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Abstract The paper is devoted to study the observational
signatures of f (R,G, T ) gravity in FRW universe. In this
research article, we present a new cosmological model for-
mulated within the f (R,G, T ) framework. To constrain the
model parameters, we employ the Markov Chain Monte
Carlo (MCMC) technique, which enables us to explore the
parameter space effectively, and used the 36 points of cosmic
chronometers and 1701 points from Pantheon Plus data. We
compare our proposed f (R,G, T ) model with the widely
accepted �CDM model, considering different cosmological
parameters, including deceleration, snap, and jerk. By eval-
uating these parameters, we gain valuable insights into the
dynamics and evolution of the universe within the context of
our new model. Moreover, various diagnostic tests have been
conducted, such as Statefinder and Om diagnostic, to further
investigate the behavior and consistency of our f (R,G, T )

model. These tests offer deeper insights into the properties of
our model and its compatibility with observational data. We
subject our model to statistical analysis using Information
Criteria, which serves as a rigorous quantitative assessment
of the model’s goodness of fit to the data. This analysis aids in
determining the level of agreement between our f (R,G, T )

model and the observational data, thus establishing the via-
bility and reliability of our proposed cosmological frame-
work. Our findings highlight the potential of the f (R,G, T )

framework in understanding the fundamental aspects of the
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universe’s evolution and dynamics. The comparative anal-
ysis with �CDM, as well as the comprehensive diagnostic
tests performed, demonstrate the efficacy and validity of our
model in explaining the observed cosmological phenomena.
These results contribute to the ongoing pursuit of accurate
and comprehensive models that can provide a deeper under-
standing of the nature of our universe.
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1 Introduction

Recent astronomical observations have strongly suggested
that our universe is undergoing an accelerated expansion
[1–4] and some unknown matter causes of this acceleration
called Dark energy (DE) which is basically the negative pres-
sure and positive energy density form of matter satisfying
ρ +3P < 0 [5,6]. This DE is one of the most interesting and
important discovery of the mysterious energy in modern cos-
mology, which was first investigated in type Ia Supernovae
(SNe Ia) [7–9] and afterwards others numerous investiga-
tions were done with further astronomical data [10–14]. It
has also been investigated from the different point of view
such as observational Hubble parameter data, power spectra,
cosmic microwave background radiation (CMBR) and large-
scale structure of the new version of the universe [15–19].
It has been suggested that the new version of the universe
is made of about 74% DE, 4% ordinary matter and about
22% dark matter.The most simplest form of DE is known
as cosmological constant [20,21], also called the � cold-
dark-matter (�CDM) model, which has been successfully
employed to describing the various aspects of the observed
universe. For a long time, researchers on the universe mainly
motivated by theories.However, huge progresses on observa-
tional/ experimental explorations of accelerated expansion of
the universe have been witnessed in the last few years. Now a
days, the modern researchers have a great challenging task to
know the nature/properties of the new version of the universe
in details. In the investigation of the accelerated expansion of
the universe, several cosmological model have been explored
mainly in two different ways. One of them is modified theo-
ries of gravity as a classical modification of Einstein theory
of gravity and other approaches is the existence of mysteri-
ous energy so-called DE. It is worth suggesting that the new
version of the universe is while accelerating, the value of EoS
parameter (ratio between pressure and its energy density) is
less than < − 1

3 and also by the observational point of view,
the value of the EoS parameter is very close to −1. For this
purpose, several works have been studied by some authors
to describe the DE on several topics such as quintessence

[22–25], quintom [26–28], cosmological constant [29–32],
phantom [33–38], tachyon [39,40], modified gravity [41–
48], teleparallel gravity [49,50], Chaplygin gas models [51–
57], holography [58–64], new agegraphics [65–68], bounc-
ing theory [69–71] and braneworld models [72,73].

An enormous relativistic astrophysicist have been pro-
posed the various modified gravity theories which are
obtained via changing the ricci scalar R in standard Einstein–
Hilbert (EH) action. The standard EH action is changed by the
different function of ricci scalar (i.e. f(R) gravity) [74,75] or
Gauss–Bonnet (GB) invarient G (i.e. f(G) gravity) [76,77].
The formulation of this modifications could be applied as
an important role to investigating the cases of cosmic rapid
expansion [78–91]. Without considering any other dark com-
ponents,these modification could also be described the early-
time inflation as well as late time acceleration and these cos-
mological model could also be consistent with the solar sys-
tem constraint [92]. Modified gravity theories refer to the
alternative theories of gravity that differ from Einstein’s gen-
eral theory of relativity (GR) by modifying the fundamental
gravitational action. In particular, f (R) gravity [93], where
R is the Ricci scalar, is a popular modified gravity theory
that has received significant attention in recent years due to
its ability to explain the current cosmic acceleration with-
out invoking dark energy. However, f (R) gravity alone can-
not explain all of the observed phenomena in astrophysics
and cosmology. A class of generalized f (R) modified the-
ories of gravity derived by Bertolami et. al [94] by consid-
ering an explicit coupling between of an arbitrary function
of the Ricci scalar curvature R and the matter Lagrangian
density Lm . In the description of early-time and late-time
accelerated universe, Nojiri et al. [95,96] investigated the
non-minimal coupling of f (R) and f (G) gravity of theories
with the Lagrangian density of matter Lm and shown that the
unified description of the inflationary era with the present
cosmic accelerated expansion. As an alternative to DE, to
study the various cosmic issues, an systemetic method has
discussed by the f (G) gravity [97] and it is extremely use-
ful to study the restricted period of the future discontinuties
and the pace of cosmos over the long period time [98,99].
Harko et al [100] introduced another important extension
of general theory relativity such as f (R, T ) and f(R,T φ)
where the gravitational Lagrangian is the function of ricci
scalar R and trace of stress energy tensor T where as T φ

for the scalar field stress energy tensor. Several important
implication in f (R, T ) gravity theory have been extremely
discussed in some Litaratures [101–106]. Later, Researchers
have introduced the another type of modified gravity such
as f (R,G) gravity [107,108]. Several cosmological impli-
cation including the energy conditions,future finite-time sin-
gularities have been discussed in several literatures [109–
116]. In [117], Sharif and Ikram proposed another kind of
extension of modified theory of gravity like f (G, T ) grav-
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ity theory. They reconstructed the f (G, T ) gravity theory
through the power-law, de-sitter expansion of the universe.
They also studied the stability of some reconstructed cos-
mological model with liner perturbations in f (G, T ) Shamir
and Ahmed [118] investigated the f (G, T ) gravity using the
Noether symmetry of some cosmological viable.

