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Abstract We explore the fixed-point structure of QED-like
theories upon the inclusion of a Pauli spin-field coupling. We
concentrate on the fate of UV-stable fixed points recently dis-
covered in d = 4 spacetime dimensions upon generalizations
to lower as well as higher dimensions for an arbitrary number
of fermion flavors Nf. As an overall trend, we observe that
going away from d = 4 dimensions and increasing the fla-
vor number tends to destabilize the non-Gaussian fixed points
discovered in four spacetime dimensions. A notable excep-
tion is a non-Gaussian fixed point at finite Pauli spin-field
coupling but vanishing gauge coupling, which also remains
stable down to d = 3 dimensions and for small flavor num-
bers. This includes also the range of degrees of freedom used
in effective theories of layered condensed-matter systems.
As an application, we construct renormalization group tra-
jectories that emanate from the non-Gaussian fixed point and
approach a long-range regime in the conventional QED3 uni-
versality class that is governed by the interacting (quasi) fixed
point in the gauge coupling.

1 Introduction

The Pauli term, denoting the coupling between the electron
spin and the electromagnetic field, plays an interesting role in
quantum electrodynamics (QED): it undergoes finite renor-
malization [1] while receiving contributions from all scales
[2,3]; in the effective action, it parameterizes the famous
anomalous magnetic moment of the electron [4,5] which has
been measured and computed to an extraordinary precision
[6–8]; and from a Wilsonian viewpoint, it corresponds to a
perturbatively nonrenormalizable dimension-5 operator and
thus has the least possible finite distance to the set of renor-
malizable operators in QED theory space.
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Specifically the last property makes the Pauli term a can-
didate for a relevant interaction in a coupling regime where
nonperturbative interactions set in. In fact, a recent study
[9] provides evidence that the observed long-range proper-
ties of (pure) QED can be extended to high-energy scales
along renormalization group (RG) trajectories that exhibit
a sizable Pauli-term contribution. Remarkably, a systematic
next-to-leading order expansion of the effective action fea-
tures nonperturbative ultraviolet (UV) stable fixed points
that give rise to a UV-complete version of QED within an
asymptotic-safety scenario [10,11]. The possibility that a siz-
able Pauli term could be sufficient for QED to evade the infa-
mous Landau-pole problem [12] had already been suggested
in [13] on the basis of an effective-field-theory study.

It is important to note that the Pauli-term-induced UV-
completion of QED also evades the conclusion of QED triv-
iality from previous analyses of QED in the strong-coupling
regime on the lattice [14] as well as using the functional RG
[15]. The reason is that the Pauli term goes beyond the chi-
rally invariant subspace of massless QED; moreover, one of
the non-Gaussian fixed points occurs at vanishing gauge cou-
pling. QED triviality observed in [14,15] relies on the obser-
vation of chiral symmetry breaking induced by a strong gauge
coupling which prohibits the connection of a strongly cou-
pled high-energy regime to the observed phase with a light
electron. As a caveat, we should mention that the potential
of the Pauli term to generate a heavy electron mass has not
yet been explored.

The findings of [9] serve as a strong inspiration to study
the Pauli term and the fate of the corresponding nonperturba-
tive fixed points also in dimensions larger and smaller than
d = 4. Specifically d = 3 is a relevant case, since QED3

serves as an effective theory for the long-range excitations of
various layered condensed-matter systems [16–24] includ-
ing graphene and cuprate superconductors. In this context,
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also the dependence of the renormalization structure of the
theory on the number of fermion flavors Nf is of substantial
interest: the question as to whether the long-range properties
of QED3 depend on the flavor number and whether quantum
phase transitions as a function of Nf exist has a long tradition
in the literature [25–61].

At the same time, it is interesting to explore the features of
the system towards higher dimensions: whereas perturbative
renormalization clearly favors four dimensional spacetime
as a setting where interacting field theories of scalar and
fermionic matter with gauge interactions can exist over a
wide range of scales, the possibility of nonperturbative fixed
points appears to loosen this connection between the exis-
tence of interacting quantum field theories and the observed
dimensionality of spacetime. Still, various studies find that
evidence for nonperturbative UV completions appears to
become less robust beyond d = 4 dimensions [62–72].

We start by introducing the model in general dimensions in
Sect. 2. Section 3 briefly reviews the results derived in [9] as
a reference point for our investigations of lower (Sect. 4) and
higher (Sect. 5) dimensional spacetimes. Our conclusions are
given in Sect. 6.

2 QEDd with a Pauli term

We investigate QEDd , i.e. QED in d spacetime dimensions,
with Nf Dirac flavors ψa interacting with an electromagnetic
field Aμ. In addition to the conventional gauge interaction,
we include a Pauli spin-field coupling already on the level
of the bare action. Throughout this work, we use Euclidean
conventions in which the bare action satisfying Osterwalder–
Schrader positivity reads

S =
∫
x

1

4
FμνF

μν + ψ̄ai /D[A]ψa − i m̄ψ̄aψa

+i κ̄ψ̄aσμνF
μνψa . (1)

Here the covariant derivative is defined as Dμ[A] = ∂μ −
i ēAμ. All mass and coupling parameters are understood to
denote bare quantities. While the kinetic term is chirally
invariant, the mass term ∼ m̄ and the Pauli term ∼ κ̄ break
chiral symmetry explicitly.

