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Abstract We compute the two-loop BSM contributions to
the h −→ γ γ decay width in the aligned THDM. We adopt
the simplifying assumptions of vanishing EW gauge cou-
plings and vanishing mass of the SM-like Higgs boson, which
allow us to exploit a low-energy theorem connecting the hγ γ

amplitude to the derivative of the photon self-energy w.r.t. the
Higgs field. We briefly discuss the numerical impact of the
newly-computed contributions, showing that they may be
required for a precise determination of �[h → γ γ ] in sce-
narios where the quartic Higgs couplings are large.

1 Introduction

The discovery of a Higgs boson with mass around 125 GeV
and properties compatible with the predictions of the Stan-
dard Model (SM) [1–4], combined with the negative (so far)
results of the searches for additional new particles at the LHC,
point to scenarios with at least a mild hierarchy between
the electroweak (EW) scale and the scale of beyond-the-SM
(BSM) physics. This said, the existence of new particles with
masses around or even below the TeV scale, which could still
be discovered in the current or future runs of the LHC, is not
conclusively ruled out. This is especially the case if those
new particles are colorless, and there is some mechanism that
forbids or at least suppresses their mixing with the SM-like
Higgs boson.

The Two-Higgs-Doublet Model (THDM) is one of the
simplest and best-studied extensions of the SM (for reviews
see, e.g., Refs. [5–7]). In the CP-conserving versions of the
model, the Higgs sector includes five physical states: two
CP-even scalars, h and H ; one CP-odd scalar, A; and two
charged scalars, H±. As discussed, e.g., in Ref. [8], the
so-called “alignment” condition – in which one of the CP-
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even scalars has SM-like couplings to fermions and gauge
bosons – can be realized through decoupling, when all of the
other Higgs bosons are much heavier, or without decoupling,
when a specific configuration of parameters in the Lagrangian
suppresses the mixing between the SM-like scalar and the
other CP-even scalar. If the THDM is embedded in a more-
complicated extension of the SM that predicts the values of
the quartic Higgs couplings, as is the case in supersymmetric
models, the alignment condition can arise at the tree level
from an underlying symmetry (see, e.g., Ref. [9]), or it can
result from cancellations between the tree-level couplings
and their radiative corrections (see, e.g., Ref. [10]). In con-
trast, when the THDM is treated as a stand-alone extension
of the SM, the alignment condition can be enforced “from the
bottom up”, based on the empirical observation that the cou-
plings of the 125-GeV Higgs boson appear to be essentially
SM-like.

Beyond the requirement that they allow for a scalar with
mass around 125 GeV and SM-like couplings to fermions
and gauge bosons, the quartic Higgs couplings of the THDM
are subject to a number of experimental constraints from EW
precision observables and flavor physics, as well as theory-
driven constraints from perturbative unitarity and the stability
of the scalar potential. Nevertheless, couplings of O(1–10)

are still allowed by all constraints (see, e.g., Refs. [11,12]),
and may even be favored (see, e.g., Ref. [13]) if the THDM
is to accommodate recent experimental anomalies such as
the new CDF measurement of the W mass [14]. Couplings
in this range may induce sizable radiative corrections to the
THDM predictions for physical observables, up to the point
where one might wonder whether, in any given calculation,
the uncomputed higher-order effects spoil the accuracy of
the prediction. This has motivated a number of recent stud-
ies in which radiative corrections involving the quartic Higgs
couplings of the THDM have been computed at the two-loop
level. In particular, the two-loop corrections to the ρ param-
eter have been computed in Refs. [15,16], various effects
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of the two-loop corrections to the scalar mass matrices have
been examined in Ref. [17], and the two-loop corrections to
the trilinear self-coupling of the SM-like Higgs boson, λhhh ,
have been computed in Refs. [18,19]. In all cases it was
found that the two-loop corrections can significantly modify
the one-loop predictions, and should be taken into account
for a precise determination of the considered observable.

In this paper we compute the dominant two-loop correc-
tions to the decay width for the process h −→ γ γ in the
aligned THDM. Since the signal strength for this channel
is currently measured with an accuracy of about 6% [20],
the requirement that the BSM contributions do not spoil
the agreement with the theoretical prediction can put sig-
nificant constraints on the parameter space of the THDM
(see, e.g., Ref. [21]). Once again, the possible presence of
couplings of O(1–10) in the THDM Lagrangian motivates
the calculation of �[h → γ γ ] beyond the leading order
(LO), which, for this observable, means beyond the one-loop
level.

In the calculation of the two-loop BSM contributions to
�[h → γ γ ] we adopt the same simplifying assumptions as in
the calculation of the ρ parameter in Refs. [15,16]. In partic-
ular, we restrict our calculation to the CP-conserving THDM
in the alignment limit; we work in the so-called “gaugeless
limit” of vanishing EW gauge couplings, considering only
the corrections that depend on the quartic Higgs couplings
and possibly on the top Yukawa coupling; finally, we treat the
mass of the SM-like scalar h as negligible w.r.t. the masses
of the BSM scalars, H , A and H±, and of the top quark.
In order to obtain compact formulas for the two-loop cor-
rections to the decay width, we make use of a low-energy
theorem (LET) which connects them to the derivative of
the photon self-energy w.r.t. the vacuum expectation value
(vev) of the SM-like Higgs field [22,23]. However, we also
cross-check our result via a direct calculation of the hγ γ

amplitude. We note that care must be devoted to the defini-
tion of the alignment and vanishing-Higgs-mass conditions
beyond LO, as well as to the avoidance of infrared (IR)-
divergent contributions from diagrams involving massless
particles.

The rest of the article is organized as follows: in Sect. 2
we fix our notation for the Higgs sector of the THDM and
discuss the renormalization of the scalar masses and mixing;
in Sect. 3 we outline our calculation of the dominant two-loop
corrections to the decay width for h −→ γ γ ; in Sect. 4 we
briefly discuss the numerical impact of the newly-computed
corrections; Sect. 5 contains our conclusions; finally, two
appendices collect explicit formulas for the one-loop self-
energies and tadpoles of the Higgs bosons and for the BSM
part of the two-loop self-energy of the photon.

2 The Higgs sector of the aligned THDM

We start this section by describing the tree-level scalar poten-
tial and the Higgs mass spectrum of the THDM in the
alignment limit. Note that we do not need to distinguish
between different THDM “types” according to the form of
their Higgs–fermion interactions, because in our calculation
of the two-loop corrections to �[h → γ γ ] we neglect all
Yukawa couplings except the one of the top quark. We fol-
low up by discussing the renormalization of the Higgs sector
of the aligned THDM, in a “naive” approach that is justified
by the simplifying assumptions adopted in our calculation.