In the Ref. [119], the author proposed the modification of
above modified gravities, named as f (R,G, T ) gravity. The
f (R,G, T ) gravity is a more general modification of gravity,
where G and T are the Gauss–Bonnet invariant and the trace
of the energy-momentum tensor, respectively. It has been
found the forms of the function f (R,G, T ) by the three types
of standard expansion models such as de Sitter, power-law
and future singularity models. This theory is considered more
promising because it can address not only the cosmic accel-
eration but also several other problems in the field of astro-
physics and cosmology. One of the most significant implica-
tions of f (R,G, T ) gravity is its ability to explain the current
cosmic acceleration without introducing dark energy. Recent
observational studies have confirmed that the expansion rate
of the universe is increasing, but the cause of this acceler-
ation is not yet fully understood. In standard cosmology,
dark energy is invoked to explain this phenomenon. However,
f (R,G, T ) gravity provides a viable alternative explanation
without introducing any new unknown physical entity. More-
over, f (R,G, T ) gravity can also address some of the short-
comings of the f (R) gravity. For example, f (R) gravity is
known to produce some inconsistencies when tested against
observations of gravitational waves. However, f (R,G, T )

gravity is free from these inconsistencies, making it a more
attractive theory. In addition to explaining the cosmic accel-
eration, f (R,G, T ) gravity can also address the issue of dark
matter and the formation of large-scale structures in the uni-
verse. Recent studies have shown that f (R,G, T ) gravity
can explain the observed rotation curves of galaxies without
the need for dark matter. Furthermore, it can also reproduce
the observed cosmic microwave background radiation and
large-scale structure formation. While f (R,G, T ) gravity is
still a relatively new and untested theory, it has shown great
potential in addressing some of the most significant prob-
lems in the field of astrophysics and cosmology. Its ability
to unify modified gravity theories and address several issues
makes it an important area of research. Subsequently, some
authors [120–123] have studied the wormhole and compact
star models in the framework of f (R,G, T ) gravity.

In the present work, we consider the newly proposed
f (R,G, T )gravity model in FRW universe. The f (R,G, T )

gravity is strongly motivated by its potential to explain the
observed accelerated expansion of the universe without intro-
ducing dark energy, offering a more elegant and physically
intuitive explanation for this cosmic phenomenon. By uni-
fying various modified gravity theories and satisfying solar
system constraints, it provides a comprehensive framework

for gravity at different scales. Moreover, its ability to address
dark matter, reproduce observed galactic rotation curves, and
explain the formation of large-scale structures in the universe
underscores its versatility and relevance in solving multi-
ple astrophysical mysteries. Additionally, f (R,G, T ) grav-
ity offers insights into gravitational wave behavior without
the inconsistencies encountered by other modified gravity
theories, making it a promising avenue for advancing our
understanding of gravity in extreme environments. Overall,
this theory represents a compelling and promising approach
to addressing fundamental questions in cosmology and astro-
physics while simplifying our cosmic model.

The paper is organized as follows: In Sect. 2, we assume
the universe is filled with radiation and dark matter in the
framework of f (R,G, T ) gravity. We are not taking any
external dark energy where the effect of this modification
of gravity can be treated as alternative to dark energy. Then
we assume a power-law form of the function f (R,G, T )

and then form a differential equation of the Hubble param-
eter H(z). In Sect. 3. we constrain the parameters of the
f (R,G, T ) gravity model by MCMC method and then
obtain the viability of the model. In Sect. 4 compares the
model’s predictions with observational data. Section 5 gives
a detailed description about the kinematic cosmographic
parameters such as the deceleration, jerk and snap param-
eters. Sections 6 and 7 discuss about the statefinder and Om
diagnostics and present the evolution history of dark energy
on s − r and q − r planes. Section 8 discusses about the
information criteria. Sections 9 and 10 discuss the results and
conclusions respectively.

2 Basic equations in f (R,G,T ) gravity

In this section, we review the f (R,G, T ) gravity theory
in details. The HE action for f (R,G, T ) gravity theory is
defined in the form [119]

S = 1

2

∫
f (R,G, T )

√−g d4x +
∫

Lm
√−g d4x (1)

where f (R,G, T ) denotes the arbitrary function of R, G
and T where Lm denotes the matter Lagrangian, g = |gμν |
(gμν is the metric tensor) (choosing 8πGN = c = 1, GN is
the Newtonian constant). The Ricci scalar R, Gauss–Bonnet
invariantG and the trace of stress energy tensor T are defined
as follows:

R = gμνRμν, G = R2 − 4RμνR
μν

+RμνξηR
μνξη, T = gμνgTμν (2)

The desired field equations of f (R,G, T ) gravity theory are
obtained by the variation of action (1) as follows

(Rμν + gμν∇2 − ∇μ∇ν) fR − 1

2
f gμν
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+(2RRμν − 4Rξ
μRξν − 4RμξνηR

ξη

+2Rξηλ
μ Rνξηλ) fG

+(2Rgμν∇2 − 2R∇μ∇ν − 4gμνR
ξη∇ξ∇η

−4Rμν∇2 + 4Rξ
μ∇ν∇ξ + 4Rξ

ν∇μ∇ξ

+4Rμξνη∇ξ∇η) fG

= Tμν − (Tμν + 
μν) fT (3)

where fR = ∂ f
∂R , fG = ∂ f

∂G , fT = ∂ f
∂T , ∇2 = ∇μ∇μ is the

D’Alembert operator, Tμν is the energy-momentum tensor
and T is its trace. The energy momentum tensor for an ideal
fluid is represented as

Tμν = (ρ + p)uμuν + pgμν (4)

where the symbol ρ and p denote the energy density and
pressure of the ideal fluid respectively. The four velocity
of the fluid’s uμ satisfies uμuμ = −1 and uμ∇νuμ = 0.
Also 
μν = −2Tμν + pgμν . The line element of the flat
Friedmann-Robertson-Walker (FRW) model of the universe
assumed as

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2θdφ2)

]
(5)

where a(t) is the scale factor. From Eq. (2), we can obtain

R = 6(Ḣ + 2H2), G = 24H2(Ḣ + H2) (6)

Here H = ȧ/a denotes the Hubble parameter where dot
denotes the derivative w.r.t. cosmic time t .Using the above
metric (5), we get the trace of Tμν is T = 3p − ρ. Now, the
basic conservation equation ∇μTμν = 0 for an ideal fluid
gives

ρ̇ + 3H(ρ + p) = 0 (7)

with the help of the Eq. (3), the field equations for f (R,G, T )

gravity are obtained as follows

3H2 = 1

fR

[
ρ + (ρ + p) fT + 1

2
(R fR − f )

− 3H ḟR + 12H2(Ḣ + H2) fG − 12H3 ḟG

]
(8)

and

(2Ḣ + 3H2) = − 1

fR

[
p − 1

2
(R fR − f ) + 2H ḟ R + f̈ R

− 12H2 + (Ḣ + H2) fG

+ 8H(Ḣ + H2) ḟ G + 4H2 f̈ G

]
(9)

In the standard Einstein’s field equations, the above two
field equations can be written as

3H2 = ρe f f and (2Ḣ + 3H2) = −pef f (10)

where

ρe f f = 1

fR

[
ρ + (ρ + p) fT + 1

2
(R fR − f )

− 3H ḟR + 12H2(Ḣ + H2) fG − 12H3 ḟG

]
(11)

and

pef f = 1

fR

[
p − 1

2
(R fR − f ) + 2H ḟ R + f̈ R − 12H2

(Ḣ + H2) fG + 8H(Ḣ + H2) ḟ G + 4H2 f̈ G

]
(12)

We assume that the fluid components of the universe are
composed of radiation, pressureless dark matter, and dark
energy where dark energy can be produced by modified grav-
ity. So ρ = ρr + ρm and p = pr + pm with pm = 0. The
energy density for radiation and dark matter are respectively
ρr = 3H2

0 r0(1 + z)4 and ρm = 3H2
0 m0(1 + z)3, where

r0 = ρr0

3H2
0

and m0 = ρm0

3H2
0

are the dimensionless density

parameters, H0 is the present value of the Hubble parameter
and z is the redshift.