In this work, we study the renormalization flow of the cou-
plings and the mass, also allowing for wave function renor-
malizations Zψ,A that renormalize the fields of a Wilsonian-
type action of the form of Eq. (1) multiplicatively, ψ →√
Zψψ, A → √

ZAA. This allows us to define the corre-
sponding renormalized couplings. For our present goal of
searching for fixed points, where the theory becomes (quan-
tum) scale invariant, it is useful to introduce dimensionless
renormalized quantities:

e = k
d
2 −2ē

Zψ

√
ZA

, m = m̄

Zψk
, κ = k

d
2 −1κ̄

Zψ

√
ZA

, (2)

where k denotes an RG scale that is used to parameterize
RG trajectories in the space of couplings. The exponents of
k reflect the canonical scaling of the corresponding opera-
tors. For instance, the gauge coupling e is power-counting
marginal in d = 4, relevant in d < 4 and irrelevant in higher
dimensions. The mass term is a relevant operator in any
dimension, whereas the Pauli term is power-counting irrele-
vant in all dimensions d > 2. Note, however, that the Pauli
term, being a dimension-5 operator in d = 4, has the small-
est possible distance to marginality in an operator expansion
of the action. In addition, it is a leading term in a deriva-
tive expansion, in which the only other dimension-5 term
∼ ψ̄ /D /Dψ is subleading.

Even though the canonical scaling fully governs RG
(ir-)relevance in the perturbative regime, where corrections
to scaling can only be logarithmic according to Weinberg’s
theorem [73], nonperturbative phenomena can be charac-
terized by large anomalous dimensions and thus strongly
affect canonical scaling. In both d = 4 and d = 3, the
nonperturbative phenomenon of chiral symmetry breaking
is a prime example for this: at large coupling, the anoma-
lous dimensions of the fermionic self-interaction operators
of the type Oψ4 ∼ (ψ̄ψ)2 can result in RG relevance and
induce a chiral condensate. This can occur in both d = 4
[74–77], where Oψ4 is a dimension-6 operator, as well as
in d = 3 [35,36,44,78] where it is a dimension-4 opera-
tor. These observations put an even stronger emphasis on
the question of a possible RG relevance of the Pauli term
in the nonperturbative regime, as it is closest to marginality.
We therefore concentrate in the present work on the Pauli
coupling as a leading operator in an effective field theory
expansion, but also comment on the possible role of the next-
to-leading four-fermion operators below.

We approach the answer to the question of RG relevance
of the Pauli term by studying the phase diagram of QEDd .

More specifically, we use the Wetterich equation [79–82],
a functional RG flow equation, and determine the β func-
tions of the couplings e, m, and κ. Using t = ln k as a flow
parameter, the β functions can be written as

∂t e = βe = e

(
d

2
− 2 + ηψ + ηA

2

)
+ 	βe, (3)

∂tm = βm = −m
(
1 − ηψ

) + 	βm, (4)

∂tκ = βκ = κ

(
d

2
− 1 + ηψ + ηA

2

)
+ 	βκ, (5)

where ηψ,A denote the anomalous dimensions obtained from

ηψ = −∂t ln Zψ, ηA = −∂t ln ZA. (6)

In Eqs. (3)–(5), we highlighted the dimensional scaling
terms explicitly, which reflect the canonical scaling expo-
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nents already displayed in Eq. (2) together with the anoma-
lous dimensions ηψ,A. The last terms 	βe,m,κ abbreviate the
quantum (loop) contributions. Their explicit forms have been
computed in [9] and are summarized in Appendix A to next-
to-leading order in a systematic expansion scheme of the
Wetterich equation. Structurally, these fluctuation contribu-
tions depend on

	β = 	β(e,m, κ; ηψ, ηA|d, dγ Nf), (7)

where the anomalous dimensions satisfy algebraic equations
also listed in Appendix A and can be expressed as functions
of the couplings as well. In addition to a parametric depen-
dence on the dimension d, the β functions also depend on
the product dγ Nf counting the number of spinor degrees of
freedom: in addition to the flavor number Nf, dγ denotes the
dimensionality of the representation of the Dirac algebra.
The irreducible representations satisfy dγ = 2�d/2� which is
used below unless specified otherwise.

Rather generally, the β functions (3)–(5) are not univer-
sal, but also depend on the details of the regularization. Even
perturbatively, only the one- and two-loop coefficient of the
marginal coupling e in d = 4 are universal in a mass-
independent scheme. Since we include the running of the
mass and pay attention to threshold effects, we work with a
standard mass-scale-dependent functional RG scheme. Nev-
ertheless, the existence of fixed points of the RG, where all
β functions vanish, is a universal statement. Summarizing
the couplings and the β functions in vector-like quantities,
g = (e, κ,m), β = (βe, βκ , βm), a fixed point g∗ satisfies
β(g = g∗) = 0. In addition, the critical exponents θI at
a fixed point are also universal. Linearizing the β functions
near a fixed point, the flow is governed by the stability matrix
B, the eigenvalues of which determine the critical exponents,

Bi j = ∂βgi

∂g j

∣∣∣
g=g∗ , θI = −eig(B). (8)

Since we work in an approximation scheme, our results for
the universal quantities listed in the following also exhibit
only approximate universality and thus depend on the scheme
to some extent. For concrete computations, we use the par-
tially linear regularization scheme which is known to be opti-
mized for fast convergence to universal results in a class of
approximations also used here [83,84].

Positive (negative) critical exponents θi > 0 (θi < 0) are
associated with relevant (irrelevant) directions. The eigendi-
rections associated with the positive exponents span the UV
critical surface of trajectories emanating from the fixed point.
The dimensionality of this surface, and thus the number of
positive exponents, is equal to the number of physical param-
eters to be fixed in order to render the long-range behavior
of the theory fully computable. (Eigenvalues θI = 0 denote
marginal directions; here, higher orders beyond the linearized

flow determine relevance or irrelevance. For instance, the
QED4 gauge coupling e is marginally irrelevant.)

