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Abstract We study the isospin violating decays of vector

charmonia to ��
0

and its charge conjugate. They are domi-
nated by the single photon annihilation and can be evaluated
reliably with timelike form factors. We utilize the quark-pair
creation model, which is valid for the OZI suppressed decays,
to evaluate the form factors. We obtain the branching frac-

tions of B(J/ψ → ��
0 + c.c.) = (2.4 ± 0.4) × 10−5 and

B(ψ(2 S) → ��
0 + c.c.) = (3.0 ± 0.5) × 10−6, which are

compatible with the measurements by the BESIII collabora-
tions, respectively. The decay asymmetries are found to be
αJ/ψ = 0.314 and αψ(2S) = 0.461, which can be examined
at BESIII in the foreseeable future.

1 Introduction

The decays of vector charmonia (ψ) into baryon and
antibaryon have recently been thoroughly studied at BESIII.
On the one hand, the branching fractions and decay asym-
metries have been precisely measured [1–5]. On the other
hand, since the produced baryon-antibaryon pairs are entan-
gled, their sequential decays are utilized as sensitive probes
to CP asymmetries [6–8] generated by new physics (NP) [9–
13]. In Table 1, we list the branching fractions (B) and decay
asymmetries (α) for ψ decaying to a pair of octet baryon-
antibaryons. It is interesting to point out that the measured α

between �� and the others differ in sign, suggesting large
breaking effects of the SU(3) flavor symmetry [14,15], which
might attribute to NP.

In this work, we focus on the isospin-violating effects. One
way to examine them is to compare the differences among
the isospin multiplets. Explicitly, the experimental data of

B(J/ψ → �−�
+
/�0�

0
) shows a 10 % deviation against

the isospin symmetry prediction. To further study the isospin
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violation in baryonic decays, the most direct way is to inves-

tigate the decays of vector charmonia ψ to ��
0

and the cor-
responding charge conjugates, which explicitly violate the
isospin symmetry. In particular, the BESIII collaboration has
measured the branching fractions as [16,17]

B(J/ψ → ��
0 + c.c) = (2.83 ± 0.23) × 10−5,

B(ψ(2S) → ��
0 + c.c) = (1.6 ± 0.7) × 10−6,

whereas the CLEO-c collaboration found [18]

B(ψ(2S) → ��
0 + c.c) = (1.23 ± 0.24) × 10−5, (1)

which is almost an order of magnitude larger than the
BESIII’s measurement. Several theoretical studies have been
dedicated to these decay modes [19–26], where the electro-
magnetic amplitudes are fitted from the experimental data.

Generally speaking, the isospin symmetry can be vio-
lated by the electric charge and mass difference between u
and d quarks. In this work, we only consider the electric
charge difference, which is manifested by a single photon
exchange amplitude. As we will see later, the amplitudes of
J/ψ → γ ∗ → hh′ with h(′) an arbitrary hadron can be cal-
culated by the timelike form factors. In this work, we adopt
the quark pair creation model (QPC), also known as the 3P0

model, to describe the quark-antiquark pair creation from
the vacuum [27–30], which may originate from the gluon
condensation [31]. The model has been widely used in the
OZI-allowed hadronic decays [32–36]. By exploiting it in
these OZI-suppressed modes, we provide a direct evaluation
of the branching fractions and decay asymmetries of these
isospin-violating channels. All of the decay modes consid-
ered in this work can be tested at BESIII.

This paper is organized as follows. In Sect. 2, we show
the formalisms which combines the homogeneous bag and
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Table 1 The Branching fractions and decay asymmetries of J/ψ and ψ(2S) to octet baryon-antibaryons

Channels 103B α Channels 104B α

J/ψ p p̄ 2.120(29) 0.595(19) ψ(2S) p p̄ 2.94(8) 1.03(7)

nn̄ 2.09(16) 0.50(21) nn̄ 3.06(15) 0.68(16)

�� 1.89(9) 0.469(26) �� 3.81(13) 0.824(74)

�0�
0

1.172(32) −0.449(20) �0�
0

2.35(9) 0.71(11)

�+�
−

1.07(4) −0.5156(68) �+�
−

2.43(10) 0.682(32)

�0�
0

1.17(4) 0.66(3) �0�
0

2.3(4) 0.665(118)

�−�
+

0.98(4) 0.586(16) �−�
+

2.87(11) 0.693(69)

quark pair creation models. The numerical results are given
in Sect. 3. Section 4 is the conclusion.