2.1 The scalar potential, masses and mixing at the tree level

We consider a version of the THDM where flavor-changing
neutral-current interactions are forbidden at the tree level by a
Z2 symmetry, softly broken by an off-diagonal mass term. In
the so-called standard basis where this Z2 symmetry applies,
the scalar potential can be parametrized as

V0 = m2
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†
2�2 − m2

12

(
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†
1�2 + h.c.

)
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, (1)

where all of the masses and quartic couplings are assumed
to be real to ensure CP conservation. We decompose the two
SU (2) doublets as

�k = 1√
2

( √
2 φ+

k
vk + φ0

k + i ak

)
(k = 1, 2), (2)

where the two (real) vevs are related by v2
1 + v2

2 = v2, with
v ≈ 246 GeV, and we define tan β ≡ v2/v1. The minimum
conditions for the scalar potential can be used to replace
the mass parameters m2

11 and m2
22 with combinations of the

remaining parameters in Eq. (1) and the vevs:

m2
11 = m2

12 tan β − v2

2

(
λ1 c

2
β + λ345 s

2
β

)
, (3)

m2
22 = m2

12 cot β − v2

2

(
λ2 s

2
β + λ345 c

2
β

)
, (4)

where we introduced the shortcuts cθ ≡ cos θ and sθ ≡ sin θ

for a generic angle θ , and defined λ345 ≡ λ3 + λ4 + λ5. The
mass matrices for the pseudoscalar and charged components
of the two doublets are diagonalized by the angle β:
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where we defined

R(θ) ≡
(

cθ sθ
−sθ cθ

)
, (6)

and using the minimum conditions from Eqs. (3) and (4) we
get the tree-level masses

m2
G0 = m2

G± = 0, m2
A = M2 − λ5 v2,

m2
H± = M2 − 1

2
(λ4 + λ5) v2, (7)

where we defined M2 ≡ m2
12/(sβcβ). The mass matrix for

the neutral scalar components of the two doublets is instead
diagonalized by an angle α:

(
H
h

)
= R(α)

(
φ0

1

φ0
2

)
, (8)

and the alignment condition in which the lighter mass eigen-
state h has SM-like couplings to fermions and gauge bosons
corresponds to α = β − π/2. To discuss this condition and
its eventual renormalization, it is convenient to rotate the
original Higgs doublets to the so-called Higgs basis:
(

�SM

�BSM

)
= R(β)

(
�1

�2

)
, (9)

in which one of the doublets develops the full SM-like vev v

and the other has vanishing vev:
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)
,
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)
. (10)

The scalar potential in the Higgs basis becomes
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(11)

The general relations between the parameters in Eq. (11) and
the analogous parameters in the standard basis, Eq. (1), are
given, e.g., in the appendix of Ref. [24]. We list here the ones

that will be relevant to the discussion that follows, specialized
to the case of the Z2-symmetric THDM:
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The minimum conditions for the scalar potential become

M2
11 = −�1

2
v2, M2

12 = �6

2
v2, (17)

and the mass parameter for the BSM doublet in Eq. (13) can
be rewritten as

M2
22 = M2 − 1

2
(�1 + 2 cot 2β �6) v2. (18)

In the Higgs basis the tree-level mass matrices for the pseu-
doscalar and charged components of the two doublets are
already diagonal, and the tree-level mass matrix for the neu-
tral scalar components is given by

V ⊃ 1

2

(
φ0

SM φ0
BSM

)
M2

0

(
φ0

SM
φ0

BSM

)
,

M2
0 =

(
�1 v2 �6 v2

�6 v2 M2 + �̃ v2

)
, (19)

where �̃ = (λ1 + λ2 − 2λ345) s2
2β/4 . It is then clear that, at

the tree level, the alignment condition corresponds to �6 =
0. When that is the case, the masses of the lighter and heavier
neutral scalar reduce to

m2
h → �1 v2, m2

H → M2 + �̃ v2, (20)

where we used arrows to indicate that the relations holds only
in the alignment limit. Similarly, Eq. (18) reduces to

M2
22 → M2 − m2

h

2
, (21)

and two of the quartic couplings of the standard basis can be
traded for combinations of the remaining parameters:

λ1 → −λ345 tan2 β + m2
h

v2 c2
β

,

λ2 → −λ345 cot2 β + m2
h

v2 s2
β

, (22)

which implies m2
H → M2 + m2

h − λ345 v2. We remark that
the approximation of vanishing mh , which we will adopt in
Sect. 3 to simplify our two-loop results, has to be understood
here as �1 ≈ 0 rather than v ≈ 0, i.e., it amounts to a
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condition on the couplings entering Eq. (15). Finally, we
note that the combination of Eqs. (8) and (9) implies
(
H
h

)
= R(α − β)

(
φ0

SM
φ0

BSM

)
, (23)

thus, when α = β−π/2 we get h → φ0
SM and H → −φ0

BSM.

2.2 Mass and mixing renormalization

The calculation of two-loop corrections to �[h → γ γ ]
requires one-loop definitions for the parameters entering the
LO prediction, which is itself at the one-loop level. The full
one-loop renormalization of the Higgs sector of the THDM
has been extensively studied in the literature [25–28], and it
involves a number of subtleties concerning the possible gauge
dependence of the renormalized mixing angles. However,
the simplifying assumptions that we adopt in our calculation
(namely, alignment condition, vanishing SM-like Higgs mass
mh , and vanishing EW gauge couplings) allow us to bypass
most of the complications discussed in those earlier studies.
What we will ultimately need in the computation of the two-
loop BSM corrections to �[h → γ γ ] is the renormalization
of the charged-Higgs massmH± and of the parameters v,m2

12
and β (the latter two make up M2), taking care that the align-
ment and vanishing-mh conditions hold at the perturbative
level considered in our calculation.

Beyond the tree level, the minimum conditions of the
scalar potential in Eq. (17) become
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2
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Tφ0
SM

v
,

M2
12 = �6

2
v2 +

Tφ0
BSM

v
, (24)

where M2
11, M2

12, �1, �6 and v are now interpreted as
MS-renormalized parameters at some scale Q. Note that
Eqs. (12)–(16) imply that the masses and quartic couplings
in the standard basis, as well as the angle β, are also inter-
preted as MS-renormalized parameters. The quantities Tϕ in
Eq. (24) denote the finite parts of the one-loop tadpole dia-
grams1 for the fields ϕ = (φ0

SM, φ0
BSM). The relation between

M2
22 and M2 in Eq. (18) becomes in turn

M2
22 = M2 − 1

2
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v
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where we define

T̃ = Tφ0
SM

+ 2 cot 2β Tφ0
BSM

→ Th − 2 cot 2β TH . (26)

Again, we use the arrow to indicate that the second equality
holds only in the alignment limit (note the sign flip when
going from φ0

BSM to H ).