In addition to gauge symmetry as a local redundancy,
the action has a global U(Nf) flavor symmetry, whereas an
extended U(Nf)L×U(Nf)R chiral symmetry is present only in
the absence of the mass and the Pauli term,m = 0 and κ = 0.

In the general case, the action is also invariant under a discrete
axial rotation of the spinors by an angle of π/2 and a simul-
taneous sign flip of κ and m, as well as under charge conju-
gation and a simultaneous sign flip of e and κ. These latterZ2

symmetries are also visible on the level of the flow equations
which remain invariant under (e, κ,m) → (e,−κ,−m) and
(e, κ,m) → (−e,−κ,m) as well as combinations thereof.
Correspondingly, fixed points can exist in these sign-flip mul-
tiplicities, but, of course, describe one and the same univer-
sality class.

In the following, results for fixed-point searches in vari-
ous dimensions and for various fermion degrees of freedom
(flavor number, spinor representation) are presented. As non-
Gaussian fixed points at finite couplings are an inherently
nonperturbative phenomenon in these couplings, it is impor-
tant to discuss consistency criteria in the absence of a generi-
cally small control parameter. Our systematic approximation
scheme represents a combined expansion in operator dimen-
sion and in derivatives. In this sense, the inclusion of wave
function renormalizations Zψ,A already represents a next-
to-leading order contribution. As a quantitative control, we
can compare to the leading-order result which is obtained
by ignoring wave-function-renormalization effects in loop
terms. In practice, this corresponds to setting ηψ,A = 0 inside
the loop terms (technically, inside the threshold functions,
see Appendix A), but retaining them in the scaling terms
displayed in Eqs. (3)–(5).

We list results only for fixed points where the transition
from leading- to next-to-leading-order results are quantita-
tively controlled. This control is implemented by demand-
ing that the anomalous dimensions remain sufficiently small,
|ηψ,A| � O(1). From a technical viewpoint, the flow equa-
tions (3)–(5) feature rational functions of high order in the
couplings on the right-hand sides. Generically, they exhibit
a large number of fixed-points, most of which do not satisfy
our quality criteria and are thus considered as artifacts of our
approximation. Only a small number fulfills the consistency
conditions in a remarkably stable manner. These are the ones
presented in the following sections.

3 Pauli-term fixed points in d = 4

As a reference point, we start by reviewing the phase diagram
of QED4 with a Pauli term for Nf = 1 as has been found in
the literature [9]. Generalizations to different dimensions and
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Table 1 Fixed points of d = 4 dimensional QED

e κ m Multiplicity nphys θmax ηψ ηA

A : 0 0 0 − 1 1.00 0.00 0.00

B : 0 5.09 0.328 Z2 × Z2 2 3.10 −1.38 0.53

C : 0 3.82 0 Z2 3 2.25 −1.00 0.00

Fig. 1 Phase diagram for d = 4, Nf = 1 in the (κ,m) plane at vanish-
ing e = 0 exhibiting the Gaussian fixed point A, and the non-Gaussian
fixed points B and C (a Z2 reflection of B is also visible). Arrows
denote the renormalization group flow towards the IR. The massive
phase where the dimensionless mass m scales as m ∼ 1/k to large
values is accessible from all fixed points

different flavor numbers can be well understood by analyzing
the similarities and differences to this reference case.

In addition to the Gaussian fixed point A characterized
by vanishing couplings, we find two interacting fixed points
that satisfy all our consistency criteria, cf. Table 1. Both these
fixed points B and C occur at finite Pauli κ but vanishing
gauge coupling. Fixed point B also occurs at finite mass
parameter m and has full Z2 ×Z2-fold multiplicity, whereas
for fixed point C only the charge conjugation multiplicity is
pertinent.

At the Gaussian fixed point A, only the mass is a relevant
direction. At fixed point B, the direction towards finite gauge
coupling also represents a relevant direction. Fixed point C
features 3 relevant directions, implying that all couplings
in the action correspond to physical parameters that define
the long-range behavior of the system. The flow towards the
long-range IR is visualized in the phase diagram of the (κ,m)

plane at e = 0 in Fig. 1. Note that the rapid flow near the m
axis towards large values of m reflects the fact that m denotes

a dimensionless mass parameter increasing as m ∼ 1/k for
k → 0 if the physical mass approaches a finite value.

As discussed in [9], UV-complete trajectories that agree
with the observed long-range behavior of pure QED4 can
be constructed with fixed point C as a UV fixed point.
Even though UV-complete trajectories emanating from B,

of course, also exist, their long-range behavior is character-
ized by very large values of the anomalous magnetic moment
of the electron, incompatible with observations.

Beyond arguments of physical compatibility (ultimately,
pure QED is only a part of the electroweak sector), a second
glance at the non-Gaussian fixed points further reveals more
subtle differences: at fixed point C, the fermion anomalous
dimension is exactly ηψ = −1 which is the value needed
to render the Pauli coupling power-counting marginal. The
fermionic scaling dimension at the fixed point becomes
equivalent to that of a scalar field for this value. In order
to quantify how nonperturbative the system is at the fixed
points, let us introduce the quantity

ακ = κ2

4π
, (9)

in analogy to the fine-structure constant α = e2

4π
. At the fixed

point C, we observe that α∗
κ � 1.16, whereas α∗

κ � 2.06 at
fixed point B. This, together with the fact that the anomalous
dimensions are larger, indicates that fixed point B is in a
significantly deeper nonperturbative region.