Now we assume a power-law form of f (R,G, T ) as in
the form

f (R,G, T ) = α1R
β1 + α2G

β2 + α3(−T )β3 (13)

where αi and βi (i = 1, 2, 3) are constants. So from Eq. (8),
we obtain the differential equation of the Hubble parameter
H(z):

24β2α2(1 − β2)
(
H3 (

H − (1 + z)H ′))β2

+6β1α1β1H
2 (

H
(
2H − (1 + z)H ′))β1−1

+6β1α1(1 − β1)
(
H

(
2H − (1 + z)H ′))β1

+6β1(1 + z)α1β1 (β1 − 1) H3

× (
H

(
2H − (1 + z)H ′))β1−2

×
(
(1 + z)H ′2 − H

(
3H ′ − (1 + z)H ′′))

+24β2(1+z)α2β2(β2−1)H3β2
(
H − (1 + z)H ′)β2−2

×
(

3(1 + z)H ′2 + H
(−3H ′ + (1 + z)H ′′))

= −2α3H
2
0

(
3H2

0 m0(1 + z)3
)β3−1

×
[
3(β3 − 0.5)m0(1 + z)3 + 4β3r0(1 + z)4

]

+6H2
0

[
m0(1 + z)3 + r0(1 + z)4

]
(14)

where H ′ = dH/dz and H ′′ = d2H/dz2. If β1 and β2 close
to zero, f (R,G, T ) gravity is converted to f (R) gravity. If
β3 goes to zero, there will be no effect of T
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3 Cosmological tests of the f (R,G,T ) dark energy
model

In this section, we conduct a comprehensive comparison
between the predictions of the f (R,G, T ) dark energy
model and observational data to obtain constraints on the
model’s free parameters. Our analysis employs two observa-
tional datasets, namely the cosmic chronometers data and
the Pantheon + dataset, which consists of 36 and 1701
data points, respectively. The nine free parameters of the

f (R,G, T ) dark energy model, namely
(
H0,m0,r0, β1,

β2, β3, α1, α2, α3

)
, along with the present-day value of

the Hubble function H0, are constrained using the stan-
dard Bayesian technique, likelihood function approach, and
Markov Chain Monte Carlo (MCMC) method. Once the best-
fit values of the model parameters are obtained, we examine
the model’s cosmographic behavior by analyzing the evolu-
tion of the deceleration, jerk, and snap parameters, and com-
pare the model predictions with those of the standard �CDM
cosmological model.

3.1 Methodology

Markov Chain Monte Carlo (MCMC) is a widely used sta-
tistical technique in cosmology for exploring the parameter
space of complex models and generating probability distri-
butions for cosmological parameters [128]. MCMC is par-
ticularly useful when there is a large parameter space and the
likelihood function is non-Gaussian or non-linear [129]. The
basic idea behind MCMC is to create a Markov chain that
samples the parameter space of a model according to a proba-
bility distribution. The chain consists of a sequence of param-
eter values, where each value is generated from the previous
value using a set of transition rules that depend on a proposal
distribution [130]. The proposal distribution suggests a new
parameter value that may or may not be accepted based on
its posterior probability given the data and the prior prob-
ability distribution [130]. To ensure that the Markov chain
converges to the true posterior distribution, several meth-
ods are used, including adjusting the proposal distribution to
optimize the acceptance rate, tuning the length of the chain to
obtain independent samples, and assessing the convergence
of the chain using diagnostic tests [129,130]. In our research,
we harnessed the power of the PolyChord algorithm to facili-
tate our MCMC analysis. PolyChord is an advanced tool that
seamlessly integrates with MCMC techniques and aids in
efficiently exploring the parameter space. It automates many
aspects of the sampling process, streamlining the calcula-
tion of evidence (marginal likelihood) and posterior distri-
butions while minimizing the need for manual intervention
[131–134]. For the visualization and interpretation of our
results, we employed ChainConsumer, a versatile tool for

plotting and analyzing MCMC chains. ChainConsumer [135]
enhances the presentation of parameter estimates, posterior
distributions, and credible intervals, providing a comprehen-
sive view of the results. Once the chain has converged, the
posterior distribution for the parameters can be estimated
by computing the frequency of the parameter values in the
chain [130]. The posterior distribution can then be used to
estimate the best-fit values and uncertainties for the cosmo-
logical parameters and to make predictions for observables
such as the cosmic microwave background radiation and the
large-scale structure of the universe [128,129]. MCMC is a
powerful tool for analyzing cosmological data and has been
used in a wide range of cosmological studies, including mea-
surements of the cosmic microwave background, large-scale
structure, and dark energy [128,129]. The technique is com-
putationally intensive, but with the increasing power of mod-
ern computing, it has become an essential tool for cosmolo-
gists in understanding the nature and evolution of the universe
[128,129].

3.2 MCMC setup and analysis

In our research, we used the PolyChord algorithm to explore
the complex parameter space of our cosmological model
through Markov Chain Monte Carlo (MCMC) analysis. By
setting “nlive” to 100, we balanced computational efficiency
and result accuracy, enabling a thorough exploration of
parameters. We assessed convergence, a crucial MCMC step,
by tracking indicators like logZ changes and live point behav-
ior. These indicators stabilized, with logZ. We employed a
custom “uniprior” function for uniform parameter priors and
benefited from PolyChord’s nested sampling strategy, reduc-
ing the need for explicit proposal matrices. For plotting, we
leveraged Chain Consumer, streamlining posterior distribu-
tion analysis and enhancing the reliability of our cosmolog-
ical predictions.

3.3 Data description

3.3.1 Cosmic chronometers dataset

Cosmic chronometers are a class of astronomical objects that
provide valuable data for measuring the expansion history of
the universe. These objects are typically old, quiescent galax-
ies that have stopped forming stars and are identified by their
spectra and colors [136]. The data used in cosmic chronom-
etry is based on measurements of the ages of these galaxies
at different redshifts. Elliptical galaxies are the most com-
monly used cosmic chronometers since they have relatively
simple stellar populations and are thought to have formed
early in the history of the universe [138]. The ages of stars in
these galaxies can be determined from their spectra, which
provide information on the chemical composition and inter-
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nal processes that have occurred within them [139]. Other
potential cosmic chronometers include white dwarfs, glob-
ular clusters, and the oldest stars in the Milky Way. How-
ever, these objects are more challenging to observe and ana-
lyze than elliptical galaxies [140], and their use as cosmic
chronometers is still an area of ongoing research. To collect
cosmic chronometry data, astronomers use large telescopes
and spectrographs to measure the spectra and colors of these
galaxies with high precision [137]. Sophisticated statistical
techniques are then employed to determine the ages of the
galaxies and the expansion history of the universe [141]. Cos-
mic chronometry provides an essential tool for studying the
universe’s expansion history and testing cosmological mod-
els [136]. The data obtained from cosmic chronometers is
crucial to our understanding of the universe and the funda-
mental laws of physics that govern it.