2 Formalism

The leading amplitudes of A(ψ → hh′) are classified into
three categories: Aggg , Aγ and Aggγ , where AX represents
A(ψ → X → hh′).1 In general, the dominant amplitude is
Aggg since Aγ /Aggg ∝ αem/α3

s ≈ 1/2 with αem(s) being
the fine structure constant of QED (QCD).2 Such amplitude
is difficult to be evaluated due to the nonperturbative effect of
QCD at the charm scale. In the case of the isospin violating
decays, the hierarchy is inverted as Aγ � Aggg since the
latter is suppressed by the smallness of the mass differenct
between u and d quark. It suffices to consider Aγ solely, as
depicted in Fig. 1.

In the following, we will consider the isospin violating
decays exclusively and set the quark masses of mu and md

to be equivalent. Accordingly, we focus on Aγ and drop
its superscript as confusions are not possible, which Aγ is
decomposed according to the helicities as3

Aλhλh′ = 4παQc
fψ
Mψ

∑

q=u,d,s

QqM
q
λhλh′ ,

Mq
λhλh′ = εμ〈λh; λh′ |q̄γ μq|0〉, (2)

1 Agg is forbidden by the parity conservation.
2 This naïve estimation is compatible to the experimental branching
fraction of B(J/ψ → γ ∗ → hadrons)/B(J/ψ → ggg) = 0.211 ±
0.006 [37].
3 Without lost of generality, we take the velocities of hh′ and the
polarization of ψ toward ẑ. For numerical evaluations, we use λψ =
λh − λh′ , where λψ is the angular momentum of ψ toward ẑ.
In the Briet frame, the dependence of εμ(λψ) on λψ is given as
εμ(+) = 1√

2
(0, 1, i, 0), εμ(−) = 1√

2
(0,−1, i, 0) and εμ(0) =

(
M−
Mψ

γ v, 0, 0,− M+
Mψ

γ ), where M± = Mh ± Mh′ , γ = 1/
√

1 − v2 and
v is the magnitude of the final state velocity.

where Qq is the electric charge of q, λh(′) is the helicity of
h(′), and fψ , Mψ and εμ are the decay constant, mass and
polarization vector of ψ , respectively. As the isospin has to
be violated, the conserved parts of the amplitudes vanish,
given by

Mu
λhλh′ + Md

λhλh′ = Ms
λhλh′ = 0, (3)

leading to
∑

q QqM
q
λhλh′ = Mu

λhλh′ . The branching fraction

of ψ → hh′ is given as

B(ψ → hh′) = 1

3

| �ph |
8πM2

ψ�ψ

∑

λh ,λh′
|Aλhλh′ |2, (4)

where �ψ is the total decay width of ψ , �p is the 3-momentum
of h in the rest frame of ψ . For e+e− → ψ → hh′, there is
an additional parameter in distributions

d�

d cos θ
∝ 1 + α cos2 θ, α = |AT |2 − 2|AL |2

|AT |2 + 2|AL |2 , (5)

where (AT ,AL) correspond to (A+−,A++) for ψ → ��
0
,

and θ is the angle between the 3-momenta of e+e− and hh′.
In this work, we focus on the baryonic final states ��

0

and its charge conjugate. The matrix element in Eq. (2) can be
further parametrized by the timelike form factors (GE ,GM )

and ( f1, f2) as

Mq
λ�λ

�
0

= εμū

[
GM (q2)γ μ + M+

q2 (GM (q2) − GE (q2))qμ

]
v,

= εμū

[
f1(q2)γ μ + f2(q2)

iσμνqν

M+

]
v, (6)

where qμ = pμ + p′μ and pμ (p′μ) and u (v) are the 4-

momentum and Dirac spinor of � (�
0
). The form factors

are related to the helicity amplitudes as

AT =
√

2(M2
ψ − M2−)GM (s), AL = M+

Mψ

√
M2

ψ − M2−GE (s).