1 Decomposing the effective potential as V0 +�V , we also have Tϕ =
d�V/dϕ.

The mass matrix for the neutral scalar components of the
doublets in the Higgs basis also receives radiative corrections,
i.e., M2(p2) = M2

0 + �M2(p2), where p2 is the external
momentum. The tree-level part M2

0, now expressed in terms
of MS-renormalized parameters, is given in Eq. (19), and
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where �ϕϕ′(p2) are the finite parts of the 2×2 one-loop self-
energy matrix for the neutral scalars. We can now implement
the alignment condition beyond the tree level by requiring
that M2

12(p
2) vanish for p2 = m2

h , i.e., for the external
momentum that is relevant to the calculation of the h −→ γ γ

amplitude. This also implies that M2
11(m

2
h) corresponds to

the squared pole mass M2
h of the SM-like Higgs boson. We

therefore require2
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h = �1 v2 + �hh(m

2
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v
, (28)

0 = �6 v2 − �hH (m2
h) + TH

v
. (29)

These conditions can now be used to remove �1 and �6 from
Eq. (25), which becomes
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h

2
+ 1

2
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2
h) − 2 cot 2β �hH (m2

h)

)

−3

2
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v
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If we then consider the pole mass of the SM-like Higgs
boson to be negligible w.r.t. the BSM Higgs masses, Eq. (30)
reduces to

M2
22 = M2 + 1

2

(
�hh(0) − 2 cot 2β �hH (0)

)
− 3

2

T̃

v
.

(31)

We now need to discuss the renormalization of the
charged-Higgs mass. It is possible to define two different
running masses, depending on whether or not the minimum
conditions of the scalar potential have been used to replace
M2

22 with M2:

m̂2
H± = M2

22 + 1

2
(�1 + 2 cot 2β �6) v2

−1

2
(λ4 + λ5) v2, (32)

m̃2
H± = M2 − 1

2
(λ4 + λ5) v2. (33)

2 Here and thereafter, we use M2
ϕ to denote the squared pole mass of

a scalar ϕ, but keep using m2
ϕ when the precise definition of the mass

amounts to a higher-order effect.
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At the tree level these two definitions would coincide due to
Eq. (18), but at the one-loop level they differ by the tadpole
contribution entering Eq. (25):

m̂2
H± = m̃2

H± − T̃

v
. (34)

Finally, the two definitions of the running mass of the charged
Higgs boson are related to the corresponding pole mass by

M2
H± = m̂2

H± + Re �H+H−(m2
H±) (35)

= m̃2
H± + Re �H+H−(m2

H±) − T̃

v
. (36)

Explicit formulas for the Higgs tadpoles and self-energies
under the approximations relevant to our two-loop calcula-
tion are collected in the Appendix A.

To conclude this section, it might be useful to compare our
approach to the renormalization of the scalar mixing with the
approaches of Refs. [25–28], which are not restricted to the
alignment limit. In those approaches, the amplitude for a
process that involves an external SM-like scalar h receives
counterterm contributions from the renormalization of the
angles α and β that enter the couplings of h prior to taking
the limit α → β − π/2, as well as from the off-diagonal
wave-function renormalization (WFR) of the Higgs scalars.
In contrast, since our calculation is restricted to the alignment
limit, we choose not to introduce an angle α at all, and our
Eq. (29) is equivalent to the requirement that the contribu-
tion of the off-diagonal WFR to the mixing of h and H be
cancelled by a small but non-vanishing tree-level contribu-
tion. Once again, we stress that the gaugeless limit is what
allows us to sidestep the complications related to the gauge-
dependence of the renormalization conditions that were dis-
cussed in Refs. [26–28].

3 Leading two-loop contributions to �[h → γ γ ]

We now discuss our calculation of the dominant two-loop cor-
rections to �[h → γ γ ] in the aligned (and CP-conserving)
THDM. As mentioned in the previous sections, we adopt the
same simplifying assumptions as in the calculation of the ρ

parameter in Refs. [15,16], working in the limit of vanishing
EW gauge couplings, neglecting all Yukawa couplings except
the top one, and treating the mass of the SM-like Higgs boson
as negligible w.r.t. the masses of the BSM Higgs bosons and
of the top quark. The fact that we restrict our calculation to
the alignment limit of the THDM allows us to neatly sepa-
rate the contributions involving the BSM Higgs bosons from
those that are in common with the SM. We do not need to
compute the latter as they can already be found in the liter-

ature, see Refs. [29–35] for the QCD corrections and Refs.
[36–39] for the EW corrections involving the top quark.3

The partial width for the h −→ γ γ decay can be written
as

�(h → γ γ ) = Gμ α2
emM3

h

128
√

2 π3

∣∣∣P1�
h + P2�

h

∣∣∣
2
, (37)

where αem is the electromagnetic coupling and Gμ is the
Fermi constant, which is proportional to v−2 at the tree level.
P1�
h and P2�

h denote the one- and two-loop hγ γ amplitudes,
respectively. The latter can be further decomposed as

P2�
h = P2�, 1PI

h + δP1�
h + Kr P1�

h , (38)

where P2�, 1PI
h denotes the genuine two-loop part, in which

we include the one-particle-irreducible (1PI) contributions as
well as the MS counterterm contributions; δP1�

h stems from
renormalization-scheme choices for the parameters entering
P1�
h ; the additional correction factor Kr accounts for the diag-

onal WFR of the external Higgs field and for the connection
between v andGμ beyond the tree level. As mentioned above,
we will focus on the calculation of the BSM part of the two-
loop amplitude, which we denote as P2�, BSM

h .
In the approximation of vanishing external momentum

for the hγ γ amplitude (i.e., vanishing mass for the SM-like
Higgs boson), the LET of Refs. [22,23] allows us to write

P1�
h = 2π v

αem

d �1�
γ γ (0)

dv
, P2�, 1PI

h = 2π v

αem

d �2�
γ γ (0)

dv
,

(39)

where �γγ (0) denotes the transverse part of the dimension-
less self-energy of the photon at vanishing external momen-
tum. At the one-loop level, it reads

�1�
γ γ (0) = �1�, H±

γ γ (0) + �1�, t
γ γ (0) + �1�,W

γ γ (0)

= αem

4π

(
1

3
ln

m̂2
H±
Q2 + 4

3
Q2
t Nc ln

m2
t

Q2 − 7 ln
m2
W

Q2 + 2

3

)
,

(40)

where Nc = 3 is a color factor, Qt = 2/3 is the electric
charge of the top quark, and we omitted all other fermionic
contributions because our calculation of the hγ γ amplitude
neglects the corresponding Yukawa couplings. The contribu-
tion of the gauge sector, �1�,W

γ γ (0), is in fact gauge depen-
dent, and only when computed in the unitary gauge or in the
background-field gauge (or using the pinch technique) can
it be directly connected to P1�

h through Eq. (39). We also
remark that our choice to express the charged-Higgs contri-
bution in terms of the running mass m̂2

H± , see Eq. (32), will
affect the determination of δP1�

h .

