii) of Sect. 4.2. Bottom: lattice data of [92,112]

for the quark wave function (left) and running mass (right), and the fits
of Eqs. (A5) and (A6). The lattice data for the setups L08 and L07 of
[92,112] are represented by blue and red points, respectively, and their
fits by blue continuous and red dashed curves

since the bare gluon propagator does not depend on the renor-
malization scheme. Similarly, F(p2) = Fasym(p2) = FT(p2)

and A(p2) = Aasym(p2) = AT(p2). In addition, for the
renormalization group invariant (RGI) quark mass function,
M(p2), defined in Eq. (A4), we use fits to the L07 and L08
lattice data of [92,112]; therefore the renormalization of the
current mass,mq , does not need to be explicitly implemented.
Then, since M(p2) is RGI and A(p2) is the same for all
schemes we employ, it follows that so is the function B(p2).
Hence, we can suppress the indices specifying renormaliza-
tion schemes in all of the propagators.

On the other hand, the renormalization constant of a given
vertex has a different value in each of the above schemes, e.g.,
Z asym

3 
= Z3. As it turns out, the ratios between these values,
e.g., Z asym

3 /Z3, can be conveniently expressed in terms of
three special RGI effective couplings, defined in terms of the
quark–gluon, three-gluon, and ghost-gluon vertices as

αqg(p
2) = αB

s p
2	B(p

2)[λB
1(p

2)]2/A2
B(p

2) ,

α3g(p
2) = αB

s [p2	B(p
2)]3[LB

sg(p
2)]2 ,

αcg(p
2) = αB

s p
2	B(p

2)F2
B (p2) . (B6)

Note that the αcg(p2) is the well-known Taylor coupling mea-
sured on the lattice [125–127], which takes advantage of the
fact that, in the Landau gauge, the unrenormalized ghost-
gluon vertex in the soft-ghost configuration reduces to tree-
level [45], i.e., BB

1 (p2, 0, p2) − BB
2 (p2, 0, p2) = 1, in the

language of Eq. (5.2).7

1. Taylor to M̃OM conversion and the value of ZH

To convert the value of the coupling between the Taylor and

M̃OM schemes, let us first note that Eqs. (B1) and (B2) imply

ZH = Z1 = ZcZ2/ZF. (B7)

7 It is possible to define a ghost-gluon effective coupling with a
nontrivial dependence on the ghost-gluon vertex dressing, e.g.,
αcg(p2) = αB

s p
2	B(p2)F2

B (p2)BB
1 (p2, 0, p2); the connection with

αcg(p2) is implemented through the substitution BB
1 (p2, 0, p2) →

BB
1 (p2, 0, p2) − BB

2 (p2, 0, p2) = 1.
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Then, using Eq. (4.8) to write the renormalization constants
in terms of the bare Green’s functions, one shows that

ZH = FB(μ
2)AB(μ

2)

λB
1(μ

2)
=
√

αcg(μ2)

αqg(μ2)
. (B8)

Now, we can use Eq. (B8) to determine αqg(p2) from the
known αcg(p2) of [125]. First, at a large momentum scale,
here chosen as ν = 7 GeV, we can evaluate Eq. (B8) at one
loop with massless quarks. Using the well-known fact that
AB(p2) = 1 to one loop in the Landau gauge [122,123],
together with the corresponding one-loop results for FB(ν

2)

and λB
1(ν

2) given in [56], we find

ZH (ν = 7 GeV) = 1 + 3αs(ν = 7 GeV)

16π
. (B9)

Then, using the Taylor scheme value of [125] for αs(ν =
7 GeV) = 0.223, we obtain that ZH (ν = 7 GeV) = 1.013,
and therefore αqg(ν = 7 GeV) = 0.217.

Then, since αqg(p2) is RGI, we can rewrite Eq. (B6) in

terms of quantities renormalized in the M̃OM scheme with
μ = 2 GeV, i.e.,

αqg(p
2) = αs p

2	(p2)λ2
1(p

2)/A2(p2), (B10)

and we determine the corresponding value of

αs(μ = 2 GeV) = 0.470(7) [L08],
αs(μ = 2 GeV) = 0.471(8) [L07], (B11)

by requiring that Eq. (B10) reproduces the previously deter-
mined value of αqg(ν = 7 GeV).

Lastly, with the full momentum dependence of αqg(p2) in
hand, we return to Eq. (B8) to determine

ZH = 1.120(8) [L08], ZH = 1.121(9) [L07]. (B12)

2. Asymmetric MOM to M̃OM conversion

Now we consider the conversion of Lsg(p2) from the asym-

metric to the M̃OM scheme.

To this end, note first that Eq. (B1) implies

Lsg(p
2) = Z3

Z asym
3

Lasym
sg (p2). (B13)

Then, our task amounts to computing the ratio Z3/Z
asym
3 .