Let us now go beyond the literature results of [9] and
study the flavor number Nf dependence of the phase diagram
for the irreducible representation dγ = 4. Since we have
e = 0 = m at the fixed point C, the flow equation for the
remaining coupling κ simplifies considerably, yielding

∂tκ|e,m=0 = (1 + ηψ)κ, ηψ = − 3

5π2

κ2

1 − 3
40π2 κ2

. (10)

We observe that ηψ = −1 is a requirement for the existence
of a fixed-point at the present level of approximation which
is indeed satisfied for C. Furthermore, the flow and thus also
its fixed points are completely independent of Nf. The same
statement also holds for the stability matrix B at the fixed
point and thus also for the critical exponents. We conclude
that the results for fixed point C in Table 1 persist for any
value of Nf.

This is different for fixed point B where both fixed point
position and critical exponents do depend on Nf. We observe
that κ∗ at the fixed point increases with Nf whereas m∗
decreases. At a critical value of the flavor number Nf �
18.50, fixed point B collides with another fixed point and
then disappears into the complex plane. This other fixed point
comes from even larger values of the coupling and belongs to
those that do not satisfy our consistency conditions at Nf = 1.

In fact, near the collision, fixed pointB no longer satisfies our
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Fig. 2 Phase diagram for d = 4, Nf = 19 in the (κ,m) plane at
vanishing e = 0. In comparison to Nf = 1, the fixed point B has
disappeared as a consequence of a fixed point collision, whereas the
Gaussian fixed point A and the non-Gaussian fixed point C persist for
all values of Nf

consistency conditions. For instance, at Nf = 18, we have
ηψ � −2.65, ηA = 3.24, and κ∗ � 6.13, implying ακ � 3.

A phase diagram for Nf = 19 where B has disappeared is
shown in Fig. 2.

Concerning the next-to-leading four-fermion operators
∼ (ψ̄ψ)2 of dimension 6, it is known from QED4 at strong
gauge coupling that some of these operators can become rel-
evant as a consequence of four-fermion fixed-point annihila-
tion [74–77]. If so, they can exert a strong influence on the
phase diagram. In QED4 this happens at a sufficiently strong
e > ecr. Whether or not a similar mechanism is operative for
large values of κ is not known and deserves to be investigated
in detail. For the purpose of this work, let us assume that the
dynamics in the sector of dimension-6 operators in d = 4
is such that a region in coupling space continues to persist
where all four-fermion operators remain irrelevant and the
phase diagram exhibits a universality class associated with
fixed point C. On the other hand, if a fixed-point annihilation
occurred, it would first affect the more strongly coupled fixed
point B, particularly for larger Nf.

As a summary of the d = 4 dimensional theory, we find in
the space of action functionals with Pauli term studied here
that fixed point C exists for all values of Nf, remains quan-
titatively stable and supports UV-complete trajectories that
can be matched to the physical long-range observables. By
contrast, fixed point B becomes less consistent with increas-
ing Nf and disappears for large Nf in a fixed-point collision.
Since this collision occurs in a regime which is not well con-

trolled in our approximation, we anticipate that the critical
flavor number estimated here as Nf � 18.50 can undergo
large corrections upon improvements of the approximation.

4 Pauli-term fixed points in lower dimensions

In spacetime dimensions lower than four, d < 4, the RG flow
of the couplings exhibits both qualitative as well as quantita-
tive changes. Quantitatively, we observe in Eqs. (A.1)–(A.5)
that a sizable number of terms have a prefactor (d − 4) and
thus contribute only away from d = 4.

Qualitatively, a major change occurs, since the scaling
term of the gauge coupling flow Eq. (3) now contributes to
linear order in e, i.e., ∂t e = − 1

2e + O(e3, . . .). Provided
that the loop terms of higher order are sufficiently positive,
a new fixed point D emerges on the positive e axis (with
a corresponding Z2 reflection at negative values of e). The
occurrence of this fixed point D is well known in the litera-
ture [25,85,86]. It is infrared (IR) attractive in the coupling
flow in contrast to the Gaussian fixed point A at which the
gauge coupling e now parameterizes a relevant IR-repulsive
interaction.

The fixed-point value e∗ atD is decisive for the long-range
behavior of the lower-dimensional QED. If e∗ is sufficiently
weak, chiral symmetry can persist: along a trajectory ema-
nating from the Gaussian fixed point A, the system remains
massless and the theory can be IR conformal. For such trajec-
tories, e∗ at D represents the maximum long-range coupling
strength of the theory.

If this maximum coupling is sufficiently large, it has the
potential to trigger chiral symmetry breaking and the forma-
tion of chiral condensates. From an RG picture, symmetry
breaking can proceed via induced fermionic self-interactions
becomes relevant [35,36,44], rendering fixed point D unsta-
ble through a fixed-point collision; in this case, D represents
a quasi fixed point that exists only for a finite range of the RG
flow and disappears in the deep IR. Whether this occurs or
not in the physically relevant case d = 3, and for which range
of Nf, has been a major research thread in the past decades
[25–61] with different methods yielding different answers.