3 The remaining EW corrections have also been computed, see Refs.
[40–43].
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We computed the contributions to the transverse part of the
photon self-energy from two-loop diagrams that involve the
BSM Higgs bosons, which we denote as �2�, BSM

γ γ (0), with
the help of FeynArts [44]. We performed our calculation
in the unitary gauge, including also the contributions from
diagrams that involve gauge bosons together with the BSM
Higgs bosons. When the self-energy is Taylor-expanded in
powers of the external momentum p2, the zeroth-order term
of the expansion vanishes as a consequence of gauge invari-
ance, while the first-order term corresponds to �2�, BSM

γ γ (0).
We evaluated the two-loop vacuum integrals using the results
of Ref. [45]. Only after performing the momentum expansion
did we take the “gaugeless limit” of vanishing EW gauge cou-
plings, except for an overall factor αem from the couplings of
the external photons. We remark that this procedure avoids
complications related to the presence of massless would-be-
Goldstone bosons, which would have affected our calcula-
tion if we had tried to impose the gaugeless limit from the
start. For what concerns the SM-like Higgs boson, we took
the limit of vanishing mass after the momentum expansion.
Finally, in the diagrams that involve the bottom quark, the
top quark, and the charged Higgs boson, we set the bottom
mass directly to zero before the momentum expansion. As
a cross-check, we recomputed those diagrams by means of
an asymptotic expansion analogous to the one described in
section 3 of Ref. [46], and found the same result. Explicit for-
mulas for �2�, BSM

γ γ (0) as function of the BSM Higgs masses,
the top mass, M2 and β can be found in the appendix B.

In the alignment limit, the derivative of a given field-
dependent quantity w.r.t. the SM-like Higgs field h can be
replaced by the derivative w.r.t. v, see Eq. (39). When com-
puting the derivative of �2�, BSM

γ γ (0), it is sufficient to con-
sider the tree-level dependence on v of the masses of the
particles circulating in the loops. Since at the tree level
m2

t = y2
t s

2
β v2/2, where yt is the top Yukawa coupling,

and m2
� = M2 + λ̃� v2, where � = (H, A, H±) and λ̃�

are combinations of quartic Higgs couplings, the use of the
chain rule for the derivative w.r.t. v leads to

d

dv
= ∂

∂v
+ 2

v

[
m2

t
∂

∂m2
t

+ (m2
H − M2)

∂

∂m2
H

+(m2
A − M2)

∂

∂m2
A

+ (m2
H± − M2)

∂

∂m2
H±

]
. (41)

It is now straightforward to compute the BSM part ofP2�, 1PI
h

by applying the operator in Eq. (41) to the explicit expression
for �2�, BSM

γ γ (0) given in the appendix B. Since the result is
lengthy and not particularly illuminating, we refrain from
putting it in print and we make it available on request in
electronic form.

The second contribution to the two-loop amplitude P2�
h in

Eq. (38) arises from the renormalization of the parameters

entering the one-loop amplitude P1�
h . The SM part of the

latter is

P1�, SM
h = 2π v

αem

d

dv

[
�1�, t

γ γ (0) + �1�,W
γ γ (0)

]

= 2 Q2
t Nc v

3m2
t

d m2
t

dv
− 7 v

2m2
W

d m2
W

dv

= 4

3
Q2

t Nc − 7, (42)

where we used m2
W = g2 v2/4, with g being the SU (2)

gauge coupling. Equation (42) shows that, in the limit of
vanishing Higgs mass, the SM part of P1�

h does not involve
any parameters for which we need to define a renormalization
scheme. For the BSM part, since we expressed the charged-
Higgs contribution to the one-loop self-energy of the photon
in terms of m̂2

H± , the dependence on v is given by Eq. (32).
We thus obtain

P1�, BSM
h = 2π v

αem

d

dv
�1�, H±

γ γ (0)

= v

6 m̂2
H±

d m̂2
H±

dv

= 1

3

(
1 − M2

22

m̂2
H±

)
. (43)

However, we opt to re-express the one-loop amplitude in
terms of the parameter M2 and of the squared pole mass of
the charged Higgs boson, M2

H± . Hence

P1�, BSM
h = 1

3

(
1 − M2

M2
H±

)
+ δP1�, BSM

h , (44)

where the shift δP1�, BSM
h , which becomes part of P2�, BSM

h ,
is determined by Eqs. (31) and (35):

δP1�, BSM
h = − 1

3m2
H±

×
[

1

2

(
�hh(0) − 2 cot 2β �hH (0)

)
− 3

2

T̃

v

]

− M2

3m4
H±

Re �H+H−(m2
H±). (45)

It might now be instructive to consider an alternative deriva-
tion of δP1�, BSM

h . By means of Eq. (34), the charged-Higgs
contribution to the one-loop self-energy of the photon can be
re-expressed as

�1�, H±
γ γ (0) = αem

12π

(
ln m̃2

H± − T̃

vm2
H±

)
. (46)

Hence, a derivation analogous to the one of Eq. (43) leads to

P1�, BSM
h = 1

3

(
1 − M2

m̃2
H±

)
− v

6

d

dv

T̃

vm2
H±

, (47)
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and by means of Eq. (36) we obtain

δP1�, BSM
h = − v

6

d

dv

T̃

vm2
H±

− M2

3m4
H±

(
Re �H+H−(m2

H±) − T̃

v

)
. (48)

The equivalence between the two expressions for δP1�, BSM
h ,

Eqs. (45) and (48), relies on the identity

d

dv

(
Th − 2 cot 2β TH

)
= �hh(0) − 2 cot 2β �hH (0),

(49)

which can be checked with the formulas for tadpoles and
self-energies listed in the Appendix A.