Next, it follows from the renormalization condition of
Eq. (B3) that Z asym

3 = 1/LB
sg(μ

2), whereas Eqs. (4.8) and
(B2) imply

Z3 = μ2	B(μ
2)AB(μ

2)

λB
1(μ

2)
. (B14)

Hence, by combining the above results we obtain

Z3

Z asym
3

= μ2	B(μ
2)AB(μ

2)LB
sg(μ

2)

λB
1(μ

2)
=
√

α3g(μ2)

αqg(μ2)
. (B15)

Now, to fix the value of α3g(μ
2) we use the same strategy

used in the determination of αqg(p2).
At a large momentum scale, ν = 7 GeV, we can evaluate

the combination of bare Green’s functions at one loop. Using
the textbook result for 	B(ν

2) and AB(ν
2) = 1 [122,123] and

the results of [56,124] for the vertices we obtain

Z3

Z asym
3

∣
∣
∣
∣
ν=7 GeV

= 1 + αs(ν = 7 GeV)

96π
(129 − 16N f )

= 1.072,

(B16)

which implies α3g(ν = 7 GeV) = 0.249.
Then, from the RGI nature of α3g(p2), we can compute its

entire momentum dependence using ingredients renormal-
ized in the asymmetric scheme. In particular, we obtain the
three-gluon coupling α3g(μ = 2 GeV) = 0.635, and

Z3

Z asym
3

= 1.16. (B17)

Fig. 12 Left: Classical form
factor, BT

1 (r2, k2, q2), of the
ghost-gluon vertex renormalized
in the Taylor scheme, for a fixed
value φ = 2π/3 of the angle
between k and q. The orange
continuous line highlights the
soft-ghost (k = 0) limit,
respectively. Right: Comparison
between the N f = 2 (orange
continuous) and quenched (blue
dashed) values of the soft-ghost
limit, BT

1 (q2, 0, q2)

123
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Appendix C: Unquenched ghost-gluon vertex

In this Appendix we briefly describe the determination of
the classical form factor B1(r2, k2, q2) of the ghost-gluon
vertex [see Eq. (5.2)], which is relevant for the calculation of
the quark-ghost form factors, Ki .

The one-loop dressed SDE of the ghost-gluon vertex is
formally identical to its quenched version, given diagram-
matically in Fig. 12 of [14]; the dependence on N f enters
through the various quantities comprising the diagrams, such
as the coupling, the gluon and ghost propagators, and the
three-gluon vertex.

For the three-gluon vertex, we use the approximation
given in Eq. (4.3). Then, an appropriate tensor projection
of the SDE yields a dynamical equation for B1(r2, k2, q2),
which is given by Eq. (88) of [14]. Finally, this equation is
solved numerically, using Eq. (B11) for αs , the L08 setup
value given in Eq. (B12) for Z1 = ZH , and the fits given by
Eq. (A1) for 	(r2), F(r2) and Lsg(r2).

To expedite the comparison between N f = 2 and
quenched results for the ghost-gluon vertex, we will show
its classical form factor renormalized in the Taylor scheme,

BT
1 . Its M̃OM value, B1, is obtained immediately through

B1(r
2, k2, q2) = ZH BT

1 (r2, k2, q2), (C1)

where ZH is given by Eq. (B12).
On the left panel of Fig. 12 we show BT

1 (r2, k2, q2)

as a function of the magnitudes of the ghost and gluon
momenta, k and q, respectively; for the angle φ between
them we choose the representative value φ = 2π/3. On
this panel we note that BT

1 (r2, k2, q2) has the same qual-
itative behavior as its quenched form obtained in various
studies8 [24,26,44,53,130–133]. In particular, it is nearly
identical in shape to the result shown in Fig. 13 of [14], which
uses the same approximation of Eq. (4.3) for the three-gluon
vertex.

Next, we focus on the soft-ghost limit (k = 0), which
appears as an ingredient in Eq. (5.3) for the Ki (p2). This limit
corresponds to the slice highlighted as an orange continuous
curve on the left panel of Fig. 12. On the right panel of the
same figure, we compare the N f = 2 value of BT

1 (q2, 0, q2)

to its quenched counterpart computed in [14], represented
here as a blue dashed line. The results are found to differ by
less than 2.75% within the entire momentum range, and are
virtually indistinguishable for q < 1 GeV. Their most notice-
able difference is in the ultraviolet, where the N f = 2 result
is seen to be systematically larger than its quenched version.
The same pattern is found for all kinematic configurations.

8 For related studies within the Curci-Ferrari model, see [128,129].

Note that the observed enhancement of the unquenched
BT

1 (q2, 0, q2) in the ultraviolet is compatible with perturba-
tion theory. Indeed, a one-loop calculation yields

BT
1 (q2, 0, q2) = 1 + 33αT

s

32π
, (C2)

which depends on N f only through the value of αT
s . Then,

since αT
s increases with N f [98], so does BT

1 (q2, 0, q2).
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