While the present work has nothing to add to the question
of chiral symmetry breaking of the system at or near fixed
point D, let us now study how the Pauli coupling comple-
ments the phase diagram away from the chirally symmet-
ric subspace. In fact, we observe the existence of the Pauli-
coupling fixed point C for all lower dimensions in between
2 < d < 4 with qualitative properties similar to d = 4 for
sufficiently small flavor numbers. For the relevant case of
d = 3 and Nf = 1 irreducible Dirac flavors with dγ = 2,

both non-Gaussian fixed points can be seen in the (e, κ) plane
at m = 0 in Fig. 3. This phase diagram illustrates that fixed
point D remains IR attractive also in the direction of the chi-
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Fig. 3 Phase diagram for d = 3, Nf = 1 in the (e, κ) plane at vanish-
ing m = 0 for the irreducible representation dγ = 2. The IR-attractive
fixed point D is characteristic for lower-dimensional QED. It can char-
acterize a chirally invariant long-range conformal phase or – if suffi-
ciently strongly coupled – trigger dynamical chiral symmetry breaking.
This fixed point also remains IR attractive in the direction of the Pauli
coupling

Table 2 Fixed points of d = 3 dimensional QED for Nf = 1 irreducible
flavors (dγ = 2). Potential dynamical chiral symmetry breaking trig-
gered near the strong-coupling IR fixed point D is not accounted for

e κ m Multiplicity nphys θmax ηψ ηA

A : 0 0 0 − 2 1.00 0.00 0.00

B : 0 4.31 0.757 Z2 × Z2 2 1.69 −1.84 2.42

C : 0 1.10 0 Z2 3 1.03 −0.426 0.121

D : 3.77 0 0 Z2 1 2.98 −0.571 0.885

ral symmetry breaking Pauli coupling; by contrast, a mass-
type perturbation remains relevant. We also observe that fixed
pointC is fully repulsive. Quantitatively, it is interesting to see
that the fixed-point value of the Pauli coupling at C decreases
with decreasing dimension; e.g., we have ακ � 0.1 at d = 3.

Quantitative results for the fixed points for d = 3 and
Nf = 1 irreducible flavors are listed in Table 2. In addition,
the non-Gaussian fixed point B is present at smaller values
of κ∗ but larger mass parameter values m∗ in comparison to
d = 4, cf. Fig. 4. More critically, the fixed point exhibits
rather large anomalous dimensions and thus no longer fully
meets our consistency criteria in contrast to fixed point C. In

Fig. 4 Phase diagram for d = 3, Nf = 1 in the (κ,m) plane at van-
ishing e = 0 for the irreducible representation dγ = 2. In comparison
to Fig. 1 in d = 4, the fixed point C is more weakly coupled

fact, fixed point B undergoes a fixed-point collision with an
inconsistent fixed point somewhat below d � 2.9 and thus
disappears from the spectrum. We take this as an indication
that fixed point B is likely to also be an artifact in d = 3.

For completeness, we add that towards even lower dimen-
sions, e.g., at d � 2.28, further B-type fixed points reappear
again satisfying our consistency criteria with ηψ,A � O(1).

This is reminiscent of the occurrence of multicritical mod-
els for d < 3 with an increasing number of models towards
d → 2 in scalar O(N ) theories [87–90]. A proper resolu-
tion of such fixed points, however, requires a larger set of
operators in the truncated theory space.

Let us now study the theory for larger flavor numbers.
For concreteness, we restrict ourselves to the relevant case
of d = 3. Also, we concentrate on the fixed points C andD in
addition to the Gaussian fixed pointA; in fact, this turns out to
not be a limitation, since fixed pointB undergoes a fixed-point
collision slightly above Nf = 1 and hence disappears from
the phase diagram anyway. For a more transparent analysis,
it is useful to introduce the quantity

Ni = 1

2�d/2� Nfdγ , (11)

which counts the number of irreducible flavor degrees of
freedom. Since the non-Gaussian fixed points C and D lie on
their corresponding coupling axes, the β functions reduce to
a rather compact form,
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βe(e)|κ=m=0 =
(−4e7 − 135π2e5 + 2025π4e3

)
Ni − 50

(
5π2e5 − 27π4e3 + 81π6e

)
900π4

(
9π2 − e2

) , (12)

βκ(κ)|e=m=0 = 8
(−184κ7 + 15390π2κ5 + 14175π4κ3

)
Ni + 189

(
176π2κ5 − 6210π4κ3 + 675π6κ

)
630π2

(
20κ4Ni + 81

(
5π4 − 2π2κ2

)) . (13)

Solving Eqs. (12) and (13) for the fixed-point condition in
the regime where our consistency criteria are satisfied yields
the fixed point values e∗ at D and κ∗ at C, respectively, as
a function of Ni. Treating Ni as a continuous variable for
the purpose of illustration, the results are shown in Fig. 5.
In agreement with the literature [35,36,44,85], we observe
that fixed point D becomes more weakly coupled towards
larger flavor numbers. This indicates that chiral symmetry
is not spontaneously broken, and QED with a large number
of flavors features a massless conformal long-range phase.
The latter is quantitatively accessible by means of large-Nf

expansions.
By contrast, the fixed-point value κ∗ at fixed point C

increases with flavor number. Moreover, the fixed point dis-
appears in a fixed-point collision at N κ

i,cr = 5.195. We con-
clude that the universality class defined by fixed point C
and UV-complete trajectories emanating from it exist only at
small values of Ni. This suggests that the universality class,
its property of asymptotic safety, as well as possible quan-
tum phase transitions induced in the long-range properties
are not visible in a large-Nf expansion. We emphasize that
the interesting case of Nf = 2 and dγ = 4, i.e., Ni = 4 –
discussed in the context of high-Tc cuprate superconductors
or graphene – is below the critical flavor number N κ

i,cr. We
list our quantitative results for the fixed-point properties for
this important case in Table 3.