The third contribution to the two-loop amplitude P2�
h in

Eq. (38), i.e., Kr P1�
h , arises from the diagonal WFR of the

external Higgs field and from the renormalization of the
parameter v that is factored out of the amplitude in Eq. (39):

Kr = 1

2

(
δZhh − δv2

v2

)
, (50)

where

δZhh = d �hh(p2)

dp2

∣∣∣∣
p2=0

,
δv2

v2 = �WW (0)

m2
W

, (51)

�WW (0) being the transverse part of the W -boson self-
energy at zero external momentum (under our approxima-
tions, this is the only non-vanishing contribution to the rela-
tion between v and Gμ). Splitting Kr into SM and BSM
parts, we find

16 π2 K SM
r = 7

6
Nc

m2
t

v2 , (52)

16 π2 KBSM
r = − 1

v2

[
(m2

H − M2)2

6m2
H

+ (m2
A − M2)2

6m2
A

+ (m2
H± − M2)2

3m2
H±

− 2 B̃22(0,m2
H ,m2

H±)

−2 B̃22(0,m2
A,m2

H±)

]
. (53)

The divergent parts of the top-quark contributions to δZhh

and δv2/v2 cancel out against each other, leaving a residue in
Eq. (52) that is finite and independent of the renormalization
scale. In contrast, the BSM parts of δZhh and δv2/v2 are
separately finite and scale-independent. The terms in the first
line on the r.h.s. of Eq. (53) stem from δZhh , while the terms
in the second line, where

B̃22(0,m2
1,m

2
2)=

1

2

(
m2

1+m2
2

4
− m2

1 m
2
2

2 (m2
1−m2

2)
ln

m2
1

m2
2

)
,

(54)

stem from δv2/v2. Finally, we isolate the BSM part of the
product Kr P1�

h :

P2�,BSM
h ⊃ KBSM

r P1�,SM
h + (K SM

r + KBSM
r )P1�,BSM

h ,

(55)

where P1�,SM
h is given in Eq. (42), and P1�,BSM

h is the first
term on the r.h.s. of Eq. (44). We note that the first term on
the r.h.s. of Eq. (55) above is enhanced by the relatively large
numerical value of the SM part of the one-loop amplitude,
i.e., P1�,SM

h = −47/9.
To validate our implementation of the LET of Refs.

[22,23], we checked that we can obtain the same result by
computing directly the two-loop BSM contributions to the
hγ γ amplitude, under the same approximations employed in
the calculation of �2�, BSM

γ γ (0) (namely, the alignment limit,
the gaugeless limit and the vanishing of the SM-like Higgs
mass). We remark that this calculation involves counterterm
contributions analogous to the ones in Eq. (45), stemming
from the renormalization of the h H+H− vertex and of the
charged-Higgs mass, and to the ones in Eq. (55), stemming
from the WFR of the external Higgs field and from the renor-
malization of v.

As a second, non-trivial check, we verified that the BSM
contributions to the hγ γ amplitude are independent of the
renormalization scale Q at the perturbative order considered
in our calculation:

d

d ln Q2

(
P1�,BSM
h + P2�,BSM

h

)
= 0. (56)

This follows from the scale independence of �(h → γ γ ),
and requires that we combine the explicit scale dependence of
P2�,BSM
h with the implicit scale dependence of the parameters

entering P1�,BSM
h . Of these, M2

H± is defined as the squared
pole mass of the charged Higgs boson and is thus scale-
independent, but β andm2

12, which enterP1�,BSM
h in the com-

bination M2 = m2
12/(sβcβ) , are defined as MS-renormalized

parameters. The one-loop renormalization-group equation
(RGE) for M2 reads4

16π2 d M2

d ln Q2 = 1

2
Nc y

2
t c2β M2

+
(

λ3 + 2 λ4 + 3 λ5 + 1

2
Nc y

2
t

)
M2, (57)

where we neglected the EW gauge couplings and the Yukawa
couplings other than yt . The term proportional to c2β in
Eq. (57) stems from the RGE for β, and the rest stems from
the RGE for m2

12.

4 We took the one-loop RGEs for the THDM parameters β and m2
12

from the code SARAH [47–51]. Formulas for these RGEs can also be
found in Ref. [52], but the coefficient of y2

t in the RGE for m2
12 appears

to be incorrect there.
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Finally, we remark that our result for P2�,BSM
h does not

vanish in the limit in which M2 is pushed to infinity while
the quartic Higgs couplings are kept fixed. The lack of decou-
pling behavior is due to our choice of an MS definition for the
parameter M2 enteringP1�,BSM

h . The same issue was encoun-
tered in the calculation of the Higgs self-couplings of Refs.
[18,19], where it was proposed that the non-decoupling terms
be absorbed in a redefinition of the mass parameter. Follow-
ing that approach, we can define (M2)dec = (M2)MS+δM2,
and we find:

δM2 = − M2

16π2

[
(λ3 + 2 λ4 + 3 λ5)

(
1 − ln

M2

Q2

)

+Nc y
2
t c

2
β

(
2 − ln

M2

Q2

) ]
. (58)

The combination of Eqs. (57) and (58) shows that (M2)dec

is a scale-independent parameter. If P1�,BSM
h is expressed in

terms of (M2)dec, P2�,BSM
h vanishes for M2 → ∞, and in

turn does not depend explicitly on the renormalization scale.

4 Numerical impact of the two-loop BSM contributions
to �[h → γ γ ]

We now illustrate the numerical impact of the newly-
computed two-loop corrections on the prediction for �[h →
γ γ ] in the aligned THDM. A comprehensive analysis of
the parameter space of the model along the lines of Refs.
[11,12,21], taking into account all of the theoretical and
experimental constraints, is well beyond the scope of this
paper. We will instead focus on two benchmark points intro-
duced in Ref. [13] to accommodate the recent CDF mea-
surement of the W mass [14], and discuss at the qualitative
level how the inclusion of the two-loop BSM contributions
to �[h → γ γ ] can affect scenarios in which the one-loop
prediction is already in some tension with the experimental
value.

The two benchmark points introduced in Ref. [13] are
defined in terms of the three BSM Higgs masses,mH ,mA and
mH± , plus tan β and M2 ≡ m2

12/(sβcβ), while the angle α is
fixed by the alignment condition to β − π/2. The numerical
values of the parameters are5

Point A : mH = 850 GeV, mA = 930 GeV,

mH± = 810 GeV,

M2 = (670 GeV)2, tan β = 1.2, (59)

Point B : mH = 350 GeV, mA = 750 GeV,

mH± = 760 GeV,

5 We rounded up the values of the parameters given in table I of Ref.
[13], but we checked that our results remain essentially the same if we
use the original values.