In our analysis, we incorporated Hubble expansion rate
data to obtain tighter constraints on our dark energy (DE)
models. The CC dataset can be derived through different
methods. One approach is based on the clustering of galaxies
and quasars, where the Baryon Acoustic Oscillations (BAO)
in the radial direction are measured [124,125]. Another
method is the differential age method, which expresses the
Hubble parameter as

H(z) = − 1

1 + z

dz

dt
, (15)

where dz
dt can be inferred from �z

�t . Here, �z and �t repre-
sent the redshift difference and the age difference between
two passively evolving galaxies, respectively [126,127]. For
our analysis, we utilized a compilation of 36 data points of the
CC dataset, with each data point accompanied by its corre-
sponding reference. While the CC data points are considered
uncorrelated, we can define the χ2

H(z) function as

χ2
CC =

36∑
i=1

[
Hobs,i − H(zi )

σH,i

]2

, (16)

where Hobs,i represents the observed value of the Hubble
parameter for each redshift zi (references), and H(z) denotes
the theoretical prediction of the Hubble parameter. By eval-
uating the χ2

CC function, we can quantify the level of agree-
ment between the observed Hubble parameter values and the
predictions of our DE models. This analysis allows us to
assess the fit quality and obtain valuable constraints on the
parameters of the models.

3.3.2 Pantheon + dataset

The updated Pantheon + dataset represents a significant
advancement in our understanding of the universe’s expan-
sion history. This compilation incorporates a comprehensive
collection of 1701 data points, providing a wealth of informa-

tion for cosmological investigations. These data points cover
a wide range of redshifts, from 0.001 < z < 2.3 allowing
researchers to probe the expansion dynamics over a signif-
icant cosmic timeline. The Pantheon + dataset builds upon
previous SNIa compilations and includes the latest observa-
tions of Type Ia supernovae. These supernovae have been
instrumental in unveiling the accelerating expansion of the
universe. As highly luminous astrophysical objects, SNIa
serves as valuable standard candles for measuring relative
distances based on their apparent and absolute magnitudes.

Type Ia supernovae (SNIa) have played a significant role
in our understanding of the accelerating expansion of the uni-
verse. These astrophysical objects have proven to be valuable
tools for studying the nature of the component responsible
for this cosmic acceleration. Several compilations of SNIa
data have been released in recent years, such as Union [144],
Union2 [143], Union2.1 [145], Joint Light-curve Analysis
(JLA) [146], Pantheon [147], and the more recent Pantheon+
[142]. The Pantheon+ dataset, which contains 1701 SNIa
spanning a redshift range of 0.001 < z < 2.3, provides
a valuable resource for cosmological investigations. SNIa
are exceptionally luminous objects and are often considered
as standard candles for measuring relative distances in the
universe using the distance modulus. The chi-square values
associated with the Pantheon+ dataset are calculated as fol-
lows:

χ2
Pantheon+ = �DT · C−1

Pantheon+ · �D, (17)

where CPantheon+ represents the covariance matrix provided
with the Pantheon+ data, encompassing both statistical and
systematic uncertainties. In Eq. (17), �D = mBi−M−μmodel,
with mBi and M denoting the apparent and absolute magni-
tudes, respectively. The term μmodel represents the predicted
distance modulus based on a chosen cosmological model,
given by

μmodel(zi ) = 5 log10

(
DL(zi )
H0
c Mpc

)
+ 25, (18)

where H0 is the present value of the Hubble rate, and DL(z)
denotes the luminosity distance. For a flat, homogeneous,
and isotropic FLRW universe, DL(z) is given by

DL(z) = (1 + z)H0

∫ z

0

dz′

H(z′)
. (19)

Unlike the Pantheon dataset, the degeneracy between the
absolute magnitude M and H0 is broken in Pantheon+. This
is achieved by rewriting the vector �D in Eq. (17) in terms of
the distance moduli of SNIa in Cepheid hosts. This allows for
an independent constraint on M , resulting in the following
expression:

�D′
i =

{
mBi − M − μ

Ceph
i i ∈ Cepheid hosts

mBi − M − μmodel (zi ) otherwise ,
(20)
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Fig. 1 The contour plot of free parameter space (H0, m0, r0, β1, β2, β3, α1, α2, α3) for our model I with 1 − σ and 2 − σ errors obtained from
the datasets

where μ
Ceph
i represents the distance modulus corresponding

to the Cepheid host of the i th SNIa, measured independently
using Cepheid calibrators. Thus, Eq. (17) can be rewritten
as:

χ2
SN = �D′T · C−1

Pantheon+ · �D′. (21)

In order to combine the SNIa data with other cosmological
probes, the total chi-square value, χ2

tot, is obtained by adding
the contributions from the cosmic chronometers (CC) and
the other cosmological datasets (Pantheon +).

χ2
Tot = χ2

CC + χ2
Pantheon+. (22)

The contour plots for the combined result of CC + SNIa
are shown in the following Fig. 1 and the best-fit values are
tabulated in Table 1.

4 Observational, and theoretical comparisons of the
Hubble functions

4.1 Comparison with the cosmic chronometers dataset

The Hubble function is a crucial parameter in cosmology, as it
relates the universe’s expansion rate to its present age and the
distribution of matter and energy within it. The�CDM model
is the most widely accepted cosmological model, describing
the universe as composed of dark matter, dark energy, and
ordinary matter. In this study, we perform curve fitting of the
Hubble function using the �CDM model, f (R,G, T ) dark
energy model, and 36 points of cosmic chronometers (CC)
by using the best-fit values of both the model parameters
obtained by minimizing the χ2 function.
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Table 1 Summary of the MCMC results using dataset

MCMC results of f (R,G, T ) model

Model Parameters Prior Best fit value

�CDM model H0 [50.,100.] 69.854848+1.259100
−1.259100

Model H0 [50.,100.] 69.131041+0.139490
−0.139490

m0 [0.,1.] 0.240739+0.018284
−0.018284

r0 [0.,1] 0.028080+0.009746
−0.009746

β1 [1.,2.] 1.570660+0.018798
−0.018798

β2 [0.,0.1] 0.024082+0.017751
−0.017751

β3 [0.,1] 0.232398+0.004917
−0.004917

α1 [2.,8.] 5.496010+2.820425
−2.820425

α2 [4.,8] 6.250227+1.312755
−1.312755

α3 [1.,2.] 1.732398+0.004917
−0.004917

Fig. 2 The figure shows the theoretical curve of the Hubble func-
tion H(z) corresponding to the studied (red curve) and �CDM (pur-
ple curve) models against the 36 measurements of CC measurements
shown in magenta dots with their corresponding error bars in the blue
line. For �CDM the parameters were fixed at m = 0.301±0.012 and
� = 0.699 ± 0.012

Our results demonstrate that the �CDM model provides
an excellent fit to the CC data, and f (R,G, T ) dark energy
model. The comparison findings are shown in Fig. 2.