Fig. 5 Fixed-point values κ∗ at fixed point C and e∗ at fixed point D
as a function of the irreducible flavor number Ni in d = 3 spacetime
dimensions. Fixed point C disappears in a fixed-point collision slightly
above Ni = 5.1

The finite range of flavor numbers for which C exists can
accommodate several scenarios depending on the value of
the critical flavor number Nχ

i,cr below which chiral symmetry
breaking occurs as potentially triggered by a large gauge
coupling near fixed point D. If Nχ

i,cr < N κ
i,cr, then there is a

finite window where the system can flow from C in the UV to
D in the IR along a separatrix. Let us for the moment assume
that the case Ni = 4, i.e., Nf = 2 for reducible fermions
dγ = 4, is inside this conformal window. Then there must
be at least one trajectory that connects the two fixed points.
If the system evolves along this trajectory from the UV to
the IR, it would constitute an example of emerging chiral
symmetry in the long-range properties of the theory. The
reason is that the UV regime characterized by fixed point C
corresponds to a universality class without chiral symmetry:
the Pauli coupling violates chiral symmetry explicitly. By
contrast, fixed point D is characterized by m∗ = 0 = κ∗ = 0
and thus represents a chirally symmetric universality class.

Of course, the mass direction is still a relevant pertur-
bation at fixed point D. Since fixed point D has two irrel-
evant directions in our approximation, a two-dimensional
plane of trajectories must exist that end exactly in D and
thus in a state of exact chiral symmetry. From the UV per-
spective, fixed point C has three relevant directions; hence,
one of them needs to be fine-tuned in order for a trajectory
to end in the chiral plane at fixed point D. A projection of
this one-parameter family onto the (κ, e) plane is depicted
in Fig. 6. Figure 7 further focuses on the running couplings
and mass for a typical trajectory. We observe that the transi-
tion from the strong-Pauli-coupling regime to the long-range
value of the gauge coupling coincides with the generation of
a finite explicit mass which nonetheless subsides in the IR.
For comparison, we also show an analogous trajectory from
the Gaussian fixed point A to D.

Table 3 Fixed points of d = 3 dimensional QED for Nf = 2 flavors of
reducible fermions dγ = 4, i.e., Ni = 4

e κ m Multiplicity nphys θmax ηψ ηA

A : 0 0 0 − 2 1.00 0.00 0.00

C : 0 1.44 0 Z2 3 1.05 −0.716 0.876

D : 2.10 0 0 Z2 1 1.64 −0.156 0.946
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Fig. 6 One-parameter family of RG trajectories projected onto the
(κ, e) plane for Ni = 4 irreducible flavor degrees of freedom in d = 3
spacetime dimensions. These lead from the fully repulsive UV fixed
point C to the IR fixed point D at κ∗ = m∗ = 0, thus exhibiting emer-
gent chiral symmetry

Fig. 7 RG flow from the fully repulsive UV fixed point C to the IR
fixed point D for Ni = 4 irreducible flavor degrees of freedom in d = 3
spacetime dimensions; initial conditions are chosen such that the mass
parameter is zero in the UV and IR. For comparison, the trajectory from
the Gaussian fixed point A to D is also shown (gray)

Let us finally comment on the role of the four-fermion
interactions ∼ (ψ̄ψ)2, which may trigger chiral symmetry
breaking once chiral channels become relevant, potentially
as a result of an interaction-induced fixed-point merger [35,
44,74,75]. In conventional QED3, this can be induced by a
sufficiently large gauge coupling e near the fixed point D.

As the fixed point value e∗ can be large at small Nf, the
corresponding critical flavor number Nχ

i,cr below which this
mechanism becomes operative is expected to be small. As
discussed for the d = 4 case, it is conceivable that a similar
mechanism can also be triggered by a sufficiently large κ.

However, in contrast to the d = 4 case, the fixed-point values
κ∗ that we find for fixed point C remain rather moderate
and even decrease towards small Nf. We consider this as

an indication that the existence of C and the corresponding
universality class is not affected by the next-to-leading four-
fermion operators.

5 Pauli-term fixed points in higher dimensions

Whereas the search for fixed points in higher dimensions
may not offer an immediate physical implication, their
study illustrates a mechanism underlying the existence of
the fixed points investigated so far: namely, the competi-
tion between canonical scaling and quantum fluctuations.
Towards higher dimensions, the gauge coupling which is
marginal in d = 4 becomes power-counting irrelevant, while
the power-counting irrelevance of the Pauli coupling is fur-
ther enhanced. The existence of non-Gaussian fixed-points
thus requires similarly enhanced contributions from quantum
fluctuations. If the latter contributions are bounded for some
reason, we expect the non-Gaussian fixed points to disappear
towards higher dimensions.

In the present case, we observe that the power-counting
irrelevance of the gauge coupling e is not counter-balanced
by the fluctuation terms which further contribute to RG irrel-
evance. Hence, no fixed point is found on the e axis apart
from the Gaussian fixed point. In fact, slightly above d = 4
dimensions, the fixed-point structure of d = 4 as shown in
Fig. 1 persists, but fixed points B and C approach each other.
At a critical dimension dcr � 4.27 for Nf = 1, the fixed
point C collides with fixed point B (and its Z2 reflection),
such that only one fixed point which we call C′ remains on
the κ axis. As a consequence of the fixed-point collision,
the new fixed point C′ has one relevant direction (and thus
one physical parameter) fewer thanC. Towards higher dimen-
sions, C′ moves towards larger values of κ and the anomalous
dimensions grow beyond O(1).