M2 = (235 GeV)2, tan β = 1.25. (60)

According to Ref. [13], both of these points satisfy the the-
oretical constraints of vacuum stability [53], boundedness
from below of the Higgs potential [7], and NLO perturba-
tive unitarity [54,55]. In addition, the compatibility of the
properties of the SM-like scalar h with the experimental
measurements was checked with the code HiggsSignals
[56,57], and the constraints from direct searches of BSM
Higgs bosons were checked with the code HiggsBounds
[58–62]. Finally, b-physics constraints were checked follow-
ing Ref. [63].

Large BSM contributions are required in order to yield a
prediction for MW of about 80.43 GeV, compatible with the
recent CDF measurement [14] and 7σ away from the SM
prediction. In aligned THDM scenarios, such contributions
can stem from large values of the quartic Higgs couplings.
Indeed, in point A the couplings, extracted from the tree-level
relations between Higgs masses and Lagrangian parameters,
include λ1 ≈ 7 and λ5 ≈ −7, and in point B they include
λ3 ≈ 16, λ4 ≈ −9 and λ5 ≈ −8. Crucially, the authors
of Ref. [13] point out that, in these scenarios, the prediction
for MW receives a significant shift from the two-loop BSM
contributions, which were obtained from Refs. [15,16].

To estimate the impact of such large couplings on the
prediction for �[h → γ γ ], we define a simplified signal-
strength parameter

μγγ ≡
∣∣∣∣∣
PSM
h + PBSM

h

PSM
h

∣∣∣∣∣
2

, (61)

and we refer to μ1�
γ γ when the BSM contributions to the

hγ γ amplitude contain only the one-loop part, i.e., when
PBSM
h = P1�, BSM

h , and to μ2�
γ γ when they include also

the newly-computed two-loop part, i.e., when PBSM
h =

P1�, BSM
h +P2�, BSM

h . Since we are only interested in a qual-
itative discussion of the impact of the two-loop BSM contri-
butions, we do not include inPSM

h the full two-loop result for
the SM amplitude from Refs. [29–43], but we approximate it
with the one-loop result in the limit of vanishing Higgs mass6

from Eq. (42), i.e., PSM
h = P1�, SM

h = −47/9. Note that an
implicit assumption in Eq. (61) is that the large quartic Higgs
couplings do not significantly affect the ratio of production
cross section over total decay width of the SM-like Higgs
boson. Indeed, the dominant next-to-leading order contribu-
tions involving those couplings affect the main production
and decay channels through a common multiplicative factor
KBSM
r , see Eq. (53), which cancels in the ratio.

6 Since the two-loop BSM amplitude is in turn computed in the limit
of vanishing Higgs mass, it is even possible that this choice provides a
better estimate of its effect on the signal-strength parameter. See, e.g.,
Eq. (55), where a numerically important contribution to P2�, BSM

h is in

fact proportional to P1�, SM
h .
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When the BSM contributions are computed at the one-
loop level, we find μ1�

γ γ ≈ 0.96 in point A and μ1�
γ γ ≈ 0.89

in point B. Considering that the LHC average of the signal
strength for h −→ γ γ is currently μ

exp
γ γ = 1.10±0.07 [20],

there appears to be some tension at least with the prediction
in point B. This said, a more-sophisticated determination of
the signal strength could alter the picture somewhat, and
even a scenario where the prediction for μγγ is more than
2σ away from the measured value would not necessarily be
ruled out in a global analysis that takes into account a number
of other physical observables.

The inclusion of the two-loop BSM contributions requires
that we specify the renormalization scheme of the parame-
ters entering the one-loop BSM contributions, namely the
mass of the charged Higgs boson and the parameter M2. We
identify the former with the pole mass MH± , and we inter-
pret the latter as an MS-renormalized parameter expressed at
some scale Q2. When we fix M2(Q2) to the numerical values
given in Eqs. (59) and (60), different choices for Q2 corre-
spond to different points in the THDM parameter space. If,
for example, we assume that the values in Eqs. (59) and (60)
correspond to M2(M2), we obtain μ2�

γ γ ≈ 0.95 in point A

and μ2�
γ γ ≈ 0.85 in point B. While in point A the impact

of the two-loop BSM contributions happens to be small, in
point B it might be large enough to turn a scenario that was
marginally allowed into an excluded one (a global analysis
that goes beyond the scope of this paper would be necessary
to reach a definite conclusion on this point). If we instead
assume that the values in Eqs. (59) and (60) correspond to
M2(m2

h), we obtain μ2�
γ γ ≈ 0.92 in point A and μ2�

γ γ ≈ 0.84
in point B. Obviously, the effect of this change of scale is
more significant in point A, where M2 is farther away from
m2

h than in point B. Finally, if we assume that the values
in Eqs. (59) and (60) correspond to the scale-independent
parameter (M2)dec defined by Eq. (58) we find μ2�

γ γ ≈ 0.94

in point A and μ2�
γ γ ≈ 0.84 in point B. In all cases it appears

that the newly-computed P2�, BSM
h can amount to a signifi-

cant fraction of the total BSM contributions, and its inclusion
may prove necessary to obtain an accurate prediction for the
h −→ γ γ signal strength. We also remark that P2�, BSM

h
is largely dominated by the contributions controlled by the
quartic Higgs couplings. Indeed, the results quoted above for
μ2�

γ γ would hardly change if we were to neglect the contri-

butions to P2�, BSM
h controlled by the top Yukawa coupling

yt .
The prediction for �[h → γ γ ] has been used in Ref.

[21] to study the constraints on the parameter M2 in regions
of the aligned THDM that are allowed by all of the other
constraints, both theoretical and experimental. Once again,
it is legitimate to wonder how the inclusion of the two-loop
BSM contributions might alter the results of such a study. We
will not attempt here to repeat the extensive parameter scans

of Ref. [21], but we will just consider two scenarios inspired
by the benchmark points introduced above.

In Fig. 1 we show the prediction for the signal strength
μγγ as a function of the parameter M ≡ √

M2(M2), where
the remaining THDM parameters are fixed as in Eq. (59) for
point A (left plot) or as in Eq. (60) for point B (right plot). We
do not consider any experimental constraint on the parameter
space, although most of them presumably carry over from the
analysis of Ref. [13] since the BSM Higgs masses and tan β

are the same as in the two points introduced there. However,
we do implement the theoretical constraints from (tree-level)
perturbative unitarity, boundedness from below, and vacuum
stability, following Eqs. (18)–(28) of Ref. [11]. In the region
marked as “UFB” on the right of the dot-dashed line in each
plot, the quartic Higgs couplings extracted from the tree-level
relations between Higgs masses and Lagrangian parameters
violate at least one of the conditions for boundedness from
below. In the region on the left of the dot-double-dashed
line in the left plot, the couplings violate at least one of the
conditions for perturbative unitarity of the scattering matrix.
In the right plot the unitarity conditions are not violated until
M2 � −(500 GeV)2, but negative values of M2 violate the
condition that ensures that the minimum of the potential is a
global one.