(7)
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Fig. 1 The quark diagrams of ψ → hh′, where the double lines represent hadrons

In this work, we adopt the homogeneous bag model (HBM)
and 3P0 model to evaluate the electromagnetic baryonic form
factors in the timelike region. Such form factors can be mea-
sured with high precision at the BESIII experiment [38],
which could provide valuable information for theoretical
study.

2.1 Homogeneous bag model

In the homogeneous bag model (HBM), a baryon state is
constructed by acting quark field operators on the vacuum
state, which effectively couples a baryon to quarks by wave
functions. We take � baryon as an example, given as

|�, �p = 0,↑〉 =
∫

[d3 �x] 1√
6
εαβγ u†

aα(�xu)d†
bβ(�xd)s†

cγ (�xs)
× �abc

↑[ud]s([�x])|0〉, (8)

where q†
aα(�x) is the field operator which creates quark q at

position �x , a and α are the spinor and color indices, respec-
tively. The three quarks are combined into a baryon by the
color and spin-flavor-spatial wave function εαβγ and �abc

[ud]s .
We have used the shorthand notation [�x] = (�xu, �xd , �xs) and
[d3 �x] = d3 �xud3 �xdd3 �xs . The wave function �abc

↑[ud]s for �

baryon is given as

�abc↑[ud]s([�x]) = N�√
2

∫
d3 �x

(
φa
u↑(�x ′

u)φ
b
d↓(�x ′

d)

−φa
u↓(�x ′

u)φ
b
d↑(�x ′

d)
)

φc
s↑(�x ′

s ), (9)

whereφ is the static bag wave function described in Appendix
A, the subscript [ud] indicates the wave function is antisym-
metric in swapping u and d quarks, and �x ′

q = �xq − �x is the
position of quark q with respect to the bag center �x .

In the original bag model, the hadron state is described
by a single bag with its center located at �x = 0. However,
this configuration is not invariant under Poincaré transfor-
mations and thus cannot be considered as an eigenstate of
four-momentum. To reconcile the inconsistency, the homo-
geneous bag model is introduced by duplicating the bag and

distributing homogeneously over the three-dimensional posi-
tion space (�x) [39]. By construction, 3-dimensional space
points are treated equally in Eq. (12). Such a hadron state is
more suitable for describing the decays of hadrons, and has
been extensively used in various baryon decays [40–42].

As shown in Eq. (6), the decay of ψ → ��
0

are described

by the electromagnetic form factors of ��
0
. However, the

form factors cannot be evaluated even if the hadron wave
functions are known. Besides the quark-antiquark pair pro-
duced by the photon, two additional pairs of quark-antiquarks
are needed in order to form a baryon and an antibaryon. A
possible way to calculate the creation matrix element of the
baryon-antibaryon pair is to adopt the crossing symmetry on
the hadron level [43]. Nevertheless, it is done by assuming
the absence of a singularity in form factors. In this paper,
we adopt the 3P0 model to describe the creation of quark-
antiquark pairs. By inserting the 3P0 transition operator, the
timelike form factors are directly evaluated. Details about
this model and our approach can be found in the rest of this
section.

2.2 3P0 model

In the 3P0 model, the quark-antiquark pairs are created by
the transition operator [44]

Tq = √
3 γq

∫
d3 �x : q(�x) q(�x) : (10)

where γq is a dimensionless parameter that describes the
strength of the creation, and

√
3 is a color factor. The

3P0 operator is the simplest effective operator that cre-
ates the quark-antiquark pair, which may originate from the
fundamental quantum chromodynamics (QCD) interaction
between quarks and gluons. The gluon-quark couplings in
QCD as well as the condensations are all effectively absorbed
into γq [31]. Therefore, it is reasonable to expect a universal,
model-independent strength parameter γq running with the
energy scale as

γq(μ) = γq0

log(μ/μ0)
. (11)
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In the phenomenological practice, it suffices to fit the param-
eters γq0 and μ0 from various decay experiments, which are
adopted from Ref. [44] in this work. We emphasize that γq
shall not depend on hadron wave functions as it essentially
describes the creations of (anti)quarks at the quark level.