4.2 Comparison with the relative difference between
f (R,G, T ) dark energy model and �CDM

In this subsection, we aim to study the difference between
the f (R,G, T ) dark energy model and the �CDM model as
a function of redshift, by comparing their predicted values
for the Hubble parameter against cosmic chronometers (CC)
measurements. We then analyze how this difference varies
with redshift.

Our findings indicate that there is a negligible difference
between the f (R,G, T ) dark energy model and the �CDM
model at low redshifts but slightly increases at higher red-

Fig. 3 The variation of the difference between f (R,G, T ) Model cor-
responding to the studied (red curve) and �CDM (purple curve) as a
function of the redshift z against the CC measurements in magenta
dots with their corresponding error bars in the blue line. For �CDM the
parameters were fixed at m = 0.301±0.012 and � = 0.699±0.012

shifts, However, we acknowledge that the uncertainties in
the CC measurements also increase with redshift, so caution
must be taken when interpreting these results. Overall, our
investigation provides significant insights into the limitations
of the �CDM model and the potential of f (R,G, T ) dark
energy model to better explain the behavior of the universe
at higher redshifts. The comparison findings are shown in
Fig. 3.

4.3 Comparison with the Pantheon + dataset

The distance modulus function has been fitted with the
�CDM model and f (R,G, T ) dark energy model using the
Pantheon Plus dataset. The Pantheon Plus dataset comprises
1701 SNe Ia data points in the redshift range 0.01 < z < 2.3.
The fitting process involves minimizing the χ2 function,
which measures the deviation of the theoretical model from
the observed data. The theoretical model involves the dis-
tance modulus function, which is related to the luminosity

distance dL(z) as μ(z) = 5 log10

[
dL (z)
Mpc

]
+25, where Mpc is

the unit of distance. The luminosity distance dL(z) is defined
as dL(z) = (1 + z)

∫ z
0

c
H(z)dz

′, where c is the speed of light
and H(z) is the Hubble parameter.

Our results demonstrate that the �CDM model provides
an excellent fit to the Pantheon Plus dataset, and f (R,G, T )

dark energy model. The comparison findings are shown in
Fig. 4.

5 Cosmographic analysis

Cosmography parameters are a set of cosmological parame-
ters that describe the expansion history of the universe in a
model-independent way. These parameters are derived solely
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Fig. 4 The figure shows the theoretical curve of the distance modu-
lus μ(z) corresponding to the studied (red curve) and �CDM (black
curve) models against the Supernovae type Ia dataset shown magenta
dots with their corresponding error bars in the magenta dots with their
corresponding error bars shown in blue line. For �CDM the parameters
were fixed at m0 = 0.3 and � = 0.7

from the measurement of the cosmic expansion rate, also
known as the Hubble parameter, and its derivatives with
respect to redshift. The most commonly used cosmogra-
phy parameters are the Hubble constant (H0), the deceler-
ation parameter (q0), and the jerk parameter ( j0) [148,149].
H0 represents the current expansion rate of the universe,
while q0 and j0 describe the acceleration and jerk of the
expansion, respectively. Cosmography parameters have sev-
eral advantages over other cosmological parameters, such as
those derived from cosmic microwave background radiation
or the large-scale structure of the universe. They are model-
independent, meaning that they do not rely on any assump-
tions about the underlying cosmological model. This makes
them useful for testing the validity of different cosmological
models and for constraining the properties of dark energy,
which is responsible for the acceleration of the expansion
[159]. Cosmography parameters are relatively easy to mea-
sure from observational data. The Hubble constant can be
determined from observations of Type Ia supernovae, gravita-
tional lensing, and other methods, while the higher-order cos-
mography parameters can be estimated from measurements
of the Hubble parameter at different redshifts [148,149].
Cosmography parameters can be used to test the validity of
the cosmological principle, which states that the universe is
homogeneous and isotropic on large scales. Deviations from
the cosmography predictions could indicate the presence of
large-scale structures or other departures from the standard
cosmological model [160]. Cosmography parameters pro-
vide a powerful tool for measuring the expansion history of
the universe and testing cosmological models in a model-
independent way. The ease of measurement and their ability
to test the cosmological principle make them an important
component of modern cosmology research.

5.1 The deceleration parameter

The deceleration parameter is a crucial cosmological param-
eter that characterizes the expansion rate of the universe. It
is defined as the ratio of the deceleration of the universe’s
expansion to the present expansion rate. A positive deceler-
ation parameter implies that the expansion of the universe is
slowing down, while a negative deceleration parameter indi-
cates that the expansion of the universe is accelerating. In
other words, the deceleration parameter is a measure of the
transition between the decelerated and accelerated phases of
the universe’s expansion. Mathematically, one can define it
as

q = −aä

ȧ2 . (23)

Observational analysis plays a critical role in determining the
range of values for the deceleration parameter. For instance,
the apparent brightness and redshift for supernovae in dis-
tant galaxies can be used to estimate the deceleration param-
eter [148–158]. Recent observations strongly support mod-
els that predict an accelerating universe. However, obtain-
ing an accurate value for the deceleration parameter remains
a challenging task. It is essential to note that the Hubble
parameter’s behavior is determined by the sign of the decel-
eration parameter. If the deceleration parameter is positive,
the Hubble parameter decreases with time, and if it is neg-
ative, the Hubble parameter increases with time. Therefore,
the deceleration parameter provides valuable insights into the
dynamics of the universe’s expansion. It is crucial to explore
the ranges of possible values for the deceleration parameter
through observational analyses and to obtain accurate esti-
mates to gain a better understanding of the universe’s evolu-
tion.

5.2 The jerk parameter

The jerk parameter is a cosmological parameter that gener-
alizes the expansion rate of the universe beyond the usual
parameters of a(t) and q. It arises from the fourth term in a
Taylor series of the scale factor around a given time t0 [161]:

a(t)

a0
= 1+H0(t− t0)− 1

2
q0H

2
0 (t−t0)

2+ 1

6
j0H

3
0 (t−t0)

3

+O
[
(t − t0)

4
]
. (24)

The jerk parameter, denoted as j , is defined as the third
derivative of the scale factor with respect to cosmic time
[148]:

j = 1

a

d3a

dτ 3

[
1

a

da

dτ

]−3

= q(2q + 1) + (1 + z)
dq

dz
. (25)

The jerk parameter plays a significant role in the search for
a suitable candidate for the physical interpretation of cosmic
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dynamics in the presence of various dark energy proposals
[148]. The value of the jerk parameter can provide insight into
the transitions between different eras of accelerated expan-
sion. A specific value of the jerk parameter can establish a
correspondence between dark energy proposals and standard
universe models, facilitating the search for a favorable can-
didate for cosmic dynamics. For example, in the flat �CDM
model, the jerk parameter has a value of j = 1 [148]. The
jerk parameter is a useful tool in understanding the dynamics
of the universe and in distinguishing between different dark
energy proposals. Its value can help us better comprehend the
various eras of accelerated expansion and identify a suitable
model for cosmic dynamics.