Coming to the predictions for the signal strength, the solid
blue line in each plot represents μ1�

γ γ , the solid red line rep-

resents our full computation of μ2�
γ γ , whereas the dotted red

line represents a computation of μ2�
γ γ in which the two-loop

BSM contributions controlled by the top Yukawa coupling
have been omitted. The green asterisk centered on the solid
red line in the left and right plot marks the value of M that
corresponds to the point of Eqs. (59) and (60), respectively.
Since we adopt the limit of vanishing mass for the SM-like
Higgs boson, the dependence of the one-loop result on M is
given simply by μ1�

γ γ ≈ 0.876 + 0.12 x + 0.004 x2, where

x = M2/M2
H± . Based on this naive estimate of the signal

strength,7 values of M below about 670 GeV for the left plot
and 630 GeV for the right plot yield a prediction for μ1�

γ γ that,
in these scenarios, is more than 2σ away from the measured
value.

The comparison between the blue lines for μ1�
γ γ and the

red lines for μ2�
γ γ shows that the two-loop BSM contributions

can be significant, especially at lower values of M . Being
generally negative, they can exacerbate the tension between
measurement and theory prediction. Finally, the comparison
between the solid and dotted red lines shows that P2�, BSM

h
is largely dominated by the contributions controlled by the
quartic Higgs couplings, except for a region at large M in the

7 Restoring the dependence of μ1�
γ γ on m2

h would induce a shift of up
to about 0.02 in the lines of Fig. 1. However, this would not quali-
tatively alter our conclusions on the relevance of the two-loop BSM
contributions.
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Fig. 1 Signal strength for h −→ γ γ as a function of
√
M2. The remaining THDM parameters are fixed as in Eq. (59) (left plot) or as in Eq. (60)

(right plot). The meaning of the different lines is explained in the text

left plot where those contributions happen to be rather small
and are comparable in size with the contributions controlled
by the top Yukawa coupling. Once again, Fig. 1 shows that
in the aligned THDM there are scenarios in which a precise
determination of �[h → γ γ ] requires the inclusion of the
two-loop BSM contributions.

5 Conclusions

The requirement that an extension of the SM accommodate
a scalar with properties compatible with those observed at
the LHC constrains the parameter space of the BSM model
even before the direct observation of any new particles. In
models such as the THDM, where some of the couplings
in the Lagrangian can take remarkably large values and still
be allowed by all theoretical constraints, precise predictions
for the properties of the SM-like Higgs boson h and for other
EW observables may require that the contributions involving
those couplings be accounted for beyond the LO. Following
the example of earlier two-loop calculations of the ρ param-
eter [15,16], of the scalar mass matrices [17], and of the
trilinear self-coupling of the SM-like Higgs boson [18,19],
in this work we computed the two-loop BSM contributions
to �[h → γ γ ] in the aligned (and CP-conserving) THDM.
In line with the earlier calculations, we adopted the simplify-
ing assumptions of vanishing EW gauge couplings (the so-
called “gaugeless limit”) and vanishing mass of the SM-like
Higgs boson. The latter assumption allowed us to exploit a
LET that connects the hγ γ amplitude to the derivative of the
photon self-energy w.r.t. the Higgs vev. In addition, the align-
ment and gaugeless limits allowed us to adopt a simplified

approach to the renormalization of the mixing in the scalar
sector, bypassing the complications related to the possible
gauge dependence of the mixing angles that were discussed
in Refs. [26–28]. We provided explicit analytic formulas for
the two-loop BSM contributions to the photon self-energy.
The corresponding formulas for the hγ γ amplitude can be
obtained straightforwardly by exploiting the chain rule for the
derivative w.r.t. v, and we make them available on request in
electronic form.

After describing our calculation, we briefly discussed the
numerical impact of the newly-computed two-loop BSM
contributions. We chose not to embark in an extensive anal-
ysis of the THDM parameter space, but rather focus on two
benchmark points introduced in Ref. [13], where large val-
ues of the quartic Higgs couplings lead to a prediction for
the W mass compatible with the recent CDF measurement
[14], and 7σ away from the SM prediction. As expected,
such large couplings can also lead to a deviation from the
SM prediction for the h −→ γ γ decay width. We defined a
simplified signal-strength parameter μγγ , and showed how
the inclusion of the two-loop BSM contributions can exac-
erbate the tension between the measured value of the signal
strength, which is in fact slightly above the SM prediction,
and the prediction of the THDM in the considered bench-
mark points, which is somewhat below the SM prediction.
We also discussed how the prediction for μγγ depends on
the value and, beyond the LO, the definition of the parame-
ter M2. In summary, we showed that in the aligned THDM
there are scenarios in which the inclusion of the two-loop
BSM contributions is required for a precise determination of
�[h → γ γ ].
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Of course, our discussion of the numerical impact of our
results should be viewed as merely qualitative. A detailed
study of the constraints on the aligned THDM arising from
�[h → γ γ ] would require that we combine the BSM contri-
butions to the hγ γ amplitude with the most complete deter-
mination of the SM contributions, that we account for the
BSM corrections to all production and decay processes, that
we perform extensive scans over the parameter space of the
model, and that we take into account all of the remaining the-
oretical and experimental constraints. We leave such analy-
sis for future work, hoping that the results presented in this
paper will help the collective effort to use the properties of
the Higgs boson as a probe of what lies beyond the SM.
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Appendix A: One-loop self-energies and tadpoles of the
Higgs bosons

In this appendix we list explicit formulas for the one-loop
self-energies and tadpoles of the Higgs bosons that are rel-
evant to our calculation. They were obtained by adapting to
the THDM the general formulas given in Refs. [65,66], under
the limits of alignment, vanishing EW gauge couplings and
vanishing SM-like Higgs mass.