In the previous literature, the 3P0 model is mostly used in
the cooperation with the nonrelativistic (NR) hadron wave
functions. At the first glance, it may seem that it conflicts
with the bag model, which is essentially a relativistic quark

model. However, the relativistic corrections in ψ → ��
0

are rather small and the HBM has a well-defined NR limit.
We also present the results in the NR limit in Sect. 3.

With these phenomenological models, the matrix element
is now given as

Mu
λ�λ

�
0

= εμ〈λ�; λ
�

0 |ūγ μuTdTs |0〉

= 3γ 2
q

∑

[λ]
Nλ�λ

�
0 ([λ])

∫
d3 �x��

λψ

λuλū
(�x�)

× Eλdλd̄
(�x�)Eλsλs̄ (�x�),

(12)

where [λ] collects all the quark spins and Nλ�λ
�

0 ([λ]) is the
spin-flavor overlapping. The integration over �x� is directly
related to the integration over all the bag centers �x in Eq. (9),
which distinguishes the HBM with the original bag model.
The vertex functions of �

ψ
λuλū

and Eλqλq̄ correspond to the
productions of the quark-antiquark pairs due to the QED ver-
tex and Tq , respectively, given as

�
λψ

λuλū
(�x�) =

∫
d3 �xuGλψ

λuλū

=
∫

d3 �xuφ†
uλu

(
�xu + 1

2
�x�

)
ϒφ̃∗̄

uλū

×
(

�xu − 1

2
�x�

)
,

Eλqλq̄ (�x�) =
∫

d3 �xqEλqλq̄

= 1

γ

∫
d3 �xqφ†

qλq

(
�xq + 1

2
�x�

)
Sφ̃∗̄

qλq̄

×
(

�xq − 1

2
�x�

)
,

(13)

where ϒ = Svγ
0εμγ μS−v , S ≡ Svγ

0S−v and S±v =
(
√

γ + 1 ± √
γ − 1γ 0γ 3)/

√
2 boost the wave function

towards ±z direction,4 and φ̃ is the charge conjugation of
the wave function φ. Note that there is no spectator quark,
which clearly differs from the form factors at the spacelike

4 At the risk of abuse of notation, we adopt the conventional definition of
γ = 1/

√
1 − v2 in S±v , which shall not be confused with the couplings

of γq in Tq .

region. Besides, without introducing 3P0 operators, we have
S = 1 in Eq. (13), leading to vanishing Eλqλq̄ (�x�) for arbi-
trary spin configurations.

As we can see from Eqs. (12) and (13), one has to per-
form a twelve-fold integral to obtain the final result. After
choosing the appropriate coordinates for different integrals,
we manage to reduce the complexity of the calculation sig-
nificantly, described in Appendix A. By plugging Eq. (A1),
we find that

AT = CB〈2�+−−Ed+−Es++ − �+−+Ed+−Es+−
+�++−Ed−+Es+− − 2�++−Ed−−Es++〉,

AL = CB〈−2�0−+Ed++Es+− + 2�0++Ed−+Es+−〉,
CB = 4παQc

fψ
Mψ

3γ 2
qN�N�

0
1

2
√

3
, (14)

where N is the normalization constant and 〈· · · 〉 stand for∫
d3 �x�.

3 Numerical results

We extract fψ through the experiments of B(ψ → e+e−)

and find that f J/ψ = 416 MeV and fψ(2 S) = 294 MeV.

The bag radius of � and �
0

are taken to be 5 GeV−1. The
running of γq(μ) is taken from Ref. [44], fitted from the
decay widths of heavy mesons, where μ is the energy scale.
To be conservative, we consider 10% variations of μ, leading
to γq = 0.295(14) for J/ψ and 0.278(13) for ψ(2S).

Remarkably, the numerical results depend little on the bag
radius. The numerical results of the timelike form factors
(GE ,GM ) and ( f1, f2) are listed in Table 2. There are only
two dimensionful parameters in the model, which correspond
to the bag radius R and the strange quark mass ms . The
form factors are dimensionless and thus depend only onms R,
which vanishes in the SU (3)F limit. We plot the form factors
versus ms R in Fig. 2, which shows slight dependency.