5.3 The snap parameter

The snap parameter, or the jounce parameter, is a higher-
order time derivative of the expansion factor of the universe.
It is the fifth term in the Taylor series expansion of the scale
factor around the present time a0,

a(t)

a0
= 1 + H0(t − t0) − 1

2
q0H

2
0 (t − t0)

2

+1

6
j0H

3
0 (t − t0)

3 + 1

24
s0H

4
0 (t − t0)

4

+O
[
(t − t0)

5
]
. (26)

and it characterizes the deviation of the universe’s expansion
from the �CDM model. The snap parameter is defined as the
fourth derivative of the scale factor with respect to cosmic
time,

s = 1

a

d4a

dτ 4

[
1

a

da

dτ

]−4

= j − 1

3
(
q − 1

2

) , (27)

normalized by a certain combination of the scale factor and
its time derivatives. The snap parameter plays a crucial role
in characterizing the dynamics of the universe [162]. Specifi-
cally, it helps to identify the degree of deviation from the stan-
dard �CDM model, which assumes a cosmological constant
as the source of dark energy. The snap parameter is related
to the cosmic jerk parameter, and their relative behavior pro-
vides insights into the transitions between different eras of
the universe’s accelerated expansion. In particular, the diver-
gence of the snap parameter with respect to the deceleration
parameter determines how the universe’s evolution deviates
from the �CDM dynamics. Therefore, the snap parameter is
a valuable tool for studying the nature of dark energy and its
role in the evolution of the universe.

6 Statefinder diagnostic

The Statefinder diagnostics is a powerful tool used to study
different models of dark energy (DE) and understand their
characteristics based on higher-order derivatives of the scale
factor. It provides a dimensionless pair of parameters, {r, s},
which can be used to analyze the cosmic properties of DE
independent of specific models. The calculations for r and
s involve expressions that involve the third derivative of the
scale factor (

...
a ), the Hubble parameter (H ), and the deceler-

ation parameter (q) [161]. The parameter s is a linear com-
bination of r and q, enabling further insights into the DE
behavior:

r =
...
a

aH3 , s = r − 1

3
(
q − 1

2

) . (28)

Certain pairs of r and s have been associated with standard
models of DE. For example, {r, s} = {1, 0} corresponds to
the �CDM model, while {r, s} = {1, 1} corresponds to the
standard cold dark matter model (SCDM) in the Friedmann–
Lematre–Robertson–Walker (FLRW) universe. The range
(−∞,∞) represents the Einstein static universe. By exam-
ining the r − s plane, it is possible to identify quintessence-
like and phantom-like models of DE, characterized by pos-
itive and negative values of s, respectively. Deviations from
the standard range {r, s} = {1, 0} can indicate an evolution-
ary process from phantom-like to quintessence-like behavior
[148]. The Statefinder diagnostics provide a comprehensive
framework to explore and analyze various DE models. By
employing the {r, s} parameter pair, independent of specific
DE models, one can gain insights into the cosmic behavior
of DE. This diagnostic tool aids in understanding the tran-
sition between different DE phases, distinguishing between
quintessence-like and phantom-like behavior, and identify-
ing the standard DE models within the r − s plane.

7 Om diagnostic

In cosmology, a geometrical formalism is employed in which
the Hubble parameter serves as a null test for the �CDM
model [163]. Additionally, the Om diagnostic parameter is
used to effectively differentiate various dark energy (DE)
models from the �CDM model by observing the slope vari-
ation of Om(z) [164]. A quintessence or phantom model can
be identified through a positive or negative slope of the diag-
nostic parameter, respectively. Furthermore, a constant slope
with respect to redshift depicts a DE model corresponding to
the cosmological constant. For a flat universe, the diagnostic
parameter Om(z) is defined as:
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Om(z) =
(
H(z)
H0

)2 − 1

(1 + z)3 − 1
. (29)

This diagnostic parameter involves only the first-order tem-
poral derivative, as compared to the statefinder diagnosis
[165], which is discussed in [164]. Additionally, it is appli-
cable to Galileon models [166,167], as described in [168].
Overall, the Om diagnostic parameter is a useful tool for
studying the properties of dark energy models and distin-
guishing them from the cosmological constant model.

8 Information criteria

In cosmology, the χ2
min, χ2

red, Akaike Information Criterion
(AIC), and �AIC are commonly used statistical measures
to assess the goodness of fit and compare different cosmo-
logical models based on observational data [169–172]. The
χ2

min is defined as the minimum value of the χ2 statistic,
which quantifies the difference between the observed data
and the theoretical predictions of a model. It is calculated as
the sum of the squared differences between the observed data
points and the corresponding model predictions, divided by
the measurement uncertainties:

χ2
min =

∑ (Oi − Ei )
2

σ 2
i

, (30)

where Oi and Ei represent the observed and expected values,
respectively, and σi is the corresponding measurement uncer-
tainty. The χ2

red is the reduced chi-square statistic, obtained
by dividing the χ2

min by the number of degrees of freedom
(NDF). The NDF is equal to the total number of data points
minus the number of free parameters in the model:

χ2
red = χ2

min

NDF
. (31)

The χ2
red provides a normalized measure of the goodness of

fit per degree of freedom, allowing for comparisons between
models with different numbers of free parameters. The AIC is
a statistical criterion that takes into account both the goodness
of fit and the complexity of a model. It is calculated as:

AIC = 2k − 2 ln(L), (32)

where k is the number of free parameters in the model and L
is the maximum likelihood of the model. The AIC penalizes
models with more parameters, favoring simpler models that
provide a good fit to the data. The �AIC is the difference in
AIC values between the two models. It is calculated as:

�AIC = AICi − AICmin, (33)

where AICi and AICmin are the AIC values of the i th model
and the model with the minimum AIC value, respectively.

The �AIC provides a measure of the relative support for dif-
ferent models, with lower values indicating better model fit
and higher likelihood. In addition to the χ2

min, χ2
red, Akaike

Information Criterion (AIC), and �AIC, another important
statistical measure used in cosmology for model compari-
son is the Bayesian Information Criterion (BIC) [173–175],
along with its difference, �BIC. The Bayesian Information
Criterion (BIC) is a statistical criterion that, like AIC, takes
into account both the goodness of fit and the complexity of
a model. It is derived from a Bayesian perspective and is
defined as:

BIC = k ln(n) − 2 ln(L), (34)

where k is the number of free parameters in the model, n is
the number of data points, and L is the maximum likelihood
of the model. Similar to the AIC, the BIC penalizes models
with more parameters to favor simpler models that provide
a good fit to the data. The difference in BIC values between
two models, denoted as �BIC, is calculated as:

�BIC = BICi − BICmin, (35)

where BICi and BICmin are the BIC values of the i th model
and the model with the minimum BIC value, respectively.
Like the �AIC, the �BIC provides a measure of the rela-
tive support for different models, and lower values of �BIC
indicate better model fit and higher likelihood. The BIC and
�BIC are additional tools that researchers use in cosmology
to assess the goodness of fit and compare different models
based on observational data. These criteria offer a way to
strike a balance between model complexity and goodness of
fit, helping researchers make informed decisions when select-
ing the most appropriate cosmological models. The χ2

min,
χ2

red, AIC, �AIC, BIC, and �BIC are all essential statisti-
cal measures in cosmology for evaluating the fit of differ-
ent models to observational data and for comparing models
with varying degrees of complexity. These measures play a
crucial role in model selection and help researchers under-
stand which models best describe the behavior of the universe
based on available data.