16π2 �H+H− (m2
H± ) = − 1

v2

[
(m2

H± − m2
H )2 B0(m

2
H± ,m2

H , 0)

+(m2
H± − m2

A)2 B0(m
2
H± ,m2

A, 0)

+4 (m2
H± − M2)2 B0(m

2
H± ,m2

H± , 0)

−2 (m2
H − M2) cot2 2β

(
A0(m

2
H ) + A0(m

2
A) + 4 A0(m

2
H± )

−2 (m2
H − M2) B0(m

2
H± ,m2

H± ,m2
H )

) ]

− 2m2
t

v2 Nc cot2 β G0(m
2
H± , 0,m2

t ), (A1)

16π2 �hh(0) = 1

v2

[
(m2

H − M2)

(
A0(m

2
H )

−2 (m2
H − M2) B0(0,m2

H ,m2
H )

)

+ (m2
A − M2)

(
A0(m

2
A) − 2 (m2

A − M2) B0(0,m2
A,m2

A)

)

+ 2 (m2
H± − M2)

(
A0(m

2
H± ) − 2 (m2

H± − M2) B0(0,m2
H± ,m2

H± )

)]

+ 2m2
t

v2 Nc

(
2m2

t B0(0,m2
t ,m

2
t ) − G0(0,m2

t ,m
2
t )

)
, (A2)

16π2 �hH (0) = M2 − m2
H

v2 cot 2β

[
3

(
A0(m

2
H )

−2 (m2
H − M2) B0(0,m2

H ,m2
H )

)

+ A0(m
2
A) − 2 (m2

A − M2) B0(0,m2
A,m2

A)

+ 2

(
A0(m

2
H± ) − 2 (m2

H± − M2) B0(0,m2
H± ,m2

H± )

)]

− 2m2
t

v2 Nc cot β

(
2m2

t B0(0,m2
t ,m

2
t ) − G0(0,m2

t ,m
2
t )

)
, (A3)

16π2 Th = 1

v

[
(m2

H − M2) A0(m
2
H ) + (m2

A − M2) A0(m
2
A)

+2 (m2
H± − M2) A0(m

2
H± )

]

− 4m2
t

v
Nc A0(m

2
t ), (A4)

16π2 TH = M2 − m2
H

v
cot 2β

[
3 A0(m

2
H )

+A0(m
2
A) + 2 A0(m

2
H± )

]

+ 4m2
t

v
Nc cot β A0(m

2
t ), (A5)

where

G0(p
2,m2

1,m
2
2) = (p2 − m2

1 − m2
2) B0(p

2,m2
1,m

2
2)

+A0(m
2
1) + A0(m

2
2), (A6)

and

A0(m
2) = m2

(
ln

m2

Q2 − 1

)
, (A7)

B0(0,m2,m2) = − ln
m2

Q2 , (A8)

Re B0(p
2, 0,m2) = Re B0(p

2,m2, 0)

= 2 − ln
m2

Q2 −
(

1 − m2

p2

)
ln

∣∣∣∣1 − p2

m2

∣∣∣∣ . (A9)

For the function B0(m2
H± ,m2

H± ,m2
H ) in Eq. (A1) we used

the code LoopTools [67]. We checked that our result for
the charged-Higgs self-energy agrees with the corresponding
result in Ref. [19].
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Appendix B: Two-loop self-energy of the photon

Under the assumptions of alignment, vanishing EW gauge
couplings, and vanishing SM-like Higgs mass, the BSM part
of the two-loop self-energy of the photon reads

�2�, BSM
γ γ (0) = α

48π3v2

[
(m2

H± − M2)2 Fh(m
2
H± )

+ (m2
H − m2

H± )2

4
FG(m2

H ,m2
H± )

+ (m2
A − m2

H± )2

4
FG(m2

A,m2
H± )

+ (m2
H − M2)2 cot2 2β FH (m2

H ,m2
H± )

+ m2
H − M2

2m2
H±

cot2 2β

(
A0(m

2
H ) + A0(m

2
A) + 4 A0(m

2
H± )

)

+m2
t cot2 β Nc

(
fH (m2

t /m
2
H ) + f A(m2

t /m
2
A)

+ fH± (m2
t /m

2
H± )

− A0(m2
t )

m2
H±

− 43

72
− 1

3
ln

m2
t

Q2

)]
, (B1)

where we also assume that the one-loop part of the pho-
ton self-energy, see Eq. (40), is expressed in terms of
MS-renormalized masses, and in particular the charged-
Higgs contribution is expressed in terms of the parameter
m̂2

H± defined in Eq. (32). If the one-loop part was instead
expressed in terms of the parameter m̃2

H± defined in Eq. (33),
�2�, BSM

γ γ (0) would receive an additional contribution corre-
sponding to the second term within parentheses in Eq. (46).

The function A0(m2) entering Eq. (B1) is defined in
Eq. (A7), and the remaining functions are

Fh(m2) = 1

m2

(
ln

m2

Q2 − 1

2

)
, (B2)

FG(m2
1,m2

2) = 1

m2
2

(
ln

m2
1

Q2 − 1

)

−2 (4m2
1 + 5m2

2)

(m2
1 − m2

2)2
+ m2

2 (17m2
1 + m2

2)

(m2
1 − m2

2)3
ln

m2
1

m2
2

, (B3)

FH (m2
1,m2

2) = 1

m2
2

(
ln

m2
1

Q2 − 1

)

+ 1

m2
1 − 4m2

2

+ m2
1 − 10m2

2

(m2
1 − 4m2

2)2
ln

m2
1

m2
2

+ 6m4
2

m2
1 (m2

1 − 4m2
2)2

φ

(
m2

1

4m2
2

)
, (B4)

fH (x) = −2

3 (1 − 4 x)

[
(1 + 2 x) ln x + 2 x (1 − x) φ

(
1

4x

)]
,

(B5)

f A(x) = 2

9 (1 − 4 x)2

[
1 − 4 x + (5 − 14 x) ln x

+ 6 x (1 − 3 x) φ

(
1

4x

) ]
, (B6)

fH±(x) = − ln x

9 (1 − x)
. (B7)

The function φ(z) entering Eqs. (B4)–(B6) is defined as

φ(z) =

⎧⎪⎨
⎪⎩

4
√

z
1−z Cl2(2 arcsin

√
z), (0 < z < 1) ,

1
λ

[−4 Li2( 1−λ
2 ) + 2 ln2( 1−λ

2 ) − ln2(4z) + π2/3
]
, (z ≥ 1),

(B8)

where Cl2(z) = Im Li2(eiz) is the Clausen function, and
λ = √

1 − (1/z). A recursive relation for the derivative of
φ(z),

d

dz
φ(z) = 2

z − 1

(
ln 4z − φ(z)

4z

)
, (B9)

proves very useful in obtaining compact results for the deriva-
tives of �2�, BSM

γ γ (0) w.r.t. the masses of the top quark and of
the BSM Higgs bosons, see Eq. (41).
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