In Table 3, we present the branching fractions and decay
asymmetries. The dependence on γq is canceled in αψ , lead-
ing to negligible uncertainties on αψ .

The predicted B of J/ψ → ��
0 +c.c. is consistent with

the BESIII measurements, whereas the ones of ψ(2S) sits
between the experimental measurements at the BESIII [17]
and CLEO [18] collaborations. From Table 2, we can see that
|GM | for ψ(2S) is larger than that for J/ψ , which contra-
dicts the common belief that form factors should decrease
as q2 increases. In this work, we consider two scenarios. In
Table 3, the upper row results of ψ(2S) are evaluated by tak-
ing GE,M (M2

ψ(2 S)) = GE,M (M2
J/ψ), while the lower row

results by calculating directly within the 3P0 model. The
first scenario favors B measured at BESIII, while the second
at CLEO-c. We note that the branching ratio between J/ψ
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Table 2 The form factors for
J/ψ,ψ(2S) → ��

0 GE (M2
ψ) GM (M2

ψ) f1(M2
ψ) f2(M2

ψ)

J/ψ 0.0151(14) − 0.0155(15) − 0.0538(51) 0.0383(36)

ψ(2S) 0.0132(12) − 0.0239(22) − 0.0479(45) 0.0240(22)

Fig. 2 The form factors of ψ → ��
0

versus the dimensionless parameter ms R from the HBM

Table 3 The branching
fractions and decay asymmetries
of ψ → hh′

Channels 105B αψ

Exp. This work This work

J/ψ → ��
0 + c.c. 2.83 ± 0.23 [16] 2.40 ± 0.40 0.314

ψ(2S) → ��
0 + c.c. 0.16 ± 0.07 [17] 0.30 ± 0.05 0.461

1.23 ± 0.24 [18] 0.75 ± 0.13 0.786

and ψ(2S) in the first scenario is compatible with the naïve
expectation of Bee

ψ(2 S)/Bee
J/ψ ≈ 13% with Bee

ψ the branching
fraction of ψ → e+e−.

To examine the results, we consider the nonrelativis-
tic (NR) limit by taking mq → ∞. As a result, the terms in
Eq. (14) with E±∓ vanish in the NR limit, resulting in AT =
CB〈−2�++−Ed−−Es++〉, AL = 0. Note that this is indeed the
interpretation of the 3P0 quantum number, in which the cre-
ated qq̄ has the spin configuration of | ↑↓ + ↓↑〉. When
the relativistic corrections are included, other spin config-
urations also contribute, leading to the amplitude shown in
Eq. (14).

4 Conclusions

In this work, we study the isospin violating decays of vector
charmonia ψ in both baryonic and mesonic sectors. Such
decays are attributed to the single photon annihilation and
suppressed by the OZI rule. We utilize the 3P0 model to
calculate the timelike form factors.

The branching fractions of ψ → ��
0 + c.c. are

prediceted as 2.4(4) × 10−5 for J/ψ and 0.30(5) × 10−5

for ψ(2S), which are both consistent with the experimen-
tal measurements at BESIII. For the decay asymmetries, we

predict αJ/ψ = 0.314 and αψ(2S) = 0.461 for ψ → ��
0
,

which can be tested at BESIII in the foreseeable future.
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Appendix A: Wave functions and bag integrals in HBM

The quark and antiquark bag wave functions are given as

φq =
(

u χ

iv r̂ · �σχ

)
, φ̃q̄ = iγ 2φq , (A1)

respectively, whereu = √
Eq + mq j0(pqr), v = √

Eq − mq

j1(pqr), χ is the usual Pauli spinor, with Eq =
√
m2

q + p2
q ,

χ↑ = (1, 0)T and χ↓ = (0, 1)T . The spatial distributions are
governed by the zeroth and first spherical Bessel functions
of j0,1(pqr), where pq is the quantized 3-momentum

tan(pq R) = pq R

1 − mq R − Eq R
, (A2)

and R is the bag radius of the hadron, fitted from the mass
spectrum.