Towards larger values of Nf, we observe only quantitative
changes, but the picture remains qualitatively the same. For
instance, for Nf = 10, the collision of B and C occurs at
dcr � 4.69. This number increases beyond d = 5 for even
larger Nf. The fixed-point value of the Pauli coupling at C′
slightly decreases for larger Nf, but the anomalous dimen-
sions remain rather large, cf. Table 4.

Since fixed point C′ with its large anomalous dimensions
does not fully meet our consistency criteria, we consider C′
in d = 5 as an artifact of our approximation. We interpret
these findings as indicating that an asymptotic-safety sce-
nario for QED induced by the Pauli term may not exist in
higher dimensions d = 5, 6, . . . .

We expect that this scenario does not change upon
the inclusion of next-to-leading four-fermion operators ∼
(ψ̄ψ)2. On the contrary, since κ∗ at C′ is generically large,
it is likely that the Pauli interaction may also trigger a mech-
anism which renders some of the fermionic self-interaction
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Table 4 Fixed points of d = 5 dimensional QED for various flavor
numbers of irreducible fermions dγ = 4. Fixed point C′ is a remnant of
a fixed-point collision. In view of the large anomalous dimensions, we
interpret fixed point C′ as an artifact of the approximation (indicated by
the gray font)

Nf e κ m multiplicity nphys θmax ηψ ηA

A : ∀ 0 0 0 − 1 1.00 0.00 0.00
C′: 1 0 13.9 0 Z2 2 5.49 −2.17 −0.903
C′: 5 0 10.3 0 Z2 2 3.46 −1.05 −2.14
C′ : 10 0 8.15 0 Z2 2 3.24 −0.623 −2.53

channels to become relevant as well. If so, the chiral channels
becoming critical could destroy C′ altogether, removing any
possible pathway for establishing asymptotic safety through
the Pauli term.

6 Conclusions

We have studied the renormalization flow of QED upon the
inclusion of a Pauli spin-field coupling in general dimen-
sions and flavor numbers. Using the functional RG for a
nonperturbative estimate of the β functions of the investi-
gated couplings, we explore the fixed-point structure of the
theory within a derivative expansion of the effective action.
We specifically investigate the fate of UV-stable fixed points
recently discovered in d = 4 spacetime dimensions for
Nf = 1 and follow their evolution in theory space as a func-
tion of the number of dimensions and fermion flavors. Such
fixed points serve to construct a UV-complete version of QED
within an asymptotic-safety scenario. They define universal-
ity classes that govern the physical properties of the theory
in the long-range limit.

Going away from d = 4 dimensions, we observe the gen-
eral trend that increasing the flavor number tends to destabi-
lize the non-Gaussian fixed points discovered in four space-
time dimensions. The most promising candidate for a phys-
ically relevant universality class is the non-Gaussian fixed
point at finite Pauli spin-field coupling but vanishing gauge
coupling, termed fixed point C, which also exists in d = 3
dimensions for sufficiently small flavor numbers while sat-
isfying the self-consistency criteria of our approximation.
In particular, we observe this fixed point for flavor num-
bers which are of relevance for effective theories of layered
condensed-matter systems.

This universality class may be of interest as it serves as
an example where the microscopic theory exhibits explicit
chiral symmetry breaking, but the long-range effective theory
may still show a gapless phase protected by an emergent
chiral symmetry. We explicitly construct RG trajectories that

emanate from the non-Gaussian fixed point C and approach
a long-range regime that is governed by the IR-attractive
interacting fixed point in the gauge coupling known in the
QED3 literature. Depending on the flavor number, the latter
may correspond to a strongly coupled IR phase characterized
by spontaneous (or dynamical) chiral symmetry breaking, as
is subject to an ongoing debate in the literature.

In principle, the phase diagram in d = 3 dimensional QED
including the Pauli term can be studied straightforwardly by
corresponding lattice simulations. In addition to the lattice
Dirac operator, the Pauli term involves a local interaction
of the spin structure with a plaquette (representing the field
strength tensor). In practice, the concrete realization of the
spin structure depends on the choice of lattice fermions; also,
lattice simulations in d = 3 dimensional QED have numer-
ically been surprisingly costly due to the often necessary
extrapolation to the chiral limit. Whereas the massless limit
would still be necessary to verify the existence of fixed point
C, lattice simulations at finite mass and finite Pauli coupling
may still be useful to search for a rapid crossover as a finite-
mass remnant of C.

It is also interesting to observe that the fixed-point sce-
nario found in d = 4 does not analogously persist above
four dimensions. A fixed-point collision modifies the phase
structure at a critical flavor dimension which is in between
d = 4 and d = 5 for small to moderate flavor numbers, but
beyond d = 5 for large flavor numbers. In either case, the
fixed point observed in d = 5 no longer meets the quality
criteria of our approximation, implying that we do not find
reliable evidence for a UV completion of QED within an
asymptotic safety scenario in higher dimensions.

These findings represent an instructive example for the
fact that UV completion through asymptotic safety requires
a delicate balance of dimensional (canonical) scaling and
quantum contributions to scaling. Simply adding higher-
order operators to the truncated effective action is not suf-
ficient to induce non-Gaussian fixed points – at least not in
the computationally controllable part of theory space. This
makes the evidence for the UV completion of QED exploit-
ing the Pauli coupling as found in [9] even more remarkable
as it is somewhat special to d = 4. It does not analogously
exist in higher dimensions, and extends to d = 3 only for
small flavor numbers.