9 Results

9.1 Deceleration parameter

The Fig. 5 represents the behavior of the deceleration param-
eter (q) for the f (R,G, T ) model and the �CDM model
at different epochs and the phase transition redshift. At high
redshifts (z → ∞), the f (R,G, T ) model has a deceler-
ation parameter value of 0.824, suggesting a decelerating
expansion of the universe. On the other hand, the �CDM
model exhibits a slightly lower deceleration parameter value
of 0.451, indicating a comparatively slower deceleration. As
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we move towards the present epoch (z → 0), both models
show a transition towards a negative deceleration parameter.
The f (R,G, T ) model has a deceleration parameter value
of −0.494, indicating a transition to an accelerating phase.
Similarly, the �CDM model exhibits a slightly lower value
of −0.555, also signifying a transition towards acceleration.
At the cosmological constant limit (z → −1), both models
converge to a deceleration parameter value of −1, indicat-
ing a transition to a de Sitter phase where the expansion is
accelerating at an ever-increasing rate. Lastly, the figure pro-
vides the phase transition redshift (ztr ) at which the decel-
eration parameter for each model reaches zero (q = 0). For
the f (R,G, T ) model, the transition occurs at ztr = 0.4253,
while for the �CDM model, the transition occurs at a slightly
higher redshift of ztr = 0.659. Overall, the figure demon-
strates the different behaviors of the deceleration parameter
between the f (R,G, T ) model and the �CDM model at
various epochs and the phase transition redshift. It illustrates
how the expansion of the universe transitions from a deceler-
ating phase to an accelerating phase, with the f (R,G, T )

model showing slightly different values compared to the
�CDM model at each epoch.

9.2 Jerk parameter

The Fig. 6 presents the behavior of the jerk parameter ( j)
for the f (R,G, T ) model and the �CDM model at different
epochs and the cosmological constant limit (z → −1). At
high redshifts (z → ∞), The f (R,G, T ) model exhibits a
value of 2.7345 for the jerk parameter ( j). On the other hand,
the �CDM model maintains a jerk parameter value of 1 at
this epoch. This distinction suggests that at very high red-
shifts, the f (R,G, T ) model differs from the �CDM model
in terms of the rate of change of acceleration. The f (R,G, T )

model exhibits a higher value for the jerk parameter, indicat-
ing a potentially different dynamic behavior compared to
the constant rate of change of acceleration observed in the
�CDM model. As we approach the present epoch (z → 0),
the f (R,G, T ) model exhibits a jerk parameter value of
1, suggesting a constant acceleration similar to the �CDM
model. At the cosmological constant limit (z → −1), both
models have a jerk parameter value of 1. This implies that the
acceleration remains constant in both models at this limit.

9.3 Snap parameter

The Fig. 7 presents the behavior of the snap parameter (s)
for the f (R,G, T ) model and the �CDM model at differ-
ent epochs and the cosmological constant limit (z → −1).
At high redshifts (z → ∞), the snap parameter for the
f (R,G, T ) Model is 13.353, while for the �CDM model, it
is 2.634. This indicates a significant deviation in the curvature
and evolution of the two models during the early stages of

Fig. 5 Evolution of the deceleration parameter as a function of the
redshift z

Fig. 6 Evolution of the jerk parameter as a function of the redshift z

Fig. 7 Evolution of the snap parameter as a function of the redshift z

the universe. The f (R,G, T ) Model exhibits a higher snap
parameter, suggesting a more pronounced curvature and evo-
lution compared to the �CDM model. As we approach the
present epoch (z → 0), the snap parameter for both models
decreases. For the f (R,G, T ) model, it becomes 0.1685,
while for the �CDM model, it is 0.1674. This implies that
both models converge to a similar behavior in terms of curva-
ture and evolution at the current epoch. At the cosmological
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Fig. 8 Behavior of {s, r} profile

Fig. 9 Behavior of {q, r} profile

constant limit (z → −1), both models have a snap parameter
of−0.634. This indicates a transition to an accelerated expan-
sion phase, where the universe’s curvature and evolution are
primarily governed by the cosmological constant. The com-
parative analysis of the snap parameter for the f (R,G, T )

model and the �CDM model reveals that the two models
exhibit different behaviors in terms of curvature and evolu-
tion at high redshifts, with the f (R,G, T ) model showing
a more pronounced curvature. However, as we approach the
present epoch, both models converge to a similar behavior.
At the cosmological constant limit, both models exhibit an
accelerated expansion phase.

9.4 The {s, r} profile

The Fig. 8 provides a comprehensive description of {s, r}
profile of the Statefinder diagnostic. At early times, the
f (R,G, T ) model is found to have values of r > 1 and
s < 0. These values indicate that the model resembles
a Chaplygin gas-type dark energy model. The Chaplygin
gas is a theoretical construct that can describe the behav-
ior of dark energy, characterized by an equation of state that
deviates from the standard cosmological constant. As the
universe evolves, the f (R,G, T ) model transitions to val-
ues between r < 1 and s > 0, indicating a quintessence
domain. Quintessence refers to a form of dark energy that
possesses a dynamic nature, often associated with a slowly
evolving scalar field. The quintessence domain represents a
phase in which the dark energy density remains relatively
constant over time. During this evolution, the f (R,G, T )

model crosses an intermediate fixed point, represented by the
�CDM point {1, 0}. The �CDM model is the standard cos-
mological model that includes a cosmological constant (�)
and cold dark matter (CDM). Crossing this fixed point sug-
gests a transition from one phase to another, from a Chaplygin
gas-like behavior to a quintessence-like behavior. Finally, at
late times, the f (R,G, T )model returns to the Chaplygin gas
domain by passing an interim fixed �CDM point. This indi-
cates a transition back to a Chaplygin gas-type dark energy
behavior. The described model exhibits a rich cosmologi-
cal evolution, transitioning between different phases of dark
energy behavior. It begins as a Chaplygin gas-type model,
evolves through a quintessence domain while crossing an
intermediate �CDM fixed point, and eventually returns to
the Chaplygin gas-type behavior at late times.

9.5 The {q, r} profile

The Fig. 9 provides a comprehensive description of {q, r}
profile of the Statefinder diagnostic. At early times, the model
exhibits values in the range q < 0 and r < 1 corresponds to
the quintessence domain. As the model evolves, it transitions
to values where r > 1 and q < 0. This region indicates the
Chaplygin gas domain. The transition from the quintessence
domain to the Chaplygin gas domain signifies a change in
the dominant energy component of the universe, potentially
leading to different cosmological behaviors. Finally, at late
times, the f (R,G, T ) model deviate towards the de Sitter
line, represented by q =-1. The de Sitter line corresponds to
a universe dominated by dark energy, resulting in accelerated
expansion and a constant equation of state parameters. Devi-
ation towards this line indicates a pure de Sitter universe,
potentially due to the influence of additional cosmological
components or modified gravity. Overall, the {q, r} profile
of the f (R,G, T ) energy model reveal a rich cosmological
evolution. The model transitions from a quintessence domain
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Fig. 10 Evolution of Om(z) profile

to a Chaplygin gas domain, indicating changes in the dom-
inant energy component. Departure from the de Sitter line
at late times suggests the presence of additional effects or
modifications to the standard cosmological model.