We adopt the following normalization condition for the
baryon states

〈 ��,λ� | ��′, λ′
�〉 = u†

�u
′
�(2π)3δ3 ( �p� − �p ′

�

)
, (A3)

where u�, λ� are the spinor and the spin of the � baryon,
its normalization factor is found to be

N� =
⎛

⎝ 1

ū�u�

∫
d3 �x�

∏

q=u,d,s

Dq (�x�)

⎞

⎠
−1/2

, (A4)

with

Dq(�x�) =
∫

d3 �xqDq

=
∫

d3 �xqφ†
q

(
�xq + 1

2
�x�

)
φq

(
�xq − 1

2
�x�

)
.

(A5)

Note that Dq(�x�) is independent of the velocity and spin of
the baryon.

To evaluate Eqs. (13) and (A5), we use the coordinate
shown in Fig. 3, where ẑ and ẑ′ are chosen to be parallel to �v

and �x�, respectively. By changing the integration variables
from d3 �xq to dρdz′dφ and integrating over dφ, we arrive at
∫

Dqdφ = 2π (E2 + E3 + 2E4) , (A6)
∫

E±∓dφ = ∓2πe∓i φ̃ sin θ (iE1 + 2v cos θE3 − 2v cos θE4) ,

∫
E±±dφ = 2π(i cos θE1 + vE2 + v cos 2θE3 − 2v cos2 θE4),

(A7)∫
G±±∓dφ = 2

√
2πγ

[
iv cos θE1 + E2 + cos2 θE3 + sin2 θE4

]
,

∫
G±∓±dφ = 2

√
2πγ e±2i φ̃ sin2 θ(E3 − E4),

∫
G±±±dφ =

∫
G±∓±dφ = √

2πγ e±i φ̃ sin θ

× [±ivE1 + 2 cos θ(E3 − E4)] ,∫
G3±∓dφ = ∓2πe∓i φ̃ sin 2θ (E3 − E4) ,

∫
G3±±dφ = 2π

(−E2 + cos 2θE3 − 2 cos2 θE4
)
, . (A8)

where

E1 = z−
r−

u+v− − z+
r+

u−v+, E2 = u+u−,

E3 = z+z−
v+v−

r+r−
, E4 = 1

2
ρ2 v+v−

r+r−
,

(A9)

u± = u(�x ± �x�/2), v± = v(�x ± �x�/2), z± = z ± |�x�|/2

and r± =
√
z2± + ρ2.

To obtain Nλ�λ
�

0 , the spin-flavor parts of � and �
0

wave
functions are

|�0
,↑〉 = 1√

6

(−s↑d↓u↑ − s↑d↑u↓ + 2s↓d↑u↑
) |0〉,

|�0
,↓〉 = 1√

6

(
s↓d↑u↓ + s↓d↓u↑ − 2s↑d↓u↓

) |0〉,

|�,�〉 = 1√
2

(
d†
↓u

†
↑ − d†

↑u
†
↓
)
s†
�|0〉. (A10)

Plugging them into Eq. (12), we find

AT ∝ 1

2
√

3
〈−�+−−Ed++Es+− + 2�+−−Ed+−Es++ − �+−+Ed+−Es+−

+ �++−Ed−+Es+− − 2�++−Ed−−Es++ + �+++Ed−−Es+−〉,
AL ∝ 1

2
√

3
〈+�0−+Ed+−Es++ + �0−−Ed++Es++ − 2�0−+Ed++Es+−

− �0++Ed−−Es++ − �0+−Ed−+Es++ + 2�0++Ed−+Es+−〉.
(A11)

Due to the parity conservation, the amplitudes are invariant
under the transformation (λψ, λq , λq) → (−λψ,−λq ,−λq),

123
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Fig. 3 The cylindrical
coordinate, where ẑ and ẑ′ are
chosen to be parallel to �v and
�x�, repsectively

leading to

〈−�+−−Eu++Es+− + �+++Eu−−Es+−〉 = 0,

〈−�0++Eu−−Es++ + �0−−Eu++Es++〉 = 0,

〈−�0+−Eu−+Es++ + �0−+Eu+−Es++〉 = 0. (A12)
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