Finally, the important question persists as to whether the
strong Pauli coupling at the fixed point exerts a relevant influ-
ence on higher-dimensional operators such as four-fermion
interactions. The latter are known to be crucial for the sta-
tus of chiral symmetry in strongly interacting QED both in
d = 3 as well as d = 4 dimensions. As we have discussed in
each of the sections, our results suggest a subleading influ-
ence of the four-fermion interactions on our picture in d = 3,

a potentially enhanced influence in d = 5 and higher, thus
leaving the d = 4 dimensional case as a crucial test case

123



955 Page 10 of 12 Eur. Phys. J. C (2023) 83 :955

for our scenario. The corresponding exploration of the RG
flow of these next-to-leading order operators is left for future
work.
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Appendix A: β functions

The quantum contributions to the beta functions along with
the anomalous dimensions of the fields were computed in [9]
and are summarized as follows.

	βe = −4vd
(d − 4) (d − 1)

d
e3 l(1,B,F̃2)

d (0,m2)

− 16vd
(d − 2) (d − 1)

d
eκ2 l(2,B,F̃2)

d (0,m2)

− 32vd
d − 1

d
e2κm l(1,B,F,F̃)

d (0,m2,m2)

− 4vd
(d − 2) (d − 1)

d
e3m2 l(B,F2)

d (0,m2)

− 16vd
(d − 4) (d − 1)

d
eκ2m2 l(2,B,F2)

d (0,m2) (A.1)

	βκ = 16vd
(d − 4) (d − 1)

d
κ3 l(2,B,F̃2)

d (0,m2)

− 4vd

(
3
(d − 6) (d − 2)

d
+ 1

)
e2κ l(1,B,F̃2)

d (0,m2)

+ 4vd e
3m

[
d − 3

d

(
l(1,B,F̃1,F)
d (0,m2,m2)

−l(1,B,F1,F̃)
d (0,m2,m2)

)

− (d − 4) (d − 1)

2d
l(B,F,F̃)
d (0,m2,m2)

]

+ 16vd eκ2m

[
5 (d − 4) (d − 3)

2d
l(1,B,F,F̃)
d (0,m2,m2)

+d − 3

d
l(2,B,F,F̃1)
d (0,m2,m2)

]

+ 16vd eκ2m

[
−d − 3

d
l(2,B,F1,F̃)
d (0,m2,m2)

−d + 2

d
l(1,B,F,F̃)
d (0,m2,m2)

]

+ 16vd

(
1 − (d − 4)2

d

)
κ3m2 l(1,B,F2)

d (0,m2)

+ 4vd
(d − 4) (d − 1)

d
e2κm2 l(B,F2)

d (0,m2) (A.2)

	βm = −16vd (d − 1) eκ l(1,B,F̃)
d (0,m2)

+ 16vd (d − 1)mκ2 l(1,B,F)
d (0,m2)

− 4vd (d − 1) e2m l(B,F)
d (0,m2) (A.3)

ηψ = 4vd
(d − 2) (d − 1)

d
e2 l(B,F̃)

d (0,m2)

− 8vd
d − 1

d
e2 l(1,B,F̃1)

d (0,m2)

+ 16vd
(d − 4) (d − 1)

d
κ2 l(1,B,F̃)

d (0,m2)

− 32vd
d − 1

d
κ2 l(2,B,F̃1)

d (0,m2)

+ 32vd
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d
eκm l(1,B,F1)

d (0,m2) (A.4)

ηA = 8vd
dγ Nf

d + 2
e2 l

(2,F̃2
1)

d (m2) + 16vddγ Nfκ
2m2l(F

2)
d (m2)

− 16vd
d − 4

d
dγ Nfκ

2 l(1,F̃2)
d (m2)

− 64vd
dγ Nf

d
eκm l(1,F̃,F1)

d (m2,m2)

+ 8vd
dγ Nf

d
e2m2 l

(1,F2
1)

d (m2). (A.5)

The threshold functions l ...... are defined according to the con-
vention introduced in [9]:

l
([n],X [x p ]

[xd ] ,Y
[yp ]
[yd ] ,...)

d (ωX , ωY , . . . ; ηX , ηY , . . .)

= (−1)1+xd xp+yd yp+··· k−2n−d+2xp(1+xd )+2yp(1+yd )+···

4vd

×
∫

dd p

(2π)d

(
p2

)n
∂̃t

[(
∂

∂p2

)xd
GX (ωX )

]xp

×
[(

∂

∂p2

)yd
GY (ωY )

]yp

· · · . (A.6)

Parameters in brackets are optional and are understood to
have defaults: n = 0, xd = 0, yd = 0, . . . , xp = 1, yp =
1, . . . . The sign conventions are such that all threshold func-
tions are positive for finite mass parameters ωX,Y,... and van-
ishing anomalous dimensions ηX,Y,.... As is conventional in
the literature, the modified scale derivative is understood to
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act only on the regulator terms. The quantity GX (ω) denotes
the inverse regularized propagator of type X, i.e.,

GB(ω) = 1

PB + ωk2 , PB = p2
[

1 + rB

(
p2

k2

)]
, (A.7)

GF(ω) = 1

PF + ωk2 , PF = p2
[

1 + rF

(
p2

k2

)]2

, (A.8)

G F̃(ω) = 1 + rF

PF + ωk2 , (A.9)

where rB and rF are the boson and fermion regulator shape
functions respectively. More details along with some explic-
itly computed threshold functions can be found in [9].
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