9.6 Om Diagnostic

The Om Diagnostic is a cosmological quantity that helps
characterize the behavior of the matter density in the uni-
verse. The Fig. 10 provided presents the values of the Om
Diagnostic for f (R,G, T ) model at different epochs repre-
sented by the redshift z. At z → ∞, which corresponds to
the early universe or the farthest observable regions, the Om
Diagnostic for f (R,G, T ) is recorded as 0.270. This value
indicates the matter density contribution to the overall energy
density of the universe at very high redshifts. As we approach
the present time, represented by z → 0, the Om Diagnos-
tic for f (R,G, T ) model increases to 0.2855. This suggests
that matter density plays a slightly more significant role in the
total energy density of the universe as compared to the early
universe. Finally, at the phase transition redshift z → −1,
which signifies the late-time universe, the Om Diagnostic
reaches a value of 0.2952. This indicates that matter density
continues to have a non-negligible contribution to the total
energy density of the universe, even in the late stages of cos-
mic evolution. Overall, the values of the Om Diagnostic for
f (R,G, T ) model suggest that matter density remains an
important component of the energy content of the universe
throughout its history, from the early universe to the present
and even in the late-time universe.

9.7 Information criteria

Based on the values presented in Table 2, we can provide
a comprehensive comparison between the f (R,G, T ) and
�CDM models using various statistical measures, includ-

ing χ2
tot

min
, χ2

red, AIC , �AICc, BIC , and �BIC . The

χ2
tot

min
for the f (R,G, T ) model is slightly lower than that

of the �CDM model, indicating a slightly better overall fit of
the f (R,G, T ) model to the data. The reduced χ2

red values
for both models are very close, suggesting that both mod-
els provide reasonable fits to the data. The AIC value for
the f (R,G, T ) model is higher than that of the �CDM
model, indicating that the �CDM model has a better bal-
ance between goodness of fit and model complexity accord-
ing to AIC. The calculated �AICc of −1.52 suggests that
the f (R,G, T ) model is strongly favored over the �CDM
model. The BIC value for the f (R,G, T ) model is higher
than that of the �CDM model, reinforcing the idea that the
�CDM model is preferred in terms of model complexity
and goodness of fit according to BIC. The �BIC value
of 28.5202 strongly favors the �CDM model. This indi-
cates a substantial preference for the �CDM model over the
f (R,G, T ) model based on BIC and �BIC . The evidence
strongly supports the �CDM model over the f (R,G, T )

model. The BICc and �BIC values consistently indicate
that the �CDM model is strongly favored in terms of good-
ness of fit and model selection. While the f (R,G, T ) model
shows a slightly better fit in terms of χ2

tot
min

, the overall con-
siderations from AIC, BIC and �BIC strongly point to the
superiority of the �CDM model.

10 Discussions and concluding remarks

In this study, we have investigated the behavior and evolu-
tion of the f (R,G, T ) model. By analyzing various cosmo-
logical parameters and diagnostics, we have gained insights
into the characteristics and dynamics of this model compared
to the well-established �CDM model. Our analysis of the
deceleration parameter (q) reveals that the f (R,G, T )model
exhibits a transition from a decelerating phase to an accel-
erating phase. The analysis of jerk parameter ( j) demon-
strates that the f (R,G, T ) model exhibits a higher rate of
change of acceleration at high redshifts compared to the
�CDM model. However, as we approach the present epoch
and the cosmological constant limit, both models converge

Table 2 Summary of χ2
tot

min
,

χ2
red , AIC , �AICc, BIC ,

�BIC for �CDM and
f (R,G, T ) model

Model χ2
tot

min
χ2

red AIC �AIC BIC �BIC

�CDM 1778.74 0.934 1782.74 0 1799.76 0

f (R,G, T ) 1765.22 0.928 1783.22 −1.52 1828.28 28.5202
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to a constant rate of change of acceleration. The analysis
of snap parameter (s) reveals that the f (R,G, T ) model
exhibits a more pronounced curvature and evolution at high
redshifts compared to the �CDM model. However, as we
approach the present epoch, both models converge to a simi-
lar behavior, indicating a transition to an accelerated expan-
sion phase. The analysis of Statefinder parameters provides
valuable insights into the nature of dark energy and its transi-
tion between different phases in the f (R,G, T ) model. The
model exhibits transitions from a Chaplygin gas-like behav-
ior to a quintessence-like behavior, crossing an intermediate
�CDM fixed point. This rich cosmological evolution high-
lights the dynamic nature of dark energy in the f (R,G, T )

model. The analysis of Om diagnostic indicates that mat-
ter density remains an important component of the energy
content of the universe throughout its history, including the
early universe, the present epoch, and even the late-time uni-
verse. Furthermore, the comparison of information criteria
suggests that the �CDM model performs slightly better than
the f (R,G, T ) model in terms of goodness of fit and model
selection.

In conclusion, the f (R,G, T ) model exhibits interest-
ing and distinct features compared to the well-established
�CDM model. Its dynamics, including the transition from
a decelerating phase to an accelerating phase. While fur-
ther investigations and analyses are necessary to validate the
model’s consistency with other observational data and theo-
retical expectations, the obtained results in this study suggest
that the f (R,G, T ) model has the potential to revolution-
ize the field of cosmology. Its ability to capture and explain
various cosmological phenomena opens up new avenues for
exploring the fundamental principles governing the evolution
and behavior of our universe. The f (R,G, T ) model, with
its unique characteristics and dynamics, offers a promising
framework for advancing our understanding of the universe.
Future studies could focus on further constraining the model
parameters using a broader range of observational data, such
as measurements of cosmic microwave background radia-
tion, large-scale structure formation, and gravitational wave
events. Additionally, it would be valuable to investigate the
implications of the f (R,G, T ) model for other cosmological
phenomena, such as the formation and evolution of galax-
ies, and the behavior of dark matter. Furthermore, explor-
ing the theoretical foundations of the f (R,G, T ) model
could provide deeper insights into the underlying physics that
drives the modifications to general relativity and the inter-
play between matter density, curvature, and dark energy. This
could involve investigating the model in the context of quan-
tum gravity theories, studying its implications for particle
physics, and exploring its connections to other modified grav-
ity theories. Moreover, it would be valuable to investigate the
f (R,G, T ) model in the context of other astrophysical and
cosmological observations, such as the study of gravitational

lensing, the cosmic microwave background polarization, and
the behavior of cosmic voids. These investigations could pro-
vide additional constraints and tests for the model, helping to
determine its viability and consistency with a wide range of
observational data. In conclusion, the f (R,G, T ) model rep-
resents a promising avenue for advancing our understanding
of the universe. By further investigating its behavior, con-
straining its parameters, and exploring its implications for
various astrophysical and cosmological phenomena, we can
deepen our understanding of the fundamental principles that
govern our universe and potentially uncover new insights into
its evolution and dynamics. The findings in our analysis indi-
cate that f (R,G, T ) gravity model may be served as a good
candidate for gravitational modifications.

10.1 Public library

The Python library used for plotting confidence contours can
be found at https://samreay.github.io/ChainConsumer/.
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